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We present a study of a 1 + 1 dimensional heavy-light three-body system in finite volume. The heavy-

light system is simulated by a coupled-channel ¢* type lattice model, and both ground state and excited
states of multiparticle energy spectra are measured on various lattices. The lattice simulation data analysis is

performed based on a variational approach.
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I. INTRODUCTION

Much of strong interaction phenomenology manifests
itself in few-body systems. Due to the many degrees of
freedom their quantitative description is more complicated
than in the two-body case. Lattice QCD calculations, e.g.,
of multipion systems [1-3], provide an ab initio under-
standing of few-body dynamics. However, the dynamics is
encoded in a discrete spectrum of energy eigenvalues
corresponding to the cubic volume with usually periodic
boundary conditions in which these calculations are per-
formed. In the past few years, much progress toward
mapping such spectra to infinite-volume amplitudes has
been made [4-27]. Some approaches provide connections
to the infinite volume without fully resolving the few-body
dynamics [28-31]. In first applications of infinite-volume
mappings, the two- and three-body lattice QCD spectra by
the NPLQCD collaboration [1,2] was analyzed in Ref. [32],
and the recent data of Ref. [3] were analyzed/predicted in
Refs. [33] and [34], respectively.

Most of these developments are along the line of
building connections between reaction amplitudes in infin-
ite volume and long-range correlations due to the periodic
structure of a finite box. To a certain extent, these develop-
ments may be regarded as extensions of the Liischer
formula [35-46]. In the two-particle sector, Liischer’s
formula demonstrates a clear separation of two physical
scales: (i) short-range physics in a single box that is
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parametrized by a scattering amplitude, and (ii) long-
distance correlations in a periodic lattice structure that is
described by zeta functions [35]. Although formulating
quantization conditions by using reaction amplitudes as
input to producing discrete energy spectra or vice versa
presents a more conventional foundation of dealing with
multiparticle dynamics, one is confronted to deal simulta-
neously with questions regarding infinite and finite-volume
physics. As pointed out in Ref. [25], the quantization
condition of a multiparticle system in finite volume may be
constructed directly from Faddeev equation-type coupled-
channel integral equations. The discretized finite-volume
wave functions may be treated as coefficients of secular
equations, hence, the quantization condition given by the
determinant of secular equations is free of infinite volume
reaction amplitudes, and is presented in terms of finite-
volume Green’s function and particle interactions. By
avoiding the most difficult part of multiparticle dynamics,
the quantization condition may be more efficient for
practical data analysis of lattice calculation results.

The aim of this work is to demonstrate the feasibility of
the variational approach, and explore a robust form of a
quantization condition which depends only on the lattice
structure and interaction potentials. The interaction poten-
tials may be parametrized and treated as inputs to fit the
lattice simulation results. Once the parameters of inter-
action potentials are extracted, in principle, all the physics
information is complete, and the dynamical information,
such as scattering amplitudes, may be computed in a
separate step.

In the present work, using a nonrelativistic heavy-light
three-body system with short-range pair-wise interactions
as a pedagogical example, we show in details that the three-
body problem in finite volume may be turned into coupled
two-body like homogeneous Lippmann-Schwinger equa-
tions. The quantization conditions may be obtained in terms
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of only three-body finite-volume free Green’s function and
interaction potentials, and are free of the specific form of
finite-volume variational basis functions. In the second part
of this work, a coupled-channel ¢* theory lattice model is
used to simulate the heavy-light three-body system pro-
posed in this work. The multiple levels of multiparticle
spectra are extracted from lattice simulation. In order to
compensate finite lattice spacing, finite volume, and rela-
tivistic dynamics in lattice simulation, the nonrelativistic
formalism derived in the first part of the presentation is thus
reformulated to a relativistic lattice version for the practical
fit of lattice simulation results. At last, the quantization
conditions are applied to extract the parameters of the
heavy-light three-body system: the mass of particles and
the coupling strength of short-range interactions.

The paper is organized as follows. Using a heavy-light
system as a specific example, the variational approach is
explained in detail in Sec. II. A lattice model of the heavy-
light system, using a Monte Carlo updating algorithm of the
lattice model, and the construction of multiparticle oper-
ators and multiparticle spectra in lattice simulation are
described in Sec. III. The strategy of data analysis,
reformulating the finite-volume heavy-light three-body
system to a relativistic lattice version and numerical results
are presented in Sec. IV. The summary and outlook are
given in Sec. V.

II. A NONRELATIVISTIC HEAVY-LIGHT
THREE-BODY SYSTEM IN FINITE VOLUME

Although the nonrelativistic formalism may not be the
most suitable framework for describing relativistic lattice
simulations, it still provides a clean and simple presentation
of physics in a finite box, and is able to capture all the key
features of finite-volume dynamics without extra compli-
cation of relativistic effect. Therefore, in this section, all the
presentations are given in a nonrelativistic framework.

We start our discussion with the simple example of a
two-body finite volume system in 3D. The wave function
of two identical bosons in the center-of-mass frame satisfies
the homogeneous Lippmann-Schwinger equation,

O(r;q) = /L dEGH(r— ¥ g)V(M)O(g). (1)

where ¢ stands for the relative momentum of the two
identical particles, and the periodic Green’s function
satisfies

(¢ +V2)Gh(rsq) = S o(c+nL).  (2)

nez?

The wave function in finite volume has to be periodic
as well, such as ®(r+nL;q) = ®(r;q). According to
the variational approach [25], the solution of the homo-
geneous Eq. (1) is given by the linear superposition of

independent solutions in infinite volume, @, (r) =
Yo (r@)Yy (F), where W stands for the
infinite-volume partial-wave scattering solution of the
Schrodinger equation. After partial wave projection
Eq. (1) yields

> ¥y (r:a)

/]
k /2 gL / /
= ZC[J’]A r2dr' Gy (@) V()Y (7 q),
/]

(3)

where

Gl (rorsa) = [ didi'¥y BGH(r-1i0) Y (). (4

Using the asymptotic form of the infinite-volume wave
function,

Wy (r;q) ~ (4n)i’ [, (qr) + ity (9)hS (gr)],  (5)

— gy J rdrjs(gr)V(r)®y(riq) is the
partial-wave scattering amplitude, and also performing the
partial wave expansion of G[LJH

where 1,(q) =

7P
Gloyi(r759)

rér/‘]@[f],[f’]”l(‘l") - M[J’],[J](Q)]’J(qr)}jj’(qr/)’ (6)

the homogeneous Eq. (3) leads to the Liischer formula [35],
detD(q) = 0, where

. 1
Dy111(q) = Sy (l + %> - Myna).  (7)

The equivalent derivation in differential form of the
variational approach by constructing a finite-volume wave
function in terms of an infinite-volume wave function can
be found in Ref. [23]. Using the infinite-volume wave
function solutions as basis functions shows some advan-
tages in the two-body sector: (i) the quantization condi-
tion is given in terms of physical on-shell scattering
amplitudes; (ii) the relation between finite-volume solu-
tions and infinite-volume solutions is clearly demonstrated.

However, in case of multiparticle interaction, imposing
physical constraints, such as the asymptotic form of the
infinite-volume wave functions, and unitarity of multi-
particle scattering amplitudes, means an additional diffi-
culty on top of the task of obtaining the quantization
condition itself. All the difficulties in multiparticle inter-
action in finite volume in fact starts with an ambitious goal
at the very beginning: expressing quantization conditions in
terms of infinite scattering amplitudes or wave functions,
and handling both infinite-volume and finite-volume
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dynamics simultaneously. The multiparticle interaction in
the infinite volume alone is already difficult to solve.

