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A number of proposed extensions of the standard model include new strongly interacting dynamics, in
the form of SUðNÞ gauge fields coupled to various numbers of fermions. Often, these extensions allow
N ¼ 3 as a plausible choice, or even requireN ¼ 3, such as in twin Higgs models, where the new dynamics
is a “copy” of QCD. However, the fermion masses in such a sector are typically different from (often
heavier than) the ones of real-world QCD, relative to the confinement scale. Many of the strong interaction
masses and matrix elements for SUð3Þ at heavy fermion masses have already been computed on the lattice,
typically as a by-product of the approach to the physical point of real QCD. We provide a summary of these
relevant results for the phenomenological community.
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I. INTRODUCTION

New confining dynamics is a staple of beyond standard
model or dark matter phenomenology. Examples of such
systems are “hidden valleys” as a potential source of new
physics at colliders [1–5], strongly self-interacting dark
matter [6] which is composite (Refs. [7–12] are examples
or see [13] for a review), and even pure-gauge systems with
non-Abelian symmetry have a place in dark matter phe-
nomenology [7,14,15] or as low-energy remnants from the
string landscape [16].
Monte Carlo simulations of lattice regulated quantum

field theory can be a resource for such phenomenology if
the model ingredients (gauge fields, scalars, fermions with
vector interactions) are favorable. In some cases the new
dynamics is extremely favorable to lattice simulation—it
involves SUð3Þ gauge dynamics and (nearly) degenerate
flavors of fundamental representation fermions. A particu-
larly natural example of such systems occurs in “twin
Higgs” or mirror-matter models, in which the choice of
SUð3Þ is required (a partial set of citations are Refs. [17–
30]). Other models may be more general but include SUð3Þ
with fundamental representation fermions as a possibility
(for example, Refs. [31–38]).
In many cases, the fermion masses needed to carry out

the phenomenologist’s task do not coincide with those of
the real-world up, down, strange … quark masses; they are

heavier than these physical values. (We will define more
precisely what we mean by “heavier,” below.) Lattice
practitioners have studied these systems for many years.
This is because the cost of QCD simulations scales as a
large inverse power of the pion mass. Simulations “at the
physical point” (where Mπ ∼ 140 MeV) are a relatively
recent development. However, results from these heavier
mass systems are usually presented as not being interesting
on their own; they are simply intermediate results on the
way to the physical point. This means that they are
sometimes not presented in a way which is accessible to
researchers outside the lattice community.
The purpose of this manuscript is to provide an overview

of QCD lattice results away from the physical point of
QCD, which can impact beyond standard model (BSM)
phenomenology. We will try to do this in a way which is
useful to physicists working in this area (rather than to
researchers doing lattice gauge theory; we have previously
written another paper on this subject aimed at the lattice
community [39]). Most of the data we will show are taken
from the lattice literature. Some of them are our own. When
we show our own data, we do not intend that they be taken
as having higher quality than what might be elsewhere in
the literature, only that we could not easily find precisely
what we wanted to present. Most of what we are showing
are generic lattice data.
Our focus here is on QCD with moderately heavy

quarks, where “moderately” means that the quarks are
not so heavy that they are no longer important for the
dynamics of the theory. For sufficiently heavy quarks, the
dynamics becomes that of a pure Yang-Mills gauge theory.
We do not present numerical results for pure-gauge theory
here, but instead direct the interested reader to a review of
the extensive lattice literature on the large-Nc limit of pure-
gauge SUðNcÞ [40].
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The outline of the paper is as follows: We make some
brief remarks about lattice simulations aimed at phenom-
enologists (Sec. II). Then we describe hadron spectroscopy
in Sec. III, including spectroscopy of pseudoscalar mesons
in Sec. III A, other mesons and baryons in Sec. III B, and
other states in Sec. III C. We describe results for vacuum-
transition matrix elements (i.e., decay constants) in Sec. IV.
We then turn to strong decays, describing ρ → ππ in Sec. V
and to the mass and width of the f0 or σ meson in Sec. V B.
Our conclusions are found in Sec. VI. The appendixes
contain technical details relevant to our own lattice
simulations.

II. REMARKS ABOUT LATTICE QCD
FOR BSM PHENOMENOLOGISTS

In our experience, the approaches taken by lattice
practitioners and beyond standard model phenomenologists
toward the theories they study are somewhat different. To
the lattice practitioner the confining gauge dynamics is
paramount and everything else is secondary. Flavor stan-
dard model quantum numbers of the constituents generally
play little role in a lattice simulation, as do their electro-
weak interactions.
We illustrate the difference in approaches by highlight-

ing a few key points where the phenomenologist and the
lattice simulator are most likely to have a different picture
of the same physics.

A. Perturbative interactions are treated separately

Lattice simulations are conducted at a finite lattice
spacing a and with a finite number of sites Ns (so they
are done in a finite “box” with length L ¼ Nsa). As a
result, only the range of scales between the infrared cutoff
ΛIR ∼ 1=L and the ultraviolet cutoff ΛUV ∼ 1=a can be
treated fully dynamically. State-of-the-art QCD simulations
will have roughly a factor of 100 separating the two cutoffs,
for example placing the boundaries at 1=L ∼ 50 MeV and
1=a ∼ 5 GeV; this is plenty of room for confinement
physics, but cannot accommodate the electroweak scale
of the standard model directly.1

This is not a problem for simulating the standard model,
simply because the electroweak interactions are perturba-
tive around the QCD confinement scale. (QED is treated in
the same way to zeroth order, in fact). The idea of
factorization, crucial to perturbative treatments of jet
physics and other aspects of QCD, allows the treatment
of nonperturbative effects by calculating QCD matrix
elements in isolation. For example, an electroweak decay
of hadronic initial state jii mediated by short-distance

operator O can be factorized into the purely hadronic
transition matrix element hfjOjii, times electroweak and
kinematic terms. (This is a simplified story: Accounting for
momentum dependence and contributions from multiple
operators to the same physical process can lead to com-
plicated-looking formulas in terms of multiple form factors.
But the basic idea is the same.)
As a simple but concrete example, consider the electro-

weak decay of the pseudoscalar charm-light meson
D → lν. The partial decay width for this process is given
by [45]

ΓðD → lνÞ ¼ MD

8π
f2DG

2
FjVcdj2m2

l

�
1 −

m2
l

M2
D

�
2

: ð1Þ

HereG2
FjVcdj2 are the electroweak couplings, the masses of

the D meson and lepton appear due to kinematics, and the
strongly coupled QCD physics is contained entirely in the
decay constant fD, which is proportional to the matrix
element h0jAμjDi giving the overlap of the initial state D
through the axial-vector current with the final state (the
vacuum, since from the perspective of QCD there is
nothing left in the final state). A lattice calculation of
fD is a necessary input to predicting this decay rate in the
standard model. Conversely, knowing fD allows one to
determine the electroweak coupling jVcdj from the
observed decay width.
In particular, working in the low-energy effective theory

means that the Yukawa couplings of the quarks to the Higgs
boson never appear explicitly; instead, the Higgs is inte-
grated out and only vectorlike mass terms of the formmqq̄q
are included. These quark masses, along with the overall
energy scale of the theory Λ, are the only continuous free
parameters of the strongly coupled theory in isolation.

