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We study exclusive quarkonium production in the dipole picture at next-to-leading-order (NLO)
accuracy, using the nonrelativistic expansion for the quarkonium wave function. This process offers one
of the best ways to obtain information about gluon distributions at small x, in ultraperipheral heavy
ion collisions and in deep inelastic scattering. The quarkonium light-cone wave functions needed in the
dipole picture have typically been available only at tree level, either in phenomenological models or in
the nonrelativistic limit. In this paper, we discuss the compatibility of the dipole approach and the
nonrelativistic expansion and compute NLO relativistic corrections to the quarkonium light-cone wave
function in light-cone gauge. Using these corrections, we recover results for the NLO decay width of
quarkonium to eþe−, and we check that the nonrelativistic expansion is consistent with Efremov-
Radyushkin-Brodsky-Lepage evolution and with Balitsky-Jalilian-Marian-Iancu-McLerran-Weigert-Leo-
nidov-Kovner evolution of the target. The results presented here will allow computing the exclusive
quarkonium production rate at NLO once the one-loop photon wave function with massive quarks,
currently under investigation, is known.
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I. INTRODUCTION

The partonic structure of hadrons and nuclei in the limit
of high collision energies, or equivalently small momentum
fractions x, is poorly constrained by existing experimental
data. It is believed that at high enough energies the
properties of small-x gluons are dominated by gluon
saturation, i.e., the dominance of nonlinear interactions
in the gluon field. In order to fully understand the behavior
of small x gluons, a variety of different experimental
measurements is needed. Of particular importance here
is exclusive quarkonium production mediated by real or
virtual photons. Such measurements are currently made in
ultraperipheral heavy ion collisions [1] at the LHC and at
the Relativistic Heavy Ion Collider. Exclusive measure-
ments will also be an important part of the program at a
future electron-ion-collider [2]. Exclusive quarkonium
production is an important process for several reasons.
As an exclusive process, it depends on the gluon density

quadratically and is thus more sensitive to nonlinearities than
inclusive cross sections. Exclusive processes can, depending
on exactly what final state of the target one measures, be
sensitive to separately the average and the fluctuations of the
gluon density in the target [3–6]. On the other hand, the
heavy quark masses cut away nonperturbative long distance
contributions and make the use of a weak coupling frame-
work safer than for light quark processes [7,8].
The dipole picture of deep inelastic scattering (DIS)

[9–13] (a specialization of the light-cone perturbation
theory framework of Ref. [14] to the DIS process) provides
a convenient framework to study deep inelastic scattering at
high energy. In particular, one expresses both inclusive and
exclusive cross sections in terms of the same fundamental
quantity, the dipole scattering amplitude, which gives this
picture more predictive power than collinear factorization.
With light quarks, several recent advances have taken
calculations of inclusive [15–17] and diffractive [18,19]
observables to NLO accuracy, and it would be important to
do the same for heavy quark cross sections.
At leading order, the physical picture of exclusive

scattering in the dipole picture is the following [20]: a
virtual photon fluctuates into a quark-antiquark pair that
interacts with the nucleus elastically with a cross section
σqq̄. The resulting dipole can, later on, recombine into a
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quarkonium state. In this framework, the information
about the quarkonium is encoded in its light-cone wave
function (LCWF), which encodes the overlap of the
quarkonium state with various eigenstates of the free
light-cone QCD Hamiltonian.
In recent phenomenological applications (following e.g.,

Ref. [21]), one commonly uses phenomenological para-
metrizations for the LCWF, such as the “boosted Gaussian”
or “GaussLC.” A more model-independent approach
would be to exploit the fact that heavy quarkonium is a
nonrelativistic system. In such a system, the typical
3-momentum of quarks is of the order of mv, where m
the heavy quark mass1 and v is the typical speed of the
heavy quarks around the center of mass (which is much
smaller than the speed of light). The mass of the heavy
quarkonium state MHQ is such that the binding energy is
small: MHQ − 2m ∼mv2 ≪ m. Another important energy
scale is ΛQCD, which marks the transition between pertur-
bative and nonperturbative physics in QCD.
Using an effective field theory approach, nonrelativistic

QCD (NRQCD) [22] factorization formulas for some
processes can be proven. The NRQCD approach has been
quite successful, although there is some tension with
polarization related observables in charmonium (for a
more recent review, see Ref. [23]). Diffractive quarkonium
production has been studied in the nonrelativistic limit in
both a covariant [24] theory approach and in a light-cone
formalism [20]. Also, velocity expansion corrections have
been discussed in Ref. [25], although they are a next-to-
next-to-leading-order (NNLO) effect in αsðmvÞ. However,
next-to-leading-order (NLO) corrections in αsðmÞ due to
radiative corrections to the computation in Refs. [20,24] are
still missing.
In this paper, we are going to compute the leading-order

(LO) relativistic corrections to the quarkonium light-cone
wave function in the light-cone gauge such that it can be
used to obtain NLO predictions in the dipole picture. This
will allow us to compute the radiative NLO corrections to
the leading nonrelativistic result. We are going to check
that, using our results for the quarkonium light-cone wave
function, we can obtain the well-known literature result of
the NLO correction to quarkonium decay to eþe− [26].
We will then show that the light-cone distribution ampli-
tude (that can be obtained in the limit of small transverse
coordinate) fulfills the Efremov-Radyushkin-Brodsky-
Lepage (ERBL) evolution equation [27,28] (a NRQCD
study of the same quantity can be found in Refs. [29–31]).
We are going to show that, using this wave function, it is
possible to compute NLO corrections to exclusive
quarkonium production by analyzing the divergence struc-
ture and checking that it is consistent with Balitsky-

Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner
(B-JIMWLK) evolution [32–42] of the target. A more
complete phenomenological analysis will be possible when
the NLO corrections to the photon wave function with
massive quarks, currently under investigation, become
available.
The paper is organized as follows. In the next section, we

review the specific formulas of the dipole approach needed
for this computation and fix the notation. In Sec. III, we are
going to define the procedure to obtain the nonrelativistic
wave function and its corrections, and we are going to
compute the relativistic contribution. In Sec. IV, we are
going to show that we can use the previous results to obtain
the light-cone distribution amplitude, and we are going
to check that it satisfies the ERBL evolution equation.
Section V provides a strong cross-check of our results by
applying them to the computation of the radiative correc-
tions to S-wave quarkonium decay into leptons. In Sec. VI,
we study the divergence structure of exclusive quarkonium
production in both the dilute and the nondilute limits.
Finally, we conclude in Sec. VII.

II. DIPOLE APPROACH

We are going to perform the computations using light-
cone coordinates; for a given vector pμ, they are defined as

pþ ¼ p0 þ p3ffiffiffi
2

p ; p− ¼ p0 − p3ffiffiffi
2

p ; ð1Þ

which implies

p0 ¼ pþ þ p−ffiffiffi
2

p p3 ¼ pþ − p−ffiffiffi
2

p : ð2Þ

As a consequence, the momentum integration measure
takes the form

d4p ¼ dpþdp−d2p⊥; ð3Þ
and the scalar product of two vectors in these coordinates is

p · q ¼ pþq− þ p−qþ − p⊥ · q⊥: ð4Þ

It is useful to define the light-cone vectors

nμ ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ ð5Þ

and

n̄μ ¼ 1ffiffiffi
2

p ð1; 0; 0;−1Þ; ð6Þ

such that

n · n̄ ¼ 1; ð7Þ
1In this paper, we use the pole mass in our computations.

However, we note that in future phenomenological applications it
might be convenient to translate the results to another scheme.
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pþ ¼ n̄ · p; ð8Þ

p− ¼ n · p: ð9Þ
We also find it sometimes useful to separate from 4-momenta
in the on-shell part, denoted by a hat,

pμ ¼ p̂μ þ p̄μ; ð10Þ

such that

p̂ ¼
�
pþ;

p2⊥ þm2

2pþ ;p⊥
�
: ð11Þ

In light-cone perturbation theory, the off-shell-ness is
included in only the light-cone energy (− or n̄μ-component)
of the four-vector

p̄μ ¼ p2 −m2

2pþ n̄μ: ð12Þ

In order to apply the dipole approach to exclusive
quarkonium production, we are going to follow the dis-
cussion in Ref. [21]. We start with Eq. (12) there, which
corresponds to the leading-order contribution, in the limit
of no target recoil t ¼ 0,

dσγ
�þN→HQþN
T;L

dt
¼ 1

16π

����
Z

d2r⊥
Z

1

0

dz
4π

ðΨ�
HQΨγ� ÞT;Lσqq̄

����
2

;

ð13Þ

where the subindex T or L refers respectively to a trans-
verse or longitudinal polarization of the photon and vector
meson.2 Here, Ψγ� and ΨHQ are respectively the light-cone
wave functions of the photon and quarkonium, depending
on the transverse coordinate separation r⊥ and pþ momen-
tum fractions z; 1 − z of the quark and antiquark in the
meson. The properties of the gluon field of the target are
encoded in the “dipole cross section” σqq̄, which is, more
properly speaking, twice the imaginary part of the forward
elastic scattering amplitude of the quark-antiquark dipole
with the target. Importantly for the predictive power of
the framework, the same quantity appears in other cross
sections, for both DIS and other high energy scattering
processes. A graphical representation can be found in
Fig. 1. The previous formula actually assumes that only
the subspace of the Fock space qq̄ is relevant for the
quarkonium light-cone wave function. A more general
formula would involve a sum over all the possible Fock
states of the quarkonium:

dσγ
�þN→HQþN
T;L

dt
¼ 1

16π

����
Z

d2r⊥
Z

1

0

dz
4π

ðΨ�
HQΨγ� Þqq̄T;Lσqq̄

þ
Z

d2r⊥
Z

1

0

dz
4π

ðΨ�
HQΨγ�Þqq̄gT;Lσqq̄gþ���

����
2

:

ð14Þ

Exclusive quarkonium production is a multiscale process.
In the previous formula, we identify many different energy
scales. First, Q is the virtuality of the photon and is encoded
in its wave function. The saturation scale of the target Qs is,
in the previous formula, hidden inside the r-dependence of
the amplitudes σqq̄ and σqq̄g. Physically, it represents the
typical size of the dipoles selected by the target. Dipoles
much smaller than 1=Qs interact weakly due to “color
transparency.” For dipoles larger than 1=Qs, the growth of
the amplitude is limited by unitarity, i.e., gluon saturation,
and ceases to compensate for the suppression from the
photon and quarkonium wave functions. Finally, inside
ΨHQ, there are hidden many scales related to quarkonium
physics, namely the scales m, mv, mv2, and ΛQCD, which
were discussed before. In this work, we are going to assume
that Qs;m ≫ mv;ΛQCD, and we are going to explore the
physical consequences of this regime.
Details on how to obtain the light-cone wave function of

quarkonium in this approximation will be given in the next
section; however, we can explain the physical implications
here. The quarkonium wave function is dominated by
quarks that are moving with a nonrelativistic velocity.
This implies that it extends over distances of order 1

mv and it
is not very sensitive to variations at smaller distance scales.
Another consequence of the nonrelativistic nature of
quarkonium is that at leading order ΨHQ only has support
for values of z around 1

2
. Therefore,

dσγ
�þN→HQþN
T;L

dt
∝
jR dλ

4πϕ
qq̄j2

16π

����
Z

d2r⊥ðΨγ� ÞT;Lσqq̄
����
2

z¼1
2

; ð15Þ

FIG. 1. Representation of the leading-order amplitude for
exclusive quarkonium production in the dipole model. A virtual
photon splits into a heavy quark-antiquark pair that later interacts
with the nucleus (represented by a square box). After this
interaction, the pair forms a quarkonium state (represented by
a blob).