In this work, we explore the possibility of separating
finite-volume and infinite volume dynamics; the two
scenarios are connected by interaction potentials instead
of scattering amplitudes. In this way, the quantization
condition may be expressed in terms of periodic lattice
structure and potentials alone, and is free of multiparticle
dynamics in the infinite volume. The multiparticle dynam-
ics in infinite volume may be computed separately once the
information of the potentials is extracted from fits to lattice
results. The proposed approach is far less ambitious;
however, it provides a way of avoiding dealing with
scattering amplitudes, and a much more practical formalism
for just the purpose of lattice data fitting.

Before we move on to the three-body problem, we
would like to demonstrate the key idea of our proposal by
using the finite-volume two-body problem as a simple
example. Starting from the homogeneous equation,
Eq. (1), again, according to the variational approach
[23,25], the continuous equation, Eq. (1), may be turned
into a homogenous matrix equation if the wave function is
expanded in terms of certain basis functions, and then the
quantization condition may be obtained by the determi-
nant condition of this matrix equation. In principle, the
discrete energy spectra do not depend on the specific
choice of basis functions. In Ref. [23], the basis functions
were constructed explicitly, but the specific form of finite-
volume wave functions is not the focus of the present
work. Alternatively, the quantization condition may be
obtained from the homogeneous Lippmann-Schwinger
(LS) equation directly, Eq. (1) or Eq. (3). One way of
numerically solving the LS equation is by discretizing it in
coordinate space, in a single box,

L . —
2[51'./ - w,;Gh(ri —1;3q)V(r;)]®@; =0, (8)
J
where r; and w; denote the chosen coordinates and
associated integration weights. Hence, the
nontrivial solutions exist, provided that the determinant

of the homogeneous equation vanishes, detD(g) =0,
where

D;;(q) = 8;j —w;GG(r; —=r;3q)V(r;). )

The determinant condition, Eq. (9), is equivalent to the
Liischer formula and yields the discrete energy spectra.

The quantization condition, Eq. (9), may also be trans-
ferred into momentum space representation by using the
Fourier transformation relation in finite volume,

2

®(p:g) = /L 3 dre™®*®(r;q), p=-—n,

ez, (10
“n, nez’, (10)

and the inverse Fourier transform,

| PEn
D(r;q) = B

nez?

e®T®(p; q). (11)

We find the momentum space representation of Eq. (1),

/__2mp !
. 1 1 P& . .
D(piq) =553 Vip-p)@(psq). (12)
7L
where V(p) = [;: dre”®*V(r). Therefore, the quantiza-
tion condition may also be given by

1 1 ~
det [51).,11’ - £—pll3 Vip - P/)} =0,

(p.p') ezL—ﬂn, ne 2z (13)
The momentum-space representation of the two-body
quantization condition in Eq. (13) is in fact consistent
with the two-body quantization conditions in [40,41]
obtained by a different method.

The approach described above may be generalized to a
multiparticle system as well [25]. In the following, we
consider a simple 1+ 1 dimensional heavy-light three-
body system with one static heavy particle interacting with
two light bosons. The heavy-light system resembles an
atomic system with a periodic boundary condition, and
only pair-wise §-function short-range interactions between
the heavy and the light particle, and between the two light
particles are considered in this work, which may be tested
by a simple ¢*-type lattice model. We remark that the short-
range interactions may be described by a J-function
potential and its derivatives, where the o-function term
may be considered as a leading order contribution, and its
derivatives are considered subleading order effects. As for
the purpose of demonstrating the feasibility of our approach
in the present work, only the leading order contribution is
considered. It turns out that the lattice model data can be
fairly well described even without subleading order con-
tributions, see Sec. IV. The more general form of inter-
actions, including the three-body potential, will be
discussed in our future publications.

A. A nonrelativistic heavy-light three-body
system in 1+ 1 dimensions

In finite volume with periodic boundary conditions the
dynamics of a three-body system with two light scalar
particles at x; and x, and one static heavy boson at the
origin is described by the Schrédinger equation,

A

(6> + T —Up(x)) = Up(x2) = V(r)]®(x1.x) =0, (14)

A
where ¢ =2mE, T = 0‘1% —1—0"7%, r = x; — x,. The poten-

tials Up(x) =Uy> ,cz6(x+nL) are the short-range
interactions in the heavy-light two-body subsystems and
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Vi (r) = Vo> ez 6(r + nL) is the interaction between the
light particles. L stands for the size of the one-dimensional
periodic box. The wave function in finite volume satisfies
periodic boundary conditions,

d)(x1 + l’llL,)Cz + n2L> = q)<X1,X2), l’l172 e’. (15)

The integral representation of Eq. (14) is given by a
homogeneous Lippmann-Schwinger equation,

L
D(x,x;) = /i dxy dx, Gl (x; — x| ,x, — X3 0)
-+

X [UoS(x1) +Upd(x3) + Vb (x| = x3) @ (x).x3),

(16)

or more explicitly

/de’G (x1, 2, —
L

2

—I—UO/ dx'Gk (x,

®(x1,x2) = Uy ;0)®(0,x)

— X', x0;0)®D(x', 0)

NI!‘

0~

+V0/ dxX'GE(xy — X', xy — X5 0)®(xX, X'),
(17)
where the periodic three-body Green’s function G satisfies

(6 + T)Gk (xy, x3;0) = Z &(x; + nL)8(x, + nyL).

ny,nEeZ
(18)
The analytic expression of Gf is given by
1 = 7 eiP1xi+pax)
Gi(x1,x2:0) = — S _2_ .2 (19)
L nl%z —P1— P2

Typically, the representation of the lattice Green’s function
in Eq. (19) exhibits poor convergence, and Ewald’s method
has been widely used to improve it [47]. For the com-
pleteness of our presentation, rapidly converging represen-
tations of Gf are given in Appendix A.

Using the fact that the two light particles are identical,
D(xy,x7) = D(x,, x;), Eq. (16) can be reduced to coupled
equations,

D(x,x) = /E dx'VoGE(x —x',x — x';0)D(x', x')
L

2

+ /7 dx'2UoG§(x, x = x;0)®(x',0),  (20)

|
(NI

®(x,0) = /5 dx' VoG5 (—x',x — x';6)®(xX', X')

Wl

+/7dx’U0[G(L)(O,x—x’;a)

2

+ Gh(=x', x;0)|®(x', 0). (21)

By introducing a column vector, &(x) = [®D(x,x),
®(x,0)]7, these coupled equations may be expressed in
a simple form,

E(x) = /_ T VG (x, 1 0) (), (22)

L
2

where GE is a 2 x 2 matrix function,

G (x.x'50) = VoGl (x —x' . x —X;0),

Gl o (x. X' 0) = 2Uo Gl (x,x — ¥';0),

g%l(x,x ;0) = VoGE(—x',x — X';0),

G5, (x,x'50) = Up[G5(0,x — X5 6) + G§(—x', x;0)]. (23)

The quantization condition may be obtained by applying
the variational method [23,25]. Assuming that the wave
function £(x) may be expanded in terms of some known
orthonormal basis functions y,(x): &(x) = >, cpxs(x),
Eq. (22) leads to a secular equation of familiar form,

2[51,1’ - gﬁj/(a)]cf =0, (24)
J/
f dxdx'y’(x)GE (x, x'; 0)xy(x'). Hence,

a nontrivial solutlon £(x) exists, provided the determinant
condition,

where G T (0) =

det[s, y = G7 ,(0)] =0, (25)

is satisfied.