B. Lattice simulations produce dimensionless
ratios of physical scales

The ingredients of a lattice calculation are a set of bare
(renormalizable) couplings, a dimensionless gauge cou-
pling and a set of (dimensionful) fermion masses, a UV
cutoff (the lattice spacing), and (implicitly) a whole set of
irrelevant operators arising from the particular choice made
when the continuum action is discretized.
All lattice predictions are of dimensionless quantities; for

example, a hadron mass m will be determined as the
dimensionless product am, where a is the lattice spacing. If
a mass appears alone in a lattice paper, the authors are likely
working in “lattice units”where the a is included implicitly.
Taking the continuum limit involves tuning the bare
parameters so that correlation lengths measured in units
of the lattice spacing diverge: In this limit the UV cutoff
becomes large with respect to other dimensionful param-
eters in the theory.
All lattice predictions are functions of a; only their

a → 0 values are physical. Often, these dimensionless

1There is an additional technical problem, which is that chiral
gauge theories cannot be treated with standard lattice methods
[41–43]; see [44] for a contemporary review. We are fortunate
that the electroweak scale is well separated from the QCD scale in
the real world.
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quantities are ratios of dimensionful ones, such as mass
ratios. In an asymptotically free theory, if the lattice spacing
is small enough, any dimensionless quantity, such as a mass
ratio, will behave as

½am1ðaÞ�=½am2ðaÞ�¼m1ð0Þ=m2ð0ÞþOðm1aÞþO½ðm1aÞ2�
þ���; ð2Þ

modulo powers of logðm1aÞ. The leading term is the cutoff-
independent prediction. Everything else is an artifact of the
calculation.
To use Eq. (2) to make a prediction for a dimensionful

quantity (like a mass, m1) requires choosing some fiducial
(m2) to set a scale. Lattice groups make many different
choices for reference scales, mostly based on ease of
computation (since an uncertainty in the scale is part of
the error budget for any lattice prediction). Masses of
particles (the rho meson, the Ω−) or leptonic decay
constants such as fπ or fK are simple and intuitive
reference scales, but are not always the most numerically
precise. Other common choices include inflection points on
the heavy-quark potential (“Sommer parameters” r0 and r1
[46]) or more esoteric quantities derived from the behavior
of the gauge action under some smoothing scheme (“gra-
dient flow” or “Wilson flow” [47,48], some of the corre-
sponding length scales are

ffiffiffiffi
t0

p
,

ffiffiffiffi
t1

p
, and w0). These latter

choices, which may be thought of roughly as setting the
scale using the running of the gauge coupling constant, are
computationally inexpensive and precise, but their values in
physical units must be determined by matching to experi-
ment in other lattice calculations. We reproduce here
approximate current values for these reference scales in
the continuum limit:

r0 ≈ 0.466ð4Þ fm; ð3Þ

r1 ≈ 0.313ð3Þ fm; ð4Þ
ffiffiffiffi
t0

p
≈ 0.1465ð25Þ fm; ð5Þ

w0 ≈ 0.1755ð18Þ fm ð6Þ

taken from [49] (r0, r1) and [50] (
ffiffiffiffi
t0

p
, w0).

For the purposes of BSM physics, the appropriate choice
of physical state for scale setting is likely to depend on what
sort of model one is considering. For a composite dark
matter model, the mass of the dark matter candidate baryon
or meson is often a natural choice. In the context of
composite Higgs models, the physical Higgs VEV is often
related closely to the decay constant of a “pion.”Ultimately,
the choice is a matter of convenience; we can always
exchange dimensionless ratios with one scale for ratios
with another scale. But some caution is required if these
ratios are taken at finite a, since the additional artifact terms
in Eq. (2) may be different.

Some phenomenological, qualitative discussions of
QCD like to set the units in terms of a “confinement
scale,” ΛQCD. There is no such physical scale. Plausible
choices for a physical scale associated with confinement
could include the proton mass ∼1 GeV, the rho meson
mass ∼800 MeV, the breakdown scale of chiral perturba-
tion theory 4πFπ ∼ 1.6 GeV, and many other options. In
some cases, ΛQCD may refer to the perturbative Λ param-
eter, also known as the dimensional transmutation param-
eter, defined as an integration constant of the perturbative
running coupling; its value in the MS scheme is a few
hundred MeV, depending on the number of quark flavors
included [45]. This is a particularly awkward choice to use
in conjunction with lattice results, since it is not renorm-
alization-scheme independent.
In certain cases, it may be desirable to work in terms of

the strong coupling constant, which is specified at some
high-energy scale and then run down to low energies. There
are some lattice calculations of ΛMS available [51,52],
which can be used to match to the perturbative Λ parameter
determined in such a running coupling calculation as a
starting point for use of other lattice results. However, we
strongly recommend the use of more physical reference
scales whenever possible, and we further recommend
replacing calculations of physical processes that involve
the strong coupling constant with lattice matrix elements,
using the idea of factorization as discussed in the previous
subsection.

C. Quark masses are inconvenient free parameters

From the perspective of QCD as a quantum field theory,
the quark masses are completely free parameters. For a
particular lattice simulation, the quark masses are also free
parameters, but they must be fixed as inputs in the form
amq before the simulation is run. This means that the
dimensionless ratios of each mq to our chosen reference
scale Λref are not adjustable without starting a new lattice
simulation. Extrapolation can be done to approach the
massless limit mq=Λref → 0 or the pure-gauge theory limit
mq=Λref → ∞. If results are desired from some nonzero
value of a quark mass, there is a further tuning involving
ratios of the fermion masses both among themselves and
with respect to some overall energy scale.
Numerical values of the form mq=Λref almost never

appear in lattice papers, because the quark masses them-
selves suffer from the same issue as ΛMS: They are not
renormalization-group invariant. One can extract results for
quark masses in a particular renormalization scheme like
MS from lattice calculations, but it requires careful per-
turbative matching and is not done as a matter of course in
most lattice QCD work. Instead, it is common practice to
use another physical observable (typically a hadron mass)
as a proxy for the quark mass.

REPURPOSING LATTICE QCD RESULTS FOR COMPOSITE … PHYS. REV. D 101, 034504 (2020)

034504-3



In principle, any physical observable which depends
directly on quark mass can be a good proxy; the best
proxies depend strongly on the quark mass. A common
convention in lattice QCD is to use the squared pion mass
to fix the light-quark mass, relying on the Gell-Mann-
Oakes-Renner (GMOR) relation [53,54], M2

π ¼ 2hq̄qimq.
(This leads to the common shorthand among lattice
practitioners of asking “How heavy are your pions?” to
judge the approximate masses of the light quarks in a given
study.) We will adopt this approach and elaborate on it in
Sec. III below. Masses of heavy quarks (charm, bottom)
must be matched to corresponding hadronic states con-
taining valence charm and bottom quarks.
To use lattice QCD results in some new physics scenario,

one would introduce a new reference scale Λ0
ref and fix any

fermion masses m0
q=Λ0

ref , most likely using a proxy as
discussed above. Then any matrix element which had an
energy scaling exponent p would simply be related to the
QCD result at the same ratio of fermion mass to reference
scale,

hO0ðrqÞi ¼ hOQCDðrqÞi
�
Λ0
ref

Λref

�
p
; ð7Þ

where rq ¼ mq=Λref ¼ m0
q=Λ0

ref . For example, if lattice
QCD simulations with ðMπ=MρÞ2 ∼ 0.8 give a vector
meson mass of 1.5 GeV and a nucleon mass of 2.3 GeV,
then for a composite dark matter model with a dark nucleon
mass of 1 TeV, using the nucleon mass as a reference scale
the corresponding dark vector meson mass would be
650 GeV at the same proxy ratio ðMP=MVÞ2 ∼ 0.8.

D. Changing the number of flavors and colors is
somewhat predictable

Most lattice simulations involve two flavors of degen-
erate light fermions, emulating the up and down quarks.
QCD plus QED simulations are beginning to break this
degeneracy. Many simulations include a strange quark at its
physical mass value and some simulations also include the
charm quark. Little work has been done on QCD with a
single light flavor [55] or for systems with a large hierarchy
between the up and down quark mass. There is also little
lattice literature about systems with nonfundamental rep-
resentations of fermions.
The Flavour Lattice Averaging Group [56] says “In most

cases, there is reasonable agreement among results with
Nf ¼ 2, 2þ 1, and 2þ 1þ 1” for fermion masses, low-
energy chiral constants, decay constants, the QCD Λ
parameter, and the QCD running coupling measured at
the Z pole. This is actually a restricted statement: Nf values
range over two degenerate light quarks, plus a strange
quark at around its real-world quark mass, plus a charm
quark near the physical charm mass. As far as we can tell
from looking at simulations, results for QCD with up to

four to six light degenerate flavors are not too different
from “physical” QCD. This begins to break down as Nf

rises, and by Nf ¼ 8 the spectrum is not very QCD-like. At
some point SUð3Þ systems cross over from confining into
infrared conformal behavior, which is definitely different
from QCD (see the reviews Refs. [57,58]).
Confining systems in beyond standard model phenom-

enology are not restricted to N ¼ 3, of course. Lattice
results for such systems are much more sparse than for
N ¼ 3. We will not describe lattice results away from
N ¼ 3, other than to say that ’t Hooft scaling seems to work
well as a zeroth-order description of masses and of the
studied matrix elements [59–64]. As is well known,
fermion loops essentially decouple from the theory in
the ’t Hooft large-N limit, so that lattice QCD results for
pure Yang-Mills gauge theory (also known as the
“quenched” limit in lattice literature) are likely to be
relevant; see [40] for a review.