2The interaction with the target is eikonal; thus, the polariza-
tion of the meson is the same as that of the photon.
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where ϕqq̄ is the leading-order light-cone wave function
that only takes into account nonrelativistic contributions
and λ ¼ z − 1

2
. Extending this idea to higher orders, the

quarkonium wave function for short distances x⊥ ∼ 1
m

fulfills

Z
dzfðzÞΨn

HQðz;x⊥Þ ¼
X
m;k

Z
dzfðzÞCk

n←mðz;x⊥Þ
�∇
m

�
k

×
Z

dλ
4π

ϕmðλ; 0Þ: ð16Þ

In this formula, the indices n and m represent the particle
content; for higher Fock states, the single two-particle
relative coordinates z;x⊥ are replaced by the appropriate
variables. The notation ΨHQ refers to the full light-cone
wave function of the quarkonium, while the ϕ’s are the
wave functions restricted to the case in which all particles
are nonrelativistic (therefore, λ ≪ 1). Here, fðzÞ is just a
test function written to represent the fact that the equality is
only valid when integrating for z. At this stage, we are
ignoring spin degrees of freedom in the notation, but we
will be more explicit about this in the following sections.
Note that each power of ð∇MÞ acting on ϕ gives a suppression

of order v (in this equation, ∇ is a three-vector, such that
∇ ¼ ∇⊥ þ i2mλ). Due to the nonrelativistic nature of the
quarkonium, the coefficients start with just a heavy quark-
antiquark state, which is, to leading order, nonrelativistic,

C0
qq̄←qq̄ ¼ 4πδ

�
z −

1

2

�
þOðαsÞ; ð17Þ

with transitions to higher Fock states entering at higher
orders in perturbation theory.

C0
n←mjn≠m ¼ 0þOðαsÞ: ð18Þ

In this paper, we are going to argue that in order to
compute exclusive quarkonium production at NLO only
C0
qq̄←qq̄ and C0

qq̄g←qq̄ at order αs are needed, and we are
going to compute them. The fact that the contributing Fock
states at NLO are the qq̄ and qq̄g ones is similar to other
NLO calculations in the dipole picture (e.g., Refs. [15–19]).
The additional feature in the case of the quarkonium is the
way in which both are related to a common nonrelativistic
bound state wave function. Taking into account these two
Fock states, we can write the cross section as

dσγ
�þN→HQþN
T;L

dt
¼ 1

16π

����
X

n;m;k

��∇
M

�
k
Z

dλ
4π

ϕmðλ; 0Þ
�Z

d2r⊥
Z

1

0

dz
4π

ððCk
n←mðz; r⊥ÞÞ�Ψγ� ÞnT;Lσn

����
2

: ð19Þ

These terms can be reorganized in such a way that we have an expansion that resembles a typical production process in
NRQCD,

dσγ
�þN→HQþN
T;L

dt
¼ 1

16π

X
n;m;k;n0;m0;k0

�Z
d2r⊥

Z
1

0

dz
4π

ððCk
n←mðz; r⊥ÞÞ�Ψγ� ÞnT;Lσn

Z
d2r0⊥

Z
1

0

dz0

4π
ðCk0

n0←m0 ðz0; r0⊥ÞΨ�
γ� Þn

0
T;L

σ�n0
�

×

��∇
m

�
k
Z

dλ
4π

ϕmðλ; 0Þ
�∇
m

�
k0 Z dλ0

4π
ϕm0 ðλ0; 0Þ

�
: ð20Þ

In this equation, the second line only encodes what in
NRQCD would be called soft physics (scales smaller than
m); however, the first line receives contributions from both
hard and soft physics. For example, there will be a soft
physics contribution in the photon wave function whenever
a soft gluon is emitted before crossing the target. Therefore,
the analogy with NRQCD is not complete. This is illus-
trated with an example in Fig. 2. Note also that the dipole
picture is formulated in light-cone gauge and therefore we
cannot, in principle, use gauge invariance arguments that
are common in NRQCD and that will impose relations
between the different terms in the expansion. For example,
the fact that derivatives acting on the low energy matrix
elements have to be combined with gauge fields to
form covariant derivatives connects states with a different
number of particles in such a way that we would expect that

C1
qq̄←qq̄ is constrained by C0

qq̄←qq̄g; however, since we are
using a setting that is not gauge invariant, we are not going
to use this kind of relations (for a more complete dis-
cussion, see Ref. [25], and also the discussion about
genuine and kinematical twist in Ref. [43]).
Let us now discuss the power counting of this compu-

tation and which terms we need to consider if we want to
achieve a NLO result. In this problem, radiative corrections
in the hard part will be suppressed by powers of αsðμÞjμ≥m;
each additional ∇

m acting on ϕ would amount for a sup-
pression of order v ∼ αsðmvÞ. From now on, we will ignore,
for purposes of order estimation, the scale at which αs is
evaluated.With this in mind, we should in principle take into
account the first radiative correction in the hard part and the
first velocity correction in the soft part. However, the first
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velocity correction only enters at NNLO. This is because,
due to rotational invariance, the contribution from k ¼ 1 and
k0 ¼ 0 (or vice versa) in Eq. (20) is zero. At LO, the only
contributing Fock state is n ¼ m ¼ qq̄ (and correspond-
ingly in the complex conjugate amplitude denoted by
primes). At NLO, n and m can also have the value qq̄g.
However, we can also check that the casem (or m0) equal to
qq̄g is further suppressed. The reason is that the soft gluon
has to be emitted either from the photon wave function
(before the target) or by the relativistic part of the quarko-
nium wave function. In both cases, it would correspond to
the emission of a soft gluon by a particle with a virtuality of
orderm2 or higher, and this process is always suppressed by
powers of v. In summary, to obtain a NLO result, we only
need to consider the following formula:

dσγ
�þN→HQþN
T;L

dt

¼ j R dλ
4π ϕ

qq̄j2
16π

����
Z

d2r⊥
Z

1

0

dz
4π

ððC0
qq̄←qq̄Þ�Ψqq̄

γ� σqq̄

þ ðC0
qq̄g←qq̄Þ�Ψqq̄g

γ� σqq̄gÞ
����
2

: ð21Þ

Here, we have neglected gradient corrections [higher
values of k, k0 in Eq. (19)], since in the strict weak coupling
power counting, valid for mv ≫ ΛQCD, the quark velocity
is v ∼ αsðmvÞ, and thus v2 ≪ αsðmÞ. It is worth keeping in
mind that for practical applications in the case of charmo-
nium it might happen that numerically v2 can be compa-
rable to αsðmÞ, making the gradient corrections important.
Nevertheless, it is always true that the NLO radiative
corrections are bigger or of the order of the first corrections
due to the velocity expansion and, therefore, a requisite of
any improvement over the LO result.
The power counting discussed here is, to our knowledge,

not clearly expressed in the literature, where typically only
the LO limit is considered. Thus, Eq. (21) is the first main
result of this paper. To make this statement quantitative,

we will next proceed to calculate at NLO the coefficient
functions C0

qq̄←qq̄ and C0
qq̄g←qq̄. We will then show that the

cross section formula (21) gives finite results for any σqq̄
and σqq̄g that fulfill B-JIMWLK evolution. However, it is
also interesting to discuss the relation with collinear
factorization [28,44] that can be used when Q is larger
than any other scale in the problem. In that formalism,
the cross section can be understood as the convolution of a
hard function with the light-cone distribution amplitude
(LCDA), which in the light-cone gauge corresponds to the
light-cone wave function in the limit r⊥ → 0. The LCDA
must fulfill the ERBL evolution [27,28]. In Refs. [29–31],
the LCDA and ERBL evolution were studied within the
formalism of NRQCD. We are going to check that LCDA
that we can obtain from our light-cone wave function
fulfills ERBL evolution.

III. WAVE FUNCTION OF HEAVY QUARKONIUM

The two body part of the wave function of quarkonium
can be determined using the Bethe-Salpeter equation. In the
nonrelativistic limit, the relation between the light-cone
wave function and the wave function that can be obtained
in a potential model was studied in Ref. [45]. Here, we use
this result as a starting point. Following Ref. [21], we use
the convection that the light-cone wave function is nor-
malized such that

X
hh̄

Z
d2r⊥

Z
1

0

dz
4π

jϕhh̄ðz; r⊥Þj2 ¼ 1; ð22Þ

where in this formula we have written explicitly the sum
over polarizations. We are going now to analyze in more
detail the LO light-cone wave function of a vector meson.
Following Ref. [45], we get in the spinor matrix space
(instead of helicity space) wave function

ϕμ
abðz; r⊥Þ ¼ λϕ̃ðz; r⊥Þ

�
1þ =v
2

γμ
1 − =v
2

�
ab
; ð23Þ

(a) (b)

FIG. 2. Comparison between how the degrees of freedom are separated in NRQCD and in the dipole model for the particular case in
which the heavy quark pair emits a soft gluon before crossing the target. (a) In NRQCD, degrees of freedom are separated according to
their virtuality. In this picture, red particles have a virtuality larger than m2v2 (we are assuming, like in the rest of the text, that
Qs ≫ mv), and their influence would be encoded in the hard coefficient. The rest of the particles are represented in blue and will
influence the NRQCD matrix elements. (b) In the dipole model, degrees of freedom are separated according to time. Particles before
crossing the target belong to the wave function of the photon, and we represent them here in red, while particles after the target are
encoded in the wave function of quarkonium and are colored blue. The method that we are implementing in this manuscript combines
the two schemes by separating relativistic from nonrelativistic degrees of freedom in the wave function of quarkonium.
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where ϕ̃ is a function normalized as it is usually done in the
context of potential models

Z
d3xjϕ̃ðxÞj2 ¼ 1; ð24Þ

and λ is a constant that we are going to fix such that Eq. (22)
follows from Eq. (24). We can transform the last expression
to light-cone helicity space using the prescription in
Ref. [28], obtaining

ϕμ
hh̄
ðz; r⊥Þ ¼ −

λϕ̃ðz; r⊥Þ
8m2

ūðmv; hÞγμvðmv; h̄Þ: ð25Þ

The normalization condition then imposes that λ¼
ffiffiffiffiffiffiffiffiffiffiffi
32m3

p
,

so we finally obtain for the longitudinal component

ϕ3
hh̄
ðz; r⊥Þ ¼ −

ffiffiffiffiffiffiffi
2m

p
ϕ̃ðz; r⊥Þδh;−h̄; ð26Þ

while for the transverse component, we get

ϕi
hh̄
ðz; r⊥Þ ¼

ffiffiffiffiffiffiffi
2m

p
ϕ̃ðz; r⊥Þδhh̄ðδi1ð−1Þ1−h2 − iδi2Þ: ð27Þ

The previous functions fulfill the Bethe-Salpeter equation
represented in Fig. 3 which can equivalently be written as a
Schrödinger equation [45].

Now, we want to go beyond the nonrelativistic approx-
imations and consider the influence of relativistic quarks
and gluons with an energy of the order of the heavy quark
mass. We can differentiate three cases:
(1) Components of the wave function that correspond to

the probability amplitude of having a relativistic
particle inside the quarkonium state.

(2) Contributions (from relativistic particles in loops)
resulting in a wave function renormalization of a
nonrelativistic particle of which the probability am-
plitude to be in a quarkonium state is considered. An
example of such a contribution is shown in Fig. 4.

(3) Contributions that can be encoded as a correction to
the kernel K in Fig. 3. An example is shown in Fig. 5.

We will not discuss contributions of type 3. Their effect can
be encoded in a redefinition of the potential (or equiv-
alently, the kernel in the Bethe-Salpeter equation). Hence,
in the case of production and decay processes, this
information is hidden in the value of the nonrelativistic
wave function at the origin. Contributions of type 2 are
important, but they just renormalize multiplicatively the
nonrelativistic wave function by a constant equal to the
wave function renormalization.3 At leading order, they
correspond to the diagram in Fig. 4, which we compute in
Appendix A, giving

Z ¼ 1þ δZ þOðα2sÞ; ð28Þ

δZ ¼ −
αsCF

2π

�
1

D − 4
ð4 log x0 þ 3Þ

þ 2 log x0

�
log

�
m2

4πμ2

�
þ 1þ log x0

�

þ ð4 log x0 þ 3Þ γE
2
þ 3

2
log

�
m2

4πμ2

�
− 2

�
: ð29Þ

In this last expression, we have regulated transverse
momentum in dimensional regularization such that the
dimensions of the transverse space is D − 2. The þ-
component of the momentum has been regulated using

= K

FIG. 3. Bethe-Salpeter equation that gives the nonrelativistic
wave function. In this picture, all particles are nonrelativistic;
therefore, the kernel K is just the Green’s function of the
scattering of two nonrelativistic heavy quarks.

FIG. 4. Example of a contribution that can be encoded in the
wave function renormalization of a nonrelativistic quark. We use
the same color code as in part a of Fig. 2.

FIG. 5. Example of a contribution that can be encoded as a
correction to the kernel.

