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We investigate the D�
s0ð2317Þ meson using lattice QCD and considering correlation functions of several

c̄s two-quark and c̄sðūuþ d̄dÞ four-quark interpolating fields. These interpolating fields generate different
structures in color, spin and position space including quark-antiquark pairs, tetraquarks and two-meson
scattering states. For our computation we use an ensemble simulated with pion mass mπ ≈ 0.296 GeV and
spatial volume of extent 2.90 fm. We find in addition to the expected spectrum of two-meson scattering
states another state around 60 MeV below the DK threshold, which we interpret as the D�

s0ð2317Þ meson.
This state couples predominantly to a quark-antiquark interpolating field and only weakly to a DK two-
meson interpolating field. The coupling to the tetraquark interpolating fields is essentially 0, rendering a
tetraquark interpretation of the D�

s0ð2317Þ meson rather unlikely. Moreover, we perform a scattering
analysis using Lüscher’s method and the effective range approximation to determine the D�

s0ð2317Þ mass
for infinite spatial volume. We find this mass 51 MeV below the DK threshold, rather close to both our
finite volume result and the experimentally observed value.

DOI: 10.1103/PhysRevD.101.034502

I. INTRODUCTION

The D�
s0ð2317Þ meson with quantum numbers IðJPÞ ¼

0ð0þÞ, strangeness S ¼ �1 and charm C ¼ S has mass
mD�

s0
¼ 2.3178ð5Þ GeV, around 45 MeV below the DK

threshold [1–4]. This experimental result is in contrast to
theoretical predictions from quark models (see e.g.,
Refs. [5–7]), where the D�

s0ð2317Þ meson is treated as a
c̄s quark-antiquark pair, which leads to a significantly
larger mass in the range of 100 to 200 MeV above the
experimental value. Because of that discrepancy, there is
an ongoing debate about the quark composition of the
D�

s0ð2317Þ meson. Besides a standard quark-antiquark
structure it could also have a four-quark structure. For
example Refs. [8–10] propose a tetraquark structure, while
Ref. [11] provides arguments against such a scenario.
Another possibility is a DK mesonic molecule structure

as e.g., suggested by Refs. [12,13]. This picture is also
supported by recent papers [14–17], where DK molecular
components from around 60% to 75% are found. Other
interesting approaches, which are able to explain the
surprisingly low mass of the D�

s0ð2317Þ meson, are e.g.,
presented in Ref. [18], where the D�

s0ð2317Þ meson is a
standard c̄s configuration with the coupling to the nearby
DK threshold taken into account, and in Refs. [19–21],
which are based on an SU(3) chiral Lagrangian. For a
more detailed discussion of the properties of theD�

s0ð2317Þ
meson and existing literature, we refer to the review
articles [22,23].
Early quenched lattice QCD studies [24–30] of the

D�
s0ð2317Þ meson found masses significantly larger than

the experimental result, similar to quark model predictions.
There are also more recent lattice QCD studies [31–39],
where only quark-antiquark interpolating fields of flavor
structure c̄s were taken into account. The majority of these
studies also find masses for the D�

s0ð2317Þ meson, which
are larger than the experimental value, in particular, if
extrapolations to physical quark masses and to the con-
tinuum were performed (see e.g., Ref. [37]). If, however,
in addition to quark-antiquark interpolating fields also
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two-meson DK interpolating fields are included, as is done
in the recent precision lattice QCD computations presented
in Refs. [40–42], D�

s0ð2317Þ masses below the DK thresh-
old and close or consistent with the experimental result are
found. In these investigations almost physical u and d
quark masses were used, corresponding to pion masses
mπ ≈ 0.156 GeV and mπ ≈ 0.150 GeV, respectively, and
Lüscher’s method was employed, to obtain the meson mass
at infinite spatial volume. In this context it is also
interesting to mention two closely related lattice QCD
investigations. In Ref. [43] scattering of charmed and light
pseudoscalar mesons was studied, includingDK̄ scattering,
and by using SU(3) flavor symmetry the D�

s0ð2317Þ mass
was obtained in agreement with experiment and support for
the interpretation as aDK molecule was found. In Ref. [44]
scattering in the D�

0 sector was studied, however, with
rather heavy quark masses, somewhere between the physi-
cal light and strange quark, corresponding to a pion mass
mπ ≈ 0.391 GeV, which led to some insights on the
qualitative difference between the D�

0ð2400Þ meson and
the D�

s0ð2317Þ meson.
In this work we also study the D�

s0ð2317Þ meson using
lattice QCD with particular focus on tetraquark interpolat-
ing fields. As in the aforementioned lattice QCD inves-
tigations [40–42] we consider both quark-antiquark and
two-meson interpolating fields. In addition, we include for
the first time also tetraquark interpolating fields, where
the four quarks are centered at the same point in space. We
implemented color and spin contractions, where two
standard meson interpolating fields of quark-antiquark type
are put on top of each other (resembling DK and Dsη
mesonic molecules), as well as contractions, which have a
diquark-antidiquark structure. Including such tetraquark
interpolating fields might be essential, as it has recently
been reported in Ref. [45] for the positive parity mesons
a0ð980Þ and K�

0ð700Þ. In both cases a low-lying energy
level is missed, if they are not taken into account.
Moreover, we compute the couplings of the low-lying
states to different types of two-quark and four-quark
interpolating fields and compare the spectra obtained from
different subsets of interpolating fields. This might shed
additional light on the question whether the D�

s0ð2317Þ
meson is predominantly a c̄s state or rather has a large
tetraquark component.
We perform our computations in a single spatial volume

of extent 2.90 fm and at unphysically heavy u and d quark
mass corresponding to mπ ≈ 296 MeV. For the analysis
of correlation functions we apply the Athens Model
Independent Analysis Scheme (AMIAS), an analysis
method based on statistical concepts for extracting excited
states from correlation functions. AMIAS is a novel
analysis method, which has previously been used in a
study of the nucleon spectrum and the a0ð980Þ meson
[46,47]. AMIAS utilizes all the information encoded in

the correlation function with the particular advantage of
exploiting also data at small temporal separations, where
statistical errors are typically small. In addition to AMIAS
we also use the standard generalized eigenvalue problem
(GEVP) method; i.e., we solve generalized eigenvalue
problems and extract the spectrum from effective energy
plateaus (cf. e.g., [48] and references therein). Note that
both the GEVP and AMIAS provide information on the
relative importance of the considered interpolating fields.
Combining both methods allows one to check the robust-
ness of our results.
This paper is organized as follows: In Sec. II we describe

the lattice setup and techniques with particular focus on the
implemented interpolating fields. In Sec. III we discuss the
spectral decomposition of the corresponding two-point
correlation functions. A short description of our two
analysis methods, the GEVP and AMIAS, is provided in
Sec. IV. Section V is the main section of this work, where
our numerical results are presented. First, in Sec. VA, we
show several finite volume spectra for the sector with
D�

s0ð2317Þ quantum numbers corresponding to different
sets of interpolating fields. Based on these results the
importance of each interpolating field is discussed. Then, in
Sec. V B, we perform a scattering analysis using Lüscher’s
method and the effective range expansion to determine the
D�

s0ð2317Þ mass at infinite volume. In Sec. VI we sum-
marize our findings and give our conclusions.