III. SPECTROSCOPY

The spectroscopy of the lightest flavor nonsinglet meson
states and of the lightest baryons (the octet and decuplet) at
the physical point is basically a solved problem. Lattice
calculations reproduce experimental data at the few percent
level. These calculations carefully take into account extrap-
olations to zero lattice spacing, infinite volume, and to the
physical values of the light quarks. We refer readers to the
literature and just take the known values of real-world
hadron masses as given when we use them in comparisons.
Flavor singlet states often have significant overlap with
intermediate strong scattering states, and must be treated
carefully; we will discuss results for one such state, the f0
or σ meson, in Sec. V B below.
Spectroscopy at unphysical (heavier) quark masses is not

so well studied, but published data are probably accurate at
the 5% to 10% level. This should be sufficient for
composite model building. Our pictures and analysis are
based on three primary sources and one secondary one.
Reference [65] used a 203 × 64 site lattice at a lattice
spacing a ¼ 0.12406 fm. Reference [66] performed sim-
ulations on a 323 × 64 lattice at a lattice spacing of
a ¼ 0.0907 fm. These sources both include two degenerate
light quarks and a strange quark. References [67–69]
include results for 243 × 48 and 323 × 64 lattices, with
approximate lattice spacings of a ¼ 0.09 and 0.07 fm. (We
include data only from the set of ensembles labeled
“B2”–“B6” and “C1”–“C4,” for which we were able to
find the majority of the results we are interested in.) This set
of simulations omits the strange quark, including only two
degenerate light quarks.
Finally, we add our own smaller lattice simulations with

two degenerate fermions on a 163 × 32 lattice, at a lattice
spacing of about 0.1 fm, an extension of a set of simulations
performed by one of us [63]. This set is compromised by its
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small volume, although such effects are mitigated by the
large quark masses, and we will see that they are quali-
tatively similar to the other datasets where they overlap.
These new results extend to much heavier quark masses
than the primary sources.
All these simulations are at fixed lattice spacing; in the

plots we take the published lattice spacings and convert the
lattice data to physical units from it. Based on experience
with lattice QCD, we believe the systematic error due to
lack of continuum extrapolation is unlikely to be larger than
5% to 10% at the lattice spacings given here. The generally
close agreement of the a ∼ 0.12 fm, a ∼ 0.09 fm, and a ∼
0.07 fm results to this level of accuracy reinforces this
expectation.
We remark (again) that these are merely representative

lattice datasets, which we found presented in an easy to use
format. All of the results we will show include quarks
which are much heavier than the physical up and down
quarks, but still light compared to the confinement scale.
To emphasize that the various hadronic states we will be

studying do not take on their real-world QCD masses in
these simulations, we will label states by spin and parity:
For example, we will denote the lightest pseudoscalar
meson (π in QCD) as “PS,” the vector and axial-vector
mesons as “V” and “A,” etc.

A. Pseudoscalar mesons and setting the quark mass

We begin with the pseudoscalar light-quark mesons, i.e.,
the pions, which are the lightest states in the spectrum and
exhibit special quark-mass behavior due to their nature as
pseudo-Goldstone bosons: M2

PS ∼mq. This approximately
linear behavior shown in Fig. 1 is found to persist even out
to large quark mass. A plot of M2

PS=mq would reveal the
(small) curvature in the data, which would be described
well by chiral perturbation theory. Note that the quark
masses shown here are not consistent in terms of renorm-
alization scheme: some values are MS and others are in the
lattice scheme. As a result, we caution that Fig. 1 should
only be taken as a qualitative result.
Due to the issues of renormalization scale and scheme

dependence, the quark mass itself is not the most useful
variable to present results against, as discussed in Sec. II.
One alternative would be to only make plots of dimension-
less ratios; with one free dimensionless parameter in this
case, mq=Λref , plotting two dimensionless ratios should
show a single universal curve as the quark mass is varied.
Such a global picture known as an “Edinburgh plot” often
appears in exploratory lattice publications.
Figure 2 shows an Edinburgh plot of the nucleon to

vector mass ratio versus the pseudoscalar to vector meson
mass ratio. This curve is, of course, independent of the
overall confinement scale; it captures the behavior of QCD
as the fermion mass is taken from small (or zero) to infinity.
Other systems (different gauge groups, different fermion

composition) would have their own Edinburgh plots with
different curves.
Although the Edinburgh plot has some nice features,

in particular capturing the full variation of mq=Λref from
zero to infinity in a finite range, it obscures the detailed
parametric dependence of individual quantities on quark
mass. As such, it is not a convenient way to use results for

FIG. 1. Squared pseudoscalar meson mass in GeV2 as a
function of the quark mass in MeV. Data are black diamonds
from Ref. [65], red octagons from Ref. [66], violet crosses from
Refs. [67–69], blue squares from this work. The square points are
likely contaminated by finite-volume systematic effects, as
discussed in the text, but they nevertheless show the correct
qualitative relationship between M2

PS and mq.

FIG. 2. Edinburgh plot, MN=MV vs MPS=MV . Data are black
diamonds from Ref. [65], red octagons from Ref. [66], violet
crosses from Refs. [67–69], blue squares from this work. The
stars show the physical point and the heavy-quark limit.
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application to phenomenological models. To present results
in a way which is easier to work with, we will instead
choose the variable ðM2

PS=M
2
VÞ as a proxy for mq. This is a

dimensionless quantity running from zero (at zero quark
mass) to unity (in the heavy-quark limit), which is also
(roughly) linear in the quark mass at small mq.
The top panel of Fig. 3 shows this ratio as a function of

the quark mass. The mass dependence of MV itself spoils
the linear dependence of M2

PS=M
2
V on mq, but it is still

monotonic, making this a reasonable replacement formq as
a parameter. Much of the data we want to quote are
presented as being generated at some pion mass in MeV.
A translation plot between MPS and ðMPS=MVÞ2 is shown

in the bottom panel of Fig. 3. We will present results going
forward exclusively using ðMPS=MVÞ2, but these conver-
sion figures may be useful in translating from other sources.
Inspection of the bottom panel of Fig. 3 shows that up to
approximately MPS ∼ 1 GeV, ðMPS=MVÞ2 is roughly lin-
ear inMPS; fitting to the data in this range gives the relation

�
MPS

MV

�
2

≈ −0.11þ 0.77
MPS

1 GeV
; ð8Þ

which is accurate to within a few percent over the range of
data considered, 200 MeV≲MPS ≲ 1000 MeV [or equiv-
alently, 0.1≲ ðMPS=MVÞ2 ≲ 0.7]. This is completely
empirical, and in particular must break down for suffi-
ciently light-quark masses; in the limit of zero MPS, MV
will become approximately constant and we should recover
quadratic dependence of ðMPS=MVÞ2 on MPS.
To briefly summarize our treatment of quark-mass

dependence:
(i) In the intermediate quark-mass regime 0.1≲ ðMPS=

MVÞ2 ≲ 0.7 (roughly equivalent to 200 MeV≲
MPS ≲ 1000 MeV or 20 MeV≲mq ≲ 300 MeVÞ,
the quantity ðMPS=MVÞ2 is roughly linear in MPS,
following Eq. (8). Other quantities will also show
simple linear dependence on ðMPS=MVÞ2. This
regime is our main focus in this paper.