3Exterior heavy quark lines in the Bethe-Salpeter equation are
multiplied by

ffiffiffiffi
Z

p
. Since there are two of them, the overall factor

is Z.
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an infrared cutoff x0 in the momentum fraction of the gluon
(with respect to the initial quark). This is a similar
regularization scheme as used in the NLO light cone
perturbation theory calculations in Refs. [15–17]. The
wave function renormalization that we obtained is similar
to the one presented in Ref. [46] but not exactly equal.
However, our results agree on the double-logarithm
contribution.
Contributions of type 1 can be computed by considering

diagrams in which all relativistic particles annihilate to
form nonrelativistic ones. They will be proportional to the
nonrelativistic wave function at the origin. The reason for

this simple structure is that in diagrams in which only
relativistic particles are involved the only energy scale that
appears ism. Since no momenta are parametrically of order
mv or mv2, there are no diagrams enhanced by inverse
powers of the velocity v, which would require a resumma-
tion. Furthermore, since all relativistic processes are short
distance processes from the point of view of the non-
relativistic wave function, it is a good approximation (up to
additional powers of v) to consider that the nonrelativistic
particles are created at the same point. In summary,
contributions of types 1 and 2 will be encoded in the
functions Ck

n←m that were introduced in the previous
sections. The difference is that, while contributions of type
2 give rise to corrections that are just constants, contribu-
tions of type 1 will have a nontrivial dependence on r⊥ and
z. On the other hand, contributions of type 3 will be
encoded in the nonrelativistic wave function.
For the computation at hand, we are interested in the

components of the light-cone wave function in which we
have two relativistic quarks or a relativistic quark, a
nonrelativistic one, and a hard gluon. Let us focus first
on the former case. Its LO contribution is represented by
the diagram in Fig. 6. Details of the computation will be
given in Appendix B; the result from this contribution gives

fΨqq̄
HQgiλ1λ2ðz; p⊥Þ

���
Fig:6

¼ 4g2CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

p2⊥ þ 4m2ðz − 1
2
Þ2
�
dμνðp̂Þðθðz − 1

2
Þð1 − zÞ þ θð1

2
− zÞzÞ

p2⊥ þ 4m2ðz − 1
2
Þ2 þ n̄μn̄ν

4m2ðz − 1
2
Þ2
�

×
X
λ0
1
;λ0

2

½ūðp̂Q; λ1Þγμuðmv; λ01Þ�
Z

dλ
4π

ϕi
qq̄ðλ; 0Þ½v̄ðmv; λ02Þγνvðp̂Q̄; λ2Þ�; ð30Þ

where p is the momentum exchanged by the gluon and the light cone–gauge gluon polarization sum is

dμνðqÞ ¼ gμν −
n̄μqν þ qμn̄ν

n̄ · q
¼ −

X
λG

ϵμðq; λGÞϵνðq; λGÞ: ð31Þ

Note also that the function ϕi
qq̄ðλ; 0Þ has to be understood as ϕi

qq̄ðλ; r⊥ ¼ 0Þ. For future manipulations, it might be useful
to write this result in coordinate space. To do this, we make use of the formulas in Appendix C to rewrite

ūðp̂Q; λ1Þ=ϵuðmv; λ01Þ ¼
pi⊥ϵ

j
⊥

2
ffiffiffi
2

p
mzðz − 1

2
Þ ūðp̂Q; λ1Þ=̄n

��
zþ 1

2

�
δij þ z − 1

2

2
½γi⊥; γj⊥�

�
uðmv; λ01Þ þ

z − 1
2ffiffiffi

2
p

z
ūðp̂Q; λ1Þ=ϵ⊥=̄nuðmv; λ01Þ;

ð32Þ

and

v̄ðmv; λ02Þ=ϵvðp̂Q̄; λ2Þ ¼
pi⊥ϵ

j
⊥

2
ffiffiffi
2

p
mð1 − zÞðz − 1

2
Þ v̄ðmv; λ02Þ=̄n

��
3

2
− z

�
δij þ z − 1

2

2
½γi⊥; γj⊥�

�
vðp̂Q̄; λ2Þ

−
z − 1

2ffiffiffi
2

p ð1 − zÞ v̄ðmv; λ02Þ=ϵ⊥=̄nvðp̂Q̄; λ2Þ: ð33Þ

Using the formulas of Appendix D and the expressions for the spinor matrix elements in Appendix E, it is possible to find
the result in coordinate space,

=

FIG. 6. LO contribution to the component of the wave function
with two relativistic heavy quarks.
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fΨqq̄
HQgiλ1λ2ðz; r⊥Þ

���
Fig:6

¼ 2g2CFzð1 − zÞ
πðz − 1

2
Þ2

�
K0ðτÞ −

ðzþ 1
2
Þð3

2
− zÞ

2zð1 − zÞ
�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

��
K0ðτÞ −

τ

2
K1ðτÞ

��

×
Z

dλ
4π

fϕi
qq̄ðλ; 0Þgλ1;λ2 −

g2CF

π

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�
K0ðτÞð−1Þ

2−λ1−λ2
2

×

�Z
dλ
4π

ϕi
qq̄ðλ; 0Þ

	
λ1;λ2

þ g2CFðz − 1
2
Þmr⊥

π

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�
K1ðτÞ

× ð−1Þ2−λ1−λ22

�Z
dλ
4π

ϕi
qq̄ðλ; 0Þ

	
λ1;λ2

−
ig2CF

2ðz − 1
2
Þπ

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�
τK0ðτÞ

×

��
zþ 1

2

�
− ð−1Þ2−λ1−λ22

�
z −

1

2

��
×

�Z
dλ
4π

ϕi
qq̄ðλ; 0Þ

	
λ1;−λ2

rj⊥
r⊥

ðð−1Þ1−λ22 δj1 − iδj2Þ

þ ig2CF

2ðz − 1
2
Þπ

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�
τK0ðτÞ

��
3

2
− z

�
þ ð−1Þ2−λ1−λ22

�
z −

1

2

��

×
�Z

dλ
4π

ϕi
qq̄ðλ; 0Þ

	
−λ1;λ2

rj⊥
r⊥

ðð−1Þ1−λ12 δj1 − iδj2Þ þ g2CFðz − 1
2
Þmr⊥

π

×

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�
K1ðτÞ × ðð−1Þ2−λ1−λ22 − 1Þ

�Z
dλ
4π

ϕi
qq̄ðλ; 0Þ

	
−λ1;−λ2

; ð34Þ

where τ ¼ 2mðz − 1
2
Þr⊥.

The general expression (34) can be further simplified if we distinguish the cases of longitudinal and transverse
polarization. For the longitudinal polarization state, we obtain

fΨqq̄
HQg3λ1λ2ðz; r⊥Þ

���
Fig:6

¼ −
2

ffiffiffiffiffiffiffi
2m

p
g2CFzð1 − zÞδλ1;−λ2
πðz − 1

2
Þ

�
K0ðτÞ þ

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�

×

�ðz − 1
2
Þ2 − 1

2

zð1 − zÞ
�
K0ðτÞ −

τ

2
K1ðτÞ

�
−

ðz − 1
2
Þ2

2zð1 − zÞ τK1ðτÞ
�	Z

dλ
4π

ϕ̃qq̄ðλ; 0Þ: ð35Þ

The one-loop wave function for the transverse polarization state is

fΨqq̄
HQgiλ1λ2ðz; r⊥Þ

���
Fig:6

¼ 2g2CFzð1 − zÞ
πðz − 1

2
Þ2

�
K0ðτÞ −

ðθðz − 1
2
Þð1 − zÞ þ θð1

2
− zÞzÞ

2zð1 − zÞ
�
K0ðτÞ −

τ

2
K1ðτÞ

��

×
ffiffiffiffiffiffiffi
2m

p
δλ1;λ2ðδi1ð−1Þ

1−λ1
2 − iδi2Þ

Z
dλ
4π

ϕ̃qq̄ðλ; 0Þ

þ i2g2CFτK0ðτÞ
π

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�

× δλ1;−λ2
rj

r

�
δij þ ið−1Þ1−λ12 ϵij

2ðz − 1
2
Þ

� ffiffiffiffiffiffiffi
2m

p Z
dλ
4π

ϕ̃qq̄ðλ; 0Þ ð36Þ

Combining the results of Eqs. (29) and (30), we obtain that

C0
qq̄←qq̄ðz;p⊥; λ1; λ2; λ01; λ02Þ ¼ 4πδ

�
z −

1

2

�
ð1þ δZÞδλ1λ01δλ2λ02

þ 4g2CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

p2⊥ þ 4m2ðz − 1
2
Þ2
�
dμνðp̂Þðθðz − 1

2
Þð1 − zÞ þ θð1

2
− zÞzÞ

p2⊥ þ 4m2ðz − 1
2
Þ2 þ n̄μn̄ν

4m2ðz − 1
2
Þ2
�

×
X
λ0
1
;λ0

2

½ūðp̂Q; λ1Þγμuðmv; λ01Þ�½v̄ðmv; λ02Þγνvðp̂Q̄; λ2Þ� þOðα2sÞ: ð37Þ
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This is the first major result of this section. An explicit expression for the structures in (37) in coordinate space and for the
meson polarization states can be easily obtained using (35) and (36). The result (37) represents one of the two NLO
corrections to the heavy quarkonium wave function, needed for the NLO calculation of exclusive quarkonium production.
In the nonrelativistic limit, the polarization of the meson is reflected only in the spin state of the quarks, and the spatial

part of the wave function becomes rotationally symmetric. We can utilize this simplification and integrate the wave function
over the polar angle, which results in simpler expressions. The general azimuthally symmetric part of the wave function is

Z
dθrfΨqq̄

HQgiλ1λ2ðz; r⊥Þ
����
Fig:6

¼ g2CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

m2ðz − 1
2
Þ2

�
K0ðτÞ −

�
zþ 1

2

��
3
2
− z

�

2zð1 − zÞ
�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

��
K0ðτÞ −

τ

2
K1ðτÞ

��

×
X
λ0
1
;λ0

2

½ūðp̂Q; λ1Þ=̄nuðmv; λ01Þ�
Z

dλ
4π

ϕi
qq̄ðλ; 0Þ½v̄ðmv; λ02Þ=̄nvðp̂Q̄; λ2Þ�

þ g2CF

16m2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

��
K0ðτÞ −

τ

2
K1ðτÞ

�

×
X
λ0
1
;λ0

2

½ūðp̂Q; λ1Þ=̄n½γi⊥; γj⊥�uðmv; λ01Þ�
Z

dλ
4π

ϕi
qq̄ðλ; 0Þ½v̄ðmv; λ02Þ½γj⊥; γi⊥�=̄nvðp̂Q̄; λ2Þ�

þ g2CFðz − 1
2
Þr⊥

2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�
K1ðτÞ

×
X
λ0
1
;λ0

2

½ūðp̂Q; λ1Þγi⊥=̄nuðmv; λ01Þ�
Z

dλ
4π

ϕi
qq̄ðλ; 0Þ½v̄ðmv; λ02Þγi⊥=̄nvðp̂Q̄; λ2Þ�: ð38Þ

Decomposing this into meson polarization states, we get for the longitudinal polarization
Z

dθrfΨqq̄
HQg3λ1λ2ðz; r⊥Þ

����
Fig:6

¼ 4g2CFzð1 − zÞ
ðz − 1

2
Þ2 fK0ðτÞ þ

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�

×

�ðz − 1
2
Þ2 − 1

2

zð1 − zÞ
�
K0ðτÞ −

τ

2
K1ðτÞ

�
−

ðz − 1
2
Þ2

2zð1 − zÞ τK1ðτÞ
�	�Z

dλ
4π

ϕ3
qq̄ðλ; 0Þ

	
λ1;λ2

; ð39Þ

while for the transverse case, we obtain

Z
dθrfΨqq̄

HQgiλ1λ2ðz; r⊥Þ
����
Fig:6

¼ 4g2CFzð1 − zÞ
ðz − 1

2
Þ2

�
K0ðτÞ −

ðθðz − 1
2
Þð1 − zÞ þ θð1

2
− zÞzÞ

2zð1 − zÞ
�
K0ðτÞ −

τ

2
K1ðτÞ

�	

×

�Z
dλ
4π

ϕi
qq̄ðλ; 0Þ

	
λ1;λ2

: ð40Þ

It is also possible to write a compact expression in coordinate space for the polar angle average of the coefficients
C0
qq̄←qq̄ðz;p⊥; λ1; λ2; λ01; λ02Þ. For the case of longitudinal polarization, the result is

Z
dθrC0

qq̄←qq̄ðz; r⊥; λ1; λ2; λ01; λ02Þlong ¼ 8π2δ

�
z −

1

2

�
ð1þ δZÞδλ1λ01δλ2λ02

þ 4g2CFzð1 − zÞ
ðz − 1

2
Þ2 δλ1;λ01δλ2;λ02

�
K0ðτÞ þ

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�

×

�ðz − 1
2
Þ2 − 1

2

zð1 − zÞ
�
K0ðτÞ −

τ

2
K1ðτÞ

�
−

ðz − 1
2
Þ2

2zð1 − zÞ τK1ðτÞ
�	

; ð41Þ

and for the transverse polarization,
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Z
dθrC0

qq̄←qq̄ðz; r⊥; λ1; λ2; λ01; λ02Þtrans ¼ 8π2δ

�
z −

1

2

�
ð1þ δZÞδλ1λ01δλ2λ02 þ

4g2CFzð1 − zÞδλ1;λ01δλ2;λ02
ðz − 1

2
Þ2

×
�
K0ðτÞ −

ðθðz − 1
2
Þð1 − zÞ þ θð1

2
− zÞzÞ

2zð1 − zÞ
�
K0ðτÞ −

τ

2
K1ðτÞ

��
: ð42Þ

Now, let us move to the second contribution, where we have a relativistic quark, a nonrelativistic one, and a hard gluon.
This is represented at leading order in the diagram of Fig. 7. We need to introduce some notation in order to write the result.
The longitudinal momentum fractions of the relativistic quark, the gluon, and the nonrelativistic antiquark are respectively
zRQ ¼ 1−x

2
þ λ, zG ¼ x

2
, and zQ̄ ¼ 1

2
− λ. From the nonrelativistic nature of the “spectator” antiquark, it follows that λ ≪ 1.

