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We study the nature of the finite-temperature transition of the three-dimensional scalar chromodynamics
with Nf flavors. These models are constructed by considering maximally OðMÞ-symmetric multi-
component scalar models, whose symmetry is partially gauged to obtain SUðNcÞ gauge theories, with a
residual nonabelian global symmetry given by UðNfÞ for Nc ≥ 3 and SpðNfÞ for Nc ¼ 2, so that
M ¼ 2NcNf. For Nf ¼ 2 and for all values of Nc we investigated, Nc ¼ 2, 3, 4, these systems undergo a
continuous finite-temperature transition, which belongs to a universality class related to the global
symmetry group of the model. For Nc ¼ 2, since Spð2Þ=Z2 ¼ SOð5Þ, it belongs to the O(5) vector
universality class. For Nc ≥ 3, since SUð2Þ=Z2 ¼ SOð3Þ, it belongs to the O(3) vector universality class.
For Nf ≥ 3, the numerical results show evidence of first-order transitions for any Nc. These results are in
agreement with the predictions obtained by using the effective Landau-Ginzburg-Wilson approach in terms
of a gauge-invariant order parameter. Our results indicate that the non-Abelian gauge degrees of freedom
are irrelevant at the transition. These conclusions are supported by an analysis of gauge-field dependent
correlation functions, that are always short ranged, even at the transition.
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I. INTRODUCTION

The importance of symmetries in modern physics can be
hardly overestimated. Global symmetries and the way in
which they are realized are commonly used to identify and
describe different phases of matter [1]. Local gauge sym-
metries play a fundamental role both in particle physics,
where they lie at the heart of the Standard Model [2], and in
condensed-matter physics, where their applications span
from superconductivity [3] to topological order and quan-
tum phase transitions [4].
Several systems of physical interest display both global

and local gauge symmetries, and a fundamental problem is
to understand which of these symmetries play a role in
determining the universal behavior of the system close to a
continuous phase transition. The traditional Landau-
Ginzburg-Wilson (LGW) approach to critical phenomena
relies on statistical field theory [5–9]. In this scheme,
critical properties depend only on the global symmetry
breaking pattern and on some “kinematic” parameters, like
the space dimensionality and the number of field compo-
nents. For transitions to/from topologically ordered states,
this time-honored scheme has to be modified, due to the
peculiar nonlocal character of topological order [10,11].
However, when a continuous phase transition emerges due
to the breaking of a global symmetry in a gauge theory, it is
by no means obvious which is the role played by the gauge

degrees of freedom (d.o.f.): do they affect the critical
behavior or not?
The study of the chiral phase transition in massless

quantum chromodynamics (QCD) was likely the first occa-
sion in which this problem could have been raised. Massless
QCD is indeed invariant under local SU(3) color trans-
formations and under global SULðNfÞ × SURðNfÞ flavor
transformations, with the chiral transition being associated
with the symmetry breaking pattern SULðNfÞ×SURðNfÞ→
SUVðNfÞ [2]. However, starting from the seminal work
of Pisarski and Wilczek [12] (see Refs. [13,14] for some
refinements), it was always implicitly assumed that gauge
d.o.f. are irrelevant at the chiral transition, whose properties
were predicted by using a gauge-invariant order parameter
and the LGW approach. Numerical lattice results later
supported these predictions, althoughwith limited numerical
precision because of the computational burden of simulating
dynamical fermions. Moreover, in recent times, possible
hints of discrepancies have appeared (see Refs. [15,16] for
recent reviews).
The dependence of the critical behavior on the gauge d.o.f.

can be numerically investigated more accurately in scalar
models. The three-dimensional (3D) Abelian case has
recently attracted much attention, both from the theoretical
and from the numerical point of view [10,11,17–25]. In
particular, some works [22–25] reported some numerical
evidence that the LGWapproach, based on a gauge-invariant
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order parameter, may not describe the emerging critical
behavior.
Notwithstanding their applications to high-energy phys-

ics (most notably to the QCD chiral phase transition but
also to possible extensions of the standard model) and
their growing importance in condensed-matter physics
[4,11,26,27], 3D multiflavor scalar non-Abelian gauge
theories have been much less studied so far. The only case
that was systematically investigated was that of the 3D
SU(2) gauge theory coupled to a scalar SU(2) doublet,
which is relevant for the electroweak phase transition (see,
e.g., Refs. [28–32]). For our purposes, however, this model
is somehow trivial, since it is known that its phase diagram
consists of a single phase [33–35].
To improve on this state of affairs, in Ref. [36], we

presented results regarding a multiflavor 3D lattice scalar
non-Abelian gauge model, which might be called lattice
multiflavor scalar chromodynamics. We determined the
transitions in this model, investigated their nature, and
compared the results with the predictions of two field-
theoretical formalisms, the gauge-invariant LGW scheme,
and the continuum scalar chromodynamics. The outcome
of this analysis was that the LGW approach correctly
predicts the finite-temperature critical behavior of 3D
multiflavor scalar chromodynamics in all cases we studied,
i.e., for Nc ¼ 2, 3, 4 and Nf ¼ 2, 3. The analysis of the
lattice results reported in Ref. [36] was however necessarily
sketchy, and in this paper we report all the analyses that
permitted us to unambiguously identify the order of the
transitions and the universality class in the case of con-
tinuous transitions. A more detailed discussion of the
interplay between global and gauge symmetries of the
model is reported, and in particular the full details of
the LGW approach for Nc ¼ 2, in which case the global
symmetry of the model is SpðNfÞ, and for Nc ≥ 3 in which
the relevant global symmetry is SUðNfÞ.
The paper is organized as follows. In Sec. II, the lattice

multiflavor scalar chromodynamics model is introduced,
with a discussion of its global and local symmetries. In
Sec. III, we discuss the predictions of the effective LGW
approach. In Sec. IV, we describe the lattice observables
adopted and we briefly summarize the finite-size scaling
(FSS) results we use in the analysis of the data. In Sec. V,
we present the results of the numerical simulations. Finally,
we summarize and draw our conclusions in Sec. VI. In
Appendix A, we discuss the symplectic order parameters
and, for Nf ¼ 2, the relation between Sp(2) and O(5)
observables. Appendix B is devoted to a discussion of the
LGW approach for the two-color case in which the global
symmetry group is SpðNfÞ. Finally, in Appendix C, we
discuss some properties of the model for β → ∞.

II. THE LATTICE MODEL

The three-dimensional lattice model we are going to
study has complex Nc × Nf matrix variables Zaf

x

associated with each site x of a cubic lattice. Our starting
point is the lattice model defined by the action

Sinv ¼ −J
X
x;μ

ReTrZ†
xZxþμ̂ þ

X
x

VðTrZ†
xZxÞ; ð1Þ

VðXÞ ¼ rX þ 1

2
uX2; ð2Þ

where the first sum is over the lattice links, the second one
is over the lattice sites, and μ̂ ¼ 1̂; 2̂; 3̂ are unit vectors
along the three lattice directions. In particular, we consider
the unit-length limit of the site variables, which is formally
obtained by setting r ¼ −u, and taking the limit u → ∞ in
the potential (2), so that the variables Z satisfy

TrZ†
xZx ¼ 1; ð3Þ

and the action simplifies to

Sinv ¼ −J
X
x;μ

ReTrZ†
xZxþμ̂: ð4Þ

Models with actions (1) and (4) are invariant under OðMÞ
transformations with M ¼ 2NcNf. This is immediately
checked if we write the matrices Zx in terms of M
component real vectors Sx. In the new variables, we obtain
the standard OðMÞ nonlinear σ model,

SM ¼ −J
X
x;μ

Sx · Sxþμ̂; Sx · Sx ¼ 1: ð5Þ

We now proceed by gauging some of the d.o.f. We
associate an SUðNcÞ matrix Ux;μ̂ with each lattice link
and extend the action (4) to ensure SUðNcÞ gauge invari-
ance. We also add a kinetic term for the gauge variables in
the Wilson form [37]. We obtain the model with action

Sg ¼ −βNf

X
x;μ

ReTr½Z†
xUx;μ̂Zxþμ̂�

−
βg
Nc

X
x;μ>ν

ReTr½Ux;μ̂Uxþμ̂;ν̂U
†
xþν̂;μ̂U

†
x;ν̂� ð6Þ

and partition function

Z ¼
X
fZ;Ug

e−Sg : ð7Þ

Note that the gauge group is SUðNcÞ and not U(Nc), so that,
forNc ¼ 1, the model is not related to the 3D CPNf−1 model
[9] or to the Abelian Higgs model, studied, e.g., in Ref. [21].
The factorNf in the first term is introduced so that the large-
Nf limit can be performed by keeping β fixed; the factor
1=Nc in the second term is instead conventional in the lattice
gauge theory literature. Note that, for βg → ∞, the product of
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the gauge fields along a plaquette converges to one, and
therefore we can set Ux;μ̂ ¼ 1 modulo a gauge transforma-
tion. Therefore, in this limit, we reobtain the OðMÞ invariant
theory (4) we started from.
It is immediate to see that, for any value ofNc andNf, Sg

is invariant under the local gauge transformation

Zx → GxZx; Ux;μ̂ → GxUx;μ̂G
†
xþμ̂; ð8Þ

with Gx ∈ SUðNcÞ, and under the global transformation

Zx → ZxV; Ux;μ̂ → Ux;μ̂; ð9Þ

with V ∈ UðNfÞ. More precisely, the global symmetry
group of the model is UðNfÞ=ZNc

, where ZNc
is the center

of the gauge symmetry group SUðNcÞ.
Actually, for Nc ¼ 2, the action Sg is invariant under a

larger global symmetry group, the compact complex
symplectic group1 SpðNfÞ. This is a well-established result
(we found mention of it, in various forms, e.g., in
Refs. [11,38–40]), which is a consequence of the self-
duality of the fundamental representation of SU(2). We will
here briefly explain the origin of this symmetry enlarge-
ment, introducing also some notations that will be useful in
the following.
We define