1. Quantization condition in coordinate representation

The major goal of this work is to obtain a quantization
condition which is easy to be used to produce the discrete
energy spectra and fit data of lattice model simulations. As
far as the basis functions used in the variational method
converge, the quantization conditions obtained by the
variational method should not depend on the choice of
basis ultimately. However, in reality, projecting out the
matrix elements in the variational method [23,25] by
multiple dimensional integration is still an computationally
intense task. Fortunately, by discretizing the homogeneous
Eq. (22),

ng X, Xj30)&;, (26)
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where &; = &£(x;), and x; and w; stand for the nodes and
weights of coordinate discretization in the range of
x; € [=5.%], the & can be treated as basis functions for
the variational method. Therefore, a quantization condition
without any dependence of specific choice of basis func-
tions is given by
det[éayﬁéiyj ga/}(x x U)] 0. (27)
One last remark about the quantization condition given by
Eq. (27) is that due to the singularity of G5 (x,xy;0) ~
\/x} 4 x3 ~ 0, the singular terms of the
diagonal matrix elements, G ,(x;, x;;5), have to be regu-
larized. A modified subtraction quadrature method [48]

may be used for the regularization scheme of singularities;
the details are presented in Appendix B.

s-Inolx| as [x| =

2. Quantization condition in momentum representation

Introducing Fourier transformation in finite volume,
L , ~ -
(p) = [2pdxe™(x) = [&1(p). &(p)]
(n € Z), and also with the help of the identity,
1 Z _cot \/-L
nez q - p 2 V C]2

an equivalent representation of Eq. (22) in momentum
space may be found,

with p ZZL—”n

(28)

/21!

p'=7n
= Z G"(p. p's0)&(p'), (29)
nez
where
ﬁ_ﬁ_;,_ﬂ
~ cot—254—=2L
g%,l(pv p’;U) = 5[),1/‘/0722’
4,/ P
277
2
Gia(p. pli0) = ==
4 N Ry
Vo 1
G51(p.p's0) =
* Lo’—(p=-p)-p
A P
U 1
foaz —pr_pr (30)
Therefore, in momentum space, &(p) with discrete

momenta, p = ZL—”n (n € Z), may be treated as variational
basis functions, so, the quantization condition is accord-
ingly given by

det[aa.ﬂ5p,p’ - gé,ﬂ(l’v p,;d)] =0, (31)

where (p.p') €% n,ne .

B. Consistency check at extreme limits

We consider two extreme limits of the heavy-light
system as a simple check.

1. Limit of Uy=0

In the limit Uy, = 0, the two light particles decouple
completely from the interaction of the static heavy boson,
and the quantization condition Eq. (31), hence, is reduced
to a familiar form,

_4q

cot L=—, 32

> Vo (32)

where g = "7 % = P52 stands for the relative momen-
tum of two light particles, and p =% n with n€Z

represents the total momentum of two light particles.
This is exactly what we expect for two interacting particles
in a periodic box [20-22,46].

2. Limit of Vy=0

In the limit V|, = 0, the two light particles do not interact
with each other, hence the coupled homogeneous
Lippmann-Schwinger equation is reduced to a single one,

—U cot—””;_sz -
- o2 62_p2 52(1’)

Uy " & 1 .
=0 Z 27,2_252@/)’ (33)

f dxe™P*®(x,0) with p =2n, n € Z.

To check cons1stency of Eq. (33), we note that for the
case of zero interaction between the two light particles, the
wave function of the two light particles is simply given by
the product of two single-particle wave functions,

where 52

D(x1,x2) = P(x1, p1)dp(x2. o) + (X1 < x3),  (34)
where o> =pl+p3, and P(x;, p;) = ( pi) ) [eipiluil
208 p;X;

—nt"] is the solution of the finite-volume smgle particle
wave function in the presence of the static heavy-particle
interaction, and #(q) = ~ 3T, + {7 stands for light-heavy two-
body scattering amplitude. The allowed momenta of the

light particle are determined by the two-body quantization
condition: cot% = 27’1" [20,46]. Therefore, the expression

of &, is given by
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% _it(p1)it(pa) 1 1
=) =", (p%—p2+p% p2>' 33)

Using the identity

/21,
17K 1 1
P = pr—prp—p~
)
1 cotp"L cot ‘i P
e s ey , (36)
0" — P —D; Pi 2 o> —p?

and also the two-body quantization condition, we find

/21

Uop__n 1
T Z #52 p') it

which is indeed consistent with Eq. (33).

III. A 1+1 DIMENSIONAL HEAVY-LIGHT
SYSTEM OF A LATTICE MODEL

In this section, we present a simple 1 + 1 dimensional
coupled-channel ¢*-type lattice model to simulate a heavy-
light three-body system which is described in Sec. II.
The classical action of a heavy-light bosonic system of
the lattice model in two-dimensional Euclidean space is
given by

g
Z 2¢2+ﬂ¢4

S—/dzx[%(8¢)2+l
+ GopOx, 09 (%0, 0)0% (x0,0) |, (38)

where x = (xq, x;) are temporal and spatial coordinates in
two-dimensional Euclidean space, respectively. The light
scalar particles are represented by the ¢(xg, x;) field, and
the o(x(,0) field denotes the static heavy particle at the
origin. The interaction between the light particles is simply
described by a ¢* model, and the interaction between light
and heavy particles is described by the coupling between
the o and ¢ fields at the origin: x; = 0. No kinetic term is
needed for a static heavy o particle.

In infinite space with an open boundary condition, the
heavy-light system given in Eq. (38) is equivalent to a
nonrelativistic one-dimensional multiparticle interacting
system with N-light-scalar plus one static heavy boson.
Interactions between both light-light and heavy-light par-
ticles are described by short-range pair-wise §-function
potentials,

2mH = Z[

+ Ugd(x1,) } + Voz5 X1i = X1,)s

i<j

(39)

where x;; refers to the spatial position of the ith light
scalar particle, and m stands for the mass of the light
bosons. The coupling strengths of the §-function potential
among light-light and heavy-light particles are denoted by
Vo and U, respectively. When the periodic boundary
condition is considered, the lattice model designed in
Eq. (38) can be used to simulate a finite-volume heavy-
light multiparticle system that is the simple model we
study in this work.

A. The lattice model action of a heavy-light system

The lattice action that describes heavy-light particles
living in a discrete 1+ 1 rectangle lattice is obtained
by replacing the continuous derivative with discrete
difference in Eq. (38): 0¢(x) — ¢(x + it) — ¢(x), where
i denotes the unit vector in direction x;. Introducing

— 8 gy =72 and

V2K,

parameters according to p?> =

9o :’12"]’!’, and rescaling the ¢ field by ¢ —
we find

St = Z{ 21«249 X)p(x + ) +
+ Z g™ (x

(1 = 22p4)*(x)

) + Aopbi, 08 (x0. 0)6? (x0, 0)]

(40)

where x = (xg, x;) now refers to the discrete coordinates
of the Euclidean T x L rectangle lattice sites.

B. Monte Carlo updating algorithm for
a heavy-light system

A combination of the hybrid Monte Carlo updating
algorithm [49,50] for the ¢ field and the standard
Metropolis-Hastings updating algorithm [51,52] for the ¢
field is adopted in our simulation. The ¢ and o fields are
updated alternately. For updating the ¢ field with the hybrid
Monte Carlo algorithm, an auxiliary Hamiltonian and a
fictitious conjugate momentum of the ¢ field, the # field, is
introduced,

Hlat 2 Zﬂ

The auxiliary Hamiltonian in Eq. (41) defines the classical
evolution of both 7 and ¢ fields over a fictitious time within
an interval [0, z]:

+ Slat (41)
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Mﬂ=ﬂ®+¢7ﬁdﬂ,

081 (#(7))
op(w) -

The trajectory of (¢,z) over the time interval [0, 7] is
determined by the solutions of the equations of motion in
Eq. (42). The pair of (¢, z) fields and ¢ field are updated
alternately for each sweep over the entire lattice:

(1) Updating the pair (¢, z) with the standard hybrid

Monte Carlo algorithm:

(a) The trajectory begins with a random distribution
of fields (¢, n) at initial fictitious time. The
initial conjugate momenta, z(0), are generated
according to the Gaussian probability distribu-

(7) = 7(0) /0 “dr (42)

tion: P(r) o e 5.