(ii) At lighter quark masses, there is a qualitative change
in dependence on ðMPS=MVÞ2 for many quantities.
In this regime, one may rely on experimental results
for real-world QCD or effective theories such as
chiral perturbation theory.

(iii) At heavy-quark masses, there is also a qualitative
change in the dependence on ðMPS=MVÞ2. Here we
will find that returning to the use of the quark mass
itself as a parameter is the best way to describe
the data.

We will attempt to make some connection to this final
heavy-quark regime in what follows, but we caution the
reader that lattice results may be particularly unreliable
here, as large and potentially uncontrolled lattice artifacts
are expected to appear as amq → 1. There are some reliable
lattice data for quarkonia which could be applicable that
make use of fine lattice spacings, high precision, and/or
specialized lattice actions to overcome the discretization
effects. Unfortunately, all of the lattice data we have found
for quarkonium systems are specific to the charm and
bottom-quark masses, requiring model extrapolation for
more general use. A more general study of quarkonium
properties could be an interesting future lattice project.

B. Other mesons and baryons

We begin with the other pseudoscalars, which are
the next lowest-lying states above the pion. The K
and η are Goldstone bosons associated with breaking of

FIG. 3. Top panel: the ratio ðMPS=MVÞ2 as a function of the
quark mass in MeV. Data are black diamonds from Ref. [65], red
octagons from Ref. [66], violet crosses from Refs. [67–69], blue
squares from this work. Bottom panel: the ratio ðMPS=MVÞ2 as a
function of MPS in MeV.
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SUð3Þ × SUð3Þ flavor symmetry including the strange
quark: Given a value for the light-quark mass mq and a
strange quark mass ms, their masses are predicted by chiral
perturbation theory at leading order to follow the GMOR
relation

M2
K ¼ mq þms

2mq
M2

π; ð9Þ

M2
η ¼

mq þ 2ms

3mq
M2

π: ð10Þ

At very heavy-quark masses, these formulas will break
down. We further emphasize that these states are distinct
from the pions only by virtue of including a strange quark
with ms ≠ mq. For application to a new physics model
where there are only two light quarks, the K and η do not
exist as distinct meson states.
The η0 meson is a special case; it is much heavier than the

other pseudoscalar mesons due to the influence of the
Uð1ÞA anomaly. An example lattice QCD calculation of
this state is [70]; they find weak dependence on the light-
quark masses, similar to the η meson. The relation

Mη0=Mη ≈ 1.8ð0.2Þ ð11Þ

from the reference is fairly accurate over a wide range
of MPS.
The next lightest states commonly reported in lattice

simulations are the vector mesons ρ (isospin triplet) and ω
(isospin singlet), and the axial-vector meson a1. These
states are easily isolated as ground states from correlation
functions with the corresponding symmetry properties.
Figure 4 (top panel) shows various vector-meson masses
as a function of ðMPS=MVÞ2. We have added the physical
values of the ρ and a1 mesons to the plot. We have also
added the phi (s̄s vector) meson. For it, we need a
corresponding pseudoscalar mass; we use the GMOR
relation to define a “strange eta” or ss̄ pseudoscalar, in
the absence of η − η0 mixing, using M2

ηs ¼ 2m2
K −m2

π . Its
mass is 685 MeV, giving a mass ratio ðMPS=MVÞ2 ¼ 0.45.
Finally, we include the vector J=ψ and axial-vector χc1
charmonium states, taking the ηc as the corresponding
pseudoscalar [which yields ðMPS=MVÞ2 ¼ 0.93].
A useful way to present the results in Fig. 4 is to provide

a simple linear parametrization of each mass as a function
of x ¼ ðMPS=MVÞ2,

MH ¼ AH þ BHx: ð12Þ

As discussed above, and as is evident from the plot, this
empirical parametrization is only valid for intermediate
values of x; we fit only including data in the range
0.1 ≤ x ≤ 0.7. In this range, this is clearly a good descrip-
tion of the lattice data. Numerical results for the fit

parameters AH and BH for various quantities are presented
in Table I.
For the heaviest quark masses in Fig. 4, significant

curvature is evident, particularly when including
the physical charmonium states. This behavior is to be
expected; the horizontal axis ðMPS=MVÞ2 goes to 1 in the
limitmq → ∞, but in the same limit the hadron mass on the
vertical axis will also go to infinity. Indeed, at heavy-quark
mass we expect the contribution to hadron masses to be
dominated by the quark masses themselves, so that we
should expect linear behavior in mq instead. This is clearly
shown in the bottom panel of the figure, and we include the
results of a simple linear fit

FIG. 4. Meson masses in MeV as a function of the ratio
ðMPS=MVÞ2 (top panel) and quark mass in MeV (bottom panel).
Stars are values of physical particles obtained as described in the
text: gold (silver) stars denote vector (axial-vector) states. The
lower densely populated band is the mass of the isovector vector
meson (the rho) and the upper band is the a1. For these particles,
the symbols are black diamonds from Ref. [65], red octagons
from Ref. [66], violet crosses from Refs. [67–69], blue squares
from this work. The dashed lines show linear fits to the data in
certain regimes, as described in the text.
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MH ¼ CH þDHmq ð13Þ

where mq is the quark mass in MeV. We restrict the fits to
include lattice data with mq > 200 MeV; only our own
lattice simulation results are included in this region. This
has the benefit of giving a consistent treatment of quark-
mass renormalization: Our mq are perturbatively renormal-
ized in the MS scheme at a scale μ ¼ 2 GeV [71].
Numerical results for CH and DH are collected for various
quantities in Table II.
Next, we turn to the nucleon and delta states shown in

Fig. 5. We have added the physical values of the masses of
the nucleon and delta to the plot. As in the meson case, we
have included empirical fits as a function of x (for
intermediate quark masses) and as a function of mq (for
heavy-quark masses).

We can obtain a clearer picture by considering the mass
difference MΔ −MN directly; this quantity is shown in
Fig. 6. In quark models, we expect that the delta-nucleon
mass splitting should vanish as mq → ∞. How it vanishes
is model dependent. In models where the splitting is given
by a color hyperfine splitting, it would go as a product of
the two color magnetic moments (and thus would scale as
1=m2

q times a wave function factor). Our lattice data are not
precise enough, nor do they extent to large enough quark
masses, to say more about this point.
We can extract additional information from the slope of

the nucleon mass with respect to the quark mass. From the
Feynman-Hellmann theorem, the derivative ∂MN=∂mq

yields the scalar matrix element hNjq̄qjNi. A more practi-
cally useful definition of this quantity is in terms of the
baryon “sigma term,”

TABLE I. Simple parametrization of hadronic observables,
using a linear model of the form AH þ BHx in x≡
ðMPS=MVÞ2. All dimensionful quantities are given in units of
MeV. As discussed in the text, this parametrization should only be
used in the range 0.1 ≤ x ≤ 0.7. No error bars are given, but this
parametrization should be accurate at roughly the 10% level, as
may be seen from the plots.

Observable AH BH

MV (MeV) 760 720
MA (MeV) 1120 1040
MN (MeV) 920 1480
MΔ (MeV) 1330 1080
MΔ −MN (MeV) 422 −446
fðNÞ
S

0.02 0.52

fPS (MeV) 134 117
ðMPS=fPSÞ2 1.61 4.86
fV 0.299 −0.081
fA 0.218 −0.100

TABLE II. Alternative parametrization of hadronic observ-
ables, using a linear model of the form CH þDHmq. All
dimensionful quantities (including mq) are given in units of
MeV. As discussed in the text, this parametrization should only be
used for mq > 200 MeV. No error bars are given, but this
parametrization should be accurate at roughly the 10% level,
as may be seen from the plots.