Yaf
x ¼

X
b

ϵabZ̄bf
x ; ð10Þ

where ϵab is the completely antisymmetric tensor in two
dimensions (ϵ12 ¼ −ϵ21 ¼ 1), and the 2 × 2Nf matrix field
Γaα
x , defined by

Γaα
x ¼

(
Zaα
x if 1 ≤ α ≤ Nf

Y
aðα−NfÞ
x if Nf þ 1 ≤ α ≤ 2Nf

: ð11Þ

Since SU(2) matrices satisfy

X
b

ϵabŪbc ¼
X
b

Uabϵbc; ð12Þ

Γx transforms covariantly under gauge transformations

Γx → GxΓx: ð13Þ

We can now rewrite the nearest-neighbor interaction term
involving the scalar variables as

1

2

X
f;a;b

½Z̄af
x Uab

x;μ̂Z
bf
xþμ̂ þ Zaf

x Ūab
x;μ̂Z̄

bf
xþμ̂�

¼ 1

2

X
f;a;b

½Z̄af
x Uab

x;μ̂Z
bf
xþμ̂ þ Ȳaf

x Uab
x;μ̂Y

bf
xþμ̂�

¼ 1

2

X
γ;a;b

Γ̄aγ
x Uab

x;μ̂Γ
bγ
xþμ̂ ¼

1

2
TrΓ†

xUx;μ̂Γxþμ̂: ð14Þ

Apparently, the action (14) is invariant under the global
transformations

Γx → ΓxM; M ∈ Uð2NfÞ: ð15Þ

However, one should bear in mind that the Γx variables are
not generic, since they are obtained by a formal doubling of
the d.o.f. Therefore, one must only consider transforma-
tionsM that leave the particular structure (11) invariant. To
identify them, we note that the previous bipartite structure
of Γ is equivalent to the relation

XNc

b¼1

ϵabΓ̄bα
x ¼ −

XNf

γ¼1

Γaγ
x Jγα; ð16Þ

where J is the 2Nf × 2Nf matrix

J ¼
�
0 −I
I 0

�
; ð17Þ

and I is the Nf × Nf identity matrix. Therefore, the global
invariance group of Sg is the subgroup of Uð2NfÞ which
leaves invariant the relation Eq. (16). By straightforward
manipulations, it is possible to show that this requiresM to
satisfy

MJMT ¼ J; ð18Þ
which identifies the global symmetry group as the compact
(unitary) complex symplectic group SpðNfÞ (see, e.g.,
Ref. [41]). The global symmetry group for Nc ¼ 2 is thus
SpðNfÞ=Z2, since the sign of the field can be redefined by a
gauge transformation. Note that, for Nf ¼ 2, we have the
isomorphism (see, e.g., Ref. [41])

SOð5Þ ¼ Spð2Þ=Z2: ð19Þ

Finally, let us explicitly note that the SpðNfÞ symmetry also
holds when the fields do not satisfy the unit-length
condition. Since

TrZ†
xZx ¼

1

2
TrΓ†

xΓx ð20Þ

is invariant under any Uð2NfÞ transformations, and, in
particular, under those of its SpðNfÞ subgroup, the action is

1Several notations are used to denote this group: in particular
both SpðNfÞ and Spð2NfÞ can be found in the literature.
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SpðNfÞ invariant for generic site potentials V in Eqs. (1)
and (2).

III. EFFECTIVE FIELD THEORY RESULTS

The critical behavior of the lattice multiflavor scalar
chromodynamics was discussed in Ref. [36]. Two different
approaches were considered: the continuum scalar chromo-
dynamics corresponding to the lattice model and the
LGW Φ4 theory built in term of a gauge-invariant order
parameter.
The renormalization-group flow of multiflavor con-

tinuum chromodynamics was studied in the ε expansion
around four dimensions [42]. It was found that a stable
fixed point only exists for a very large number of flavors
[for Nc ¼ 2, it exists only for Nf > 359þOðεÞ]. As a
consequence, for small values of Nf a first-order transition
is predicted.
In the LGWapproach, one starts by considering an order

parameter that breaks the global symmetry of the model.
We first consider the case Nc > 2, so that the global
symmetry is UðNfÞ=ZNc

. Since this is not a simple group,
we may have different symmetry breakings.
One possibility is that of breaking the SUðNfÞ subgroup.

An appropriate order parameter is the field combination

Qfg
x ¼

X
a

Z̄af
x Zag

x −
δfg

Nf
; ð21Þ

which is the natural generalization of the quantity studied in
Abelian models (see, e.g., Refs. [20,21]). The correspond-
ing LGW theory is obtained by considering a Hermitian
traceless Nf × Nf matrix field ΨðxÞ, which represents a
coarse-grained version of Qx, with Lagrangian

LLGW ¼ Tr∂μΨ∂μΨþ rTrΨ2

þ u3TrΨ3 þ u41TrΨ4 þ u42ðTrΨ2Þ2: ð22Þ

This Lagrangian is invariant under the global transforma-
tions Ψ → VΨV†, and therefore the symmetry group is
SUðNfÞ=ZNf

. As discussed in, e.g., Ref. [20], for Nf ¼ 2

the cubic term vanishes and the two quartic terms are
equivalent. In this case, a continuous transition is possible
in the SUð2Þ=Z2, that is in the O(3) vector, universality
class. For Nf > 2, the cubic term is present and, on the
basis of the usual mean-field arguments, one expects a first-
order transition also in three dimensions.
A second possibility is that of breaking the Uð1Þ=ZNc

symmetry group associated with the transformations

Zaf
x → eiαZaf

x ; ð23Þ

which leave invariant the order parameter Qab
x . However,

for Nf < Nc, this additional symmetry is only apparent.

Indeed, for any x, one can find an SUðNcÞ matrix Gx such
that

eiαZx ¼ GxZx: ð24Þ

If Nf < Nc, there is a gauge transformation Z0
x ¼ G1xZx

such that Z0af
x ¼ 0 for any f and any a satisfying

Nfþ1≤ a≤Nc. Then, one considers the Nc × Nc unitary
matrix

G2 ¼ diagðg1;…; gNc
Þ; ð25Þ

with ga ¼ eiα for 1 ≤ a ≤ Nf, ga ¼ e−iαNf for a ¼ Nf þ 1,
ga ¼ 1 for a > Nf þ 1. It is then easy to verify that Gx ¼
G†

1xG2G1x satisfies Eq. (24).
For Nf ≥ Nc, the relation (24) does not hold anymore,

and one should also consider the possibility of a transition
characterized by the breaking of the Abelian symmetry
Uð1Þ=ZNc

. An appropriate order parameter is

D
f1;…;fNc
x ¼

X
a1;…;aNc

ϵa1;…;aNc Za1f1
x …Z

aNcfNc
x ; ð26Þ

which is invariant under gauge transformations (here
ϵa1;…;aNc is the completely antisymmetric tensor in Nc
dimensions). Such an order parameter vanishes for
Nf < Nc, an expected result given the effective absence
of the symmetry in this case. For Nf ¼ Nc, the order
parameter defined in Eq. (26) is invariant under SUðNfÞ
transformations and therefore it is a good order parameter
for the breaking of the U(1) flavor symmetry. It can be
rewritten in a simpler way as

D
f1;…;fNc
x ¼ ϵf1;…;fNc det Zx: ð27Þ

On the other hand, for Nf > Nc, the order parameter
belongs to a nontrivial representation of SUðNfÞ.
Therefore, it condenses only if both the SUðNfÞ and the
U(1) symmetries are broken. As we discuss in Appendix C,

in our model, for Nc ≥ 3, the order parameter D
f1;…;fNc
x

vanishes for β → ∞. If we assume that the relevant
configurations in the low-temperature phase are simply
obtained by considering short-range fluctuations on top of
the ordered background observed for β ¼ þ∞, we con-
clude that D correlations are short ranged in the low-
temperature phase, i.e., that the U(1) symmetry is not
broken. Below we will present numerical results for Nc ¼
Nf ¼ 3 that confirm this picture.
For Nc ¼ 2, the symmetry group is SpðNfÞ=Z2. The

order parameter is a symplectic analog of Qx. Specifically,
we define
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T αβ
x ¼

X
a

Γ̄aα
x Γaβ

x −
δαβ

2Nf

X
aγ

Γ̄aγ
x Γaγ

x ; ð28Þ

with Γaα
x defined in Eq. (11). This order parameter is a

2Nf × 2Nf Hermitian traceless matrix which satisfies the
additional condition

JT̄ J þ T ¼ 0; ð29Þ

which follows from Eq. (16). The matrix T is thus an
element of the spðNfÞ algebra [41]. The explicit con-
struction of the corresponding LGW theory starts by
defining a 2Nf × 2Nf Hermitian traceless matrix field
ΨðxÞ that satisfies the analog of Eq. (29). The correspond-
ing LGW theory is obtained by considering the most
general quartic polynomial in the fields: we reobtain
Eq. (22). For Nf ¼ 2, as discussed in Appendix B, the
cubic term vanishes and the two quartic terms are equiv-
alent. Therefore, continuous transitions are allowed in the
O(5) vector universality class, given the isomorphism
between Spð2Þ=Z2 and the SO(5) group. For Nf > 2, a
cubic operator is generically present and therefore we
expect first-order transitions. Note, that for Nc ¼ 2, there
is no residual U(1) symmetry, as U(1) global transforma-
tions are a subgroup of the SpðNfÞ group.
We finally note that the LGW approach based on the

symmetry of the model does not depend on the specific
form of the lattice OðMÞ-invariant potential VðXÞ in
Eq. (2). Moreover, we recall that the presence of a stable
fixed point in the corresponding LGW theory does not
exclude the possibility that the model undergoes a first-
order transition, when the system is outside the attraction
domain of the stable fixed point, even though it shares the
global symmetry of the universality class.
Table I reports a summary of the predictions based on the

LGW approach, assuming that the critical behavior is
determined by the global symmetry group and that the
gauge d.o.f. are irrelevant.