II. INTERPOLATING FIELDS
AND LATTICE SETUP

To investigate theD�
s0ð2317Þmeson, we consider a 7 × 7

correlation matrix,

CjkðtÞ ¼ hOjðt2ÞOk†ðt1Þi; t ¼ t2 − t1: ð1Þ

The interpolating fields Oj, j ¼ 1;…; 7 have either a two-
quark c̄s or a four-quark c̄sq̄q structure, where q̄q ¼
ðūuþ d̄dÞ= ffiffiffi

2
p

. In detail we consider the interpolating
fields

O1 ¼ Oqq̄;1 ¼ N1

X
x

ðc̄ðxÞsðxÞÞ; ð2Þ

O2 ¼ Oqq̄;γ0 ¼ N2

X
x

ðc̄ðxÞγ0sðxÞÞ; ð3Þ

O3 ¼ ODK;point;

¼ N3

X
x

ðc̄ðxÞγ5qðxÞÞðq̄ðxÞγ5sðxÞÞ; ð4Þ

O4 ¼ ODsη;point;

¼ N4

X
x

ðc̄ðxÞγ5sðxÞÞðq̄ðxÞγ5qðxÞÞ; ð5Þ
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O5 ¼ OQQ̄;γ5 ;

¼ N5

X
x

ϵabcðc̄bðxÞðCγ5Þq̄Tc ðxÞÞ

ϵadeðqTdðxÞðCγ5ÞseðxÞÞ; ð6Þ

O6 ¼ ODK;2part;

¼ N6

X
x;y

ðc̄ðxÞγ5qðxÞÞðq̄ðyÞγ5sðyÞÞ; ð7Þ

O7 ¼ ODsη;2part;

¼ N7

X
x;y

ðc̄ðxÞγ5sðxÞÞðq̄ðyÞγ5qðyÞÞ: ð8Þ

C denotes the charge conjugation matrix and the normali-
zation factors Nj are chosen such that Cjjðt ¼ aÞ ¼ 1 (no
sum over j; a is the lattice spacing), i.e., in a way that the
interpolating fields generate trial states with similar norm.
All interpolating fields couple to the D�

s0ð2317Þ meson and
to other states with the same quantum numbers. As in
previous lattice QCD computations [40–42] we consider
quark-antiquark interpolating fields, Oqq̄;1 and Oqq̄;γ0 ,
as well as two-meson interpolating fields, ODK;2part and
ODsη;2part. In Refs. [40–42] it was shown that the latter
interpolating fields are essential to determine the energy
of the ground state and the first excitation reliably. In
addition we implemented the tetraquark interpolating fields
ODK;point, ODsη;point, and OQQ̄;γ5 with the four quark
operators located at the same point in space.
The interpolating fields ODK;2part and ODsη;2part mostly

generate DK and Dsη scattering states, which are
expected to have energies somewhat above the mass of
the D�

s0ð2317Þ meson (mD þmK −mD�
s0
≈ 45 MeV and

mDs
þmη −mD�

s0
≈ 200 MeV [4]). In contrast to ODK;2part

and ODsη;2part, where both mesons have zero momentum,
the interpolating fields ODK;point and ODsη;point represent
two mesons centered at the same point in space and,
thus, resemble mesonic molecules. Similarly, due to the
different color structure, OQQ̄;γ5 resembles a diquark-
antidiquark pair.
Tetraquark interpolating fields like ODK;point, ODsη;point

and OQQ̄;γ5 were not considered in previous lattice QCD
studies of theD�

s0ð2317Þmeson. Thus, the main goal of this
work is to explore whether the inclusion of these tetraquark
interpolating fields has an effect on the lattice QCD
determination of the low-lying spectrum. Similar recent
investigations of systems not including the D�

s0ð2317Þ
meson have led to different findings regarding the impor-
tance of tetraquark interpolating fields. While in
Refs. [47,49] only marginal differences in the resulting
spectra of the I ¼ 1 hidden-charm and doubly charmed
sectors and the a0ð980Þ sector were found, Ref. [45]
observed additional energy levels both with K�

0ð700Þ and

a0ð980Þ quantum numbers. In this work, we also compute
and compare the overlaps of the corresponding trial states
OjjΩi (jΩi denotes the vacuum) to the lowest energy
eigenstate, to obtain certain information about the quark
composition of the D�

s0ð2317Þ meson. This might contrib-
ute to the ongoing debate whether the D�

s0ð2317Þ meson is
predominantly a quark-antiquark pair or a tetraquark (see
the discussion in Sec. I).
Note that the interpolating fields O3 to O7 do not

generate orthogonal trial states. For example the terms
with x ¼ y in Eqs. (7) and (8) also appear in Eqs. (4)
and (5). Similarly, one can relate two-meson combinations
to diquark-antidiquark combinations via a Fierz identity;
i.e., some of the terms present in Eqs. (4) and (5) are also
part of Eq. (6) and vice versa. Even though the seven
interpolating fields do not generate orthogonal trial states,
they are not linearly dependent either, because each of them
contains terms not present in any of the other six. Their
nonorthogonality does not cause any particular problems
during our analyses, because the two methods we use, the
GEVP and AMIAS, are both able to deal with correlation
matrices based on nonorthogonal trial states. We remark
that on a technical level this work is similar to our lattice
QCD investigation of the a0ð980Þ meson [47], because to a
large extent the same interpolating fields are used, just with
different quark flavors.
To increase the coupling of the interpolating fields to the

low-lying energy eigenstates, quark fields in Eqs. (2)–(8)
are Gaussian smeared with APE smeared spatial gauge
links (cf. Refs. [50,51]). The smearing parameters are
κGauss ¼ 0.5, NGauss ¼ 50, αAPE ¼ 0.45 and NAPE ¼ 20,
where detailed equations are given in [52].
To compute the correlation functions, we use an ensem-