We shall consequently not write out the integration limits for λ, since it is understood to be dominated by a short interval
around the origin. The transverse momenta are respectively P⊥;RQ ¼ p⊥

2
− q⊥, P⊥;G ¼ p⊥

2
þ q⊥, and P⊥;Q̄ ¼ −p⊥, where

again for the nonrelativistic antiquark p⊥ ≪ m. Using this, we get

Z
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ð2πÞD−2 fΨqq̄g
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ūðp̂RQ; λRQÞ=ϵ�ðp̂G; λGÞuðmv; λQÞ
Z

dλ
4π
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ð43Þ

or equivalently

Z
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In order to write the result in coordinate space, we define r⊥ as the Fourier conjugate of the nonrelativistic momentum p⊥
and l⊥ as the one of the relativistic one q⊥, leading to

Z
dλ
4π

fΨqq̄g
HQgiλRQ;λG;λQ̄ðx; l⊥; λ; r⊥ ¼ 0Þ
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ūðp̂RQ; λRQÞ=ϵ�⊥ðλGÞ=̄nuðmv; λQÞ
Z

dλ
4π

ϕi
qq̄ðλ; 0Þ:
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It is straightforward to obtain C0
qq̄g←qq̄ from the previous results as

C0
qq̄g←qq̄ðx; l⊥; λ; r⊥ ¼ 0; λ1; λG; λ2; λ01; λ

0
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¼ −
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2
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MIGUEL ÁNGEL ESCOBEDO and TUOMAS LAPPI PHYS. REV. D 101, 034030 (2020)

034030-10



A cross-check of the results of this section can be
obtained by checking that the normalization of the light-
cone wave function is not changed by radiative corrections.
To order αs, this is ensured if the square of the diagram in
Fig. 4 cancels with the square of the diagram in Fig. 7. An
easy way to check this is to start from Eq. (43); after doing
the square and performing the trace over gamma matrices,
one immediately obtains an equation compatible with
(3.28) in Ref. [46], which is equal to −δZ.

IV. LIGHT-CONE DISTRIBUTION AMPLITUDES

In the cases in which the virtuality of the photon is much
larger than other dimensionful scales in the problem, in
particular the mass of the heavy quark, one can use collinear
factorization [28,44]. The information about the bound state
in this formalism is encoded in the light-cone distribution
amplitude (DA). This coincides with the light-cone wave
function in the limit in which the transverse radius r⊥ goes to
zero. This object was already studied in Refs. [29–31] using
the nonrelativistic expansion (see also Ref. [47]); here, we
provide an independent computation in light-cone gauge.
Naively, one would expect that one can obtain the

light-cone distribution amplitude trivially making the limit
r⊥ → 0 in the results in the previous section. This is not so
because taking the limit introduces an ultraviolet divergence
that needs to be regularized. This can be done in dimensional
regularization using the following prescription:

lim
r⊥→0

fðz; r⊥Þ ¼
Z

dD−2p⊥
ð2πÞD−2 fðz;p⊥Þ: ð47Þ

Applying this method to Eq. (30), one obtains for the
longitudinal polarization
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���
Fig:6

¼−
g2CF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1− zÞp

2πm2ðz− 1
2
Þ2

��
1

D−4
þ1

2
log

�
m2ðz− 1

2
Þ2

πμ2

�
þ γE

2

��
1þ

�
θ

�
z−

1

2

�
ð1− zÞþθ

�
1

2
− z

�
z
�ðD−2Þðz− 1

2
Þ2−1

2zð1−zÞ
�

þðθðz− 1
2
Þð1− zÞþθð1

2
− zÞzÞ

4zð1− zÞ
�
2ðD−2Þ

�
z−

1

2

�
2

−1

��X
λ0
1
;λ0

2
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and for the transverse one

fΨqq̄
HQgiλ1λ2ðz; r⊥ ¼ 0Þ

���
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We now define the light-cone distribution amplitude as

DiðzÞ ¼ fΨqq̄
HQgiλ1λ2ðz; r⊥ ¼ 0Þ: ð50Þ

Using the previous results, the light-cone distribution amplitude DðzÞ can be written as

DiðzÞ ¼ 4πð1þ δZÞδ
�
z −

1

2

�Z
dλ
4π

ϕi
qq̄ðλ; 0Þ þ fΨqq̄

HQgiλ1λ2ðz; r⊥ ¼ 0Þj
Fig:6

: ð51Þ

=

FIG. 7. LO contribution to the component of the wave function
with one relativistic heavy quark, one nonrelativistic heavy
antiquark, and a hard gluon.
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For the longitudinal polarization, this is

D3ðzÞ ¼ 4πð1þ δZÞδ
�
z −

1
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��Z
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while for the transverse one, the DA is

DiðzÞ ¼ 4πð1þ δZÞδ
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z −

1

2
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The first lines in Eqs. (52) and (53) are the leading-order bare
amplitude (apart from the δZ). The NLO corrections involve
a divergence proportional to 1=ðD − 4Þ from the transverse
integrals and the associated logarithm of the regularization
scale μ. In the usual fashion, these divergences must be
absorbed into the bare distribution, leaving the renormalized
distribution dependent on the scale μ. This dependence is
related to the ERBL evolution equation [28,44]:

∂DiðzÞ
∂ logμ2 ¼

αsCF

2π

Z
1

0

dz0KL;Tðz; z0ÞDiðz0Þ: ð54Þ

To check that we recover this equation in the standard
form, we can take the expressions for the kernels in Eq. (54)
from the literature and compute the rhs. The comparison of
this result with the coefficient of the logarithm of μ in
Eqs. (52) and (53) then provides a check of our calculation
of the wave function.
The ERBL kernel for the longitudinal polarization is

given by

KLðz; z0Þ ¼ θðz − z0Þ 1 − z
1 − z0

�
1þ

�
1

z − z0

�
þ

�

þ θðz0 − zÞ z
z0

�
1þ

�
1

z0 − z

�
þ

�
þ 3

2
δðz − z0Þ;

ð55Þ

while for transverse one, it is

KTðz; z0Þ ¼ θðz − z0Þ 1 − z
1 − z0

�
1

z − z0

�
þ

þ θðz0 − zÞ z
z0

�
1
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�
þ
þ 3

2
δðz − z0Þ: ð56Þ

The ½�þ notation means that

Z
dzfðzÞ

�
1

z − z0

�
þ
¼

Z
dz

fðzÞ − fðz0Þ
z − z0

: ð57Þ

Note that the ½�þ prescription can be implemented with a
cutoff, as we did when computing δZ. For example,

Z
dzθ

�
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2

�
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�
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2

�
logx0:

ð58Þ

We can then check that the light-cone distribution
amplitudes that we have computed fulfill the ERBL

equation by computing explicitly ∂DiðzÞ
∂ log μ2. In the case of

longitudinal polarization,

∂D3ðzÞ
∂ log μ2 ¼ 2αsCF
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while for the transverse one,

∂DiðzÞ
∂ log μ2 ¼ 2αsCF
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Thus, we have verified that we recover a standard ERBL
evolution of the light-cone wave function. This is a check
of our NLO wave function for the quark-antiquark Fock
state in the short distance limit that is probed in a high
virtuality (large Q2) process. We emphasize that the quark
momentum scale (or coordinate separation) in the whole
wave function (37) is controlled by the quark mass, and
this full result can be used more generally than just in the
large Q2 limit.

V. RADIATIVE CORRECTIONS TO S-WAVE
QUARKONIUM DECAY

The decay width of quarkonia to leptons offers an
important constraint on the nonrelativistic wave function.
In this section, we will see how the decay width is related to
the light-cone wave function. We will see that our regu-
larization involving a cutoff in the pþ momentum modifies
the relation between the nonrelativistic wave function and
the decay width compared to a usual rotationally invariant
nonrelativistic potential model calculation.
The decay of quarkonium in a S-wave state into leptons

is expressed in terms of the meson decay constant, which
is defined as the matrix element of the electromagnetic
current operator with the vector meson state [48]. The

current operator is local. As a consequence, at leading
order, the decay constant is related to the value of the wave
function at the origin. This is true both for the light-cone
wave function and the nonrelativistic wave function.
Beyond leading order, the relation between the decay
constant and the nonrelativistic wave function receives a
NLO correction [26]. In light-cone perturbation theory, on
the other hand, the equivalent diagrams become corrections
to the light-cone wave function itself, not to the relation
with the decay constant. Equating the decay constants in
terms of the light cone and nonrelativistic wave functions
yields the equationZ

1

0

dz
X
n

Ψn
HQðz;0⊥Þ¼

�
1−

2αsCF

π

�Z
dλϕðλ;0Þ; ð61Þ

where the sum in n is over all the Fock state components
that contribute to the wave function at the origin. In the case
of longitudinal polarization, the only component at NLO
is n ¼ qq̄. For the transverse polarization, there is also a
contribution where the overlap between the electromag-
netic current operator and the vector meson state receives a
correction from the n ¼ qq̄g Fock state, mediated by an
instantaneous interaction. The different one-loop correc-
tions are shown diagrammatically in Fig. 8.