(b) (¢, ) are evolved over the trajectory up to a time
7 according to equations of motion in Eq. (42).
The equations of motion are solved by the
leapfrog method [50]. The (¢, z) fields evolve
along a trajectory with a fixed length 7 = 8 over
100 discrete steps.

(c) The proposed new fields, (¢, ), are accepted
with probability: P, = Min[l, e"2#1], where
AH, = Hlat(T> - Hlat(o)'

(2) Updating the static heavy o(x(,0) field with the

standard Metropolis-Hastings algorithm [51,52].

In our simulations, the lattice model parameters are
chosen as x = 0.1275, 4,4 = 0.02, and 4,4 = 0.007. The
temporal extent of the lattice is fixed at 7 = 100, and the
spatial extent of lattice, L, varies from 10 up to 55 with an
increment of 5. Two million measurements are generated
for each lattice size.

C. Operator construction and particle spectra

In this section, some details regarding the construction of
multiparticle operators and results for the heavy-light
particle spectra are presented.

1. The spectra of one light scalar in the presence
of a static heavy particle potential

In the presence of the static heavy-boson potential, the
spectra of the light scalar particle interacting with the heavy
boson are extracted from the exponential decay of the
correlation functions

Cipn(%0) = (B3(x0)hn(0)) e e™Frnwvo, (43)

where the light particle propagator, ¢, (x), is defined by
~ 1 -
Pn(x0) = z;(p(x)elxl%", nez.  (44)

Multiple E,; , are extracted for each lattice size, see Fig. 1.
Because of the interaction with the static heavy-boson

—T T T T T T T T T T T T T T T T T T T

0.8} = 1
0.7F,
P - .
0.6F . i
[ )

E b0.5; . 1
04l Tl 1
02f - . e L]

: 1 1 1 " 1 1
10 20 30 40 50
L
FIG. 1. Plot of single light-particle spectra in the presence of the

static heavy-boson potential vs free single-particle energy levels
(red dashed curve): E'° (L) = cosh™ (coshm + 1 —cos?%n)
with m = 0.163 and n =0, 1, 2.

potential, the energy spectra Ej,, can no longer be
described by a simple free-particle dispersion relation with
the light particle mass as a single free parameter, i.e., they
are no longer of the form Ef¢, (L) = cosh™"(coshm + 1 —
cos%”n) [53], as indicated in Fig. 1. Instead, the E;,
depend on two parameters: the renormalized particle mass,
and the renormalized heavy-light interaction strength. The
diagrammatic representations of the heavy-light two-body
interactions are shown in Fig. 2.

2. The spectra of two light scalars in the presence
of a static heavy particle potential
The matrix element of the correlation function of the two

light particles interacting with a static heavy boson is
defined by

d d)* d)* d
C) i (x0) = (10537 (x0) = 840085 (x0 + 1)] 05 (0).

(45)
where d € Z is related to the center-of-mass (CM) momen-

tum of the two light particles by P = ZL—” d. The disconnected
contribution needs to be subtracted in the CM frame

P p v P v
2 i O Q)
® é
(a) (b) (c)

FIG. 2. Lowest few orders diagrammatic representation of
heavy-light two-body interactions from the point of view of
perturbation theory. The solid black circles stand for the static
heavy particle and the light particle is represented by the solid
lines. The contact interaction between light and heavy particles is
denoted by a dotted line. The intersection of two solid lines
represents the contact interaction between the two light particles.
U and V represent the bare coupling strengths of heavy-light and
light-light particles, respectively.
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(d = 0). Typically, three or four two-light-particle oper-
ators are used in our simulation for d = 0, 1, 2,

OQ?(XO):JM(XO)Q?’—::(XO)’ n:0,1,2,3,

Oélb)(x0>:¢~5n(x0)$l—n(x0)7 n=1,23,

0% (x0) = B (x0)h1 (x0).  Pu(x0)Paon(x0). n=2.3.
(46)

The spectral decompositions of the correlation function
matrices are given by

d dn)x (dn) —E9
Cgb),(i,j) (x0) = ngb,i) Ugb.j)e B, (47)

n

where vé‘é‘j) = <n|0§‘2i(0)|0>, and n labels the nth energy

eigenstate Egz];)n- In order to extract excited energy states, a

generalized eigenvalue method [54,55] is used,

= Agll?,n (X0, Xo) Cg}? (X0)Papnr  (48)

where X is a small reference time that is set to zero in this

. () _ED o . .
work. A simple form of 4, (x,0) = e™"»=™ is used in

the data fitting for xq € [0, 8] as no contamination from
high excited states is observed. The energy spectra of two
light particles for various lattice sizes and d are presented in
Fig. 3. Examples of both one light particle and two light
particles correlation functions, C(x(,0), and effective

Cg;l,) (xo)q)zb,n

d=0 d=1 d=2
" v - T
1.0 ! 10 f 1.0f 4
E
09F : 0914 09
08f k: 0.8f: 0.8} °
"~.§ f .“_ ‘2‘ x
0.7 T i 0.7} 5 0.7 T,
i 1 Y
d N X VA
E5y : " 2 .
06} . - | oel 06} .
= L E L E . LN
: W °
L : " RS )
0.5f R 0.5} . "1 o5t
x o - - x
04l . . .’A_!n 0.4l ‘_: .- 0.4l 3
0.3 03} 03}
70 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
L L L
FIG. 3. Plot of light two-particle spectra in the presence of a

static heavy-boson potential (black) vs energy levels of Ey;, ,, +
Ey,,, (red), where Ey;, are the single-particle energy spectra
prese_nted in Fig. 1. The red dotted curves represent spectra of
two free light particles: Ef(L) =Y, , cosh™ (coshm + 1—
cos n;) with m = 0.163.

0.500 -

0.100 F

C(xo0) 0.050 [

0.010

0.005

Xo

FIG. 4. Correlation functions for one light particle (black) and
two light particles (blue) at L = 50 and d = 0, and corresponding
fitting curves (red band).

masses, In[C(xy,0)/C(xq+ 1,0)], are given in Figs. 4
and 5, respectively.
Due to the presence of the static boson potential, the

spectra Eé‘l?n are determined by three parameters: light

particle mass, m, heavy-light interaction strength, U, and
light-light interaction strength, V. The diagrammatic
representation of connected heavy-light three-body inter-
actions is shown in Fig. 6. The sum of two one-light-
particle energy spectra from the previous Sec. IIIC1,
E\ppn, + Eipn,, are also presented in Fig. 3, see red error
bars, which represent the results of two light particles
spectra in the absence of the interaction between the two

light particles. The difference between full two light
particles spectra, E%)ﬂ, and sum of two one-light-particle
energy spectra, Ey,,, + Ey; ,,, indicates the energy shift
due to the nonzero interaction between the two light

particles. One interesting observation is that in the limit

Vo =0, E%:o) =E,(p1) + Eip(=p;1) (see second red
05
041

":: e & e ¥ } 1 il I [ [ ‘

3 =TT

L o3t

B

S

5
02t
R T T

Xo
FIG. 5. Effective mass plots, In Co) - for one light particle

N C(xo+1)
(black) and two particles (blue) at L =50 and d =0, and

corresponding fitting curves (red band).
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p1 p1
§U o2 v
¢ ’
H Y
p2 Y '.
(@ (b)
p1 % p1 %
70 0
¢ ¢
p2 .U p2 U

FIG. 6. Diagrammatic representation of connected heavy-light
three-body interactions. For labeling see Fig. 2.

energy level on left panel in Fig. 3) and E%:z) _

Ei,(p1) + Ep(py) (the first red energy level on right
panel in Fig. 3) are degenerate. However, the degeneracy
is lifted because of nonzero interactions between the two
light particles; see the full two light particle spectra in
second level (black error bars) on left panel and first level
on right panel in Fig. 3. We also remark that although we
still use P = %”d with d =0,1,2 to label two-light
particles spectra, we do have to keep in mind that because
of the presence of the static heavy boson, the total
momentum of the two light particles, p; + p,, is not a
conserved quantity, and p, + p, # P =22 d.