Observable CH DH

MV (MeV) 960 1.71
MA (MeV) 1450 1.65
MN (MeV) 1360 2.92
MΔ (MeV) 1550 2.66
ðMPS=fPSÞ2 3.87 3.99 × 10−3

fV 0.266 −0.131
fA 0.179 −0.142

FIG. 5. Nucleon (lower band) and delta baryon (upper band)
masses in MeV, as a function of ðMPS=MVÞ2 (top panel) and
quark mass in MeV (bottom panel). Data are black diamonds
from Ref. [65], red octagons from Ref. [66], violet crosses from
Refs. [67–69], blue squares from this work. Stars show the
physical nucleon and delta masses, and dashed lines show linear
fits to the data as described in the text.
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fðNÞ
S ≡ hNjmqq̄qjNi

MN
¼ mq

MN

∂MN

∂mq
; ð14Þ

which cancels out the quark-mass renormalization depend-
ence. The sigma term is of particular interest in describing
interactions of the Higgs boson with the baryon, either in
QCD or in beyond standard model scenarios. For example,
it may be used to constrain the Higgs portal interaction of
baryonlike dark matter candidates [72].

We determine fðNÞ
S directly from the lattice data using a

second-order finite difference approximation to the deriva-
tive; our results are shown in Fig. 7. Although there are
some outlier points with anomalously small errors, for the
most part we see universal agreement of the lattice results
with linear behavior in the regime 0.1 ≤ ðMPS=MVÞ2 ≤
0.7. The curve obtained here is similar to the results seen at
larger Nc and even with different color-group representa-
tions for the quarks, as discussed in [13,73].

C. Other states

Here we briefly discuss and review available lattice QCD
results for other states, including excited states, higher-spin
states, glueballs, and other exotica.

1. Excited states and higher spin

Lattice data for excited states and states with higher
spin are much sparser than for ground state hadrons. We
can point the reader at Ref. [74] for a calculation of a
variety of such states at ðMPS=MVÞ2 ¼ 0.43, 0.29, and

0.19, and Ref. [75] for a range of mass values, roughly
0.1≲ ðMPS=MVÞ2 ≲ 0.3.

2. Glueballs

In some phenomenological scenarios, such as the fra-
ternal twin Higgs model of Ref. [22], the quarks are truly
heavy, so that the spectrum of such models consists entirely
of light glueballs and quarkonia. The heavy-quark states in
this case may be identified as “quirks” [76] exhibiting the
formation of macroscopic color-force strings; we will not
explore this scenario in detail here, but we direct the
interested reader to [77,78] for lattice results on string
formation in pure-gauge theory in the large-Nc limit.
In the heavy-quark limit, the glueball spectrum is

basically that of pure-gauge (“quenched”) QCD rescaled
appropriately. Lattice data are available for this spectros-
copy: A definitive study for SUð3Þ is e.g., Ref. [79], while
for a study of the large-Nc limit we direct the reader to
Refs. [80,81]. See also the review Ref. [82].
Including the effects of quark masses, the study of

glueballs becomes more difficult, due to severe signal-
to-noise problems that require the high statistics most easily
obtained in pure-gauge calculations. Reference [83]
presents glueball spectrum results with a pion mass of
360 MeV [or ðMPS=MVÞ2 ∼ 0.17], which may give some
sense of how the glueball spectrum changes away from the
pure-gauge limit. We will not attempt to review the lattice
QCD literature on attempting to calculate glueball masses
at the physical point, which is certainly an open research
question.

FIG. 6. Delta-nucleon mass difference in MeV as a function of
ðMPS=MVÞ2. Data are black diamonds from Ref. [65], red
octagons from Ref. [66], violet crosses from Refs. [67–69], blue
squares from this work. The star shows the physical point, and the
dashed line shows a linear fit to the data.

FIG. 7. Scalar form factor of the nucleon as a function of
ðMPS=MVÞ2. Data are black diamonds from Ref. [65], red
octagons from Ref. [66], violet crosses from Refs. [67–69], blue
squares from this work. The fit shown (dashed line) includes a
10% systematic error on all points, in order to avoid bias due to
outliers with very small error bars.

REPURPOSING LATTICE QCD RESULTS FOR COMPOSITE … PHYS. REV. D 101, 034504 (2020)

034504-9



3. Exotic states

Finally, there are true exotic states involving the QCD
properties of particles that do not exist in the standard
model, for example fermions charged under higher repre-
sentations of SUð3Þ than the fundamental. These are
somewhat beyond the scope of our study, as such states
are not part of ordinary lattice QCD calculations and so
there is not a wealth of results available to repurpose.
However, these exotic states can be important in certain
BSM scenarios, so we will briefly review some available
results.
Fermions charged under the adjoint representation of

SUð3Þ are natural to consider; they appear as gluinos
in supersymmetric extensions of the standard model, or in
other scenarios such as the “gluequarks” of Ref. [84]. In
cases where the adjoint fermion is stable, it can form QCD
bound states whose binding can be studied on the lattice.
An early important work studying adjoint fermions is
Ref. [85], working in the quenched approximation (i.e.,
effectively at infinite quark mass). A more recent study is
Ref. [86], which also considers fermions in representations
as high as the 35 of SUð3Þ, working at ðMPS=MVÞ2 ∼ 0.38.
There is vast literature on the inclusion of light fermions

in higher representations for the purposes of studying the
transition to infrared-conformal behavior; see [57,58] for
recent reviews of this subfield. These systems are quali-
tatively different from QCD and sowewill not say anything
further about them here, except to note that the possibility
of vastly different infrared behavior, or even loss of
asymptotic freedom, should not be forgotten by model
builders including fermions in higher representations.
Another exotic possibility would be heavy fundamental

(i.e., not composite) scalars which carry SUð3Þ color charge
in some representation—again, supersymmetric theories
give rise to squarks as a prototypical example. This could
lead to a wealth of interesting scalar-quark bound states
(e.g., “R-hadrons” [87,88]). We can find very little on this
subject in the literature, although certainly there is a
significant amount of early work on the inclusion of light
scalars and phase diagrams of scalar-gauge theories.
Relevant to the current context we can find only
Ref. [89], which studies the spectrum of bound states
including scalars in the fundamental representation of
SUð3Þ; they use the quenched approximation and extremely
coarse lattice spacing with no continuum extrapolation, so
their results should be applied with appropriate caution.

IV. VACUUM TRANSITION MATRIX
ELEMENTS

One of the simplest matrix elements to compute on the
lattice is the matrix element for decay of a hadronic state to
the vacuum state through an intermediate operator,
h0jOjHi. The presence of only a single strongly coupled
state means that these quantities can be calculated with

simple correlation functions and good signal-to-noise
compared to processes involving multiple hadronic states.

A. Pseudoscalar decay constant

The decay constants parametrize specific vacuum-tran-
sition matrix elements of the pseudoscalar, vector, and
axial-vector mesons. They have an extensive history in
lattice simulations; we begin with the pseudoscalar meson.
Introducing the quark flavor labels u, d to characterize the
current, the pseudoscalar decay constant fPS is defined
through

h0jūγ0γ5djπi ¼ MPSfPS: ð15Þ
Our conventions lead to the identification fπ ∼ 130 MeV in
QCD, but it should be emphasized that this choice is not
unique. Although the decay width of the pion is a physical
and experimentally accessible quantity, the decay constant
fPS is not physical in the same sense; its precise value
depends on various choices of convention; a detailed
discussion is given in Appendix A. We show our summary
of lattice results for fPS in Fig. 9.
Perhaps a more useful quantity is the ratio MPS=fPS. It

sometimes appears as a free parameter in the phenomeno-
logical literature, where it is allowed to vary over a large
range. (For example, see Fig. 1 of Ref. [90].) We show this
ratio in Fig. 8. In QCD, the range of possible values for this
ratio is quite limited, ranging from about 1 at the physical
point to 5–6 for the heaviest quark masses we consider.
In heavy-quark effective theory, there is a solid expect-

ation that fPS is proportional to 1=
ffiffiffiffiffiffiffiffiffi
MPS

p
in the asymmetric

limit that one quark becomes very heavy. This is confirmed
by lattice simulations. For two degenerate masses, quark
models suggest that this result is modified to fPS ∼
1=

ffiffiffiffiffiffiffiffiffi
MPS

p
ψð0Þ where ψð0Þ is the meson wave function at

FIG. 8. Ratio of pseudoscalar mass to decay constant as a
function of ðMPS=MVÞ2. Data are black diamonds from Ref. [65],
red octagons from Ref. [66], violet crosses from Refs. [67–69],
blue squares from this work.
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zero separation. We are unaware of direct lattice checks of a
degenerate-mass decay constant at very large quark masses.