ble of around 500 gauge link configurations generated with
Nf ¼ 2þ 1 dynamical Wilson clover quarks and the
Iwasaki gauge action by the PACS-CS Collaboration
[53]. The lattice size is 64 × 323 with lattice spacing a ¼
0.0907ð14Þ fm, i.e., the spatial lattice extent L is around
2.90 fm. The u and d quark mass and the s quark mass
correspond to the pion mass mπ ≈ 0.296 GeV and the kaon
mass mK ≈ 0.597 GeV; i.e., they are both heavier than in
the real world, while the c quark mass corresponds to theD
meson mass mD ≈ 1.845 GeV, i.e., is slightly lighter (see
the detailed discussion in Sec. V B). Note that the c quark
only appears as a valence quark.
In a recent publication [54], we implemented and

compared various combinations of techniques for the
computation of propagators and correlation functions
including point-to-all propagators, stochastic timeslice-to-
all propagators, the one-end trick and sequential propa-
gators. For each diagram of a similar 6 × 6 correlation
matrix, which we used to study the a0ð980Þmeson [47], we
determined the most efficient combination of techniques.
We have applied the same combinations of techniques in
this work to compute the 7 × 7 correlation matrix (1) with
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the interpolating fields (2) to (8). Finding efficient methods
is particularly important for diagrams, where quarks propa-
gate within a timeslice, e.g., diagrams containing closed
quark loops. These diagrams are significantly more noisy
than their counterparts, where quarks do not propagate
within a time slice. Their noise-to-signal ratio grows
exponentially with increasing temporal separation as dis-
cussed in Ref. [54].

III. CORRELATION FUNCTIONS FOR PERIODIC
TEMPORAL DIRECTION

A correlation function computed on a lattice with
periodic temporal direction of extension T can be expanded
according to

CjkðtÞ ¼ hOjðtÞOk†ð0Þi

¼ 1

Z

X
m;n

e−EmðT−tÞcjm;ne−Entðckm;nÞ� ð9Þ

with energy eigenstates jmi, corresponding energy
eigenvalues Em, possibly complex cjm;n ¼ hmjOjjni and
Z ¼ P

m e−EmT .
Using the QCD symmetries charge conjugation and time

reversal, one can show that all elements of the correlation
matrix (1) with interpolating fields (2) to (8) are real.
Moreover, one can rewrite Eq. (9) in more convenient form,

CjkðtÞ ¼
1

Z

X
m;n

e−ðEmþEnÞT=2cjm;nckm;n

HjkððEm − EnÞðt − T=2ÞÞ; ð10Þ

with real cjm;n and

HjkðxÞ ¼
�−sinhðxÞ for j¼ 2; k≠ 2 and j≠ 2; k¼ 2

þcoshðxÞ otherwise
:

ð11Þ

Since the elements of the correlation matrix are either
symmetric with respect to the reversal of time, CjkðtÞ ¼
þCjkðT − tÞ for HjkðxÞ ¼ þ coshðxÞ, or antisymmetric,
CjkðtÞ ¼ −CjkðT − tÞ for HjkðxÞ ¼ − sinhðxÞ, it is suffi-
cient to restrict the following discussion to temporal
separations 0 ≤ t ≤ T=2.
For sufficiently large T, where Z ≈ e−EΩT (Ω denotes the

vacuum), and for sufficiently large t, Eq. (10) reduces to

CjkðtÞ ¼
Xtruncated

m

4e−EmT=2cjm;Ωc
k
m;ΩHjkðEmðt − T=2ÞÞ;

ð12Þ

if the correlation function is not contaminated by effects
related to multihadron states as discussed below.

Em ¼ Em − EΩ and
P

truncated
m denotes the sum over a finite

number of low-lying energy eigenstates in the sector with
D�

s0ð2317Þ quantum numbers, which is probed by the
interpolating fields (2) to (8) (in the following we assume
the ordering E0 ≤ E1 ≤ E2 ≤ …).
For temporal separations t around T=2 the correlation

functions CjkðtÞ have a more complicated expansion than
Eq. (12), if there are low-lying multihadron states with the
same quantum numbers. In our case, i.e., for D�

s0ð2317Þ
quantum numbers, the lowest multihadron state is a DK
scattering state, which has an energy only slightly above the
mass of the D�

s0ð2317Þ meson. Clearly, the interpolating
fields (2) to (8) not only excite such a DK scattering state,
when applied to the vacuum jΩi, but also yield non-
vanishing matrix elements hDjOjjKi and hKjOjjDi, i.e.,
annihilate a kaon and create a D meson and vice versa. For
example a significant contribution to CjjðtÞ is

2

Z
e−ðEDþEKÞT=2ðcjD;KÞ2 coshððED − EKÞðt − T=2ÞÞ
≈ 2e−ðmDþmKÞT=2ðcjD;KÞ2 coshððmD −mKÞðt − T=2ÞÞ

ð13Þ

as can be seen from Eq. (10). Assuming coefficients
jcjD;Kj ≈ jcjDK;Ωj, where DK denotes a low-lying DK
scattering state, one can see that in the region of t ≈ T=2
the corresponding terms in Eq. (10) are comparable in
magnitude. Therefore, terms as in Eq. (13) have to be taken
into account, when extracting energy levels from correla-
tion functions at large temporal separations t ≈ T=2.
For smaller temporal separations t such contributions
may be neglected, since they are exponentially suppressed
∝ e−2mKðt−T=2Þ with decreasing t. Analytical estimates as
well as numerical experiments have shown that within our
setup this is the case for t≲ 15a, which is an upper bound
for all t fitting ranges used in the following.

IV. ANALYSIS METHODS

To analyze the 7 × 7 correlation matrix discussed in
Sec. III and various submatrices, we use both the GEVP
method and the AMIAS method. While the GEVP
method is quite common and very well known, the
AMIAS method has proven to be particularly suited to
study excited states [46] and was successfully used in
our related previous lattice QCD study of the a0ð980Þ
meson [47]. In Sec. V we show that both methods yield
consistent results, which we consider to be an important
cross-check, in particular, due to the fact that the signal-
to-noise ratios of the elements of the correlation matrix
grow rapidly with increasing temporal separations. In the
following we summarize both methods and discuss the
details of our analyses.
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A. GEVP method

A commonly used method to extract several energy
levels from an N × N correlation matrix is to solve the
generalized eigenvalue problem,