IV. DATA ANALYSIS

As demonstrated in Sec. II, although the finite-volume
wave function given in Eq. (16) has no unique solution, the
energy spectra of the heavy-light multiple-body system in
finite volume are uniquely determined by the multiparticle
interaction and the periodic lattice structure. The quantiza-
tion conditions which produce discrete energy spectra in
Egs. (27) and (31) do not depend on the specific form of the
finite-volume wave function, nor any particular choice of
basis functions in the variational approach [23,25]. As
demonstrated in Sec. II, quantization conditions may be
constructed in such a way that energy spectra are given by
parametrization of potentials. Although in QCD multi-
particle systems in general exhibit complicated dynamics,
for some simple systems at low energies, the dynamics may
be determined by a few parameters, [12,13], such as the
particle masses and the interaction strength. Therefore, the
main tasks of this work are to determine these fundamental
parameters by using quantization conditions to fit energy
spectra of lattice model simulations. In this particular lattice
model, there are three free parameters: the light particle
mass, m, and the coupling strengths of the é-potential, U,
between the heavy and the light particles, and V), between
the light particles. The light-particle mass, m, and coupling

strength, U,, may be extracted from spectra of one light
particle in the presence of the static heavy boson. The
coupling strength, V), may then be determined by studying
the spectra of two light scalars in the presence of the static
heavy boson.

At this point we face two major obstacles: (1) The lattice
model presented in Sec. III represents a relativistic model,
and the quantization conditions given by Egs. (27) and (31)
are based on a nonrelativistic framework. Hence, though
that framework presents a clean and simple illustration of
how the quantization conditions of three-body systems in
a finite volume arise, the nonrelativistic nature of the
energy-momentum dispersion relation may not be capable
of describing the lattice spectra; (2) since the simulation
of the lattice model is done in discrete rather than
continuous spacetime, there is the effect of finite lattice.
Here, we take the discrete space into account but simply set
the spacing to one. In the two-body sector, these two
challenges may be remedied simply by adopting lattice
dispersion relation [24],

Ey,(L) = cosh™ (coshm + 1 —cosp),  (49)

where momentum of the light-particle, p, may be deter-
mined by the quantization condition

L 2
cot?22 = 2P (50)
2 Uy
In the three-body sector, one could be tempted to proceed
similarly by using a dispersion relation such as [24]

2
E%)(L) = cosh™! (coshm + 1 —cos p;).  (51)
=1

L

Unfortunately, the currently proposed approach is limited
to determine o> = p? + p3 as is apparent in the non-
relativistic quantization conditions, Eq. (27), or Eq. (31).
For these reasons, it may make more sense to find a
relativistic formalism which is able to incorporate the
presence of discrete space on the lattice. The relativistic
framework may be achieved by replacing the nonrelativistic
Green’s function in the Lippmann-Schwinger equation by a
relativistic one. This simple prescription may be justified
by the reduction of the relativistic Bethe-Salpeter equation
to a relativistic Schrodinger equation under the assumption
of an “instantaneous kernel function.” Of course, this
reduction serves only to include relativistic kinematics
and is sufficient for the purpose of mapping out finite-
volume effects. The details of the reduction procedure are
presented in Appendix C.

A. Quantization condition in a discrete finite box

In order to take account of both the relativistic dynamics
and the effect caused by discretized Euclidean space-time,
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we reformulate the continuous-space finite-volume formal-
ism of the heavy-light system presented in Sec. II to a
relativistic finite-volume formalism defined in discrete
space. Therefore, the particle coordinates are now defined
only on discrete integer points in a finite box of size L,
x€[0,1,...,L — 1], where we have assumed a lattice
spacing a = 1. The Fourier transform of a periodic func-
tion, f(x + nL) = f(x), is thus defined by

Flp)= > erf(x). (52)

x€[0,L—1]

where allowed lattice momenta are p = 2L—”n nelo,1,...,
—1], and f(p) is also a periodic function that satisfies

f(p +2zn) = f(p), see Ref. [56]. The inverse Fourier
transform into the discrete finite lattice is given by
g
f@=7 S i) (53)
nel0,L—1]

Hence, the continuous dispersion relation, E%, = p> +m?,
is replaced by (2 sinh ET’)Z = (2sin£)? + (2sinh 2)? due to
the discrete space-time in a finite box. In other words,
we may use the following -corresponding relations
between continuous and discrete lattice: E, <> 2sinh %,
p < 2sinf, m < 2sinh%, and the on-shell energy-
momentum relation in the discrete lattice is now given by

E
25inh7’): \/2coshm —2cos p. (54)

1. Two-body quantization condition

For the two-body heavy-light system, the relativistic
Lippmann-Schwinger equation in discrete space may be
defined by

DP(x)= Y GP(x—x3E)Updyo®(¥),  (55)

x'€l0.L-1]

where x € [0, L — 1] is defined in a discrete finite box. The
relativistic Green’s function is given by

—2r, .
Ak eipx

G (x;E) = Z

011 4sinh ” 2sinhf -2 smh

. (56)

. L E .
where 2sinh=" = /2 coshm —2cos p. In the continuum
limit, it then reduces to a relativistic-type Green’s function,

5 p=n 1 eipx
GJ(x;E) » — . (57)
0 L;Z D+ mE - /p2+m2

GG I0;E]

FIG. 7. Plot of two-body Green’s function, G (0;E) (solid
black) defined in Eq. (56), as a function of total energy E vs
COt ot (dashed red) as a

function of energy by using the lattice energy -momentum
dispersion relation, cosh E = coshm + 1 — cos p. The lattice size
and mass of the light particle are L = 15 and m = 0.163.

nonrelativistic Green’s function G5 (0, p) =

For the §-function potential, the quantization condition for
the two-body system is simply given by

1 = UyGP(0;E). (58)

The difference between G5 (0; E) defined in Eq. (56) and
_ cotZ:
P) =2

with the lattice energy-momentum dispersion relation,
cosh E = coshm + 1 — cos p, is shown in Fig. 7.

We test the relativistic framework by using the two-
body quantization condition, Eq. (58), to fit the single-
light-particle spectrum by using the light particle mass, m,
and the heavy-light short-range potential coupling strength,
Uy, as fitting parameters. The results are show in Fig. 8,

combined

its nonrelativistic counterpart, G5 (0,

FIG. 8. Plot of single light particle spectra in presence of static
heavy boson potential vs fitting result (red band) by using the
two-body quantization condition of Eq. (58).
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and the fitting parameters are m = 0.163 = 0.001 and
Uy, =0.07 £ 0.03.

2. Three-body quantization condition

For the three-body system, we need to consider a lattice
version of the Lippmann-Schwinger equation defined on a
discrete lattice,

(I)D(xl’xl): Z

X ,x5€(0,L—1]
x (G (¥ =X}, =¥5; E)UoBy
+G(2>(x1 — X1, = X3, E) Uy, 0
+Gg (41 =X 02 = x5 E)V by o | (x],x3),
(59)
where (x1,x,) € [0, L — 1], and the Green’s function’s are
defined by
GP (x1,x0:E) = — —_—
()\ 22 2 o Ei
L ny,n,€[0,L—1] 4 Slnh?

el (P1xi+paxa)

X bl
2sinh% — (2sinh £t + 2sinh 22)
1 4sinh%
Gl riE) = Py s
nymel0.L—1] 7 ST 57 S1nh 52
ei(p1xi+parxs) ‘0
X bl
2sinh £ — (2sinh & + 2sinh 22) (60)

where 2 sinh% = +/2coshm — 2 cos p;. In the continuum
limit, a relativistic three-body Green’s function is obtained

Vl

bl 7E
G (01,23 E) = L2 Z 21512152

ny,n,€Z

where E; = \/p? + m?.

a. Coordinate space representation of the lattice version
of the quantization condition: Again, by introducing a
column vector, £P(x) = [®P(x,x), ®P(x,0)]7, a simple
homogeneous equation which is defined in a discrete space
is found,

eilPixi+pax)

—(E/+ E)’

(61)

)= Y PluriEE ().