B. Vector and axial-vector decay constants

The vector meson decay constant of state V is defined as

h0jūγidjVi ¼ M2
VfVϵi ð16Þ

and the axial-vector meson decay constant of state A is
defined as

h0jūγiγ5djAi ¼ M2
AfAϵi; ð17Þ

where ϵi is a unit polarization vector. Once again, we
emphasize that conventions for the definition of these decay
constants vary in the literature; in particular, with our
definitions fV and fA are dimensionless, but dimensionful
versions of the decay constants are commonly used as well.
These quantities appear in the phenomenological literature
both in the coupling of bound states to photons and W’s,
and also in their coupling to new gauge bosons such as dark
photons, although the decay constants often do not appear
directly.
We could not find a full set of axial-vector meson decay

constants in the literature, and so we generated our own
data. The signal in the axial-vector channel is much noisier
than in the vector channel, and so we used datasets of 400
stored configurations run at some of the same simulation
parameters as was used in Ref. [63]. The analysis is
identical to the one done in that paper.
We show the decay constants as a function of

ðMPS=MVÞ2 in Fig. 10. We overlay decay constants
inferred from experimental data from [91]. In our con-
ventions, the vector meson decay width to electrons is

ΓðV → eþe−Þ ¼ 4πα2

3
MVf2Vhqi2 ð18Þ

where hqi is the average charge: −1=3 for the phi meson,
ð2=3 − ð−1=3ÞÞ= ffiffiffi

2
p

for the rho, and ð2=3þ ð−1=3ÞÞ= ffiffiffi
2

p
for the omega. Extracting a decay constant from the a1 is
complicated by its large width, so we take the phenom-
enological result from the old analysis of Ref. [92].
Significant deviations of these experimental values from
the lattice data are seen, on the order of 20%; this may
reflect large systematic uncertainties in our determinations
of fV and fA which are not accounted for.
As a concrete example of applying vector decay con-

stants, we consider the composite dark sector model of
Ref. [93]. In Sec. V, the reference discusses the generation
of a coupling ϵ0 of the “dark rho” meson to the standard
model electromagnetic current, L ¼ ϵ0ρD;μJ

μ
em. This inter-

action is described as arising from mixing of the dark rho
with a dark photon Aμ

D, which in turn mixes with the
ordinary photon with mixing strength ϵ. Carrying out a
simple effective matching, the mixing of dark rho with dark
photon is given by hADjρDi ¼ eDh0jjμV jρDi ¼ eDM2

ρDfρD.
Since MρD ≫ MAD

in this model, the dark photon propa-
gator cancels the M2

ρD , leaving the result

ϵ0 ¼ ϵeDfρD ≈ ϵeD

ffiffiffiffi
N

p

4
ffiffiffi
3

p ; ð19Þ

where N is the number of colors in the SUðNÞ dark sector.
Here we have substituted the result fV ≈ 1=4 from our
collected lattice results and made use of the known large-N
scaling of decay constants as

ffiffiffiffi
N

p
[60]. Compared to the

naive dimensional analysis (NDA) result given in the

FIG. 9. Pseudoscalar decay constant as a function of
ðMPS=MVÞ2. Data are black diamonds from Ref. [65], red
octagons from Ref. [66], violet crosses from Refs. [67–69], blue
squares from this work.

FIG. 10. Vector meson (upper band) and axial-vector meson
(lower band) decay constants versus ðMPS=MVÞ2. Data are violet
crosses from Ref. [68] and blue squares from this work. Stars
show physical values for various states determined as described
in the text.
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reference, this estimate is larger by a factor of π=
ffiffiffi
3

p
—

nearly a factor of 2. A similar analysis can be applied to the
NDA estimates of dark rho couplings in [94].

C. Sum-rule relations between vector and
pseudoscalar properties

The properties of the vector (ρ) meson can be closely
related in QCD to certain interactions involving pions,
particularly the pion electromagnetic form factor (this idea
is known as vector meson dominance; see Ref. [95] for a
good review). The modern approach to this idea is couched
in extensions of the chiral Lagrangian, but early work on
relating vector and pseudoscalar interactions was done in
the framework of current algebra, one of the highlights of
which is the KSRF relations (after Kawarabayashi, Suzuki,
Riazuddin, and Fayazuddin [96,97]).
For the vector meson decay constant, KSRF predicts (in

our conventions) that

fV ¼
ffiffiffi
2

p fPS
MV

: ð20Þ

A comparison of this relation is shown in Fig. 11. The
parametrization seems to work qualitatively well at inter-
mediate masses; there is some tension between the KSRF
and direct results at light masses, but the disagreement
between different lattice groups here indicates the possible
onset of systematic effects. In particular, we note that the
value of fV inferred from this ratio changes very little with
ðMPS=MVÞ2, indicating weak dependence on the quarks;
similar results have been seen in other theories with
additional light quarks; see for example Refs. [98,99].
In a theory with spontaneous chiral symmetry breaking,

the pseudoscalar decay constant and sums of the vector and
axial-vector decay constants are constrained by the first

X
V

f2VM
2
V −

X
A

f2AM
2
A − f2PS ¼ 0 ð21Þ

and second

X
V

f2VM
4
V −

X
A

f2AM
4
A ¼ 0 ð22Þ

Weinberg sum rules [100]. One often sees phenomenology
where the difference of vector and axial spectral functions
is saturated by the three lowest states (the pion, rho, and a1)
and the decay constants are constrained to satisfy the
Weinberg sum rules (typically by fixing fa1). This is called
the “minimal hadron approximation” [101].
Such an approximation is not justified by the lattice-

determined decay constants. In Fig. 12, we present two
quantities which test the Weinberg sum rules using the
lowest states: “WSR1” denotes the combination ðf2VM2

V−
f2AM

2
AÞ=f2PS, while “WSR2” is the expression ðf2VM4

VÞ=
ðf2AM4

AÞ. As can be seen from the plot, significant devia-
tions from the expected result of 1 are seen over a wide
range of quark masses. As a result, we caution against the
use of the Weinberg sum rules with minimal hadron
approximation.

D. Nucleon decay matrix elements

There is a small amount of literature on vacuum-
transition matrix elements for the nucleons. For the study
of proton decay in QCD, the more interesting decay
processes include a pion in the final state, e.g.,
p → π0eþ. However, very early lattice work attempted
to estimate this more complicated matrix element in terms
of the simpler proton-to-vacuum matrix elements (this was
known as the “indirect method”).

FIG. 11. Vector meson decay constant fV versus ðMPS=MVÞ2
as inferred from the KSRF relations. Data are black diamonds
from Ref. [65], red octagons from Ref. [66], violet crosses from
Refs. [67–69], blue squares from this work. The star shows the
physical ρ meson decay constant.

FIG. 12. Tests of the Weinberg sum rules, Eqs. (21) and (22),
using the lattice data from this work. Both quantities should be
equal to 1 if the Weinberg sum rules hold. Significant deviations
are seen at essentially all values of the quark mass for both
sum rules.
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Instead of attempting to review the literature, we refer to
the recent lattice result Ref. [102]. They define the low-
energy constants α and β as

h0jðudÞRuLjpþi ¼ αPRup; ð23Þ

h0jðudÞLuLjpþi ¼ βPLup; ð24Þ

which are precisely the vacuum matrix elements. Their
study uses a single lattice spacing and four ensembles with
340 MeV≲MPS ≲ 690 MeV, corresponding roughly to
0.15≲ ðMPS=MVÞ2 ≲ 0.40. They find

α ≈ −β ¼ −0.0144ð3Þð21Þ GeV3 ð25Þ

in MS renormalized at μ ¼ 2 GeV, extrapolated to the
physical point. The data for mass dependence of this
quantity are not presented directly, but their Fig. 2 shows
that the unrenormalized results for α and β at the heavier
quark masses are larger by up to a factor of 2.