FIG. 8. Diagrams contributing to the overlap between the vector meson state and the electromagnetic current (photon). The color code
is the same as in previous diagrams. In the diagram in the second line, the vertical quark line represents an instantaneous interaction in
light-cone perturbation theory. This diagram vanishes for longitudinal polarization.
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In the following, we shall concentrate, for simplicity, on
the longitudinal polarization state. In this case, we have, by
construction,

Z
1

0

dzΨqq̄
HQðz; 0⊥Þ ¼

Z
1

0

dzDðzÞ: ð62Þ

Therefore, we can do the computation using the light-cone
distribution amplitude that we computed in the previous
section. It is useful to note that

Z
1

0

dzKLðz; 1=2Þ ¼ 0: ð63Þ

Using this, in Eq. (52), we get

Z
1

0

dzΨqq̄
HQðz; 0⊥Þ ¼

�
1þ αsCF

π

�
1

x0
− 2

��Z
dλϕðλ; 0Þ:

ð64Þ

We see that, apart from a finite piece that coincides with the
result in Ref. [26], we also get a divergent term. Its origin is
the Coulomb singularity, which would not be present at this
order in dimensional regularization.
Degrees of freedom with transverse momentum much

smaller than m and z − 1
2
close to zero should be included

only in ϕ. However, when we computed Eq. (34), we did
not include any mechanism to subtract them. Looking at
Eq. (30), we can see that the only scale that affects the

transverse momentum when computing Ψqq̄
HQðz; 0⊥Þ is

2mðz − 1
2
Þ. Then, because we are using dimensional regu-

larization in the p⊥ integration, if we choose a cutoff x0
much bigger than the nonrelativistic velocity around the
center of mass v, we can make sure of only taking into
account relativistic degrees of freedom. However,R
dλϕðλ; 0Þ will also depend on x0. The condition that

must be fulfilled is that the decay constant is independent of
the cutoff x0:

d
dx0

Z
1

0

dzΨqq̄
HQðz; 0⊥Þ

¼ −
αsCF

πx20

Z
dλϕðλ; 0Þ þ d

dx0

Z
dλϕðλ; 0Þ ¼ 0: ð65Þ

In order to compute how
R
dλϕðλ; 0Þ depends on the

cutoff, we can make use of Bethe-Salpeter equation
represented in Fig. 3, following the lines of the discussion
in Appendix B. Note that from the nonrelativistic point of
view z ∼ x0 or 1 − z ∼ x0 represents the ultraviolet since
the quark relative longitudinal momentum is large.
Therefore, we can substitute the kernel by a one gluon
exchange between the quark and the antiquark and the
nonrelativistic part of the wave function renormalization.
Let us begin with the computation of the one gluon
exchange part of the rhs of the Bethe-Salpeter equation of
Fig. 3, that we name Ψqq̄

sub,

fΨqq̄
subgiðz; p⊥Þ ¼
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From this expression, we can obtain

fΨqq̄
subgiðz; r⊥ ¼ 0Þ ¼ g2CFð1 − 2jz − 1

2
jÞ

4πðz − 1
2
Þ2

Z
dλ
4π

ϕi
qq̄ðλ; 0Þ −

g2CF

πjz − 1
2
j
�

1

D − 4
þ 1

2
log

�
m2ðz − 1

2
Þ2

πμ2

�
þ γE

2

�Z
dλ
4π

ϕi
qq̄ðλ; 0Þ;

ð67Þ

and therefore

d
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dzfΨqq̄

subgiðz; x⊥ ¼ 0Þ ¼ 4αsCF
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The nonrelativistic part of the wave function renormalization is computed in Appendix A. Here, we use that

d
dx0

δZNR ¼ αsCF

πx0
ð1þ 2 log x0Þ þ

2αsCF

πx0

�
1

D − 4
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2
log

�
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4πμ2

�
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2

�
: ð69Þ

Putting the two one-loop corrections pieces together, we get
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d
dx0

Z
dλϕi

qq̄ðλ; 0Þ ¼
d
dx0

δZNR

Z
dλϕi

qq̄ðλ; 0Þ

þ d
dx0

Z
dzfΨqq̄

subgiðz; x⊥ ¼ 0Þ

¼ αsCF

πx20

Z
dλϕi

qq̄ðλ; 0Þ: ð70Þ

We can then see that Eq. (65) is fulfilled and the
dependence on the cutoff x0 cancels. Our regularization
scheme with a cutoff x0 is not the same as conventional
rotationally invariant dimensional regularization. Cutoff-
dependent, not directly measurable, quantities do not need
to be the same in both schemes. The nonrelativistic wave
function at the origin is such a quantity; and indeed the
relation between our wave function and the dimensionally
reduced one of e.g., Ref. [26] is

Z
dλϕi

qq̄ðλ; 0Þ ¼
�
1 −

αsCF

x0

�Z
dλfϕi

qq̄ðλ; 0ÞgDR; ð71Þ

where the subscript DR means that this would be the result
that we would have obtained if we had regulated all
divergences using dimensional regularization. Then, the
light-cone wave function at the origin, i.e., the vector
meson decay constant, is related to the regularized non-
relativistic wave function in the natural way,

Z
1

0

dzΨqq̄
HQðz; 0⊥Þ ¼

�
1 −

2αsCF

π

�Z
1

0

dλfϕi
qq̄ðλ; 0ÞgDR:

ð72Þ

In conclusion, we recover the result in Ref. [26] after
taking into account the different renormalization prescrip-
tion. To our knowledge, this is the first computation of this
relation (which can be directly related with the decay into
leptons) done in light-cone perturbation theory.
Finally, let us discuss a more phenomenological explan-

ation. We can use the experimental value of the decay into
electrons to obtain the wave function at the origin as a
function of x0,

X
h;h̄

����
Z

dλ
4π

ϕqq̄

����
2

¼ 3πmΓΨ→eþe−

Nce2fe
4

�
1þ 2αsCF

π

�
1

x0
− 2

��

þOðα2sÞ: ð73Þ

The formalism is consistent if we use the previous
formula to compute the relation of another observable with
the decay width into electrons, and we get a result that does
not depend on x0. In the following section, we are going to
see that this is indeed the case.

VI. EXCLUSIVE QUARKONIUM PRODUCTION

A. Leading order

In this section, we study the cancellation of divergences in
the photoproduction of the quarkonium with longitudinal
polarization at NLO. In particular, we will show that the
dependence on the dimensional regularization scale μ
cancels and that the dependence on the longitudinal momen-
tum cutoff x0 can be factorized into the B-JIMWLK
evolution of the target. To simplify the calculation, we
assume that Q ≫ m. This assumption does not modify
ultraviolet or collinear divergences and has the advantage
that we can use the same photon wave function that was used
when studying massless quarks. Thus, our results can to
some extent be seen as a reformulation of the result obtained
for light vector mesons in a somewhat different language
in Ref. [19].
The LO result is given by Eq. (15). The LO qq̄-

component of the photon wave function is [21]

Ψγðz;r⊥Þ¼eef
ffiffiffiffiffiffi
Nc

p
δh;−h̄2Qzð1−zÞK0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1−zÞp

Qr⊥Þ
2π

;

ð74Þ

where ef is the charge of the corresponding quark.
Regarding the cross section σqq̄, its specific form is model
dependent, and in general phenomenologically realistic
models do not allow for an analytical treatment. Instead, we
will use here the small r⊥ (dilute) limit

σqq̄ðz; r⊥Þ ∼
r2⊥σ0Q2

sðzÞ
4

: ð75Þ

In this paper, we are going to discuss in general the
structure of the divergences, in order to check the con-
sistency of the method, and we are going to apply the dilute
limit to get analytic results when possible.
Let us remind the reader of the LO result, which was

computed in Ref. [20]. This can be obtained by writing the
LO photon wave function in Eq. (15),

dσγ
�þN→HQþN
T;L

dt

����
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¼ e2e2fQ
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2
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2
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�����
2

:

ð76Þ

In the dilute limit, this becomes

dσγ
�þN→HQþN
T;L

dt

����
LO;dilute

¼ 4e2e2fσ
2
0Q

4
sNc

πQ6

����
X
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Z
dλ
4π

ϕqq̄
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2

:

ð77Þ

DIPOLE PICTURE AND THE NONRELATIVISTIC EXPANSION PHYS. REV. D 101, 034030 (2020)

034030-15



Using the relation between Qs and the gluon density
from [21]

σ0Q2
s ¼

4π2

Nc
αsðμ2Þxgðx; μ2Þ ð78Þ

and the relation between the quarkonium’s wave function at
the origin and its decay into electrons

ΓΨ→eþe− jLO ¼ Nce2fe
4

3πm

X
h;h̄

����
Z

dλ
4π

ϕqq̄

����
2

; ð79Þ

we get

dσγ
�þN→HQþN
T;L

dt

����
LO;dilute

¼96π3mα2sðμ2Þðxgðx;μ2ÞÞ2ΓΨ→eþe−

N2
cαQ6

;

ð80Þ

which agrees with the classic result from Ref. [24] (and is
four times the result found in Ref. [20]). Now, we move on
to discuss the different corrections that this process gets
at NLO, focusing on the longitudinal polarization state at
Q ≫ m where we can use results from the literature for
massless quarks. At NLO, the production process gets
contributions from both the qq̄ and the qq̄g Fock states. In
addition, we have to consider separately the corrections to
the vector meson and the photon light-cone wave functions,
although in the largeQ2 limit, they behave in a similar way.

B. NLO corrections to the qq̄-component
of the photon wave function

We take the correction to the photon wave function from
the recent computation [16]

Ψγðz; r⊥ÞjNLO ¼ Ψγðz; r⊥ÞjLOð1þ δZγðz; r⊥ÞÞ: ð81Þ

In our case, we are going to need the expression for z ¼ 1
2
,
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24
−
3

4

�
: ð82Þ

The effect of this correction on quarkonium production is the following:

dσγ
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: ð83Þ

In the dilute limit, this is

dσγ
�þN→HQþN
T;L

dt
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C. NLO corrections to the qq̄-component of the quarkonium wave function

In this subsection, we will compute one-loop corrections to the qq̄-component of the quarkonium wave function
in the hard scattering limit. We will first study the divergence structure in the general case and then perform the computation
in the dilute limit for the dipole-target scattering amplitude. Using Eq. (19), the contribution that we are studying in this
subsection is

dσγ
�þN→HQþN
T;L

dt

����
NLO;HQ

¼ j R dλ
4π ϕ

qq̄j2
8π

�Z
d2r⊥

Z
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dz
4π
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��Z
d2r0⊥ðΨγ�ÞLσqq̄

��
: ð85Þ
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First, we look at the dependence on μ. For this, we note that σqq̄ goes like r2⊥ in the small r⊥ region, while both C0
qq̄←qq̄

and ðΨγ�ÞL go like log r⊥. On the other hand, for large r⊥, both wave functions are exponentially suppressed. Therefore, we
conclude that the only dependence on μ comes from the wave function renormalization of the heavy quarks. Therefore,

d
dμ

dσγ
�þN→HQþN
T;L

dt

����
NLO;HQ

¼ e2e2fQ
2Nc

128π3
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�
Qr⊥
2

�
σqq̄

�
1

2
; r⊥

�����
2

: ð86Þ

Note that dδZdμ ¼ dδZγð12;r⊥Þ
dμ . This means that the dependence on μ of the wave functions of the photon and heavy quarkonium is

the same. This should not be surprising, since in the hard scattering limit both come from a perturbative one-gluon exchange
between the quarks.
Now, we focus on the dependence on x0. For the longitudinal polarization state where the wave function is azimuthally

symmetric, it is convenient to work again with the angularly integrated wave function. We first note that

Z
dθr

d
dx0

Z
dzfΨqq̄

HQg3λ1λ2ðz; r⊥ÞjFig:6 ¼ −
4αsCF

x20

�
1

2
− x0

�
log

�
mx0r⊥

2

�
þ γE þ 1

2

��Z
dλϕ3

qq̄ðλ; 0Þ: ð87Þ

Using this and computing dδZ
dx0

, we get

d
dx0

dσγ
�þN→HQþN
T;L

dt

����
NLO;HQ

¼ −
αsCFe2e2fQ

2Nc

128π4x20

����
X

h;h̄

Z
dλ
4π

ϕqq̄

����
2
����
Z

d2r⊥K0

�
Qr⊥
2

�
σqq̄

�
1

2
; r⊥

�����
2

þ e2e2fQ
2Nc

128π3

����
X

h;h̄

Z
dλ
4π

ϕqq̄

����
2
�Z

d2r⊥
dδZγð12 ; r⊥Þ

dx0
K0

�
Qr⊥
2

�
σqq̄

�
1

2
; r⊥

��

×

�Z
d2r0⊥K0

�
Qr0⊥
2

�
σqq̄

�
1

2
; r0⊥

���
: ð88Þ

The first term on the rhs will be canceled by the dependence of the nonrelativistic quarkonium wave function on x0,
cf. Eq. (65). The other terms have the same dependence on x0 as the contribution of the NLO corrections to the photon
wave function.
Now, we move to the dilute limit, in which we wish to obtain an analytic expression in the limit Q ≫ m. Note that this

implies that if Qr⊥ ∼ 1 then mr⊥ ≪ 1, while if mr⊥ ∼ 1, then the photon wave function is exponentially suppressed.
Therefore, we can use the quarkonium wave function in the mr⊥ ≪ 1 limit. As a starting point, we take Eq. (41),