Xe[0.L-1]

e 0,L—1],

(62)

where GP has a similar expression as its nonrelativistic
counterpart in the continuum limit in Eq. (23),

gﬁl(x,x’,E) = VoG (x—x,x —x;E),

G2, (x,x;E) = 2U0Gﬁ)(x,x ¥ E),

G2\ (x, X  E) = VoGg (=¥, x = ¥'; E)

G35 (x. ¥ E) = Uy|Gly, (x, =, E) + G (x — X', 0 E)].

(63)

The coordinate-space representation of the quantization
condition defined in a discrete finite box is therefore
given by

det[éa,/}(si,j = gﬁﬁ(xi,xj;ff)] =0,
(xl-,xj) S [O,,L—l] (64)

b. Momentum-space representation of the lattice version
of the quantization condition: In momentum space, using
the discrete-space Fourier transformation in Egs. (52)—(53),
and also using the identity,

2
Z e"p"—é p:—ﬂn, e 0,L—1],
xe[OL 1] L
(65)
we find
]JI:%}’L/
Ep)= Y G p.p:0)E (). (66)
n'€[0,L—1]
where p = —n n € [0, L — 1]. The kernel function, GP, is
defined by
V pUZZL_nn//
~D e =5 e GP " p—p"E),
Gri(p.p'so) =46,, i3 n//e[z();_l] o(p".p—p";E)

. E,
sinh ==\ 2U, -
2 0 ~AD i
G - s ;E )
Sinh%) o(p—=p.pLE)

GP)(p.p'so) = ( I

- Vo ~
G (p.p'so) = foGé)(p’ - p. P E),
. E p//zz_”n//
~ sinh ="\ U, Lo
Gia(p. p's0) =6, < . 31>— Gy (p", p; E)
PP \sinh% ) L n,,E%_l]
E,
sinh=-\ U, ~
2
G E 67
() RoRwrie. @
where (p,p’) €% n, n€[0,L - 1], and
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4sinh %
4sinhZ 4 sinh 22
1
(2sinh & + 2sinh %)

Gl (pi.priE) =

X — (68)
2sinh% —

Hence, the momentum-space representation of the quanti-
zation condition in discrete space is given by

det[éa’ﬂép,p/ — GaD,ﬂ(p, p'io)] =0,
2

(p.p) e 7

e 0,L—1]. (69)

In the nonrelativistic and continuum limits, Egs. (64) and
(69) are reduced to Egs. (27) and (31). In the limit Uy = 0,
in which the interaction between the light and the heavy
static particles vanishes, the three-body quantization con-
dition is, thus, reduced to a simple form,

/21

vy 'L
1=L > GE(p.p-pE),
n'€l0.L-1]
27
p="2(0. L= 1). (70)

The nonrelativistic counterpart of the above equation is
given by Eq. (32), hence p =3%(0,...,L —1) may be

related to the total momentum of the light-particle system.
ne[()L 1 Gy (p',—p';E) in the CM
frame of the two light partlcles and its nonrelativistic

/ _2r
counterpart, + ZneZ " p _lp,z = 2\”/[ , combined with lat-

tice dispersion relation, cosh% = coshm + 1 — cos %, is

The comparison of + Z

shown in Fig. 9.

Using the light particle mass of m = 0.163 = 0.001, and
heavy-light short-range potential coupling strength, U, =
0.07 = 0.03 from the fit to the two-body spectra as input,
the remaining parameter, i.e., the coupling strength of the
short-range potential between the light particles, V), is
determined by fitting the two-light-particle spectra using
the three-body quantization condition, either Eq. (64) or
Eq. (69). The fitting results are show in Fig. 10. The
coupling strength is determined as V= 0.43 £0.03
through the fit. At last, we would like to remark that
due to the finite lattice spacing a, the light particle mass and
coupling strengths extracted from the lattice simulation are
in principle a-dependent as well. The physical value of
these quantities in continuum limit may be extrapolated by
using multiple lattice spacing simulation results combined
with the renormalization group method that yields the
explicit lattice spacing dependence of renormalized physi-
cal quantities based on perturbation theory. In principle, the
multiparticle dynamics in finite volume and in infinite

ls LD
L >Go

1
1
1
1
1
1
1
\
\
\

FIG. 9 Plot of the two-body
LG E[OL 1 Gg(p’,—p’;E) (solid black), as function of total

Green’s function,

e e . . 777’1
energy E vs nonrelativistic Green’s function %Eiez Gk x

Il _ V2
(p'.=p"0) =575,

momentum dispersion relation, cosh% = coshm + 1 — cos \/LZ

The lattice size and mass of the light particle are L =20
and m = 0.163.

volume are related though the same set of interaction
parameters. Once all the interaction parameters are
extracted from lattice results, the physical scattering ampli-
tudes in infinite volume may be determined and computed
though standard procedures, such as Faddeev’s approach.
The example of nonrelativistic Faddeev’s approach is listed
in Appendix D.

1.0 1.0pr 1.0
0.9¢ {0.9}4 {09}t
0.8 {08t 1 o8l
0.7¢ {074 {070

d

£
0.6f 4 0.6} 4 0.6+
0.5F {05} 1 o5l
0.4r 1 0.4} 1 0.4

03 1 1 I I I O_Q I i L L L 0") L 1 1 1 I
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

L L L

FIG. 10. Plot of the three-body spectrum from the lattice model
simulation (black data) vs fit using the quantization condition in
form of Eq. (64) or Eq. (69) (red bands).
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V. SUMMARY

In summary, a 1 + 1 dimensional heavy-light three-body
system is simulated by a coupled-channel ¢*-like lattice
model. An improved variational approach for the finite-
volume multiparticle problem is proposed in this work. The
advantage is that the quantization conditions are given in
terms of the periodic lattice structure and interaction
potentials instead of explicit finite-volume scattering ampli-
tudes. This opens up the possibility of finding a more
practical formalism which can be easily used for data
fitting. The interaction potentials are varied to match the
energy spectrum; once the parameters of the potentials are
extracted by data fitting, the dynamics of the entire system
is determined. The multiparticle dynamics in infinite
volume hence may be computed separately.
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APPENDIX A: FAST-CONVERGING
REPRESENTATION OF THE PERIODIC
GREEN’S FUNCTION: G}

The periodic Green’s function, G5, defined in Eq. (18),
has the analytic expression

G(L)(xl,xz;o'):—— Z H o\x +nlLl),

n] n,eZ

(A1)

where x = (x1,x,) and n = (n, n,). Equivalently, it can
also be expressed as

o .
1 il pilpixitpaxs)
72

L . _

Go(xl,xz,a)— 2 2 2"
L c°—pi—p

ny.n,eZ 1 2

(A2)

Unfortunately, both expressions in Eq. (A1) and Eq. (A2)
suffer poor convergence, especially for ¢ values on the
real axis.

In this section, we present two equivalent fast-converging
expressions of G5.

(i) First of all we use the identity

i 1 n ol dt _pp s
‘1H5‘><or>=-§[/o 0+ [ ]76 )
n

where # is an arbitrary parameter. For real ¢ values, the
integration path has to be defined carefully in the complex

Im(t)

(v)

FIG. 11. Integration contour of (y) in the complex 7 plane.

plane to warrant the convergence of integration [47], see
Fig. 11. Hence, we can rewrite G{; in Eq. (A1) as

GoL(xhxz§ o)
1 [n, _dt xR+
:——H _ - )
FHS )+ 5 [T e
b = /°° dt —|x+nL\2t2+”2
2r =

(A4)

__Z/ df —\x+nL|2t2+"

nez?
In this expression, the first three terms are all well behaved
for real o values. For the last term in Eq. (A4), using the

identity

1 _ 22 1 dp p’

e _r 4;2 zpr A5
27° 22 ) (2n2¢ (A35)
and also applying Poisson summation, we find
/ —|x+nL[?*# +—
neZ7
P
1 Pt e
=— e'Px, (A6)
2 2 _ 2
L nez2 ¢ p

Putting everything together, we find

G (x1.x3:0) =~ H)

(o]x])
2 2
1 [n,  dt _xep 2 e
[l S e
eZZ

1 §/wd¢ _
- —e

27 n

nez?