V. STRONG DECAYS

Of course, all QCD states which can decay strongly will
do so. This physics can be important for phenomenology.
An example is the decay of dark matter particles described
in Ref. [11]. Lattice calculations extract coupling constants
for decay processes indirectly. The calculation begins by
finding the masses of multistate systems in a finite box; the
shift in mass parametrizes the interaction between the
particles. Reference [103] is a good recent review. We will
briefly consider results for the vector and scalar mesons as
ππ resonances; this field is relatively new within lattice
QCD, and so there are very few results yet for resonances
associated with other combinations of mesons.

A. ρ → ππ

The most extensive lattice results are for the rho meson.
In contrast, phenomenology often uses a KSRF relation for
the coupling constant mediating the decay of a vector into
two pseudoscalars,

gVPP ¼ MV

fPS
: ð26Þ

The vector meson decay width is

ΓðV → PPÞ ≃ g2VPP
48πM2

V
ðM2

V − 4M2
PSÞ3=2: ð27Þ

Lattice data for gVPP from several groups are displayed
in Fig. 13, along with the KSRF relation itself, evaluated
using the physical values ofMV and fPS. The agreement of
lattice data with the relation is excellent independent of the
pion mass. One may also use the KSRF relation to

indirectly estimate gVPP from lattice calculations of MV
and fPS; we show the result of this method in Fig. 14.
Although some significant deviations are seen from the
direct results at lighter mass, the indirect approach is
qualitatively accurate, giving gVPP ∼ 6 over a wide range
of ðMPS=MVÞ.
There are many lattice calculations of resonances which

couple to two final state particles. Decays into three or more
particles is an active area of research.

B. The f 0 or σ meson

In QCD, the f0 meson is a broad scattering resonance; it
is not a typical inclusion in calculations of the spectrum of
light mesons because it must be carefully isolated using
appropriate finite-volume scattering techniques if it is
unstable. However, at heavy-quark masses the decay
channel to two pseudoscalars is closed, and it can be
studied using standard spectroscopy methods, although the
presence of “quark-line disconnected” diagrams makes it
computationally expensive to pursue. Reference [111] is an
early study of the scalar meson on rather small volumes and
extremely heavy-quark masses, ðMPS=MVÞ2 ∼ 0.5–0.7;
they find MS > MV in this entire range.
Lattice results for this state as a scattering resonance are

beginning to appear; see Refs. [112–114]. Their data are at
ðMPS=MVÞ2 ¼ 0.1–0.2 and the state ranges in mass from
460 to 760 MeV. The f0 is the lightest state in the hadron
spectrum apart from the pions and as soon as it becomes
heavier than 2MPS it becomes very broad.
There is lattice literature on confining systems with a

light scalar resonance, of the same order as MPS. It is not
QCD-like; instead, it appears in systems whose scale-
dependent coupling constant runs very slowly as the energy

FIG. 13. The vector meson decay constant gVPP from lattice
calculations, as a function of ðMPS=MVÞ2. Symbols are blue
squares, Refs. [104,105]; pink crosses, Refs. [106,107]; light blue
octagons, Ref. [108]; gray diamond, Ref. [109], and yellow
triangles, Ref. [110]. The line is the KSRF relation with physical
values for the ρ mass and fPS.
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scale varies. This has led to arguments that the scalar is
acting as a “pseudodilaton” in these systems whose light-
ness is associated with breaking of approximate scale
invariance. We will not say anything further about this
interesting area of research here; the interested reader
should consult Ref. [115] for a recent review in the context
of composite Higgs models, or the white paper Ref. [116]
for current and future prospects for lattice study and model
understanding of an emergent light scalar meson.

VI. CONCLUSIONS

There is a wealth of lattice QCD data for SUð3Þ gauge
theory at “unphysical” values of the quark-mass parame-
ters. For the phenomenologist interested in hidden sectors
or other models that contain an SUð3Þ gauge sector, we
have attempted to gather and summarize a number of lattice
results, and to elucidate how to interpret other lattice papers
in a different context.
For lattice QCD practitioners, we have a different

remark: Results at “unphysical” fermion masses may have
an audience, and it may be useful to present them on their
own, rather than merely as intermediate steps on the way to
the physical point of QCD.
Although we have focused on simpler quantities, there

are substantial amounts of “heavy QCD” lattice results
available for nuclear physics, especially binding energies of
small nuclei [117–121]. Some work has already been done
in attempting to match these results to nuclear effective
field theories [122], which could provide a starting point for
studying BSM scenarios in which the formation of BSM
“nuclei” is of interest [123–128].
There may be results which are not directly relevant for

QCD, which have a place in phenomenology and could

easily be generated. An example of this would be spec-
troscopy and matrix elements of heavy fermion systems
(i.e., quarkonia), away from the charm and bottom-quark
masses. Perhaps appropriate datasets exist, but neither we,
nor the phenomenologists whose papers we have read, have
noticed them. Finally, we remark that it might not be too
difficult to bring light hadron spectroscopy at unphysical
quark masses to the same level of precision as already exists
for QCD at the physical point.
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APPENDIX A: NORMALIZATION
CONVENTIONS AND f PS

The decay width of the pion is a physical quantity, in that
it is an energy scale which is unambiguously determined by
experimental measurement. Although it is often used as
one, the decay constant fPS is not a physical quantity in the
same sense; its precise value depends on various choices of
convention. The precise definition of these conventions is
not always clear in the literature, so we will try to lay out
some of the important details here.
The decay constant fPS itself is defined directly from the

matrix element that describes the overlap of the pion field
with the axial-vector current, relevant e.g., for leptonic
decays of the QCD pion:

h0jJμAð0ÞjπþðpÞi ¼ ipμN PSfPS: ðA1Þ

There are two ways in which different normalizing factors
can enter into this equation and alter the numerical value of
fPS. The first is that an arbitrary normalizationN PS may be
included in the defining equation itself; this factor is usually
set to 1, but the choice N PS ¼

ffiffiffi
2

p
sometimes occurs. The

second is that commonly, the decay constant will be
defined with respect to the isospin eigenstate πa instead
of the charged-pion state πþ, i.e.,

h0jJμ;aA ð0ÞjπbðpÞi ¼ ipμδabN PSFPS: ðA2Þ

Since the charged-pion states are defined as π� ¼ ðπ1�
iπ2Þ= ffiffiffi

2
p

, this version of the decay constant is related to the
one given above as FPS ¼ fPS=

ffiffiffi
2

p
.

Lattice calculations in particular almost exclusively work
with the charged-pion fields, so that (for example) in terms
of quark content in QCD the current appearing in Eq. (A1)
is d̄γμγ5u and the pion field is d̄γ5uj0i. In the results

FIG. 14. Indirect determination of the vector meson decay
constant gVPP from lattice calculations, as a function of
ðMPS=MVÞ2, as inferred from the KSRF relation Eq. (20). Data
are black diamonds from Ref. [65], red octagons from Ref. [66],
violet crosses from Refs. [67–69], blue squares from this work.
The star shows the physical ρ meson decay constant.
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presented here we choose N PS ¼ 1, which leads to the
physical value fPS ≈ 130 MeV.
When in doubt, check a physical quantity like a decay

width: for example, for any combination of conventions
that lead to fPS ≈ 130 MeV in QCD, the result for tree-
level standard model leptonic pion decay should be

Γðπþ→μþνμÞ¼
G2

FjVudj2f2PS
8π

MPSm2
μ

�
1−

m2
μ

M2
PS

�
2

: ðA3Þ

Practical application of fPS often involves the use of
chiral perturbation theory, where (at tree level and leading
order) fPS may be identified2 with the leading-order low-
energy constant F. Within the chiral Lagrangian, there are
two normalization choices which can influence the numeri-
cal value of F. The first is the normalization of the
generators Ta of the Lie algebra suðNÞ, which is typically
expressed in terms of the trace normalization N N ,

Tr½TaTb� ¼ N Nδ
ab: ðA4Þ

The second choice is the pion field normalization N π ,
which appears in the definition of the nonlinear matrix field
U as

U ¼ exp

�
iN ππ

aTa

F

�
: ðA5Þ

Requiring canonical normalization for the kinetic term of
the πa fields fixes the kinetic term of the chiral Lagrangian
to be