IV. OBSERVABLES AND ANALYSIS METHOD

In this section, we introduce the lattice observables
studied and we briefly recall some basic facts about FSS

that will be relevant for the analysis of the numerical data.
We always assume the lattice to have periodic boundary
conditions and to be of linear size L.

A. Lattice observables

In the following, we consider the energy density and the
specific heat defined as

E ¼ 1

βNfV
hSgi; C ¼ 1

β2N2
fV

ðhS2gi − hSgi2Þ; ð30Þ

where V ¼ L3. We also define the average gauge energy as

Eg ¼
1

6VNc

�X
x;μ>ν

ReTr½Ux;μ̂Uxþμ̂;ν̂U
†
xþν̂;μ̂U

†
x;ν̂�

�
: ð31Þ

To study the breaking of the SUðNfÞ flavor symmetry, we
consider the order parameter Q defined in Eq. (21), which
is a Hermitian and traceless Nf × Nf matrix. Its two-point
correlation function is defined by

Gðx − yÞ ¼ hTrQxQyi; ð32Þ

where the translation invariance of the system has been
explicitly taken into account. We define the corresponding
susceptibility χ and correlation length ξ as

χ ¼
X
x

GðxÞ; ð33Þ

ξ2 ¼ 1

4sin2ðπ=LÞ
G̃ð0Þ − G̃ðpmÞ

G̃ðpmÞ
; ð34Þ

where G̃ðpÞ ¼ P
x e

ip·xGðxÞ is the Fourier transform of
GðxÞ and pm ¼ ð2π=L; 0; 0Þ. We also consider the Binder
parameter U defined by

U ¼ hμ22i
hμ2i2

; μ2 ¼
1

V2

X
x;y

TrQxQy: ð35Þ

We also study the residual U(1) flavor symmetry, only for
Nf ¼ Nc. For this purpose, we consider the scalar order
parameter, see Eq. (27),

Dx ¼ det Zx: ð36Þ

We define the correlation function

GDðx − yÞ ¼ hReD̄xDyi; ð37Þ

the correlation length ξD using the analogue of Eq. (34),
and the Binder parameter

TABLE I. Summary of the predictions of the LGW approach
for the nature and universality class of the finite-temperature
transition of the scalar chromodynamics defined by the action (6).
For Nc ≥ 3 and Nf ≥ Nc, we have assumed that the flavor U(1)
symmetry does not play any role.

Flavors Colors Universality class

Nf ¼ 2 Nc ¼ 2 O(5) vector
Nf ¼ 2 Nc ≥ 3 O(3) vector
Nf ≥ 3 Nc ≥ 2 first order
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UD ¼ hμ2D2i
hμD2i2

; μD2 ¼
1

V2

X
x;y

ReD̄xDy: ð38Þ

To better appreciate the role of the gauge d.o.f., we also
study some observables involving the SUðNcÞ gauge link
variables. More specifically, we consider the averages

�X
ab

Z̄af
x

�Y
l∈CUl

�
ab
Zbg
y

�
; ð39Þ

where the product extends over the link variables that
belong to a lattice path C connecting the points x and y. To
define quantities that have the correct FSS, the path C must
be chosen appropriately [43], and here we consider
correlations between points along lattice lines,

GVðt; LÞ ¼ Re

�X
abfg

Z̄af
x

�Yt−1
k¼0

Uxþkμ̂;μ̂

�ab
Zbf
xþtμ̂

�
: ð40Þ

As usual, translation invariance and independence of the
direction μ̂ can be used to actually increase the statistics. In
some test cases, we also determined the Polyakov loop

PðLÞ ¼ 1

3L3

X
x;μ

Re

�
Tr

�YL−1
k¼0

Uxþkμ̂;μ̂

��
: ð41Þ

For Nf ¼ 2 and Nc ¼ 2, the model is invariant under
Spð2Þ=Z2 ¼ SOð5Þ transformations. We discuss in
Appendix A the O(5) observables that can be defined in
terms of the order parameter (28). In particular, we show
that the second-moment correlation length computed from
GðxÞ, GDðxÞ or the O(5)-invariant correlation function of
the order parameter T αβ are numerically the same. For
the Binder parameters, instead, the relation is not trivial.
We have

U ¼ 25

21
UΓ; UD ¼ 10

7
UΓ; ð42Þ

where UΓ is the O(5)-invariant Binder parameter defined in
Appendix A, which corresponds to the usual vector
parameter in the O(5) vector theory.
For Nf ¼ 2 and Nc ≥ 3, the global symmetry group

is SUð2Þ=Z2 ¼ SOð3Þ. This invariance can be more
easily understood by defining the gauge-invariant three-
component real vector variables φk

x as

φk
x ¼

X
a;f;g

Z̄af
x σkfgZ

ag
x ¼

X
f;g

σkfgQ
fg
x ; ð43Þ

where σk are the Pauli matrices. Previously defined
observables, like χ and U, can be rewritten in term of
the vector variable φx using

Gðx − yÞ ¼ 1

2
hφx · φyi; ð44Þ

U ¼ hμ22i
hμ2i2

; μ2 ¼
1

V2

X
x;y

φx · φy: ð45Þ

Note however that the vectors φx do not have fixed length;
indeed

φx · φx ¼ 2TrQ2
x ≤ 1: ð46Þ

B. Finite-size scaling

To investigate continuous transitions using FSS, it is
particularly convenient to study RG invariant quantities,
such as U and

Rξ ¼ ξ=L: ð47Þ

For RG-invariant quantities, generically denoted by R, FSS
theory predicts the scaling behavior [8]

Rðβ; LÞ ¼ fRðXÞ þ L−ωgRðXÞ þ � � � ; ð48Þ

X ¼ ðβ − βcÞL1=ν; ð49Þ

where fRðXÞ is a function that is universal up to a
multiplicative scale of its argument, ν is the critical
exponent associated with the correlation length, and ω is
the exponent associated with the leading irrelevant oper-
ator. By expanding Eq. (48) around βc, corresponding to
X ¼ 0, we can write

Rðβ; LÞ ≈ R� þ
Xn
k¼1

akXk þ L−ω
Xm
k¼0

bkXk; ð50Þ

where, as in Eq. (48), we have neglected next-to-leading
scaling corrections. Using this expression, it is possible to
estimate βc and ν from numerical determinations of R.
Since Rξ defined in Eq. (47) is an increasing function of

β, we may write

Uðβ; LÞ ¼ FUðRξÞ þOðL−ωÞ; ð51Þ

where FU now depends on the universality class only,
without any nonuniversal multiplicative factor. This is true
once the boundary conditions and the shape of the lattice
have been fixed, and provided one uses corresponding
quantities in the different models; see, e.g., Ref. [20] and
the discussion in Sec. VA. The scaling (51) is particularly
convenient to test universality-class predictions, since it
permits easy comparisons between different models with-
out tuning nonuniversal parameters.
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Finally, we also mention that the susceptibility is
expected to scale as [8]

χðβ; LÞ ≈ L2−η½fχðXÞ þ L−ωgχðXÞ� ð52Þ

¼ L2−η½FχðRξÞ þOðL−ωÞ�; ð53Þ

where fχ and Fχ are universal functions, apart from trivial
multiplicative normalizations and a normalization of the
argument in the case of fχ .

V. NUMERICAL RESULTS

We now present and discuss the results of Monte Carlo
(MC) simulations. We use an overrelaxation algorithm,
consisting of a combination of heat-bath [44,45] and
microcanonical [46] updates (with ratio 1∶5) for the gauge
fields (implemented à la Cabibbo-Marinari [47] for
Nc > 2) and of a combination of Metropolis [48] and
microcanonical updates for the scalar field. The Metropolis
update was tuned to have an acceptance rate of approx-
imately 30%.

A. FSS analysis for Nf = 2 and Nc = 2

In this section, we present the numerical results obtained
for Nf ¼ 2 and Nc ¼ 2. We start by analyzing the
computationally simplest case βg ¼ 0. In this case, we
performed simulations on lattices of size up to L ¼ 96.
In Fig. 1, we show the estimates of Rξ for different values

of L and β. They display the typical behavior expected at a
continuous transition: different curves have an approximate
crossing point and the slopes increase by increasing the
lattice size. Equation (50) can then be used to extract the
critical coupling βc and the critical exponent ν. For this

purpose, we first perform standard nonlinear (unbiased) fits
to the ansatz,

Rξ ¼ R�
ξ þ a1X; X ¼ ðβ − βcÞL1=ν; ð54Þ

using data within the self-consistent window Rξðβ; LÞ ∈
½R�

ξð1 − δÞ; R�
ξð1þ δÞ�. For δ ¼ 0.1 and L≥Lmin¼16, we

obtain βc¼2.68869ð2Þ, ν¼0.775ð6Þ, and R�
ξ ¼ 0.5340ð2Þ,

with χ2=d:o:f: ≈ 1.5 (30 data, d.o.f. is the number of d.o.f.
of the fit). The exponent ν is consistent with that of the O(5)
vector universality class, whose universal critical exponents
are [49–52]

ν ¼ 0.779ð3Þ; η ¼ 0.034ð1Þ; ω ¼ 0.79ð2Þ: ð55Þ

To corroborate this identification, we perform biased fits to
Eq. (50), with n ¼ 1 andm ¼ 0 (we include a single scaling
correction term), fixing ν and ω to the O(5) universal values
reported in Eq. (55). Again, we use a self-consistent fit
window Rξðβ; LÞ ∈ ½R�

ξð1 − δÞ; R�
ξð1þ δÞ�. The results

are reported in Table II. Our final biased estimates, that take
into account the dependence of the fit parameters on δ and
Lmin, are

βc ¼ 2.68885ð5Þ; R�
ξ ¼ 0.538ð2Þ: ð56Þ

The errors also take into account thevariation of the estimates
as ν and ω vary within one error bar. The corresponding
scaling plot is shown in Fig. 2, where Rξ is plotted versus
X ¼ ðβ − βcÞL1=ν using βc ¼ 2.68885 and the O(5) value
ν ¼ 0.779. The agreement is excellent. Note also that the
estimate of R�

ξ is consistent with R
�
ξ ¼ 0.538ð1Þ, obtained in

the O(5) vector model using the vector correlation function
[50]. Also, the behavior of the susceptibility χ is consistent
with a transition in the O(5) universality class. If we fix η to
the O(5) value [see Eq. (55)], the ratio χ=L2−η scales nicely
when plotted versusRξ, as expected from the scaling relation
Eq. (53); see Fig. 3.
Additional evidence that the transition belongs to the

O(5) vector universality class is provided by the analysis
of the Binder parameter U defined in Eq. (35). To
perform the correct universality check, we should compare
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g
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FIG. 1. Rξ versus β for Nf ¼ 2, Nc ¼ 2, and βg ¼ 0. The data
for different values of L have a crossing point, whose position
provides an estimate of the critical point, βc ¼ 2.68885ð5Þ,
indicated by the vertical line. The horizontal line corresponds
to the universal value R�

ξ ¼ 0.538ð1Þ for the O(5) vector
universality class.

TABLE II. Results of the biased fits of Rξ to the ansatz (50)
with n ¼ 1, m ¼ 0, fixing ν and ω to the O(5) universal values
reported in Eq. (55). Results for Nc ¼ Nf ¼ 2 and βg ¼ 0.

δ Lmin βc R�
ξ χ2=d:o:f. # data

0.05 8 2.68886(3) 0.5381(3) 1.1 45
0.10 8 2.68887(2) 0.5378(3) 1.4 68
0.05 12 2.68880(4) 0.5372(6) 1.1 33
0.10 12 2.68880(3) 0.5364(5) 1.4 52
0.05 24 2.68886(8) 0.539(3) 1.2 13
0.10 24 2.68884(6) 0.538(2) 1.3 26
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corresponding quantities in our model and in the O(5)
vector model. As we discuss at length in Appendix A, the
Binder parameter that corresponds to the O(5) parameter is
UΓ defined by using T αβ; see Eq. (A8). Using the Sp(2) or
O(5) invariance of the theory, one can easily show that UΓ
and U simply differ by a multiplicative constant; see
Eq. (A15). Therefore, the renormalized Binder parameter

Ur ¼
21

25
U ð57Þ

should behave as the vector Binder parameter in the O(5)
vector model. If we perform biased fits to Eq. (50)
analogous to those we performed for Rξ, we obtain
U�

r ¼ 1.070ð1Þ, which is in agreement with the O(5)

estimate U�
Oð5Þ ¼ 1.069ð1Þ reported in Ref. [50]. A con-

clusive evidence for an O(5) critical behavior is provided by
Fig. 4, where we report Ur versus Rξ (upper panel). The
numerical data fall on top of those obtained in the O(5)
vector model.
As we discussed in Sec. III, in the models with Nc ¼ 2

the U(1) flavor symmetry breaks at the same β where the
SUðNfÞ is broken, since the two groups are subgroups of
the larger symmetry group SpðNfÞ. To verify this point, we
have estimated several observables in terms of the order
parameter Dx defined in Eq. (36). We have verified that the
correlation length ξD defined using the correlation function
(37) is identical, within errors, to ξ. Moreover, we have
studied the behavior of the Binder parameter UD. Again, to
obtain a quantity that can be directly related to the O(5)
Binder parameter, we have considered, see Eq. (A15),
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FIG. 2. Rξ versus ðβ − βcÞL1=ν for Nf ¼ 2, Nc ¼ 2, and
βg ¼ 0. We use βc ¼ 2.68885 and ν ¼ 0.779, the estimate of
the correlation-length exponent for the O(5) vector universality
class, see Ref. [50].
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FIG. 4. Rescaled Binder parameter Ur versus Rξ (top) and
rescaled Binder parameter UDr versus Rξ;D ¼ ξD=L (bottom).
Results for Nf ¼ 2, Nc ¼ 2, and βg ¼ 0. Data are in good
agreement with the numerical results for the Binder parameter
obtained by numerical simulations of the lattice O(5) vector
model. The dotted horizontal and vertical lines correspond to the
universal values U� ¼ 1.069ð1Þ and R�

ξ ¼ 0.538ð1Þ of the O(5)
vector universality class. The dashed horizontal lines correspond
to Ur ¼ 7=5 and Ur ¼ 1, the asymptotic values for Rξ → 0 and
for Rξ → ∞, respectively.
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FIG. 3. Rescaled susceptibility χ=L2−η versus Rξ, for Nf ¼ 2,
Nc ¼ 2, and βg ¼ 0. We use the estimate η ¼ 0.034, the estimate
for the O(5) vector universality class; see Ref. [50]. The dotted
vertical line corresponds to the critical value R�

ξ for the O(5)
vector universality class.
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UDr ¼
7

10
UD: ð58Þ

In Fig. 4 (lower panel), we report UDr versus Rξ;D ¼ ξD=L.
The data are compared with the O(5) corresponding data,
observing again an excellent agreement.
Finally, we have computed the correlation function

GVðtÞ, defined in Eq. (40). As it is evident from Fig. 5,
it is short ranged and essentially independent of L even at
the critical point. It has a very clear exponential behavior,
GVðtÞ ∼ expð−x=ξgÞ, with ξg ¼ 1.92ð2Þ, independently of
the size L. We also analyzed the Polyakov loop which is
expected to behave as e−L=ξP . The estimates of ξP are close
to those of ξg, but with significantly larger errors.
We have also verified that analogous results are obtained

for βg ≠ 0. For this purpose, we performed MC simulations
at βg ¼ −2 (using lattices up to L ¼ 32) and at βg ¼ 2

(using lattices up to L ¼ 48). In both cases, data fully
support the presence of a continuous transition in the O(5)
vector universality class. As an example, in Fig. 6, we plot
Ur versus Rξ for βg ¼ 2. Again, the data fall on top of the
corresponding ones obtained in the O(5) vector model.
Biased fits to Eq. (50) allow us to obtain the estimates
βcðβg ¼ −2Þ ¼ 3.794ð2Þ and βcðβg ¼ 2Þ ¼ 1.767ð1Þ.
While the critical coupling at βg ¼ 2 is significantly lower
than the value βcðβg ¼ 0Þ ≈ 2.689, it is still quite larger
than the value βc ¼ 0.96339ð1Þ which is attained in the
limit of large βg, when the model become equivalent to the
O(8) vector model [53]. This could explain the absence of
significant crossover effects in our data induced by the
unstable Oð2NfNcÞ fixed point at βg → ∞, which have
instead been observed in the Abelian case [21]. We finally
note that the approach to the asymptotic scaling behavior is
significantly slower for βg ¼ 2 than for βg ¼ 0; see Fig. 6.
This is likely related to the fact that the gauge length scale
ξg at the transition is larger at βg ¼ 2 than at βg ¼ 0. Indeed,

we find ξgðβg ¼ 2Þ ¼ 2.46ð4Þ, to be compared with
ξgðβg ¼ 0Þ ¼ 1.92ð2Þ.
The above results provide a robust evidence that the

lattice scalar chromodynamics for Nf ¼ 2 and Nc ¼ 2
undergoes a continuous transition in the O(5) vector
universality class. This result agrees with the predictions
of the LGWapproach, assuming that the critical behavior is
determined by the global symmetry group and that the
gauge d.o.f. are irrelevant.
We have shown that the same universal behavior

emerges in a large interval of values of βg around
βg ¼ 0. We predict the same behavior for all positive finite
values of βg. However, for βg → ∞, we expect a crossover
to the O(8) critical behavior. The behavior for large
negative values of βg is less clear, since the large frustration
arising in the βg → −∞ limit may give rise to a change of
the nature of the transition. This issue requires further
investigation.

B. FSS analysis for Nf = 2 and Nc = 3;4

In this section, we consider the model for Nf ¼ 2 and
Nc ¼ 3, 4. For Nc ¼ 3 and βg ¼ 0, we have performed
simulations up to L ¼ 64. In Fig. 7, we report Rξ as a
function of β. We observe a crossing point for β ≈ 3.75. To
determine the nature of the transition, we again proceed by
first performing standard nonlinear (unbiased) FSS fits of
the Rξ data to the simplest ansatz Eq. (54), using data
within the self-consistent window Rξðβ; LÞ ∈ ½R�

ξð1 − δÞ;
R�
ξð1þ δÞ�. For δ ¼ 0.1 and L ≥ Lmin ¼ 8, we obtain

βc ¼ 3.7523ð1Þ, ν ¼ 0.705ð10Þ, and R�
ξ ¼ 0.5771ð5Þ, with

χ2=d:o:f: ≈ 1.4 (28 data). The critical exponent ν is con-
sistent with that of the O(3) vector universality class, as
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FIG. 5. The correlation function GV defined in Eq. (40), for
Nf ¼ 2, Nc ¼ 2, and βg ¼ 0 at βc. It shows a large-distance
exponential behavior ∼e−x=ξg with ξg ¼ 1.92ð2Þ.
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FIG. 6. Estimates of the rescaled Binder parameter Ur versus
Rξ, for Nf ¼ 2, Nc ¼ 2, and βg ¼ 2, and of the usual Binder
parameter for the O(5) vector model. The dotted horizontal and
vertical lines indicate the universal values U� ¼ 1.069ð1Þ and
R�
ξ ¼ 0.538ð1Þ of the O(5) universality class. The dashed

horizontal lines correspond to the asymptotic values Ur ¼ 7=5
and Ur ¼ 1 for Rξ → 0 and Rξ → ∞, respectively.
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predicted by the LGW theory. The universal critical
exponents and RG invariant quantities of the O(3) vector
universality class which are relevant for our study
are [54–56]