Z
dθrC0

qq̄←qq̄ðz; r⊥; λ1; λ2; λ01; λ02Þlong
����
mr⊥≪1

¼ 8π2δ

�
z −

1

2

�
ð1þ δZÞδλ1λ01δλ2λ02 −

4g2CFzð1 − zÞδλ1;λ01δλ2;λ02
ðz − 1

2
Þ2

�
log

�
τ

2

�
þ γE

þ
�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

��ðz − 1
2
Þ2 − 1

2

zð1 − zÞ
�
log

�
τ

2

�
þ γE þ 1

2

�
þ ðz − 1

2
Þ2

2zð1 − zÞ
�	

: ð89Þ

It is convenient to separate this into r⊥-independent and r⊥-dependent pieces as

lim
r⊥→0

Z
dθrC0

qq̄←qq̄ðz; r⊥; λ1; λ2; λ01; λ02Þlong

¼ 8π2δ

�
z −

1

2

�
ð1þ δZÞδλ1λ01δλ2λ02 þ δCðzÞ − 4g2CFδλ1;λ01δλ2;λ02 log ðQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞ

p
r⊥Þ

×

�
θ

�
z −

1

2

�
ð1 − zÞ

�
1þ 1

z − 1
2

�
þ θ

�
1

2
− z

�
z

�
1þ 1

1
2
− z

��
; ð90Þ

where
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δCðzÞ ¼ −
4g2CFzð1 − zÞδλ1;λ01δλ2;λ02

ðz − 1
2
Þ2

�
log

�
mjz − 1

2
j

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp
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þ
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�
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2
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ð1 − zÞ þ θ

�
1

2
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�
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��ðz − 1
2
Þ2 − 1

2

zð1 − zÞ
�
log

�
mjz − 1

2
j

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

�
þ γE þ 1

2

�
þ ðz − 1

2
Þ2

2zð1 − zÞ
��

: ð91Þ

The final result for the qq̄-component of the vector meson wave function that we obtain is

dσγ
�þN→HQþN
T;L

dt

�����
NLO;HQ;dilute

¼ −
16CFαse2e2fσ

2
0Q

4
sNc

π2Q6

�
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�
1

D − 4
þ 1

2
log

�
Q2

4πμ2

�
þ γE

2
− 1 − log 2
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þ 3
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�
1
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þ 1

2
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�
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�
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�
−
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2
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2
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�
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�

þ π2
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−
1

2
log 2

�
log

�
m
Q

�
þ 1

������
X
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Z
dλ
4π

ϕqq̄

����
2

: ð92Þ

Note that the divergences of this part, both in μ and x0, are the same as in the photon wave function (84).

D. Contribution of the qq̄g Fock state

We now move to the qq̄g Fock state, which interacts with the target with the scattering amplitude σqq̄g. Note that the
NLO correction to the cross section is given by the interference of this NLO correction to the amplitude with the leading-
order amplitude that only involves a qq̄ state (and of course the complex conjugate). This contribution to the cross section is
given by

dσγ
�þN→HQþN
T;L

dt

�����
NLO;qq̄g

¼ j R dλ
4π ϕ

qq̄j2
8π

�Z
d2r⊥d2l⊥

Z
1

0

dz
4π

ðC0
qq̄g←qq̄Þ�ðΨqq̄g

γ� Þ
L
σqq̄g

��Z
d2r0⊥ðΨqq̄

γ� ÞLσqq̄
��

; ð93Þ

where r⊥ and l⊥ are defined as in Eq. (45), with r⊥ roughly interpreted as the large distance separating the nonrelativistic
antiquark from the system of a relativistic quark and gluon, which has a small size l⊥. These coordinate assignments are
demonstrated in Fig. 9. Since we are working in the hard scattering limit Q ≫ M, the wave function of the photon can be
taken from the massless quark calculation in Ref. [16], which using our notation and normalization and fixing the antiquark
to be nonrelativistic is

Ψqq̄g
γ� ¼ eefg

ffiffiffiffiffiffi
Nc

p
Q

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ϵA;j�λG

ūðp̂RQ;λRQÞTA=̄n

��
2 − x
2

�
δjm þ x

4
½γj; γm�

�
vðmv; λQ̄ÞImðaÞ

−
eefg

ffiffiffiffiffiffi
Nc

p
Qð1 − xÞ

m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp ϵA;j�λG

ūðp̂RQ;λRQÞTA=̄n

��
2þ x
2

�
γjm −

x
4
½γj; γm�

�
vðmv; λQ̄ÞImðbÞ; ð94Þ

where

FIG. 9. Transverse momentum, transverse coordinate, and longitudinal momentum fraction assignments for the qq̄g Fock state, and
the definitions of the coordinate separations r⊥; l⊥;u⊥ in terms of these.
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ImðaÞ ¼ ðμ2Þ2−D
2

Z
dD−2p⊥
ð2πÞD−2

Z
dD−2k⊥
ð2πÞD−2

km⊥e−ik⊥l⊥eip⊥ðr⊥þ1−2x
2
l⊥Þ

ðp2⊥ þ Q2

4
Þðk2⊥ þ 2xð1 − xÞðp2⊥ þ Q2

4
ÞÞ
; ð95Þ

and

ImðbÞ ¼ ðμ2Þ2−D
2

Z
dD−2p⊥
ð2πÞD−2

Z
dD−2k⊥
ð2πÞD−2

km⊥eik⊥ðr⊥−l⊥
2
Þeip⊥ð r⊥1þxþ 1þ2x

2ð1þxÞl⊥Þ

ðp2⊥ þ ð1−x2ÞQ2

4
Þðk2⊥ þ 2x

ð1−xÞð1þxÞ2 ðp2⊥ þ ð1−x2ÞQ2

4
ÞÞ
: ð96Þ

As in the inclusive DIS case [16,17], there are cancellations of divergences between the qq̄ and qq̄g states. To make these
manifest, it is useful to separate the contribution into two different terms, by adding and subtracting a term that involves a qq̄
scattering amplitude,

dσγ
�þN→HQþN
T;L

dt

������
NLO;qq̄g

¼ j R dλ
4π ϕ

qq̄j2
8π

�Z
d2r⊥d2l⊥

Z
1

0

dz
4π

ðC0
qq̄g←qq̄Þ�ðΨqq̄g

γ� Þ
L
ðσqq̄g − σqq̄Þ

��Z
d2r0⊥ðΨqq̄

γ� ÞLσqq̄
��

þ j R dλ
4π ϕ

qq̄j2
8π

�Z
d2r⊥d2l⊥

Z
1

0

dz
4π

ðC0
qq̄g←qq̄Þ�ðΨqq̄g

γ� Þ
L
σqq̄

��Z
d2r0⊥ðΨqq̄

γ� ÞLσqq̄
��

: ð97Þ

Note that the argument of σqq̄ is the separation between the quark and the antiquark, which is u⊥ ¼ r⊥ þ l⊥
2
for the qq̄g Fock

state wave function; see Fig. 9.
First, we discuss the possible μ dependence. Note that this is related with the limit l⊥ → 0. In this limit, σqq̄g − σqq̄ also

vanishes. Therefore, we only need to focus on the second line in Eq. (97). For small values of mxl⊥, using the formula
in Appendix D,

C0
qq̄g←qq̄ ∼ −

igð1 − x
2
Þli⊥ϵ�⊥A;jðλGÞ

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞp

ml2⊥

�
1

πl2⊥μ2

�D−4
2

Γ
�
D − 2

2

�X
λQ

ūðp̂RQ; λRQÞTA

�
δij −

x
4ð1 − x

2
Þ ½γ

i⊥; γ
j
⊥�
�
=̄nuðmv; λQÞ: ð98Þ

Regarding Ψqq̄g
γ� , we can approximate

ImðaÞ ¼ −
i2D−4lm⊥μ4−D

ð4πÞD−2
2 lD−2⊥

Γ
�
D − 2

2

�Z
dD−2p⊥
ð2πÞD−2

eip⊥ðu⊥−xl⊥Þ

ðp2⊥ þ Q2

4
Þ
; ð99Þ

and

ImðbÞ ¼ 0: ð100Þ

Note that this approximation keeps the correct small l⊥ behavior without introducing additional ultraviolet divergences.
Therefore, in this limit, we can write

ðC0
qq̄g←qq̄Þ�ðΨqq̄g

γ� Þ
L
¼ eefg2CF

ffiffiffiffiffiffi
Nc

p
Q

2π2l2⊥

�
1

πl2⊥μ2

�
D−4

�
Γ
�
D − 2

2

��
2 1

x

�
1 − xþ x2

2

�Z
dD−2p⊥
ð2πÞD−2

eip⊥ðu⊥−xl⊥Þ

ðp2⊥ þ Q2

4
Þ
: ð101Þ

Performing the integration over l⊥, we obtain

μ4−D
Z

dD−2l⊥ðC0
qq̄g←qq̄Þ�ðΨqq̄g

γ� Þ
L

¼ eefg2CF
ffiffiffiffiffiffi
Nc

p
Q

2π

�
x2

4πμ2

�D−4
2 Γð4−D

2
Þ

ΓðD − 3Þ
�
Γ
�
D − 2

2

��
2 1

x

�
1 − xþ x2

2

�Z
dD−2p⊥
ð2πÞD−2

pD−4⊥ eip⊥u⊥

ðp2⊥ þ Q2

4
Þ
: ð102Þ
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Note that, since we performed approximations valid in the limit l⊥ → 0, we can only claim at the moment to capture the
ultraviolet behavior, or in other words the μ dependence. This is captured by the following equation:

d
dμ

�
μ4−D

Z
dx
4π

Z
dD−2l⊥ðC0

qq̄g←qq̄Þ�ðΨqq̄g
γ� Þ

L

�
¼ −

eefαsCF
ffiffiffiffiffiffi
Nc

p
Q

2π2μ

�
log x0 þ

3

4

�
K0

�
r⊥Q
2

�
¼ −

dZ
dμ

Ψγ

�
1

2
; r⊥

�
: ð103Þ

This is required so that the μ dependence of the contribution from the qq̄g Fock state crossing the target shock will cancel
against the μ dependence of quark wave function renormalization, which is a contribution where only the qq̄ dipole crosses
the shock wave.
Now, we focus on the dependence on x0. In the x → x0 limit, we can write

Ψqq̄g
γ� ¼ eefg

ffiffiffiffiffiffiffiffi
2Nc

p
QδλRQ;−λQ̄ffiffiffi
x

p ϵA;j�λG
ðI jðaÞ − I jðbÞÞTA; ð104Þ

where

I jðaÞ − I jðbÞ ¼ ðμ2Þ2−D
2

Z
dD−2k⊥
ð2πÞD−2

kj⊥e−ik⊥l⊥ð1 − eik⊥u⊥Þ
k2⊥

Z
dD−2p⊥
ð2πÞD−2

eip⊥u⊥

ðp2⊥ þ Q2

4
Þ
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iΓðD−2

2
Þ

2π
D−2
2

�
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þ uj⊥ − lj⊥
ju⊥ − l⊥jD−2

�
ðμ2Þ2−D

2

Z
dD−2p⊥
ð2πÞD−2

eip⊥u⊥

ðp2⊥ þ Q2

4
Þ
: ð105Þ

Looking at the original expressions for I jðaÞ and I jðbÞ, we might wonder if by simplifying the pole in k⊥ we are modifying
the x0 dependence. However, note that for small x0 the integral is only sensitive to the exact value of the pole in the infrared.
The infrared limit of I jðaÞ cancels with that of I jðbÞ for x close to x0, and therefore this sensitivity is canceled out. In the
previous formula, this cancellation is given by the factor ð1 − eik⊥u⊥Þ.
Regarding C0

qq̄g←qq̄, in the x → x0 limit, we can approximate it by

C0
qq̄g←qq̄ ∼ −

igΓðD−2
2
Þϵ�⊥A;iðλGÞTAδλRQ;λQl

i⊥ffiffiffiffiffi
2x

p
π
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2 lD−2⊥

: ð106Þ

Therefore, we get coefficient for the qq̄g-component in the meson wave function as

ðC0
qq̄g←qq̄Þ�ðΨqq̄g

γ� Þ
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ffiffiffiffiffiffi
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2
; u⊥

�
:

Using these formulas we can compute the dependence on the cutoff x0 separately for the two parts of the
decomposition (97)

d
dx0

Z
1

x0

dx
4π

Z
dD−2u⊥

Z
dD−2l⊥ðC0

qq̄g←qq̄Þ�ðΨqq̄g
γ� Þ

L
ðσqq̄g − σqq̄Þ þ

d
dx0

Z
1
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dx
4π

Z
dD−2u⊥

Z
dD−2l⊥ðC0

qq̄g←qq̄Þ�ðΨqq̄g
γ� Þ

L
σqq̄:

ð107Þ

The first term gives
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−
αsCFμ

4−D

2πD−2x0
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�
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ð108Þ

Since the l⊥ integration introduces no divergences [recall that ðσqq̄g − σqq̄Þ → 0 when l⊥ → 0], we can take the exact limit
D ¼ 4. Then, we get