Lkin ¼
F2

2N 2
πN N

Tr½∂μU∂μU†�: ðA6Þ

This relationship can be useful for inferring either N π or
N N in cases where they are not clearly and explicitly
stated. Now, expanding the U andU† fields to second order
in πa leads to a unique four-point interaction, schematically
of the form

Lkin ∼
1

2
ð∂μπÞ2 þ

N 2
π

2F2N N
ðπ∂μπÞ2Tr½T4� þ � � � ðA7Þ

The coefficient of the four-point term must be independent
of convention, because it directly determines the observable
tree-level pion scattering amplitude. We do not need to
evaluate the trace Tr½T4� directly, but we immediately see
that it will scale as N 2

N if the normalization of the Ta

is changed. Therefore, if we make two convention choices
A and B, we immediately find that the values of F are
related as

F2
B

F2
A
¼ ðN 2

πN NÞB
ðN 2

πN NÞA
: ðA8Þ

All that remains is to fix a fiducial numerical value of F for
a specific choice of conventions: In principle, this requires a
matching calculation onto a physical process such as
leptonic pion decay. We adopt the results of Scherer and
Schindler [129], who find F ¼ 93 MeV with the choices
N π ¼ 1 and N N ¼ 2, leading to the general result.

F ¼ 93 MeV ×N π ×

ffiffiffiffiffiffiffiffi
N N

2

r
: ðA9Þ

APPENDIX B: LATTICE DETAILS
FOR f V AND f A

The datasets from which our values of fV and especially
fA were extracted were extensions of the ones published in
Ref. [63]. The simulations used the Wilson gauge action
and clover fermions with normalized hypercubic (nHYP)
links [130,131]. They had Nf ¼ 2 flavors of degenerate-
mass fermions. All lattice volumes are 163 × 32. One value
of bare gauge coupling was simulated. Reference [63] used
the shorter version of the Sommer parameter to set the scale
and so we continue to do that here.
Calculations of the axial-vector meson require high

statistics since the signal is noisy. Our datasets consist
of 400 lattices (except for κ ¼ 0.127, with 203 lattices)
spaced ten molecular dynamics time steps apart.
The raw lattice numbers for the decay constants are

converted into continuum regularization via the old tad-
pole-improved procedure of Lepage and Mackenzie [132].
We work at one loop. In this scheme a continuum-regulated
fermionic bilinear quantity F with engineering dimension
D [for example the MS (modified minimal subtraction)
value at scale μ] is related to the lattice value by

FðμÞ ¼ aDFðaÞ
�
1 −

3κ

4κc

�
ZQ ðB1Þ

and at scale μa ¼ 1,

ZQ ¼ 1þ α
CF

4π
zQ ðB2Þ

where α ¼ g2=ð4πÞ, CF is the usual quadratic Casimir, and
zQ is a scheme matching number. (Ours are tabulated in
Ref. [71].) The axial-vector and vector Z-factors are only a
few percent different from unity for nHYP clover fermions

2We will assume that fPS ¼ F þ � � �, but we caution that it is
possible for additional normalizing factors to appear in the
matching calculation to obtain the matrix element above from
the chiral Lagrangian, so this relation should be confirmed for
specific applications.
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and so ZQ is taken to be unity. κc is the value of the hopping
parameter where the axial Ward identity (AWI) quark mass
and the pion mass vanishes. The lattice spacing depends on
the bare simulation parameters, so we determined the
values of κc by fitting the dimensionless combination
r1mq to a linear dependence on κ.
We present our results in two tables. The first is intended

for lattice practitioners: It shows in Table III the hopping
parameter, Sommer radius, AWI quark mass, pseudoscalar,
vector, and axial-vector masses, and the lattice pseudosca-
lar, vector, and axial-vector decay constants.

The second table, Table IV, is more useful for phenom-
enologists: It shows the squared pseudoscalar to vector
mass ratio, the vector and axial masses in MeV, and the
three decay constants (MeV for fPS) in continuum regu-
larization. These are the quantities plotted in Figs. 4, 9,
and 10.

APPENDIX C: LATTICE DATASETS

Here we tabulate the new SUð3Þ lattice results obtained
for the purposes of this paper.

TABLE III. Masses in lattice units for the SUð3Þ datasets. From left to right, the entries are the hopping parameter κ, the relative scale
r1=a, the axial Ward identity quark mass, the pseudoscalar mass, the vector meson mass, the axial-vector meson mass, the pseudoscalar
decay constant, the vector meson decay constant, and the axial-vector meson decay constant. Decay constants are not renormalized.

β ¼ 5.4 κc ¼ 0.12838
κ r1=a amq aMPS aMV aMA afPS;bare fV;bare fA;bare

0.1180 2.272(27) 0.3230 1.127(2) 1.220(2) 1.535(8) 0.638(3) 0.670(4) 0.365(3)
0.1200 2.352(14) 0.2620 0.997(2) 1.100(3) 1.415(8) 0.611(5) 0.726(4) 0.431(5)
0.1220 2.552(20) 0.2010 0.830(1) 0.944(2) 1.251(9) 0.556(3) 0.787(3) 0.466(7)
0.1240 2.736(28) 0.1390 0.665(3) 0.795(3) 1.063(7) 0.505(3) 0.875(16) 0.524(7)
0.1250 2.950(20) 0.1070 0.563(1) 0.707(1) 0.979(3) 0.463(1) 0.932(12) 0.576(5)
0.1260 3.080(30) 0.0730 0.453(1) 0.612(1) 0.874(4) 0.415(1) 0.973(7) 0.629(4)
0.1265 3.110(30) 0.0580 0.395(1) 0.563(2) 0.806(7) 0.386(1) 0.996(5) 0.657(4)
0.1270 3.230(30) 0.0410 0.328(1) 0.512(4) 0.738(9) 0.355(3) 1.052(8) 0.714(5)
0.1272 3.300(30) 0.0340 0.300(1) 0.497(2) 0.718(5) 0.347(1) 1.089(5) 0.685(14)
0.1274 3.320(20) 0.0274 0.270(1) 0.482(3) 0.695(4) 0.321(1) 1.088(5) 0.737(6)
0.1276 3.460(20) 0.0206 0.234(2) 0.444(8) 0.656(10) 0.300(2) 1.073(11) 0.719(7)
0.1278 3.410(30) 0.0140 0.204(2) 0.444(4) 0.626(5) 0.258(4) 1.115(8) 0.798(9)

TABLE IV. Continuum results. From left to right, the entries are the squared ratio of pseudoscalar to vector masses, the vector meson
mass in MeV, the axial-vector meson mass in MeV, the pseudoscalar decay constant in MeV, the vector meson decay constant, and the
axial-vector meson decay constant. All decay constants are renormalized as described above.

ðMPS=MVÞ2 MV (MeV) MA (MeV) fPS (MeV) fV fA

0.8534 1745(21) 2195(28) 283.5(3.6) 0.2054(12) 0.11200(92)
0.8215 1628(11) 2095(17) 270.5(2.7) 0.2142(12) 0.1273(15)
0.7731 1516(12) 2009(21) 256.6(2.4) 0.22316(85) 0.1322(20)
0.6997 1369(15) 1831(22) 239.7(2.8) 0.2380(44) 0.1426(19)
0.6341 1313(9) 1818(14) 232.0(1.7) 0.2481(32) 0.1535(13)
0.5479 1186(12) 1694(18) 212.4(2.1) 0.2535(18) 0.1640(10)
0.4922 1102(11) 1578(20) 197.3(2.0) 0.2566(13) 0.1694(10)
0.4104 1041(13) 1500(23) 186.3(2.3) 0.2680(20) 0.1820(13)
0.3644 1032(10) 1491(17) 185.2(1.8) 0.2761(13) 0.1738(36)
0.3138 1007(9) 1452(12) 171.6(1.2) 0.2746(13) 0.1862(15)
0.2778 967(18) 1429(23) 166.4(1.5) 0.2696(28) 0.1808(18)
0.2111 953(12) 1344(16) 140.4(2.5) 0.2789(20) 0.1997(23)
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