ν¼ 0.7117ð5Þ; η¼ 0.0378ð3Þ; ω¼ 0.782ð13Þ; ð59Þ

R�
ξ ¼ 0.5639ð2Þ; U� ¼ 1.1394ð3Þ: ð60Þ

Additional evidence for a O(3) critical behavior is
obtained by performing biased fits to Eq. (50) with n ¼
1 and m ¼ 0, fixing ν and ω to the O(3) values reported in
Eq. (59). As before, we use data within the self-consistent
window Rξðβ; LÞ ∈ ½R�

ξð1 − δÞ; R�
ξð1þ δÞ�. The results are

reported in Table III. The estimates of R�
ξ are nicely

consistent with the O(3) estimate R�
ξ ¼ 0.5639ð2Þ. A

similar analysis can be done using the Binder parameter
U. Using Lmin ¼ 8, we obtain the estimates βc ¼
3.7519ð2Þ and U� ¼ 1.139ð3Þ, with χ2=d:o:f ≈ 1.2 (27
data). Again, the estimate of U� is in good agreement
with the O(3) value U� ¼ 1.1394ð3Þ. Our final estimate of

the critical temperature, obtained by considering the
various systematic errors, is

βc ¼ 3.7518ð2Þ: ð61Þ

In Figs. 8–10, we show different scaling plots that clearly
confirm that the transition belongs to the O(3) vector
universality class. In particular, the data of U plotted versus
Rξ, see Fig. 9, are nicely consistent with the results obtained
in numerical simulations of the O(3) vector model.
As in the two-color case, we have also checked that the

above results extend to nonvanishing values of βg. In
particular, simulations have been performed for a few
values of βg between −9 and 6. In all cases, the FSS
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FIG. 8. Rξ versus ðβ − βcÞL1=ν for Nf ¼ 2, Nc ¼ 3, and
βg ¼ 0. We use βc ¼ 3.7518 and ν ¼ 0.7117, the correlation-
length exponent for the O(3) vector universality class.
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FIG. 7. Rξ versus β for Nf ¼ 2, Nc ¼ 3, and βg ¼ 0. The data
for different values of L show a crossing point, whose position
provides an estimate of the critical point, βc ¼ 3.7518ð2Þ,
indicated by the vertical line. The horizontal line corresponds
to the universal value R�

ξ ¼ 0.5639ð2Þ of the O(3) vector
universality class.

TABLE III. Results of the biased fits for Rξ to Eq. (50) with
n ¼ 1 and m ¼ 2, fixing ν and ω to the O(3) values reported in
Eq. (59). Results for Nf ¼ 2, Nc ¼ 3, and βg ¼ 0.

δ Lmin βc R�
ξ χ2=d:o:f. # data

0.1 8 3.75182(9) 0.5673(12) 1.1 27
0.1 12 3.75186(16) 0.569(4) 1.2 20
0.1 24 3.7521(4) 0.577(16) 0.8 30
0.1 32 3.7519(11) 0.57(6) 0.6 17
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FIG. 9. The Binder parameterU versus Rξ, forNf ¼ 2,Nc ¼ 3,
and βg ¼ 0. The data clearly converge to the O(3) vector
universal curve (continuous curve). The dotted horizontal and
vertical lines correspond to the universal values U� ¼ 1.1394ð3Þ
and R�

ξ ¼ 0.5639ð2Þ of the O(3) universality class. The dashed
horizontal lines correspond to U ¼ 5=3 and U ¼ 1, the asymp-
totic values of Rξ → 0 and for Rξ → ∞, respectively.
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behavior of U as a function of Rξ supports the O(3) nature
of the transition, as can be seen in Fig. 11, where we report
the results for βg ¼ −6 and βg ¼ 6. Again these results are
far from trivial, since the critical coupling βcðβgÞ changes
from approximately 4.39 to 2.55 as we vary βg in the
interval ½−9; 6� (see Fig. 12). Therefore, the effect of βg on
the dynamics of the system is large. Also, the average
gauge energy Eg at criticality changes significantly. It
varies approximately from −0.23 to 0.51. These values
are however still far from the asymptotic values for
βg → �∞. In particular, for positive βg, the significant
difference between our estimate Eg ≈ 0.51 for βg ¼ 6 and
Eg ¼ 1, the result for βg → ∞, could explain the absence of
sizable crossover effects in our data, due to the OðMÞ fixed
point that controls the critical behavior for βg ¼ ∞. This is
also consistent with the fact that the correlation length
associated with the gauge modes increases with increasing
βg, but nevertheless is quite small: at the transition we
obtain ξgðβg ¼ 0Þ ¼ 1.60ð2Þ, ξgðβg ¼ 3Þ ¼ 1.70ð2Þ, and
ξgðβg ¼ 6Þ ¼ 2.02ð2Þ.
As a final check that, for Nf ¼ 2 and any Nc ≥ 3, the

transition always belongs to the O(3) vector universality
class, we performed MC simulations for Nc ¼ 4 and
βg ¼ 0. Also, in this case, the data of U plotted versus
Rξ (we have results for L ≤ 48) clearly approach the O(3)
curve as L is increased, as it can be seen in Fig. 13. Again,
the results confirm the LGW predictions. Concerning the
range of validity of these conclusions with respect to
variation of the plaquette coupling βg, the same remarks
reported at the end of Sec. VA apply here as well.
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FIG. 10. The rescaled susceptibility χ=L2−η with η ¼ 0.0378,
the exponent value in the O(3) vector universality class, versus
Rξ, for Nf ¼ 2, Nc ¼ 3, and βg ¼ 0. The dotted vertical line
corresponds to R�

ξ .
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FIG. 11. The Binder parameter U versus Rξ for Nf ¼ 2,
Nc ¼ 3. In the lower panel, we report results for βg ¼ −6 up
to L ¼ 32, in the upper panel results for βg ¼ 6 up to L ¼ 64.
The data appear to converge to the O(3) vector universal curve
(continuous line). The dotted horizontal and vertical lines
correspond to the universal values U� ¼ 1.1394ð3Þ and R�

ξ ¼
0.5639ð2Þ of the O(3) universality class. The dashed horizontal
lines correspond to U ¼ 5=3 and U ¼ 1, the asymptotic values
for Rξ → 0 and Rξ → ∞.
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FIG. 12. Estimates of βc versus βg for the model with Nf ¼ 2,
Nc ¼ 3. In all cases, the critical behavior belongs to the O(3)
vector universality class. The dashed line indicates the critical
value in the limit βg → ∞, corresponding to the critical point of
the O(12) vector theory, βc ≈ 1.46, obtained using the results
reported in Ref. [57]. The dotted line connecting the data is drawn
to guide the eyes.
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C. FSS analysis for Nf = 3

For Nf ¼ 3, the LGW effective field theory predicts a
first-order phase transition for any number of colors. To
verify the prediction, we perform simulations for Nc ¼ 2
and Nc ¼ 3, always fixing βg ¼ 0.
A standard technique to identify first-order phase tran-

sitions consists in checking if the maximum value of the
susceptibility or of the specific heat scales linearly with the
volume. However, for weak first-order transitions such a
technique is, in practice, quite often ineffective: the values
of L at which such a behavior sets in are far larger than
those at which simulations can be performed. This is indeed
what happens, as we discuss below, for Nc ¼ 2 and 3.
In Fig. 14, we report the specific heat CV defined in

Eq. (30) for Nc ¼ 2. It is clear that the specific heat is
apparently diverging as L increases. This allows us to
conclude that the transition, if continuous, does not belong
to a universality class characterized by a negative value of
the critical exponent α, like, e.g., the standard OðMÞ
universality classes for any M ≥ 2 [8].
In the case of weak first-order transitions, a more useful

quantity is the Binder parameter U. At a first-order
transition, the maximum Umax of U behaves as [58,59]

Umax ¼ aV½1þOðV−1Þ�: ð62Þ

On the other hand, at a continuous phase transition, U is
bounded as L → ∞. At the critical point, U converges to a
universal value U�, while the data of U corresponding to
different values of Rξ collapse onto a common scaling
curve as the volume is increased. Therefore, U has a
qualitatively different scaling behavior for first- and
second-order transitions. In practice, a first-order transition

can be simply identified by verifying that Umax increases
with L, without the need of explicitly observing the linear
behavior in the volume. A second indication of a first-order
transition is provided by the plot of U versus Rξ. The
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FIG. 14. The specific heat defined in Eq. (30) versus β for
Nc ¼ 2, Nf ¼ 3, and βg ¼ 0.
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FIG. 13. The Binder parameter U versus Rξ for Nf ¼ 2,
Nc ¼ 4, and βg ¼ 0. The data appear to converge to the O(3)
vector universal curve (continuous line). The dotted horizontal
and vertical lines correspond to the universal values U� ¼
1.1394ð3Þ and R�

ξ ¼ 0.5639ð2Þ of the O(3) universality class.
The dashed horizontal lines correspond to U ¼ 5=3 and U ¼ 1,
the asymptotic values for Rξ → 0 and Rξ → ∞.
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feature of the behavior at first-order transitions; see, e.g.,
Refs. [20,58,59].
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absence of a data collapse is an early indication of the first-
order nature of the transition, as already advocated in
Ref. [20]. In Fig. 15, we plot the Binder parameterU versus
Rξ, for Nc ¼ 2 and Nc ¼ 3, respectively, and βg ¼ 0. In
neither of the two cases, an acceptable collapse is obtained
and the data display a pronounced peak whose height
increases with increasing volume. We take the absence of
scaling as an evidence that the transition is not continuous,
but rather of first order in both cases.
We have also investigated the behavior of the observ-

ables related to the breaking of the U(1) flavor symmetry. In
Fig. 16, we report the correlation length ξD and the Binder
parameter UD, defined in Sec. IVA. Our numerical results
show that the correlation length ξD is always small, even at
the transition point β ≈ 3.415, a clear indication that the
U(1) flavor symmetry does not break. The results for the
Binder parameter are completely consistent: UD is always
compatible with the high-temperature value UD ¼ 2.