−
αsCF

2π2x0
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2
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�
; ð109Þ

where in the last equality we have used the B-JIMWLK equation [35–42]. The other contribution, depending only on the qq̄
amplitude, that was added and subtracted in the decomposition (97) becomes

−
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ð110Þ

Finally, we put all the pieces together. Note that until now we have only explicitly shown the computation in the case in
which the intermediate quark is relativistic and the antiquark is nonrelativistic. However, the opposite case also gives a
contribution, which is, due to symmetry considerations, exactly equal. Taking this into account, we get
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; ð111Þ

and
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: ð112Þ

E. Summary

In this subsection, we check that the sum of all the contributions to the cross section at NLO accuracy has the expected
dependence on the cutoff scales μ and x0. Let us first remind the reader that the leading-order cross section is finite and does
not depend on the dimensional regularization scale

d
dμ

dσγ
�þN→HQþN
T;L

dt

����
LO

¼ 0: ð113Þ
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Combining this with the scale dependence from the photon
wave function (83), the vector meson wave function (86),
and the one-loop correction to the wave function (111), we
see that the dependence on μ cancels

d
dμ

dσγ
�þN→HQþN
T;L

dt

����
LOþNLO

¼ 0: ð114Þ

The overall dependence on x0 must also cancel, when the
B-JIMWLK evolution of the target is taken into account.
The leading-order cross section depends on the cutoff x0
both through the x0-dependence of the dipole cross section
and of the nonrelativistic wave function [this resulted from
the fact that the decay width must be independent of x0;
see (65)]:

d
dx0

dσγ
�þN→HQþN
T;L

dt

�����
LO

¼ e2e2fQ
2Nc

128π

����
X

h;h̄

Z
dλ
4π

ϕqq̄

����
2
�Z

d2r⊥K0

�
Qr⊥
2

�
dσqq̄
x0

�
1

2
; r⊥

��

×

�Z
d2r0⊥K0

�
Qr0⊥
2

�
σqq̄

�
1

2
; r0⊥

���

þ αsCFe2e2fQ
2Nc

128π4x20

����
X

h;h̄

Z
dλ
4π

ϕqq̄

����
2
����
Z

d2r⊥K0

�
Qr⊥
2

�
σqq̄

�
1

2
; r⊥

�����
2

: ð115Þ

Both of these x0 dependences of the leading-order cross
section are proportional to αs, and are thus at the same level
as the NLO contributions. Relevant NLO contributions are
the ones from the photon wave function (i.e., quark wave
function renormalization), Eq. (83); from the “vertex
correction” to the qq̄ component of the meson light-cone
wave function in (88); and from the qq̄g Fock state,
Eq. (112). All of these together are needed to make the
cross section at NLO independent of the cutoff, x0,
naturally up to terms of higher order in αs:

d
dx0

dσγ
�þN→HQþN
T;L

dt

����
LOþNLO

¼ 0: ð116Þ

This demonstrates that the leading high energy behavior
(i.e., dependence on the cutoff x0) can be factorized into
B-JIMWLK evolution of the target. Note that our discus-
sion here has been framed in the language of a simple
small-x factorization procedure where the amplitudes σqq̄
and σqq̄g depend on the cutoff x0. It is known for other
processes (see e.g., Ref. [49]) that this can result in an
oversubtraction that can give rise to unphysical behavior for
the NLO cross section. We expect this problem to require,
just as for inclusive hadron production or inclusive DIS
[16,50–52], taking the amplitude to in fact depend on the
gluon longitudinal momentum fraction [λG in Eq. (46)]
in the appropriate way. This modification is formally of
higher order in αs, and does not affect our conclusion that
the leading high energy logarithm can be factorized into
B-JIMWLK evolution.

VII. CONCLUSIONS

In this manuscript, we have studied the light-cone wave
function of a heavy quarkonium in the nonrelativistic limit

with a focus on future applications within the dipole model.
In Sec. II, we discussed how to combine the dipole model
with the nonrelativistic power counting. Within this scope,
the main results of this work are the NLO correction to the
qq̄-component, given in Eqs. (41) and (42), and the leading
contribution to the qq̄g component, given in Eq. (44) in
momentum space and in Eq. (45) in coordinate space.
We have performed several cross-checks of these results:
(i) We have checked that the light-cone distribution

amplitudes that are obtained from the light-cone
wave functions fulfill ERBL equation.

(ii) We have confirmed that, for the longitudinal case,
we recover the results of Ref. [26] for radiative
corrections to S-wave quarkonium decay.

(iii) Finally, we have also checked that using the light-
cone wave functions that we found in the longi-
tudinal case to compute exclusive quarkonium
production in the limit Q ≫ m we get that all
divergences vanish at NLO assuming B-JIMWLK
evolution of the target.

The importance of our results lies in a future application
to the computation of quarkonium exclusive production
at next-to-leading order. This would be the heavy quark
analog of the exclusive light meson production calculation
of Ref. [19], which is performed in a slightly different
formalism but uses the same physical picture of high
energy scattering. The heavy quark mass introduces addi-
tional complications on one hand but simplifies the
description of the meson on the other, due to the non-
relativistic nature of the bound state. For this, the photon
light-cone wave function with finite mass effects is needed;
this result will appear in the near future, following the
massless case [16]. Overall, we believe our work here is a
necessary part of a broad effort to increase to next-to-
leading order the accuracy of computations in the dipole
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picture for a variety of processes. Such improvements are
urgently needed to fully confront QCD theory in the
saturation regime with experimental data from an active
program at the LHC and from a future Electron-Ion Collider.
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APPENDIX A: QUARK WAVE FUNCTION
RENORMALIZATION IN LIGHT-CONE GAUGE

1. Calculation of renormalization coefficient

In this Appendix, we compute the wave function
renormalization in light-cone gauge by studying the residue
of the quark propagator. In the literature, this has been
obtained before [46]. However, we want to obtain a result
that is consistent with our regularization scheme. The NLO
correction to the quark propagator can be written as

ið=pþmÞ
p2 −m2 þ iϵ

ΣðpÞ ið=pþmÞ
p2 −m2 þ iϵ

; ðA1Þ

where ΣðpÞ is the quark self-energy

ΣðpÞ ¼ −
ig2CF

4

Z
pþ

x0pþ

dqþ

2π

1

qþðpþ − qþÞ

×
Z

dD−2q⊥
ð2πÞD−2

γμðp̂Q þmÞγνdμνðq̂Þ
p− − q̂− − p̂−

Q þ iϵ
: ðA2Þ

Due to symmetry considerations, the self-energy can be
decomposed into three different terms,

ΣðpÞ ¼ Aðp2Þmþ Bðp2Þð=p −mÞ þ Cðp2Þ=v; ðA3Þ

where v is a vector orthogonal to p. Because there is no
preferred direction in the transverse plane, we can choose
it to be

v ¼
�
pþ;−

p2⊥ þ p2

2pþ ; 0

�
: ðA4Þ

The three components fulfill the following equations:

Aðp2Þ ¼ 1

4

�
1

m
TrðΣðpÞÞ þ 1

p2
Trð=pΣðpÞÞ

�
; ðA5Þ

Bðp2Þ ¼ 1

4p2
Trð=pΣðpÞÞ; ðA6Þ

Cðp2Þ ¼ 1

4n̄ · p

�
Trð=̄nΣðpÞÞ − n̄ · p

p2
Trð=pΣðpÞÞ

�
: ðA7Þ

It is important to note that, in light-cone gauge, the good
and the bad components of the quark field can renormalize
differently,

ψ0 ¼
� ffiffiffiffiffiffi

Zþ
p =n=̄n

2
þ

ffiffiffiffiffiffi
Z−

p =̄n=n
2

�
ψ : ðA8Þ

However, the good component is the only dynamical field
and our main interest. Therefore, we are going to identify Z
with Zþ. Taking this into account, we arrive at the
conclusion that in light-cone gauge the procedure to find
the wave function renormalization from the quark propa-
gator is to compute

=n=̄n
2

ið=pþmÞ
p2 −m2 þ iϵ

ΣðpÞ ið=pþmÞ
p2 −m2 þ iϵ

=̄n=n
2

ðA9Þ

and look for the residue of the pole. This procedure gives

δZ ¼ iBðm2Þ þ 2im2A0ðm2Þ − iCðm2Þ; ðA10Þ

where A0ðm2Þ ¼ dAðp2Þ
dp2 j

p2¼m2
.

Let us start with the computation of Trðn̄ΣðpÞÞ,

Trð=̄nΣðpÞÞ ¼ −iðD − 2Þg2CF

Z
pþ

x0pþ

dqþ

2π

1

qþ

×
Z

dD−2q⊥
ð2πÞD−2

1

p− − q̂− − p̂−
Q þ iϵ

; ðA11Þ

the denominator can be rewritten as

p− − q̂− − p̂−
Q

¼ −pþ

2qþðpþ − qþÞ

×

�
λ2⊥ þ −qþðpþ − qþÞðp2 −m2Þ þm2ðqþÞ2

ðpþÞ2
�
;

ðA12Þ

where
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λ⊥ ¼ q⊥ þ qþ

pþ p⊥: ðA13Þ

Using this, we obtain

Trð=̄nΣðpÞÞ ¼ iðD − 2Þg2CFpþ

4π2
Γ
�
4 −D
2

��
m2

4πμ2

�D−4
2

Z
1

x0

dxð1 − xÞ
�
x2 − xð1 − xÞp

2 −m2

m2

�D−4
2

: ðA14Þ

However, we are interested in the expansion around p2 ∼m2,

Trð=̄nΣðpÞÞ¼ iðD−2Þg2CFpþ

4π2
Γ
�
4−D
2

��
m2

4πμ2

�D−4
2

Z
1

x0

dxð1−xÞxD−4
�
1−

ðD−4Þð1−xÞðp2−m2Þ
2m2x

�
þOððp2−m2Þ2Þ:

ðA15Þ

Now, we focus on TrðΣðpÞÞ,

TrðΣðpÞÞ ¼ img2ðD − 2ÞCF

Z
pþ

x0pþ

dqþ

2π

1

qþðpþ − qþÞ
Z

dD−2q⊥
ð2πÞD−2

1

p− − q̂− − p̂−
Q þ iϵ

¼ −
iðD − 2Þg2CFm

4π2
Γ
�
4 −D
2

��
m2

4πμ2

�D−4
2

Z
1

x0

dxxD−4
�
1 −

ðD − 4Þð1 − xÞðp2 −m2Þ
2m2x

�
þOððp2 −m2ÞÞ:

ðA16Þ

Finally,

Trð=pΣðpÞÞ ¼ ig2CF

Z
pþ

x0pþ

dqþ

2π

1

qþðpþ − qþÞ
Z

dD−2q⊥
ð2πÞD−2

1

p− − q̂− − p̂−
Q þ iϵ

�ðp2 −m2Þð−2pþ þ 6−D
2

qþÞ
qþ

− ðD − 4Þm2

�

¼ ig2CF

4π2
Γ
�
4 −D
2

��
m2

4πμ2

�D−4
2

×
Z

1

0

dxxD−4
�
1 −

ðD − 4Þð1 − xÞðp2 −m2Þ
2m2x

��ðp2 −m2Þð2 − 6−D
2

xÞ
x

þ ðD − 4Þm2

�
þOððp2 −m2Þ2Þ:

ðA17Þ

Using the previous results and expanding around D ∼ 4, we can obtain the terms that are needed to compute δZ,

Bðm2Þ ¼ −
ig2CF

8π2
; ðA18Þ

A0ðm2Þ ¼ ig2CF

8π2m2

��
1

D − 4
þ 1

2
log

�
m2

4πμ2

�
þ γE

2

�
ð2 log x0 þ 1Þ þ log x0 þ

1

2
þ ðlog x0Þ2

�
; ðA19Þ

Cðm2Þ ¼ −
ig2CF

8π2

�
1

D − 4
þ 1

2
log

�
m2

4πμ2

�
þ γE

2
− 2

�
: ðA20Þ

Finally, we obtain the wave function renormalization

δZ ¼ −
g2CF

8π2

�
2

�
1

D − 4
þ 1

2
log

�
m2

4πμ2

�
þ γE

2

�
ð2 log x0 þ 1Þ þ 2 log x0 þ 2ðlog x0Þ2þ

1

D − 4
þ 1

2
log

�
m2

4πμ2

�
þ γE

2
− 2

�
:

ðA21Þ

This result agrees with Ref. [46] if we assume that they have neglected the combination
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ð4 log x0 þ 3Þ γE
2
þ 3

2
log

�
m2

4πμ2

�
− 2; ðA22Þ

probably due to a difference in the renormalization pre-
scription. Additionally, we have checked that starting from
Eq. (3.28) in Ref [46] we also obtain our Eq. (A21).