CðtÞvmðt; t0Þ ¼ λmðt; t0ÞCðt0Þvmðt; t0Þ ð14Þ
(see e.g., Ref. [48] and references therein), where CðtÞ is
the correlation matrix with entries CjkðtÞ (j; k ¼ 1;…; N),
vmðt; t0Þ the eigenvector corresponding to the eigenvalue
λmðt; t0Þ (m ¼ 0;…; N − 1) and t0 ≥ a an input parameter.
We use t0 ¼ a, which is a typical choice.
A number of N effective energies Eeff;mðtÞ can be

obtained by solving

λmðt; t0Þ
λmðt − a; t0Þ

¼ coshðEeff;mðtÞðt − T=2ÞÞ
coshðEeff;mðtÞðt − a − T=2ÞÞ ð15Þ

for each eigenvalue λmðt; t0Þ. At sufficiently large, but not
too large temporal separations, i.e., in a t-region, where
Eq. (12) is a valid parametrization of the correlation matrix,
the effective energies Eeff;mðtÞ exhibit plateaus. The values
of these plateaus correspond to the N lowest energy levels
in the sector probed by the interpolating fields, i.e., to Em.
We determine each energy level Em by first fitting

fðtÞ ¼ A0 coshðE0ðt − T=2ÞÞ þ A1 coshðE1ðt − T=2ÞÞ
ð16Þ

to the eigenvalue λmðt; t0Þ in the region tmin ≤ t ≤ tmax,
where A0, A1 and E0 < E1 are fitting parameters. tmin and
tmax are chosen as follows:

(i) tmin is the smallest temporal separation t, where

jEf
eff;mðtÞ − E0j ≤ ΔEeff;mðtÞ ð17Þ

[Ef
eff;mðtÞ is the solution of

fðtÞ
fðt − aÞ ¼

coshðEf
eff;mðtÞðt − T=2ÞÞ

coshðEf
eff;mðtÞðt − a − T=2ÞÞ ð18Þ

and ΔEeff;mðtÞ is the statistical error of Eeff;mðtÞ].
(ii) tmax is the largest temporal separation t, where

jEf
eff;mðtÞ − Eeff;mðtÞj ≤ 3.5 × ΔEeff;mðtÞ; ð19Þ

as well as

ΔEeff;mðtÞ
ΔEeff;mðtminÞ

≤ 3.5: ð20Þ

This definition of tmin and tmax guarantees that the effective
energy is consistent with a plateau within statistical errors

for t ≥ tmin and that its statistical errors are still reasonably
small at t ¼ tmax. The energy level Em is then determined
by averaging Ef

eff;mðtÞ over the fitting region,

Em ¼ 1

ðtmax − tminÞ=aþ 1

Xtmax

t¼tmin

Ef
eff;mðtÞ ð21Þ

(see also Ref. [55], where a similar procedure was used).
The components of the eigenvectors vmðt; t0Þ obtained

by solving the GEVP (14) provide information about the
structure of the corresponding energy eigenstates,

jmi ≈
X
j

vjmðt; t0ÞOj†jΩi; ð22Þ

for sufficiently large t, where the ≈ sign denotes the
expansion of the energy eigenstate jmi within the subspace
spanned by the trial states Oj†jΩi. We found that for
t ≥ tmin the eigenvector components are constant within
statistical errors. Thus, we average the eigenvector com-
ponents vjmðt; t0Þ according to

vjm ¼ 1

ðtmax − tminÞ=aþ 1

Xtmax

t¼tmin

vjmðt; t0Þ ð23Þ

and normalize via vjm → vjm=jvmj.

B. AMIAS method

In practice, effective energies Eeff;mðtÞ often exhibit
strong statistical fluctuations, in particular, for large t
and m > 0, rendering a reliable identification of plateaus
and extraction of energy levels Em difficult. Therefore, in
addition to the GEVP method we employ an alternative
analysis method called AMIAS [46,56,57].
In Sec. III we have discussed that lattice QCD results for

correlation functions CjkðtÞ [see Eq. (1)] with interpola-
tiong fields Oj, j ¼ 1;…; 7 [see Eqs. (2)–(8)] can be
parametrized according to Eq. (12). In the t range we
are going to consider, a ≤ t ≤ 15a, and for the energy
levels Em expected, cosh and sinh can be approximated by
exponential functions, resulting in fit functions

Cfit
jkðtÞ ¼ 2

Xtruncated

m

cjm;Ωc
k
m;Ωe

−Emt: ð24Þ

The fit parameters Em and cjm;Ω are real. In the following
they are collectively denoted by Ar.
AMIAS determines a probability distribution function

(PDF) ΠðArÞ for each fit parameter Ar. The estimates for
the values of the fit parameters and their uncertainties are
the expectation values and the standard deviations of the
corresponding PDFs,
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Ār ¼
Z

dArArΠðArÞ; ð25Þ

ΔAr ¼
�Z

dArðAr − ĀrÞ2ΠðArÞ
�

1=2
: ð26Þ

AMIAS is able to handle a rather large number of
parameters using Monte Carlo techniques; i.e., it is suited
to study several energy eigenstates, if the lattice QCD
results for correlation functions are sufficiently precise.
The PDF for the complete set of fit parameters is

defined by

PðA1;A2;…Þ ¼ 1

N
e−χ

2=2 ð27Þ

with appropriate normalization N and

χ2 ¼
X
j;k

Xtmax

t¼tmin

ðCjkðtÞ − Cfit
jkðtÞÞ2

ðΔCjkðtÞÞ2
; ð28Þ

which is the well-known χ2 used in uncorrelated χ2

minimizing fits. CjkðtÞ denotes the correlation functions
computed using lattice QCD with corresponding statistical
errors ΔCjkðtÞ, while Cfit

j;kðtÞ is given by Eq. (24). In
principle, one can also use a correlated χ2. Then, however,
one has to estimate a covariance matrix, which requires
rather precise data and computations on a large number of
gauge link configurations (cf. e.g., Ref. [58] for a detailed
discussion).
To obtain the PDF ΠðArÞ for a specific fit parameterAr,

one has to integrate Eq. (27) over all other parameters. In
particular, the probability for the parameter Ar to be inside
the interval [a; b] is

Z
b

a
dArΠðArÞ ¼

R
b
a dAr

Rþ∞
−∞

Q
s≠rdAse−χ

2=2Rþ∞
−∞

Q
sdAse−χ

2=2
: ð29Þ

This multidimensional integral can be computed with
standard Monte Carlo methods. We use a parallel temper-
ing scheme combined with the Metropolis algorithm as
described in detail in Ref. [46]. The parallel tempering
scheme prevents the algorithm from getting stuck in a
region around a local minimum of χ2 and guarantees
ergodicity of the algorithm.
While we use tmax ¼ 15a in Eq. (28), we vary in our

analyses both tmin and the number of terms in the truncated
sum in Eq. (24), until we find a stable region with no
observable change in the PDFs for the low-lying energy
eigenstates of interest. For a detailed example see Ref. [46].
The coefficients cjΩ;m ¼ hΩjOjjmi ¼ hmjOj†jΩi in the

fit function (24) are the coefficients of the expansions of
the trial states Oj†jΩi in terms of the energy eigenstates
jmi, i.e.,

Oj†jΩi ≈
Xtruncated

m

jmihmjOj†jΩi ¼
Xtruncated

m

cjΩ;mjmi: ð30Þ

More interesting, however, is inverting Eq. (30) and writing
the extracted energy eigenstates in terms of the trial states,

jmi ≈
X
j

ṽjmOj†jΩi: ð31Þ

One can show that the matrix formed by the coefficients ṽjm
is the inverse of the matrix formed by the coefficients cjΩ;m
up to exponentially small corrections, i.e.,

X
j

ṽjmc
j
Ω;n ≈ δm;n: ð32Þ

Note that the coefficients ṽjm are equivalent to the eigen-
vector components vjm obtained by solving a GEVP [see
Eq. (23)] and, thus, the results from the two methods can be
compared in a meaningful way, after choosing the same
normalization ðṽmÞ2 ¼ 1.