\x+nL\2t2+% (A7)

The integration in the last term in Eq. (A7) is normally
highly suppressed for L > 10 and # > 1. Therefore, with a
modest choice of 1 ~ 3, the last piece in Eq. (A7) can be
safely ignored in the numerical evaluation.

034501-13



PENG GUO and MICHAEL DORING

PHYS. REV. D 101, 034501 (2020)

(i1) Secondly, using the relation,

o
p=in eipx

Gs(x;q) =+
’ Ligd-r
)
2\/61 RPENC
the second fast convergent expression of Gf can be
obtained from Eq. (A2),
Gé(xl,xz;a)
1171:—%”1 '
LN Gl J2— )
n ez
1 Pz———nz
Z ezpzszL(xl, \/0—_—;;) (A9)

n,eZ

APPENDIX B: REGULARIZATION OF
COORDINATE SPACE REPRESENTATION
QUANTIZATION CONDITION

Due to the singular nature of the kernel function,
GLo(x,x';0) as x — x' in Eq. (22), the homogeneous
integral equation, Eq. (22), defined in continuous space
has to be regularized. In this work, we adopt a modified
subtraction quadrature method [48] for the regularization
scheme of singularities. First of all, we can subtract the
same term on both sides of Eq. (22),

[ _/zdx’S(x,x’;a)]i(x)

L
— /de'[gL(x,x’;o)f(x/) —S(x. x5 0)¢(x)].  (BI)
where
S(x,x';0)
_ [VoGé(x—x’,x—x'20> 0
= 0 UsGE(0.x —x'10) |
(B2)
Using relations,
. cot 7
dxX'Gl(x — X x — ¥ 2 B3
/_% o )= 226’ (B3)
: 3
/_dx’Gé(O;x—x/;U) - C(; o (B4)
. O

2

we can discretize Eq. (B1) to

cot2

1-Vy—32 0
{ "2 :|§(xi)
0 - Uy
- ZW 'xl"xj’o- f(xj) S(xnxpg) (xi)]‘ (BS)
Hence, all the singular terms cancel out as x; = x; on the

left-hand side of the above equation; discretized Eq. (B5)
now is well defined. Reorganizing Eq. (B5), we find

ZD(xi,xj;O')é(xj) =0, (B6)
j
where
Dl,l(xivxj;6>
oL
=5, [1 ~V, C20\t/2§f n ,%;WkSLI(Xi’Xk; a)]
—w;VoG§(x; — X, x; — Xj30)] i (B7)
D2,2(xi’xj;a)
= 0; [1 - U oty + Zwk82 Z(Xi’xk;o-):|
’ 20 o '
—w;Uo[G§ (0, x; — x5 0)|izj + G§(—x;,x;30)], (B8)
and
Dyp(xixj50) = —wjgéﬁ(xi,xj;o), if a# 4. (B9)

The nontrivial solution of homogenous equation, Eq. (B6),
exists, provided

det [D(x;, x;;0)] = 0.

(B10)

APPENDIX C: REDUCTION OF BETHE-
SALPETER EQUATION TO RELATIVISTIC
SCHRODINGER EQUATION

1. Reduction of two-body system

Let us consider the general form of the Bethe-Salpeter
equation [57] for one heavy and one light scalar particles
bound state system,

—i d*k
wis(q) = / I(k — q)wgs(k),
W) = G- ) Gy DY
(C1)
where p; = (p1o,p1) and py = (pyo.P2) are the four

momenta of two particles, m and M represent mass of light

and heavy particles respectively. g = % denotes the
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relative four momentum of two particles. w(g) is the
Bethe-Salpeter wave function, and (k) represent ladder
approximation interaction kernel function. Using the
approximation of an “instantaneous interaction kernel,”
I(k) = I(k), in which the interaction kernel has no
dependence on the energy components of four momenta,
and also introducing the Schrodinger equation wave

function by w(q) = dz—‘f[‘)z//Bs(q), we obtain

= | S G e k)

(C2)
Next, using identity
/dqo —i 1 2(E| + E,)
2z (pi —m*)(p3 — M?) 2E2E, E* — (Ey + Ey)*’
(C3)

where E, = +/p7 +m?, E, =+/p5+ M? and E is the
total energy of the two-particle system. In the heavy static
limit, £, - M — oo and p; = q, we also shift the total
energy by M to subtract the heavy mass, E — E — M, and

introducing potential by V = 571, then we find

! ! dk
(q):2\/q2+m2E_\/q2+m2/(2ﬂ)3v(k_q)l/’(k)-

(C4)

In the nonrelativistic limit, Eq. (C4) hence yields a familiar
Lippmann-Schwinger equation,

wig) = / ("—kJ(k—q)w(k). (C5)

T q* ) (2n)

2. Reduction of three-body system

Now, let us consider a one heavy and two light scalar
particles bound state system; the Bethe-Salpeter equation is
given by

WBS(Ch 612): (_i)2
’ (pi—m?)(p3—m?)(p3—M?)

&y dk,
5 / (2z)* (2n)41(k1 —q1,ka—q2)yes (k. k),

(Co)

where p; = (p;.p;) are the four momenta of three
particles, particle 1 and 2 are labeled as light particles

and particle 3 denotes a heavy particle. The relative

(MA+m)p,—m(py+p3)

2m+M and

momenta are introduced by ¢g; =

M — . . .
G4 = % Again, assuming an instantaneous

interaction kernel, I(ky, k,) = I(k;,k,), and introducing

the Schrédinger equation wave function, w(q;,q,) =

dq,0 dqz0
25 wes(q1, 2), we get

dq0dqap (_i)z
w(q:.q )—/ .
142 2 2x (pi—m?)(pi—m?)(pi—M?)

dk, dk,
X/(zﬂ)3(2ﬂ)31(k1—‘lhkz—(hll/(kl,kz)_

(C7)

The integration over propagators can be carried out by

/dCILo dﬂh,o (—i)2
2n 2z (p}—m?)(p3 —m?)(p3 —M?)
1 2(E| + E, + E3)

= , C8
2E\2E,2E5 E? — (E, + E + E3)? (C8)

where E|, = ,/pi, +m? and E3 = \/p3 + M”.

When only pair-wise interactions are considered, the
three-body interaction potential, /, may be given by sum of
interactions among all pairs,

I(ky —q;.k, —qy)
J#i
= Y 2E;(2n)%5(k; - q))ly(k; - q;)
(i)=12
+2E;(27)*5(k; + ko — q; — qo)1y

» ki-k, q-q .
2 2

The relativistic kinematic factors (p;|p}) = 2E;(27)3 x
5(p; — p;) emerge when the ith particle is free propagating
and not involved in the interaction. At the limit of the static
heavy particle, M — oo, p; = q;, and defining potentials
by U =51y and V =51, we find

(€9)

1 1
l//(qlvq2) _2E12E2E—(E1 +E2)

X [(2E2)/%0(k1—‘h)1/1(k11(l2)

+(2E,) /%f](kz —q)w(q;.k,)
dk

+(2m)/WV(k—q1)w(k,q1+qz—k) :

(C10)

If all interactions are turned off except interaction between
pairs (13), the above equation is thus reduced to
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1 1
2E, (E-E,) - E,

) / (02“733 Uki —a)y (k1. qo),

w(q.qp) =

(C11)

which is just a relativistic two-body LS equation in
Eq. (C4) with a second particle as a spectator.