2. Nonrelativistic subtraction

Now, we study the contribution to the wave-function
renormalization of nonrelativistic momenta. The motiva-
tion is to compute how

R
1
0 dλϕðλ; 0Þ depends on the cutoff

x0. To do this, it is useful to understand how to characterize
nonrelativistic momenta in light-cone coordinates. The
nonrelativistic character is given by the conditions

p⊥ ≪ m ðA23Þ

and

pþ −
mffiffiffi
2

p ≪ m: ðA24Þ

The− component of the momentum, in general, is given by

p− ¼ p2⊥ þm2

2pþ þ p2 −m2

2pþ : ðA25Þ

Using the above conditions, this can be approximated by

p− ¼
ffiffiffi
2

p
m − pþ þ

2ðpþ − mffiffi
2

p Þ2 þ p2⊥ffiffiffi
2

p
m

þ p2 −m2ffiffiffi
2

p
m

þO
�ðpþ − mffiffi

2
p Þ3

m2
;
p3⊥
m2

�
: ðA26Þ

Using this approximation, we obtain the nonrelativistic
component of the self-energy

ΣNRðpÞ ¼
ig2CF

2
ffiffiffi
2

p
m

Z
x0pþ

xΛpþ

dqþ

2π

1

qþ

×
Z

dD−2q⊥
ð2πÞD−2

γμð=̂pQ þmÞγνdμνðq̂Þ
q2⊥þ2ðqþÞ2

2qþ þ p2−m2ffiffi
2

p
m

: ðA27Þ

The infrared cutoff xΛ is such that m≫x0pþ>xΛpþ≫mv.
It is introduced because we are only interested in the
derivative with respect to x0 and because we want to be
sure that no resummation (due to the nonrelativistic
nature) is required. In other words, we only care here
about the ultraviolet part of the nonrelativistic contribution.
Proceeding in a way completely analogous as the compu-
tation in the general case, we obtain

δZNR ¼ g2CF

4π2
log

�
x0
xΛ

�
þ g2CF

2π2

�
1

D − 4
þ 1

2
log

�
m2

4πμ2

�

þ γE
2

�
log

�
x0
xΛ

�
þ g2CF

4π2
ððlog x0Þ2 − ðlog xΛÞ2Þ:

ðA28Þ

APPENDIX B: RELATIVISTIC CORRECTION TO
THE qq̄-COMPONENT OF THE LIGHT-CONE

WAVE FUNCTION

Our starting point is the Bethe-Salpeter equation in the
momentum-space form, which we write using a notation
similar to the one used in Ref. [45],

Ψ̃BS
ab ðpÞ ¼

Z
d4q
ð2πÞ4 ½S

Q
F ðpÞ�aa0 ½Kðp − qÞ�a0a00;b00b0

× Ψ̃BS
a00b00 ðqÞ½SQ̄F ðpÞ�b0b; ðB1Þ

where

½SQF ðpQÞ�a0a ¼
½=pQ þm�a0a
p2
Q −m2 þ iϵ

; ðB2Þ

and

½SQ̄F ðpQ̄Þ�bb0 ¼
½=pQ̄ −m�bb0
p2
Q̄ −m2 þ iϵ

: ðB3Þ

The subindices refer to the spinor structure, and we do
not write explicitly the color indices because the quarko-
nium is assumed to be in a singlet state. Here, K is
the kernel of the Bethe-Salpeter equation, and Ψ̃BS

ab ðpÞ is
the Bethe-Salpeter wave function, which depends on the
4-momentum. Since we are interested in the situation
described in Fig. 6, we have to take the limit in which
p is relativistic and q is nonrelativistic. This limit has two
important consequences in Eq. (B1):
(1) Kðp − qÞ can be approximated by KðpÞ. Then, we

end up integrating the wave function on the rhs over
all possible nonrelativistic momenta; this is nothing
but the nonrelativistic wave function at the origin.

(2) Since p is a relativistic momentum (meaning that
p2 ≳m2), we can safely compute KðpÞ in pertur-
bation theory, which gives using our conventions

½KðpÞ�a0a00;b00b0 ¼ ig2CFγ
μ
a0a00γ

ν
b00b0

dμνðpÞ
p2 þ iϵ

: ðB4Þ

Note that Eq. (B1) is written in terms of 4-momenta which
can be off shell. To obtain the light-cone wave function,
first we rewrite the equation in terms of the on-shell
momenta used in light-cone perturbation theory (which
we denote by p̂) using the relation

pμ ¼ p̂μ þ p2 −m2

2n̄p
n̄μ: ðB5Þ
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Then, we obtain

Ψ̃R
abðpÞ ¼

ig2CF

2
ffiffiffi
2

p
M3zð1 − zÞðz − 1

2
Þ
X
λ1;λ2

�
uðp̂Q; λ1Þūðp̂Q; λ1Þ

ð M
2
ffiffi
2

p þ p− − p̂−
Q þ iϵÞ γ

μΨ̃NRðx ¼ 0Þγν vðp̂Q̄; λ2Þv̄ðp̂Q̄; λ2Þ
ð M
2
ffiffi
2

p − p− − p̂−
Q̄ þ iϵÞ

�
ab

×

�
dμνðp̂Þ

p− − p̂− þ isgnðz − 1
2
Þϵ −

2
ffiffiffi
2

p
n̄μn̄ν

Mðz − 1
2
Þ
�
; ðB6Þ

where we used the superindex R and NR to denote
respectively the relativistic and nonrelativistic components
of the wave function and M is the mass of the quarkonium
state. Integrating the previous formula over p− and using
that M ∼ 2m, we obtain Eq. (30).

APPENDIX C: DIRAC ALGEBRA
MANIPULATIONS

Here, we report relations that we used in the main text
which involve the computation of ū=ϵu in the case in which
one of the quarks is nonrelativistic. The general formulas
for any momenta are well known in the context of light-
cone perturbation theory [16,53]. The starting point is

ūðp̂RQ; λRQÞ=ϵ�ðλGÞuðmv; λQÞ
¼ ϵ−�ðpG; λGÞūðp̂RQ; λRQÞ=̄nuðmv; λQÞ
þ ūðp̂RQ; λRQÞ=ϵ�⊥ðλGÞuðmv; λQÞ; ðC1Þ

in which we have used the definition of the light-cone
gauge. Now, let us define the good (þ) and bad (−)
components of the spinor field

u−ðp̂; λÞ ¼
=̄n=n
2
uðp̂; λÞ; ðC2Þ

and

uþðp̂; λÞ ¼
=n=̄n
2
uðp̂; λÞ: ðC3Þ

In terms of these components, we get

ūðp̂RQ; λRQÞ=ϵ�ðλGÞuðmv; λQÞ
¼ ϵ−�ðpG; λGÞūþðp̂RQ; λRQÞ=̄nuþðmv; λQÞ
þ ūþðp̂RQ; λRQÞ=ϵ�⊥ðλGÞu−ðmv; λQÞ
þ ū−ðp̂RQ; λRQÞ=ϵ�⊥ðλGÞuþðmv; λQÞ: ðC4Þ

Now, we use the Dirac equation to obtain

u−ðmv; λQÞ ¼
=̄nffiffiffi
2

p uþðmv; λQÞ; ðC5Þ

and

ū−ðp̂RQ;λRQÞ¼ ūþðp̂RQ;λRQÞðmþ=q⊥Þ
=̄n

2
ffiffiffi
2

p
mzRQ

: ðC6Þ

Using this, we get

ūðp̂RQ; λRQÞ=ϵ�ðλGÞuðmv; λQÞ ¼ ϵ−�ðpG; λGÞūþðp̂RQ; λRQÞ=̄nuþðmv; λQÞ þ
1ffiffiffi
2

p ūþðp̂RQ; λRQÞ=ϵ�⊥ðλGÞ=̄nuþðmv; λQÞ

þ 1

2
ffiffiffi
2

p
zRQ

ūþðp̂RQ; λRQÞ=̄n=ϵ�⊥ðλGÞuþðmv; λQÞ

þ 1

2
ffiffiffi
2

p
mzRQ

ūþðp̂RQ; λRQÞ=q⊥=̄n=ϵ�⊥ðλGÞuþðmv; λQÞ: ðC7Þ

Now, using the property pμϵμðpÞ ¼ 0, we obtain

ūðp̂RQ; λRQÞ=ϵ�ðλGÞuðmv; λQÞ ¼
ðq⊥ϵ�⊥ðλGÞÞðzG þ 2zRQÞ

2
ffiffiffi
2

p
mzGzRQ

ūþðp̂RQ; λRQÞ=̄nuþðmv; λQÞ

þ 2zRQ − 1

2
ffiffiffi
2

p
zRQ

ūþðp̂RQ; λRQÞ=ϵ�⊥ðλGÞ=̄nuþðmv; λQÞ

−
1

4
ffiffiffi
2

p
mzRQ

ūþðp̂RQ; λRQÞ=̄n½=q⊥; =ϵ�⊥ðλGÞ�uþðmv; λQÞ: ðC8Þ

Note that n̄u ¼ n̄uþ and n̄u− ¼ 0. Therefore, we can safely remove the subindexþ on the rhs.
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APPENDIX D: USEFUL FOURIER TRANSFORMS

In this Appendix, we report several equations which are useful to transform our results from position to momentum
space. Some of them are taken from Ref. [54]

DðκÞðr⊥; mÞ ¼
Z

dD−2p⊥
ð2πÞD−2

eip⊥r⊥

ðp2⊥ þm2Þκþ1
¼ ðm=r⊥ÞD−4−2κ

2

ð2πÞD−2
2 2κΓðκ þ 1ÞKD−4−2κ

2
ðmr⊥Þ: ðD1Þ

The previous formula can be used to derive

IðκÞ1 ðr⊥; mÞ ¼
Z

dD−2p⊥
ð2πÞD−2

eip⊥r⊥ðp⊥r⊥Þ
ðp2⊥ þm2Þκþ1

¼ ir2⊥ðm=r⊥ÞD−2−2κ
2

ð2πÞD−2
2 2κΓðκ þ 1ÞKD−2−2κ

2
ðmr⊥Þ; ðD2Þ

and

IðκÞ2 ðr⊥; mÞ ¼
Z

dD−2p⊥
ð2πÞD−2

eip⊥r⊥ðp⊥r⊥Þ2
ðp2⊥ þm2Þκþ1

¼ ðm=r⊥ÞD−4−2κ
2 mr⊥

ð2πÞD−2
2 2κΓðκ þ 1Þ ðKD−2−2κ

2
ðmr⊥Þ −mxKD−2κ

2
ðmr⊥ÞÞ: ðD3Þ

At several points, we also need the expressions for KD−2
2
ðmr⊥Þ in the limit mr⊥ ≪ 1. This can be obtained using Eq. (D2)

and the technique of integration by regions [55]
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2
ðmr⊥Þ ∼

1
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2
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�D−4
2

Γ
�
D − 2

2

�
: ðD4Þ

APPENDIX E: INTERMEDIATE RESULTS FOR THE EVALUATION OF FIG. 6

Fourier transforming the contribution in Eq. (30) from momentum to coordinate space (see Appendix D), we can write
the contribution as

fΨqq̄
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½ūðp̂Q; λ1Þ=̄nuðmv; λ01Þ�
Z

dλ
4π

ϕi
qq̄ðλ; 0Þ½v̄ðmv; λ02Þ=̄nvðp̂Q̄; λ2Þ�

þ g2CF

32πm2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

�
θ

�
z −

1

2

�
ð1 − zÞ þ θ

�
1

2
− z

�
z

�
K0ðτÞ

×
X
λ0
1
;λ0

2
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where τ ¼ 2mðz − 1
2
Þr⊥.

Using the Dirac equation satisfied by the spinors and the tabulated spinor matrix elements, we can express the matrix
elements (32) and (33) in terms of the helicities of the quark and antiquark as
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Note that here the polarization vector ϵ⊥ is that of the transversely polarized gluon exchanged in Fig. 6; the longitudinal
polarization for the exchanged gluon is treated as a separate term in Eq. (30).
Using the matrix elements such as (E2) and (E3) in (E1), we can write it in the form
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which is further simplified to get the result (34).
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