V. ANALYSIS OF THE CORRELATION
MATRIX AND NUMERICAL RESULTS

FOR THE D�
s0ð2317Þ MESON

A. Extraction of energy levels and amplitudes
in a finite volume

Our goal in this section is to determine the two lowest
energy levels in the sector with D�

s0ð2317Þ quantum
numbers in the finite spatial volume L3 of the lattice.
From previous results [40–42] we expect that one of the
corresponding energy eigenstates is the lowest DK scatter-
ing state, while the other has a somewhat smaller energy
and represents the D�

s0ð2317Þ meson. A precise determi-
nation of these two energy levels is necessary to study the
infinite volume limit using Lüscher’s finite volume method
in Sec. V B.
Moreover, in this section we also investigate the quark

content and arrangement of the D�
s0ð2317Þ state by study-

ing the eigenvector components vjm and the coefficients ṽjm
introduced in Sec. IV.

1. D and K meson masses and DK threshold

As a preparatory step we computed the masses of the
pseudoscalar mesons D and K within our lattice setup. It is
rather straightforward to obtain precise values for mK and
mD from correlation functions of standard interpolating
fields

OD ¼
X
x

c̄ðxÞγ5uðxÞ; ð33Þ

OK ¼
X
x

ūðxÞγ5sðxÞ: ð34Þ
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We find

mD ¼ 1.8445ð9Þ GeV; ð35Þ

mK ¼ 0.5965ð4Þ GeV; ð36Þ

using the AMIAS analysis method (extracting the masses
from the corresponding effective energies, as explained in
the context of the GEVP method in Sec. IVA, leads to
compatible results, however, with somewhat larger statis-
tical errors) [59]. Consequently,

mD þmK ¼ 2.4411ð10Þ GeV; ð37Þ

which is the lowest two-meson threshold in the sector with
D�

s0ð2317Þ quantum numbers and, thus, plays an important
role in the interpretation of further results. Also of interest is
the energy of a noninteracting DK pair with one quantum
of relative momentum pmin ¼ 2π=L,

ðm2
D þ p2

minÞ1=2 þ ðm2
K þ p2

minÞ1=2 ¼ 2.6271ð9Þ GeV:
ð38Þ

2. Preselection of interpolating fields

To reduce the seven interpolating fields (2) to (8) to a
somewhat smaller set of interpolating fields, which are
most important to resolve the lowest energy eigenstates
withD�

s0ð2317Þ quantum numbers, we performed GEVP as
well as AMIAS analyses using individual correlation
functions or 2 × 2 correlation matrices. From these analy-
ses it became clear that three of the interpolating fields (2)
to (8) are less relevant.

(i) Oqq̄;γ0 [Eq. (3)]: One can determine the energy of a
low-lying state, which we identify below as the
D�

s0ð2317Þ meson, using the correlation function
of one of the two quark-antiquark interpolating
fields, i.e., either of Oqq̄;1 or of Oqq̄;γ0 . For the
latter, however, the effective energy plateau is
reached at larger temporal separation and statistical
errors are larger as well. An analysis of the corre-
sponding 2 × 2 correlation matrices gives the same
low-lying state and a second rather noisy effective
energy significantly above, which most likely re-
ceives contributions from several excited states. The
eigenvector components vjm indicate a strong domi-
nance of the interpolating field Oqq̄;1 for the ground
state. In view of these findings we consider Oqq̄;1

superior to Oqq̄;γ0 and do not use the latter inter-
polating field in any of the following analyses.

(ii) ODsη;point and ODsη;2part [Eqs. (5) and (8)]: Correla-
tion functions containing either ODsη;point or
ODsη;2part exhibit large statistical errors. This seems
to be a consequence of the “η interpolator”

ūγ5uþ d̄γ5d, which is part of ODsη;point as well as
of ODsη;2part (note that a lattice QCD study of the η
meson is quite challenging by itself, partly because
of strong statistical fluctuations; see e.g.,
Refs. [60,61] for a detailed discussion and a recent
computation). Moreover, the mass of the D�

s0ð2317Þ
meson is close to the DK threshold, while the
Dsη threshold is around 155 MeV above [4].
This suggests that including the interpolating fields
ODsη;point andODsη;2part is not essential to resolve the
two lowest energy eigenstates. This is supported by
Refs. [14–17], where the molecular components
for the D�

s0ð2317Þ were found to be from around
60% to 75% for DK and below 15% for Dsη. Thus,
we do not use ODsη;point and ODsη;2part in any of the
following analyses.

The remaining four interpolating fields Oqq̄;1, ODK;point,
OQQ̄;γ5 and ODK;2part [Eqs. (2), (4), (6) and (7)] are used in
the following to determine the two lowest energy levels in
the sector with D�

s0ð2317Þ quantum numbers.

3. GEVP analysis

The results of a GEVP analysis of the 4 × 4 correlation
matrix containing the four interpolating fields identified in
the previous subsection are collected in Fig. 1. The upper
plot shows effective energies as functions of the temporal
separation. The four plots below contain the squared
eigenvector components ðvjmÞ2.
There are two convincing effective energy plateaus with

small statistical errors close to the DK threshold. One is
around 60 MeV below, while the other is somewhat above,
but significantly closer to the DK threshold than to the
energy of a noninteracting DK pair with one quantum of
relative momentum as indicated by the horizontal gray
lines [see also Eqs. (37) and (38)]. Thus, there is an
additional low-lying state compared to the noninteracting
DK spectrum. The eigenvector components clearly indicate
that the lowest state resembles a quark-antiquark pair
[ðvqq̄;10 Þ2 ≳ 0.90; black bar chart], while the first excitation
is a DK scattering state similar to a noninteracting two-
meson state with both mesons at rest [ðvDK;2part

1 Þ2 ≈ 0.85;
red bar chart]. These eigenvector components suggest
identifying the lowest state as the D�

s0ð2317Þ meson.
Energy levels Em are determined from effective energies
as discussed in detail in Sec. IVA. For m ¼ 0, 1 they are
listed in Table I.
The third effective energy Eeff;2ðtÞ has large statistical

errors and is somewhat above the estimated energy of a
noninteracting DK pair with one quantum of relative
momentum. It seems likely that it corresponds to a linear
superposition of several DK scattering states with non-
vanishing relative momenta. This interpretation is supported
by the eigenvector components, which indicate a dominance
of theODK;point interpolating field [ðvDK;point

2 Þ2 ≈ 0.90; green
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bar chart], which by construction excites DK states with
many different relative momenta. The fourth effective
energy Eeff;2ðtÞ has even larger statistical errors and is
around 1 GeV above the DK threshold. Most likely it
represents a superposition of a larger number of highly
excited states.