VI. CONCLUSIONS

In this work, we have studied the finite-temperature
critical behavior of the lattice multiflavor chromodynamics

model defined by the action, Eq. (6). This model is
characterized by the presence of a SUðNcÞ gauge symmetry
and of a UðNfÞ or SpðNfÞ global symmetry, depending
whether Nc ≥ 3 or Nc ¼ 2. In all cases, we find that the
system undergoes a finite-temperature phase transition
associated with the condensation of a gauge-invariant order
parameter: the operator Qab

x for Nc ≥ 3 and the operator
T αβ

x for Nc ¼ 2. At the phase transition, the global
symmetry SUðNfÞ or SpðNfÞ is spontaneously broken.
To investigate the possible influence of the gauge d.o.f.

on the critical behavior of the model, we determine the
universality class of the transition for several values of the
number of colors Nc and of the number of flavors Nf, also
varying the plaquette-coupling coefficient βg. In the two-
flavor case, we always observe a continuous phase tran-
sition, in the 3D O(5) vector universality class for Nc ¼ 2
and in the 3D O(3) vector universality class for Nc ¼ 3, 4.
Instead, for Nf ¼ 3, we find results compatible with the
presence of a first-order phase transition both for Nc ¼ 2
and 3.
These results agree with the predictions of a LGW

analysis based on a gauge-invariant order parameter
[36], summarized in Table I. Therefore, they indicate the
irrelevance of the non-Abelian gauge d.o.f. at the finite-
temperature transition. In other words, gauge invariance
does not play any role at the transition, apart from that of
restricting the fields to the coset SM=SUðNcÞ where SM ¼
SOðMÞ=SOðM − 1Þ is the M-dimensional sphere and
M ¼ 2NcNf. Such a conclusion is also consistent with
the observed behavior of the correlation function GV ,
defined in Eq. (40), which directly involves the gauge
d.o.f. In all cases, this correlation function is short ranged at
the transition.
These results strongly support the procedure initially

advocated by Pisarski and Wilczek in Ref. [12] to study the
chiral phase transition in massless QCD, which makes use
of gauge-invariant order parameters to analyze the critical
behavior of gauge theories when a global symmetry gets
spontaneously broken.
We finally note that there are still several points which

deserve to be further investigated. For example, in this
work, we concentrated on the gauge theory that is obtained
by starting from a maximally symmetric OðMÞ-invariant
model and by fixing TrZ†

xZx ¼ 1. It would be interesting to
investigate what happens if one or both of these conditions
are relaxed. It would also be interesting to study theories
with different global and local symmetries that are different
from the ones considered in this work.
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APPENDIX A: SYMPLECTIC
OBSERVABLES FOR Nc = 2

For Nc ¼ 2, the order parameter is the symplectic
analogue of Qx defined in Eq. (28). It is a 2Nf × 2Nf

Hermitian traceless matrix, which satisfies the relation

JT̄ J þ T ¼ 0; ðA1Þ

which follows from Eq. (16). It is thus an element of
the spðNfÞ algebra [41]. It can be parametrized in the
block form

T ¼
�
A1 A2

A3 A4

�
; ðA2Þ

where A1, A2, A3, and A4 are Nf × Nf matrices, A1 is
Hermitian and traceless, A3 is antisymmetric and

A4 ¼ Ā1; A3 ¼ −Ā2: ðA3Þ

It is not difficult to show that T can be expressed in terms
of the two order parameters Qfg

x and Dfg
x . Indeed, we have

A1 ¼ Q; A3 ¼ −D: ðA4Þ

This result implies that the critical behavior encoded in T αβ
x

can be also investigated by studying Qfg
x . However, some

care should be exercised, when comparing the results with
the Sp(Nf) predictions. We define the correlation function
of the T field,:

GΓðx − yÞ ¼ hTrT xT yi: ðA5Þ

Such a correlation can be related to the correlation of the Q
field defined in Eq. (32). We use the relation

hT αβ
x T γδ

y i ¼ 1

2ðNf − 1Þð2Nf þ 1ÞGΓðx − yÞ

×

�
JαγJβδ þ δαδδβγ −

1

Nf
δαβδγδ

�
; ðA6Þ

which follows from the SpðNfÞ invariance of the theory.
We obtain the relation

GΓðxÞ ¼
2ð2Nf þ 1Þ
ðNf þ 1Þ GðxÞ: ðA7Þ

It implies that, if one uses Eq. (34), the same correlation
length is obtained from GΓðxÞ or GðxÞ. The behavior of the
Binder parameter is more involved. For Nc ¼ 2, the natural
Binder parameter is

UΓ ¼ hν22i
hν2i2

; ν2 ¼
1

V2

X
xy

TrT xT y: ðA8Þ

In general, such a quantity is not related to U defined in
Eq. (35), except for Nf ¼ 2, as we discuss below.
For Nf ¼ 2, the global invariance group is isomorphic to

SO(5). It is useful to make this correspondence explicit. We
can rewrite the blocks A1 and A3 in Eq. (A2) as

A1 ¼
�

ϕ3 ϕ1 − iϕ2

ϕ1 þ iϕ2 −ϕ3

�
;

A3 ¼
�

0 ϕ4 þ iϕ5

−ϕ4 − iϕ5 0

�
: ðA9Þ

Since

ðT 2Þαβ ¼ 1

4
δαβ; ðA10Þ

we can verify that

X5
i¼1

ϕ2
i ¼

1

4
: ðA11Þ

Moreover, one can easily verify that, under infinitesimal
Sp(2) transformations, the vector ðϕ1;…;ϕ5Þ transforms as
an SO(5) vector. Thus, the redefinition T → ϕ explicitly
realizes the isomorphism between Spð2Þ=Z2 and SO(5).
Since

TrQxQy ¼ 2
X3
a¼1

ϕa
xϕ

a
y ;

D̄xDy ¼
X5
a¼4

ϕa
xϕ

a
y ; ðA12Þ

we obtain the relations

GΓðx − yÞ ¼ 4hϕx · ϕyi;

Gðx − yÞ ¼ 3

20
GΓðx − yÞ;

GDðx − yÞ ¼ 1

10
GΓðx − yÞ; ðA13Þ

where we have used the O(5) symmetry of the theory. For
the Binder parameters, we have

UΓ ¼ hν22ϕi
hν2ϕi2

; ν2ϕ ¼ 1

V2

X
xy

hϕx · ϕyi; ðA14Þ

which shows that UΓ corresponds to the usual O(5) Binder
parameter, and

U ¼ 25

21
UΓ; UD ¼ 10

7
UΓ: ðA15Þ
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APPENDIX B: SYMPLECTIC LANDAU-
GINZBURG-WILSON THEORY FOR Nc = 2

To define the LGW theory for Nc ¼ 2, we introduce a
coarse-grained continuum analog Ψ of T , which satisfies
the condition

JΨ̄J þΨ ¼ 0: ðB1Þ

The corresponding action is given in Eq. (22). For Nf ¼ 2,
we obtain the O(5) LGW model. Indeed, in this case, we
can set

Ψ ¼
�
A1 A2

A3 A4

�
; ðB2Þ

where

A1 ¼
�

ψ3 ψ1 − iψ2

ψ1 þ iψ2 −ψ3

�
;

A3 ¼
�

0 ψ4 þ iψ5

−ψ4 − iψ5 0

�
; ðB3Þ

and A4 ¼ Ā1, A3 ¼ −Ā2, from which it easily follows that

Ψ2 ¼ I

�X5
i¼1

ψ2

�
; TrΨ3 ¼ 0: ðB4Þ

Thus, the LGW effective theory for Ψ in the Sp(2) case is
equivalent to that for the O(5) vector model.

APPENDIX C: THE BEHAVIOR FOR β → ∞

In this appendix, we study the large-β limit of the model
described by the action Sg, Eq. (6), for βg ¼ 0. As the
system is ferromagnetic, the global minimum of the β-
dependent part of the action is obtained by minimizing the
contribution of each link. This is obtained by setting

Zx ¼ Ux;μZxþμ̂ ðC1Þ

on each link. This relation implies that

Qx ¼ Qxþμ̂; Dx ¼ Dxþμ̂ ðC2Þ

on each link, where Qx and Dx are the order parameters
defined in Eqs. (21) and (26). The unit-length condition
implies thatQx is nonvanishing: the system is fully ordered
in the limit β → ∞ and therefore the SUðNfÞ subgroup is
broken at zero temperature. As for the U(1) order parameter
Dx, we shall show below that Dx is nonvanishing for
Nc ¼ 2. This is obvious as the U(1) subgroup is a subgroup
of the SpðNfÞ symmetry group, which is broken. On the
other hand, for Nc ≥ 3, we find Dx ¼ 0: the U(1) flavor
symmetry is not broken.