In the nonrelativistic limit, Eq. (C10) yields a familiar
form,

w(q.q2) = ﬁ

Ex
/;’

d

-q)y(k;,q)

- q)w(q;. ky)

V(k —q)y(k.q +Q2—k)}

(C12)

APPENDIX D: SOLUTIONS OF A HEAVY-LIGHT
THREE-BODY SYSTEM IN INFINITE SPACE

In infinite space, the dynamics of a nonrelativistic heavy-
light three-body system is described by the Schrodinger
equation,

[0 + T — Ugd(x1) — Upd(x2) = Vo8(r)|¥(x1, x2) = O,

(D1)

where ¢ =2mE, T =V? + V2, and r = x; — x,. For
scattering solutions, the wave function has the following
form [58,59], ¥ = ¥ o) + Zy_ ¥ (,), where ¥ ) stands for

the incoming free wave, and ‘I’( ) satlsfy coupled equations,
Wiy (x1,x2) = / dx'dxyG (X1, X23 X1, X553 6)

X Uob(x) [w@ () + 30, <xa,x;>} ,

=
i=1.2, (D2)
and
lP(S)(xl’XZ) :/dx/ldx/zG@)(xl7X2§x/1’x/2§0)
< Vodlr = ) |0 (410
2
3w, xaﬂ , (D3)

r=1

where the Green’s functions are the solutions of equations,

[0 + T — Upd(x;)]G i) (x1, x2: X}, b3 0)

= 6(x; — x})6(xy — xh), i=1,2, (D4)
and
(62 + T = Vod(x; — x,)]G3)(x1. %25 X]. X¥p3 0)
= 6(x; = x1)6(x — x3). (D5)

The analytic expressions of Green’s functions are
G1)(x1, xp; X1, %53 0)
/dp lelp(xl_x)
22\ /6% — p2
% [ei\/aZ—pzwxl—x;\ n ,-,U(, /o2 — pz) ez’\/f—p%\xmﬂxﬂ)}
(D6)
Uy
where 1;(k) = — 57000

tering amplitude, the expression of G, is obtained by
exchanging the role of x; < x, in Eq. (D6), and

is the heavy-light two-body scat-

G (xlvx2’xl’x2’o-)

/dp ie'P(R
0'

2 _p
271
2 2
[ VER iy ([ - ) e |
(D7)
where R = %32 and r = x; — x, are CM and the relative
position of two light particles, and ¢, (k) = — MX—‘;VO stands
for the light-light two-body scattering amplitude.
By introducing the scattering T-amplitude,
Ti(p) = =Us [ dse9(0.),
Tio(p) = =Uy [ drer¥(x.0),
Ty(p) = —Vo/dxe_i”x‘l‘(x,x), (D8)

and also using Lippmann-Schwinger equations, Eqs. (D2)—
(D3), and explicit expression of Green’s function in
Eqgs. (D6)—(D7), we find

dp ietVo-rllegirx:
‘"P(l)(xlvx2) = EZ—T
o> = p?
dp ile i/ o -P IXZ‘eipxl
lI}(2)(xlvx2) 2”2—T

o> = p?
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and

2 T \r\esz

Ty(p).  (D10)

/dple
xlﬂxz

The T amplitudes satisfy coupled integral equations,

t\)|Q
-h|ﬁ

T (p)=T) (p)
2V =p’ty(V/o? = p?)

T (k T
:_/$|: 2 (j)g )k2+ 2 K2 V(k) k 2:|’ (Dll)
7l =y =R A Ea(p-h

where (i,j) = 1,2 (i # j), and

Tyv(p) =Ty (p) _/% Ty (k) + Ty (k)
RS = 2\ 2r6* —k* = (k—p)*’
4\/7"’7“/( 7‘%) (k=p)
(D12)
where
(0)
T (p)
(1) :/dxe—lpxll]
2\/6* — p*ty(\/o* = p?) %)
(0)
T (p)
(2) :/d —lple X 0)
2¢/c? —PtU(\/U -p?)
T(O)
:/dxe_”’x‘l’ (x,x). (D13)

=

1. Scattering solutions of Faddeev equation with an
incoming plane wave: ¥ (g (x;.x;) = eP1¥1iP2%2

For the scattering solutions of a Faddeev equation with
an incoming plane wave, W (g (x, x,) = e'?1¥1¢'P2%2 where
p; stands for the incoming momentum of the ith light
particle, we have

ng?;(p):z Pt (\/p?) @ms(p=p,). (%)=
4[zv<[> (2m)o(p—P),

where ¢ = %52 and P = p; + p,. Usually, singular terms,

(D14)

T(©)s, are not convenient for numerical computation, so it
is better to introduce the g amplitude by a shift,

T (p) — TE?)) (p)

2\/0* = p*ty(v/o? - p?)
Tyv(p) =Ty (p)

9([)(1’) = -0 (p),

gv(p) = , (D15)
o2 2 o 2
4\/7—%fv(\/7—p7)
where Q(;)’s satisfy coupled equations,
00 (p) 2,/pitu(4/P3)
NP)=——"—"%5 5
(i) pz — pz
dk2Ve? = Pty (Vo — k)
| o2 — pz — 12 Q(/’) (k).
(i#j)=1.2. (D16)
The analytic expressions of Q(;)’s are given by
2\/0 = pru(y/o? = P04 (p)
_2vpiy(Vpi 2\/ stu(V/p
pi—p?
(i#))=1,2. (D17)

The g amplitudes are the solutions of coupled equations
that are free of o-function type singularities,

90 (p) = g5 (p)
2 _ 12 U o2 — 12
—/%N sz_tfsz D)
-/ anEEED
" 02—"7—2(19—%)2 9gv(K),
(i#)j)=12, (D18)
and
av(p) =gy (p)
dk2Ve* — Ity (Ve? — k2)
/271 o> -k —(k—p)?
x gy (k) + g2y (k)] (D19)

where
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2\/?%(\/;17)

(0) _
9(1,2)(1’)__ 2—(p-D7°
7
JF#i 2 2
0 2y/pity(\/ P;
A (p) == 2yritulyr;)

=12 pzz - (p - pj)2

. NG
in (o) (y/72) S 2L )

In terms of g amplitudes, the wave function of a three-
body heavy-light system is thus given by

‘P(xl ) xz)
=y, (X1, (02) +ity (\/;) eV @I piPR

J#i

d]) iN/6>=p?|x;| pipx;;
+ Y [ SR eE ety (/o = 1) p)
i=12
d )2 _r? ; 2 2
+ [ SR eERrentin, (7 - D)), @21

4

where w,(x) = e/” + ity (\/p?)eVPH s a heavy-light
two-body wave function. The first term on the right-hand
side of Eq. (D21), w, (x;)w,,(x,), stands for the solution
of a heavy-light quark system at the limit of zero interaction
between two light particles, Vy = 0. The second term
represents the disconnected contribution of two light

FE— P S S — " PR PR — PR — PR "
-3 -2 -1 0 1 2 3

— Relgual —— Imlguz)]
FIG. 12. Numerical solutions of g amplitudes in Eq. (D18)—
(D19), with p; = —p, =1+ 0.1i, a small imaginary part is
given to p; to smooth out the curves near the pole position for a
better visualization purpose. Black and red colors are assigned to
represent real part and imaginary part of g amplitudes respec-
tively, and solid and dashed curves are associated to g(; 5y and gy
amplitudes respectively.

particles interacting while the heavy particle plays the role
of the spectator. The last two terms in Eq. (D21) produce
diffraction effect s that are generated by the rescattering
effect among all the pairs.

Integral equations of g amplitudes can be solved with the
standard matrix inversion method; see Fig. 12 for examples
of numerical solutions of Egs. (D18)-(D19).
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