From ðvQQ̄;γ5
m Þ2 ≲ 0.05 for m ¼ 0, 1, 2 one can conclude

that the diquark-antidiquark interpolating field OQQ̄;γ5 is not
important to resolve any of the three lowest energy eigen-
states. In particular, the ground state seems to be predomi-
nantly a standard quark-antiquark pair [ðvqq̄;10 Þ2 ≳ 0.90] with
only a small DK component [ðvDK;2part

0 Þ2 ≲ 0.10]. There is
no significant contribution from the tetraquark interpolating

fields; i.e., both ðvDK;point
0 Þ2 and ðvQQ̄;γ5

0 Þ2 are almost
vanishing. We interpret this as indication that the
D�

s0ð2317Þ meson has no sizable tetraquark component.

4. AMIAS analysis

The results of an AMIAS analysis of the 4 × 4 corre-
lation matrix are collected in Fig. 2. The upper plot shows
the PDFs generated with the fit function given in Eq. (24)
and six terms in the truncated sum [62]. The four plots
below show the squared coefficients ðṽjmÞ2.
When comparing the PDFs to the effective energies in

Fig. 1 one can see that the energy levels obtained with
AMIAS are consistent with those from the GEVP analysis.
Statistical errors for the AMIAS results are somewhat
smaller than for the GEVP results (see Table I). The
coefficients ðṽjmÞ2 are also in reasonable agreement with
the GEVP eigenvector components ðvjmÞ2 from Fig. 1,
supporting that the ground state is mostly a quark anti-
quark pair.
To cross-check the obtained results, in particular, to

confirm our findings regarding the quark composition and
interpretation of the low-lying energy eigenstates, it is
useful to compare the above 4 × 4 AMIAS analysis to
analogous analyses using the four possible 3 × 3 subma-
trices as input [for the latter five terms in the truncated sum
in Eq. (24) are sufficient]. The corresponding PDFs are
shown in Fig. 3, with the 4 × 4 PDFs in the background
colored in light gray.
(A) 3 × 3 correlation matrix without OQQ̄;γ5 : There is

essentially no difference between the 3 × 3 and
4 × 4 PDFs for the three lowest energy levels. This
confirms that the diquark-antidiquark interpolating
fieldOQQ̄;γ5 is not important to resolve the low-lying
energy eigenstates. This in turn supports our con-
clusion from Sec. VA 3 that the D�

s0ð2317Þ meson
does not have a sizable tetraquark component.

(B) 3 × 3 correlation matrix without ODK;point: The
lowest two energy levels are consistent with the
4 × 4 result within statistical errors. The energy level
of the second excitation is, however, significantly
larger. This indicates that the interpolating field
ODK;point is useful to resolve higher momentum
excitations, while it is not essential for a determi-
naton of the lowest two energy levels.

(C) 3 × 3 correlation matrix without Oqq̄;1: The lowest
two energy levels are slightly larger compared to the

TABLE I. The lowest two energy levels E0 and E1 in the sector
with D�

s0ð2317Þ quantum numbers in the finite volume L3 of the
lattice obtained by various analyses. (A)–(D) refer to the 3 × 3
AMIAS analyses discussed in Sec. VA 4.

Analysis E0=GeV E1=GeV

GEVP, 4 × 4 2.3803(78) 2.4780(50)
AMIAS, 4 × 4 2.3790(28) 2.4854(44)
AMIAS, 3 × 3, (A) 2.3765(33) 2.4837(49)
AMIAS, 3 × 3, (B) 2.3794(35) 2.4946(36)
AMIAS, 3 × 3, (C) 2.3857(94) 2.5028(135)
AMIAS, 3 × 3, (D) 2.3953(69) 2.7840(456)

FIG. 1. GEVP analysis of the 4 × 4 correlation matrix with
interpolating fields Oqq̄;1, ODK;point, OQQ̄;γ5 and ODK;2part. (Top)
Effective energies Eeff;m as functions of the temporal separation t
together with the DK threshold [see Eq. (37)] and the energy of a
noninteracting DK pair with one quantum of relative momentum
[see Eq. (38)]. (bottom) Squared eigenvector components ðvjmÞ2.
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4 × 4 result, but they are still compatible, because of
their drastically larger statistical errors (see Table I).
Thus, it is possible to excite the D�

s0ð2317Þ meson
with only four-quark interpolating fields; i.e., it
seems to have a nonvanishing, but small DK
component, which is in agreement with our findings
from Sec. VA 3.

(D) 3 × 3 correlation matrix without ODK;2part: The
lowest energy level is consistent with the 4 × 4
result, even though it has a much larger statistical
error. The energy level of the first excitation,
however, cannot be determined reliably anymore.
The PDF has a large width and its peak is localized at
energies significantly above the DK threshold. This
confirms that the interpolating field ODK;2part is of
central importance for a determination the energy of
the lowest DK scattering state.

5. Summary of finite volume results and conclusions

A summary plot of the obtained energy levels with
the 4 × 4 GEVP as well as the 4 × 4 and 3 × 3 AMIAS
analyses is shown in Fig. 4. Again it can be seen that the
most important interpolating fields to determine the two
lowest energy levels are Oqq̄;1 and ODK;2part. Analyses
using these two interpolating fields [4 × 4 GEVP, 4 × 4
AMIAS, 3 × 3 AMIAS (A) and (B)] yield consistent
energy levels with small statistical errors.
From the GEVP eigenvector components vjm and the

AMIAS coefficients ṽjm we conclude that the lowest energy
level mostly corresponds to a quark-antiquark bound state,

FIG. 2. AMIAS analysis of the 4 × 4 correlation matrix with
interpolating fields Oqq̄;1, ODK;point, OQQ̄;γ5 and ODK;2part. (Top)
PDFs for the energy levels together with the DK threshold [see
Eq. (37)] and the energy of a noninteracting DK pair with one
quantum of relative momentum [see Eq. (38)]. (Bottom) Squared
coefficients ðṽjmÞ2 for the four lowest energy levels.