Let us now consider any closed path Cx that starts and
ends in the same point x. By repeated applications of
condition (C1), we obtain the consistency condition

Zaf
x ¼

X
b

�Y
l∈Cx

Ul

�
ab
Zbf
x : ðC3Þ

This relation implies that the product of the links along the
path has at least one unit eigenvalue. For an SU(2) matrix,
this implies that the product is the identity matrix.
Therefore, for Nc ¼ 2, we can set Ux;μ̂ ¼ 1 modulo gauge
transformations. For Nc ≥ 3, we obtain the conditionY

l∈Cx

Ul ¼ V†
xWVx; ðC4Þ

with Vx ∈ SUðNcÞ and

W ¼
�
Ŵ 0

0 1

�
; ðC5Þ

where Ŵ is an SUðNc − 1Þ matrix. If Ŵ does not have unit
eigenvalues (this is the case for a generic unitary matrix),
then

Zx ¼ V†
xA; A ¼

�
0

ẑ

�
; ðC6Þ

where A is an Nc × Nf matrix such that Aij ¼ 0 for any
i ¼ 1;…Nc − 1; ẑ is a unit vector of Nf elements.
To obtain more information on the gauge configurations

relevant for β → ∞, we performed simulations for βg ¼ 0

on small lattices (23 and 43) for very large β values (from
β ¼ 50 up to β ¼ 300) and then we extrapolated the results
to β → ∞. Results for different quantities are reported in
Tables IV and V. Note that we are indeed probing the
system in the large β regime as the average energy E
defined in Eq. (30) converges to −3. In Tables IVand V, we
also report the average gauge energy defined in Eq. (31).
For Nc ¼ 2, results are consistent with the plaquette being
the identity matrix. For Nc ≥ 3, data for the average gauge
energy, cf. Eq. (31), are consistent with

Eg ¼
1

Nc
: ðC7Þ

Note that this is not an exact equality for finite L. However,
deviations decrease as L increases from two to four. Such a
result can be explained by assuming that the relevant
configurations are such that all plaquettes can be rewritten
in the form (C4), where W is given in Eq. (C5). Indeed, if
this is the case and Ŵ is randomly distributed, we obtain the
result (C7). Of course, we are not claiming that all
minimizing configurations are such that Eqs. (C5)
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and (C6) hold. We only claim that the number of these
configurations is exponentially larger in the lattice volume
than the others, so that they dominate the effective
asymptotic behavior. As a check, we have determined
the average of P2, where Pfg

x is defined by

Pfg
x ¼

X
a

Z̄af
x Zag

x : ðC8Þ

In general, such an operator is not a projector, i.e., P2 ≠ P.
However, if the Z fields satisfy Eq. (C6), we have P2 ¼ P
and in particular TrP2 ¼ 1. The results reported in
Tables IV and V are in perfect agreement with this result,
confirming the above analysis.
If the relevant configurations have the form (C6) it is

immediate to prove that Dx ¼ 0 everywhere. The U(1)
flavor symmetry is not broken at β ¼ ∞, at least for βg ¼ 0.
It is easy to understand under which conditions the order
parameter Dx is not zero. If we imagine the field Zaf as a
collection of Nf complex vectors of dimension Nc, thenDx

does not vanish if Nc of these vectors are nonvanishing and
linearly independent. If this occurs, the consistency con-
dition (C3) implies that the product of the links along any
path has Nc unit eigenvalues. As the product is an SUðNcÞ
matrix, it must be equal to the identity matrix, which
implies that all gauge fields are equivalent to the identity
modulo gauge transformations. This argument shows there-
fore that the U(1) symmetry can be broken only if the
relevant configurations are characterized by the triviality of
the gauge fields. ForNc ≥ 3 and βg ¼ 0, this does not occur
and the U(1) symmetry is unbroken. For βg ¼ ∞, there is
no gauge dependence and the U(1) symmetry is broken, an
obvious result given that the U(1) group is a subgroup of
the largerOð2NfNcÞ group. As we expect the gauge energy
Eg to depend smoothly on βg, we should always have Eg <
1 for finite βg: there are relevant nontrivial gauge configu-
rations that always forbid the breaking of the U(1)
symmetry.
Let us finally discuss the behavior for Nc ¼ 2. In this

case, we can set Ux;μ̂ ¼ 1 everywhere. Equation (C1)

TABLE IV. Asymptotic values for β → ∞ on a 23 lattice at βg ¼ 0.

ðNc;NfÞ Eg E=3 U Eq. (C11) TrP2 Eq. (C10)

(2, 2) 0.99998(2) −0.999992ð6Þ 1.191(2) 1.19048… 0.800(1) 0.8
(2, 3) 1.00000(1) −1.000010ð5Þ 1.0940(5) 1.09375… 0.714(2) 0.714286…
(2, 4) 1.00001(1) −1.000000ð4Þ 1.0582(3) 1.05818… 0.666(1) 0.666667…
(2, 5) 1.00000(1) −1.000000ð6Þ 1.0400(3) 1.04006… 0.636(1) 0.636364…
(2, 6) 0.999990(6) −1.000000ð4Þ 1.0294(2) 1.02939… 0.615(2) 0.615385…
(3, 2) 0.3347(3) −1.000005ð6Þ 1.0000000(1) 1.00001(1)
(3, 3) 0.3369(4) −0.999993ð6Þ 1.0000000(6) 0.99999(1)
(3, 4) 0.3382(4) −1.000000ð7Þ 1.0000000(6) 1.00000(1)
(3, 5) 0.3413(4) −1.000000ð5Þ 1.0000000(1) 1.00000(1)
(3, 6) 0.3463(4) −1.000000ð5Þ 1.00000000(4) 0.99999(1)
(4, 2) 0.2500(2) −0.99999ð1Þ 1.0000000(4) 1.00000(1)
(4, 3) 0.2510(2) −1.00001ð1Þ 1.0000000(2) 1.00001(2)
(4, 4) 0.2513(3) −0.99995ð4Þ 1.0000000(3) 0.99992(8)
(4, 5) 0.2520(4) −1.000010ð7Þ 1.0000000(1) 1.00002(2)
(4, 6) 0.2527(3) −1.000000ð6Þ 1.0000000(1) 0.99999(1)

TABLE V. Asymptotic values for β → ∞ on a 43 lattice at βg ¼ 0.

ðNc;NfÞ Eg E=3 U Eq. (C11) TrP2 Eq. (C10)

(2, 2) 0.99998(2) −0.999999ð2Þ 1.195(3) 1.19048… 0.798(1) 0.8
(2, 3) 1.000000(6) −1.000000ð2Þ 1.094(1) 1.09375… 0.714(3) 0.714286…
(2, 4) 0.999999(3) −1.000000ð3Þ 1.0580(5) 1.05818… 0.666(2) 0.666667…
(2, 5) 1.000000(3) −1.000000ð3Þ 1.040(1) 1.04006… 0.637(2) 0.636364…
(2, 6) 1.000000(3) −0.999988ð5Þ 1.0293(5) 1.02939… 0.615(2) 0.615385…
(3, 2) 0.3344(2) −1.000000ð3Þ 1.000000(3) 1.000000(6)
(3, 3) 0.3356(2) −1.000000ð3Þ 1.000000(3) 0.999999(6)
(3, 4) 0.3368(2) −0.999999ð3Þ 1.000000(3) 1.000008(8)
(3, 5) 0.3375(2) −1.000000ð3Þ 1.00000000(5) 1.00001(1)
(3, 6) 0.3385(2) −0.999996ð4Þ 1.00000000(2) 0.99999(1)
(4, 2) 0.2501(2) −1.00000ð1Þ 1.0000000(1) 0.99999(2)
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implies that Zaf
x takes the same value on each link. Thus,

the average of any quantity OðZxÞ can be obtained as

hOððZxÞi ¼
Z

½dA�OðAÞ; ðC9Þ

where A is an Nc × Nf matrix (Nc ¼ 2) and ½dA� is the
normalized invariant integration measure over the NcNf-
dimensional complex sphere defined by TrA†A ¼ 1.
We obtain

hTrP2
xi ¼

Z
½dA�Tr½ðA†AÞ2� ¼ Nf þ Nc

1þ NfNc
ðC10Þ

and

U ¼ ð1þ NfNcÞðNfNc þ 4N2
f þ N3

fNc − 6Þ
ðN2

f − 1Þð2þ NfNcÞð3þ NfNcÞ
; ðC11Þ

which again are consistent with the numerical data in
Tables IV and V for Nc ¼ 2. Note that the results for U are
consistent with UΓ ¼ 1 when Nf ¼ 2; see Eq. (A15).
The results that we have obtained for Nc ¼ 2 do not

depend on the dimensionality of the system. On the other
hand, for Nc ≥ 3, the conclusions we have obtained rely on
the fact that the relevant configurations have the form (C5)
and (C6), a claim that is only justified by the numerical
study we have performed on cubic lattices. We expect, but
we do not have a proof, that the same result holds in any
dimension.
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X 8, 011012 (2018).

[20] A. Pelissetto and E. Vicari, Three-dimensional ferromag-
netic CPN−1 models, Phys. Rev. E 100, 022122 (2019).

[21] A. Pelissetto and E. Vicari, Multicomponent compact
Abelian-Higgs lattice models, Phys. Rev. E 100, 042134
(2019).

[22] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M.
Somoza, 3D Loop Models and the CPn−1 Sigma Model,
Phys. Rev. Lett. 107, 110601 (2011).

[23] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño, and A. M.
Somoza, Phase transitions in three-dimensional loop
models and the CPn−1 sigma model, Phys. Rev. B 88,
134411 (2013).

[24] A. Pelissetto, A. Tripodo, and E. Vicari, Landau-Ginzburg-
Wilson approach to critical phenomena in the presence of
gauge symmetries, Phys. Rev. D 96, 034505 (2017).

[25] A. Pelissetto, A. Tripodo, and E. Vicari, Criticality of O(N)
symmetric models in the presence of discrete gauge sym-
metries, Phys. Rev. E 97, 012123 (2018).

[26] S. Gazit, F. F. Assaad, S. Sachdev, A. Vishwanath, and
C. Wang, Confinement transition of Z2 gauge theories
coupled to massless fermions: Emergent QCD3 and
SO(5) symmetry, Proc. Natl. Acad. Sci. U.S.A. 115,
E6987 (2018).