2.2 2.4 2.6 2.8 3 3.2 3.4

εj (GeV)

ε0 ε1

ε2

2.2 2.4 2.6 2.8 3 3.2 3.4

εj (GeV)

ε0 ε1

ε2

2.2 2.4 2.6 2.8 3 3.2 3.4

εj (GeV)

ε0 ε1

ε2

2.2 2.4 2.6 2.8 3 3.2 3.4

εj (GeV)

ε0

ε1 ε2

FIG. 3. PDFs for the energy levels from 3 × 3 AMIAS
analyses. (A)–(D) refer to the 3 × 3 correlation matrices dis-
cussed in Sec. VA 4. The light gray PDFs in the background
correspond to the 4 × 4 AMIAS analysis and are shown to
facilitate comparison.
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possibly similar to the D�
s0ð2317Þ meson in the infinite

volume. There seems to be a small DK component, but no
sign of any sizable tetraquark component. Moreover, the
components vjm and the coefficients ṽjm clearly indicate that
the first excitation is a DK scattering state. These two
energy levels are used for the finite volume analysis in
Sec. V B.

B. Scattering analysis and infinite volume limit

The energy levels collected in Table I were computed at
finite spatial volume L3 with periodic boundary conditions.
One can determine the mass of the D�

s0ð2317Þ meson,
which is the infinite volume limit of the ground state
energy, from the lowest two energy levels E0 and E1 at finite
volume by performing a scattering analysis continued to
imaginary momenta, i.e., using Lüscher’s finite volume
method [63]. This approach has been used in a lattice QCD
study of the D�

s0ð2317Þ meson for the first time in
Refs. [40,41] and later also in Ref. [42]. It was also used
to study other systems (see e.g., Refs. [44,64]). For a recent
review on scattering in lattice QCD see Ref. [65].
The first step is to determine the squared scattering

momenta k20 and k21 via

En ¼ ðm2
D þ k2nÞ1=2 þ ðm2

K þ k2nÞ1=2; ð39Þ

where E0 and E1 can be taken from Table I and mD and mK
are the D meson and K meson masses obtained within the
same lattice setup [see Eqs. (35) and (36)]. With Lüschers
finite volume method one can then compute the corre-
sponding two phase shifts δ0ðk0Þ and δ0ðk1Þ,

kn cotðδ0ðknÞÞ ¼
2Z00ð1; ðknL=2πÞ2Þffiffiffi

π
p

L
: ð40Þ

Here Z00 denotes the generalized zeta function and L ≈
2.90 fm the spatial lattice extent (see Sec. II).
k cotðδ0ðkÞÞ can be written as a Taylor series in k2,

k cotðδ0ðkÞÞ ¼
1

a0
þ r0

2
k2 þOðk4Þ; ð41Þ

where a0 is the S wave scattering length and r0 the S wave
effective range. For sufficiently small k2 one can neglect
terms of order k4 and parametrize k cotðδ0ðkÞÞ by the first
two terms on the right-hand side of Eq. (41). a0 and r0
are then fixed by the two data points cotðδ0ðk0ÞÞ and
cotðδ0ðk1ÞÞ obtained via Eq. (40). This parametrization is
called effective range expansion.
A stable D�

s0ð2317Þ meson manifests itself as a pole in
the scattering amplitude,

f0k ¼ 1

cotðδ0ðkÞÞ − i
; ð42Þ

i.e., corresponds to cotðδ0ðkD�
s0
ÞÞ ¼ i, where kD�

s0
denotes

the position of the pole. Combining this condition with the
parametrization (41) leads to

ikD�
s0
¼ 1

a0
þ r0

2
k2D�

s0
; ð43Þ

which can easily be solved with respect to k2D�
s0
,

k2D�
s0
¼ −

�
1

r0
�
�
1

r20
þ 2

a0r0

�
1=2

�
2

ð44Þ

[note that for our data one of the two solutions has to be
discarded, because it is far outside the region of validity of
the effective range expansion (41), where Oðk4Þ terms
cannot be neglected]. The mass of the D�

s0ð2317Þ meson is
given by the right-hand side of Eq. (39) with k2n replaced
by k2D�

s0
, i.e., by

mD�
s0
¼ ðm2

D þ k2D�
s0
Þ1=2 þ ðm2

K þ k2D�
s0
Þ1=2: ð45Þ

In Table II we show the results obtained for the lowest
two energy levels E0 and E1, for the squared scattering
momenta k20 and k21, for the phase shifts, for the S wave
scattering length a0 and effective range r0, as well as for the
position of the pole. To verify that the effective range
expansion (41) is a reasonable approximation, we also
provide sðk20Þ, sðk21Þ and sðk2D�

s0
Þ, where sðk2Þ ¼ ja0r0k2=2j

corresponds to the ratio of the Oðk2Þ term and the Oðk0Þ
term in Eq. (41). We find values≪ 1 for the two scattering
momenta as well as for the position of the pole, which gives
certain indication that higher order terms are suppressed,
i.e., that Oðk4Þ terms in Eq. (41) are indeed negligible. In
Table II we also list mD�

s0
, the resulting mass of the D�

s0

2.3
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2.8

2.9

3

3.1

3.2

3.3
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FIG. 4. Comparison plot of finite volume energy levels ob-
tained from 3 × 3 and 4 × 4 correlation matrices using the GEVP
method and the AMIAS method. (A)–(D) refer to the 3 × 3
AMIAS analyses discussed in Sec. VA 4.
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meson, and mD þmK −mD�
s0
, the binding energy with

respect to the DK threshold. All results are provided both
for the 4 × 4 GEVP and the 4 × 4 AMIAS determination
of the lowest two energy levels E0 and E1 discussed in
Secs. VA 3 and VA 4.

In Fig. 5 we show the parametrization of k cotðδ0ðkÞÞ
with the effective range expansion (41) together with the
two data points k0 cotðδ0ðk0ÞÞ and k1 cotðδ0ðk1ÞÞ. Note
that the effective range expansion is equivalent to the right-
hand side of Eq. (43). We also show the left-hand side of
that equation, ik ¼ −

ffiffiffiffiffiffiffiffi
−k2

p
. The intersection of the two

curves corresponds to k2D�
s0
, the binding momentum of the

D�
s0ð2317Þ meson.
In Fig. 6 we illustrate the pole in the scattering amplitude

by plotting

jf0kj ¼
���� 1

a0k
þ r0k

2
− i

����
−1

ð46Þ

TABLE II. Results of the scattering analysis.

E0=GeV E1=GeV k20=GeV
2 k21=GeV

2 k0 cotðδ0ðk0ÞÞ=GeV k1 cotðδ0ðk1ÞÞ=GeV
GEVP, 4 × 4 2.3803(78) 2.4780(50) −0.0531ð66Þ þ0.0340ð46Þ −0.2101ð195Þ −0.2350ð272Þ
AMIAS, 4 × 4 2.3790(28) 2.4854(44) −0.0542ð25Þ þ0.0408ð38Þ −0.2133ð72Þ −0.1984ð187Þ

a0=fm r0=fm k2D�
s0
=GeV2 sðk20Þ sðk21Þ sðk2D�

s0
Þ mD�

s0
=GeV ðmD þmK −mD�

s0
Þ=MeV

GEVP, 4 × 4 −0.876ð76Þ −0.113ð152Þ −0.0451ð99Þ 0.07 0.04 0.06 2.3897(116) 51.3(11.7)
AMIAS, 4 × 4 −0.964ð34Þ þ0.062ð84Þ −0.0449ð27Þ 0.04 0.03 0.03 2.3900(64) 51.1(6.5)

FIG. 5. The parametrization of k cotðδ0ðkÞÞ with the effective
range expansion [right-hand side of both Eq. (41) and Eq. (43);
green curve] together with the two data points k0 cotðδ0ðk0ÞÞ and
k1 cotðδ0ðk1ÞÞ (in magenta). The intersection with the left-hand
side of Eq. (43), ik ¼ −

ffiffiffiffiffiffiffiffi
−k2

p
(blue curve), corresponds to k2D�

s0
(indicated by the orange error band). (Top) 4 × 4 GEVP analysis.
(Bottom) 4 × 4 AMIAS analysis.

FIG. 6. jf0kj according to Eq. (46) in the complex k plane. The
pole corresponds to the D�

s0ð2317Þ meson. The color of the
plotted surface is related to the value of sðk2Þ [green, sðk2Þ < 0.1;
yellow, 0.1 ≤ sðk2Þ < 0.2; red, 0.2 ≤ sðk2Þ]. Thus, it reflects the
quality of the effective range expansion (41) and indicates that the
pole at kD�

s0
is in a region, where Oðk4Þ terms should be

negligible.
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in the complex k plane, i.e., Eq. (42) with the para-
metrization (41) inserted. The color reflects the quality
of the effective range expansion (41) and indicates that the
pole is in a region, whereOðk4Þ terms should be negligible.
It is important to note that a direct comparison of our

result for mD�
s0

to the corresponding experimental result
mD�

s0;exp
¼ 2317.8ð5Þ MeV [4] is not meaningful, because

the quark masses in our simulation differ from their
experimental counterparts.

(i) The light u and d quark mass is unphysically heavy,
reflected by the pion mass mπ ≈ 0.296 GeV.

(ii) The s quark mass is unphysically heavy, as indicated
by 2m2

K −m2
π ≈ 0.62 GeV2 (which is approxi-

mately proportional to the s quark mass) compared
to 2m2

K;exp −m2
π;exp ≈ 0.47 GeV2.

(iii) The c quark is unphysically light, because mD ≈
1.845 GeV, i.e., below mD;exp ≈ 1.867 GeV.

Also for the binding energy of the D�
s0ð2317Þ meson with

respect to the DK threshold, mD þmK −mD�
s0
, it is not

clear a prioriwhether quark masses, which differ from their
physical values, result in a value similar to the correspond-
ing experimental value mD;expþmK;exp−m�

Ds0;exp
≈45MeV.

One reason for this is that the threshold mD þmK clearly
depends on the light quark mass, while mD�

s0
, which

according to Sec. VA is mostly a c̄s state, should be
almost independent of the light quark mass (see also
the discussion in Ref. [41]). Note, however, that we find
mD þmK −mD�

s0
≈ 51 MeV rather close to the experimen-

tally observed 45 MeV, which indicates that with respect to
the D�

s0 meson we might be in a similar situation as in real
world QCD, even though we are not precisely at physical
quark masses. Because of this and sincemD�

s0
is close to the

lowest energy level E0 obtained at finite lattice volume
(around 10 MeV difference as can be seen from Table II),
we expect that our findings and statements from Sec. V
about the importance of the two-quark and the four-quark
interpolating fields also apply for physical quark masses
and the infinite volume limit. This is further supported by
the qualitative agreement of our results for a0 and r0 and
corresponding results obtained in lattice QCD computa-
tions at almost physical quark masses [41,42].

VI. SUMMARY AND CONCLUSIONS

We studied theD�
s0ð2317Þmeson with lattice QCD using

interpolating fields of different structure. In addition to
quark-antiquark interpolating fields and two-meson inter-
polating fields, which were already considered in previous
lattice QCD studies, we implemented and explored the
importance of tetraquark interpolating fields. For these
tetraquark interpolating fields the four quark operators are
centered at the same point in space and their color and spin
structure corresponds to either a meson-meson pair or a
diquark-antidiquark pair.

In the finite spatial volume of our lattice with extent
L ≈ 2.90 fm we find two low-lying energy eigenstates, one
around 60 MeV below the DK threshold, the other slightly
above the DK threshold. The GEVP eigenvector compo-
nents and the AMIAS coefficients and PDFs clearly
indicate that the state below threshold, which corresponds
to the D�

s0ð2317Þ meson, is mostly of quark-antiquark type
with only a small DK component, while the state above
threshold is a DK scattering state. The tetraquark inter-
polating fields explored in this work turned out to be
essentially irrelevant, when extracting the corresponding
two energy levels; i.e., the couplings of the state below
threshold to these interpolating fields are close to 0. We
interpret this as indication that the D�

s0ð2317Þ meson is
mainly a quark-antiquark state and not a tetraquark, as
discussed or proposed by various existing papers.
It is important to keep in mind that our computation was

carried out for a single spatial volume and at quark masses
different from those in the real world, in particular, a u
and d quark mass corresponding to a heavier pion,
mπ ≈ 0.296 GeV. We performed a scattering analysis using
Lüscher’s method to determine the mass of the D�

s0ð2317Þ
in the infinite volume limit. We find this mass 51 MeV
below the DK threshold, rather close to our finite volume
result as well as to the experimental value 45 MeV. Thus we
expect that our findings concerning the importance of
various interpolating fields as well as the quark composi-
tion of the D�

s0ð2317Þ meson also apply to infinite volume
and physical quark masses at least on a qualitative level. Of
course, it would be worthwhile and interesting to perform
similar computations at physical quark masses and for
several volumes in the future, in particular, to check the
approximate independence of the GEVP eigenvector com-
ponents or the AMIAS coefficients from the spatial
volume.
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