[27] S. Sachdev, H. D. Scammell, M. S. Scheurer, and G.
Tarnopolsky, Gauge theory for the cuprates near optimal
doping, Phys. Rev. B 99, 054516 (2019).

THREE-DIMENSIONAL LATTICE MULTIFLAVOR SCALAR … PHYS. REV. D 101, 034505 (2020)

034505-17

https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1038/nphys3247
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1088/1361-6633/aae110
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/RevModPhys.47.543
https://doi.org/10.1016/S0370-1573(02)00219-3
https://doi.org/10.1103/PhysRevB.70.144407
https://doi.org/10.1103/PhysRevX.7.031051
https://doi.org/10.1103/PhysRevD.29.338
https://doi.org/10.1088/1126-6708/2003/08/029
https://doi.org/10.1088/1126-6708/2003/08/029
https://doi.org/10.1103/PhysRevD.88.105018
https://doi.org/10.1103/PhysRevD.88.105018
https://doi.org/10.1016/j.nuclphysa.2018.10.042
https://doi.org/10.22323/1.334.0009
https://doi.org/10.1103/PhysRevX.8.011026
https://doi.org/10.1103/PhysRevB.97.125112
https://doi.org/10.1103/PhysRevX.8.011012
https://doi.org/10.1103/PhysRevX.8.011012
https://doi.org/10.1103/PhysRevE.100.022122
https://doi.org/10.1103/PhysRevE.100.042134
https://doi.org/10.1103/PhysRevE.100.042134
https://doi.org/10.1103/PhysRevLett.107.110601
https://doi.org/10.1103/PhysRevB.88.134411
https://doi.org/10.1103/PhysRevB.88.134411
https://doi.org/10.1103/PhysRevD.96.034505
https://doi.org/10.1103/PhysRevE.97.012123
https://doi.org/10.1073/pnas.1806338115
https://doi.org/10.1073/pnas.1806338115
https://doi.org/10.1103/PhysRevB.99.054516


[28] S. Nadkarni, The SU(2) adjoint Higgs model in three
dimensions, Nucl. Phys. B334, 559 (1990).

[29] K. Kajantie, K. Rummukainen, and M. E. Shaposhnikov, A
Lattice Monte Carlo study of the hot electroweak phase
transition, Nucl. Phys. B407, 356 (1993).

[30] W. Buchmüller and O. Philipsen, Phase structure and phase
transition of the SU(2) Higgs model in three-dimensions,
Nucl. Phys. B443, 47 (1995).

[31] K. Kajantie, M. Laine, K. Rummukainen, and M. E.
Shaposhnikov, Is There a Hot Electroweak Phase Transition
at mH ≳mW?, Phys. Rev. Lett. 77, 2887 (1996).

[32] A. Hart, O. Philipsen, J. D. Stack, and M. Teper, On the
phase diagram of the SU(2) adjoint Higgs model in (2þ 1)-
dimensions, Phys. Lett. B 396, 217 (1997).

[33] K. Osterwalder and E. Seiler, Gauge field theories on the
lattice, Ann. Phys. (NY) 110, 440 (1978).

[34] E. Fradkin and S. Shenker, Phase diagrams of lattice gauge
theories with Higgs fields, Phys. Rev. D 19, 3682 (1979).

[35] S. Dimopoulos, S. Raby, and L. Susskind, Light composite
fermions, Nucl. Phys. B173, 208 (1980).

[36] C. Bonati, A. Pelissetto, and E. Vicari, Phase Diagram,
Symmetry Breaking, and Critical Behavior of Three-
Dimensional Lattice Multiflavor Scalar Chromodynamics,
Phys. Rev. Lett. 123, 232002 (2019).

[37] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10,
2445 (1974).

[38] H. Georgi, Weak Interactions and Modern Particle Theory
(The Benjamin/Cummings Publishing Company, Menlo
Park, California, 1984).

[39] P. Arnold and L. G. Yaffe, The ϵ expansion and the
electroweak phase transition, Phys. Rev. D 49, 3003 (1994).

[40] P. S. Bhupal Dev and A. Pilaftsis, Maximally symmetric two
Higgs doublet model with natural standard model align-
ment, J. High Energy Phys. 12 (2014) 024; Erratum, J. High
Energy Phys. 11 (2015) 147.

[41] B. Simon, Representations of Finite and Compact Groups
(American Mathematical Society, Providence, 1996).

[42] A. Das, Phase transition in SUðNÞ × Uð1Þ gauge theory
with many fundamental bosons, Phys. Rev. B 97, 214429
(2018).

[43] V. Alba, A. Pelissetto, and E. Vicari, The uniformly
frustrated two-dimensional XY model in the limit of weak
frustration, J. Phys. A 41, 175001 (2008).

[44] M. Creutz, Monte Carlo study of quantized SU(2) gauge
theory, Phys. Rev. D 21, 2308 (1980).

[45] A. D. Kennedy and B. J. Pendleton, Improved heat bath
method for Monte Carlo calculations in lattice gauge
theories, Phys. Lett. 156B, 393 (1985).

[46] M. Creutz, Overrelaxation and Monte Carlo simulation,
Phys. Rev. D 36, 515 (1987).

[47] N. Cabibbo and E. Marinari, A new method for updating
SU(N) matrices in computer simulations of gauge theories,
Phys. Lett. 119B, 387 (1982).

[48] N. Metropolis, A.W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21, 1087 (1953).

[49] S. A. Antonenko and A. I. Sokolov, Critical exponents for a
three-dimensional OðnÞ-symmetric model with n > 3, Phys.
Rev. E 51, 1894 (1995).

[50] M. Hasenbusch, A. Pelissetto, and E. Vicari, Instability of
the O(5) critical behavior in the SO(5) theory of high-Tc
superconductors, Phys. Rev. B 72, 014532 (2005).

[51] L. A. Fernández, V. Martín-Mayor, D. Sciretti, A. Tarancón,
and J. L. Velasco, Numerical study of the enlarged O(5)
symmetry of the 3-D antiferromagnetic RP2 spin model,
Phys. Lett. B 628, 281 (2005).

[52] P. Calabrese, A. Pelissetto, and E. Vicari, Multicritical
behavior of Oðn1Þ ⊕ Oðn2Þ-symmetric systems, Phys.
Rev. B 67, 054505 (2003).

[53] F. Delfino, A. Pelissetto, and E. Vicari, Three-dimensional
antiferromagnetic CPN−1 models, Phys. Rev. E 91, 052109
(2015).

[54] M. Hasenbusch and E. Vicari, Anisotropic perturbations in
3D OðNÞ vector models, Phys. Rev. B 84, 125136 (2011).

[55] M. Campostrini, M. Hasenbusch, A. Pelissetto, P. Rossi, and
E. Vicari, Critical exponents and equation of state of the
three-dimensional Heisenberg universality class, Phys. Rev.
B 65, 144520 (2002).

[56] R. Guida and J. Zinn-Justin, Critical exponents of N-vector
models, J. Phys. A 31, 8103 (1998).

[57] M. Campostrini, A. Pelissetto, P. Rossi, and E. Vicari, Four-
point renormalized coupling in OðNÞ models, Nucl. Phys.
B459, 207 (1996).

[58] M. S. S. Challa, D. P. Landau, and K. Binder, Finite-size
effects at temperature-driven first-order transitions, Phys.
Rev. B 34, 1841 (1986).

[59] K. Vollmayr, J. D. Reger, M. Scheucher, and K. Binder,
Finite size effects at thermally-driven first order phase
transitions: A phenomenological theory of the order param-
eter distribution, Z. Phys. B 91, 113 (1993).

BONATI, PELISSETTO, and VICARI PHYS. REV. D 101, 034505 (2020)

034505-18

https://doi.org/10.1016/0550-3213(90)90491-U
https://doi.org/10.1016/0550-3213(93)90062-T
https://doi.org/10.1016/0550-3213(95)00124-B
https://doi.org/10.1103/PhysRevLett.77.2887
https://doi.org/10.1016/S0370-2693(97)00104-4
https://doi.org/10.1016/0003-4916(78)90039-8
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1016/0550-3213(80)90215-1
https://doi.org/10.1103/PhysRevLett.123.232002
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1103/PhysRevD.49.3003
https://doi.org/10.1007/JHEP12(2014)024
https://doi.org/10.1007/JHEP11(2015)147
https://doi.org/10.1007/JHEP11(2015)147
https://doi.org/10.1103/PhysRevB.97.214429
https://doi.org/10.1103/PhysRevB.97.214429
https://doi.org/10.1088/1751-8113/41/17/175001
https://doi.org/10.1103/PhysRevD.21.2308
https://doi.org/10.1016/0370-2693(85)91632-6
https://doi.org/10.1103/PhysRevD.36.515
https://doi.org/10.1016/0370-2693(82)90696-7
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevE.51.1894
https://doi.org/10.1103/PhysRevE.51.1894
https://doi.org/10.1103/PhysRevB.72.014532
https://doi.org/10.1016/j.physletb.2005.09.049
https://doi.org/10.1103/PhysRevB.67.054505
https://doi.org/10.1103/PhysRevB.67.054505
https://doi.org/10.1103/PhysRevE.91.052109
https://doi.org/10.1103/PhysRevE.91.052109
https://doi.org/10.1103/PhysRevB.84.125136
https://doi.org/10.1103/PhysRevB.65.144520
https://doi.org/10.1103/PhysRevB.65.144520
https://doi.org/10.1088/0305-4470/31/40/006
https://doi.org/10.1016/0550-3213(95)00569-2
https://doi.org/10.1016/0550-3213(95)00569-2
https://doi.org/10.1103/PhysRevB.34.1841
https://doi.org/10.1103/PhysRevB.34.1841
https://doi.org/10.1007/BF01316713

