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In this paper, we calculate the total decay widths for the Wþ-boson decays, Wþ → Bc þ bþ s̄þ X and
Wþ → B�

c þ bþ s̄þ X, up to next-to-leading order (NLO) accuracy within the framework of the
nonrelativistic QCD theory. Both the fixed-order and the fragmentation approaches are adopted to do
the calculation. Differential decay widths dΓ=dz and dΓ=ds1 are also given. We find that the NLO
corrections are significant in those two Wþ decay channels. Our numerical results show that at the
LHC, there are about 7.03 × 104 Bc-meson events and 5.10 × 104 B�

c-meson events to be produced via the
Wþ-boson decays per operation year.
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I. INTRODUCTION

The ðcb̄Þ-quarkonium is a unique system in the Standard
Model (SM) which carries two different heavy flavors.
Studies on its production, decay, and mass spectrum, etc.,
provide us a good platform to understand the strong and
weak interactions deeply. The ground state Bc meson was
first observed by the CDF collaboration at the Tevatron [1]
and it has attracted lots of interest since then. At present, the
direct production of the Bc meson and its excited states
have been studied extensively in pp [2–18], eþe− [19–24]
and ep [25,26] collisions.
Besides the direct production mechanisms, the Bc meson

can also be indirectly produced through the top-quark
[27–29], the Z0-boson [30–34], the Higgs-boson [35,36]
and the W-boson [37–39] decays. These indirect produc-
tion channels can also generate abundant Bc mesons at the
LHC or the future high-energy colliders. The W-boson is
the propagating media for the weak interaction, and the
study on it is important for testing the SM. The LHC is
a fruitful W-boson factory; there are about 3.07 × 1010

W-bosons to be produced at the LHC per operation year
[37]. In the paper, we shall concentrate on the production of
the Bc meson and its first excited state B�

c meson through
the W-boson decays.
The heavy constituent quarks move nonrelativistically in

the Bc meson, and the processes involving the Bc meson
can be calculated within the nonrelativistic QCD (NRQCD)
factorization formalism [40]. Generally, the production
cross section or the decay width can be factorized into
the product of the short-distance coefficients and the long-
distance matrix elements. The short-distance coefficients
describe the production or decay rate of the heavy quark-
antiquark pair, which can be perturbatively calculated in
powers of the strong coupling constant αsðmQÞ. The
nonperturbative long-distance matrix elements describe
the formation of the Bc meson from the heavy quark-
antiquark pair, which can be calculated through potential
models or lattice QCD.
The excited states of the Bc meson shall directly or

indirectly decay to the ground state Bc meson via electro-
magnetic or strong interactions with ∼100% probability, so
these excited states are important sources of the Bc meson.
Moreover, the production of the excited state is also
interesting by itself. So, in addition to the Bc-meson
production, we shall also consider the production of the
spin-triplet 3S1 state B�

c. The production of Bc and B�
c

mesons via the W-boson decays at the leading order (LO)
level has been studied in Refs. [37,38]. Since the masses of
b and c quarks are not too large compared to the QCD
asymptotic scale ΛQCD, the higher-order QCD corrections
could be important. In this paper, we shall study the
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Bð�Þ
c -meson production via the W-boson decays up to next-

to-leading order (NLO) accuracy.
There are two decay channels for the inclusive Bc

production through the Wþ-boson decays at Oðα2sÞ, i.e.,
Wþ → Bc þ bþ s̄ and Wþ → Bc þ cþ c̄. Due to the
double suppression from the small value of jVcbj and
the smaller phase space, the contribution from the
decay channel Wþ → Bc þ cþ c̄ is greatly depressed.
More explicitly, we have [38] ΓWþ→Bcþcþc̄=ΓWþ→Bcþcþs̄ ¼
0.086 and ΓWþ→B�

cþcþc̄=ΓWþ→B�
cþcþs̄ ¼ 0.150 at the LO

level. Thus, in this paper, we only consider the decay

channels Wþ → Bð�Þ
c þ bþ s̄þ X.

Any physical observable is independent of the renorm-
alization scale, but there is renormalization scale ambiguity
for the fixed-order pQCD predictions since one usually
guesses the renormalization scale (e.g., usually setting as
the one to eliminate large logs etc.) and varies it over an
arbitrary range to ascertain its uncertainty. This ambiguity
introduces an important systematic error to pQCD predic-
tions. It has been pointed out that one can use the higher-
order β-terms to achieve an effective value of the strong
running coupling αs, and the resultant conformal series is
independent to the choice of renormalization scale and thus
the conventional renormalization ambiguity is eliminated
[41–43]. The principle of maximum conformality (PMC)
has been designed for such a purpose [44–48], which
provides a systemic way to eliminate the renormalization
scheme-and-scale ambiguities simultaneously. The key idea
of PMC is to set the correct momentum flow of the process
by absorbing the nonconformal β-terms that govern the
behavior of αs through the renormalization group equation
(RGE). The β0-terms in the NLO coefficients can be adopted
to set the αs value, thus in the paper, in addition to the
conventional treatment, we shall also adopt the PMC to deal

with the Wþ-boson decays, Wþ → Bð�Þ
c þ bþ s̄þ X.

In the decays,Wþ → Bð�Þ
c þ bþ s̄þ X, the involved hard

scales satisfy, mW ≫ mb;mc, so it is expected that the
fragmentation mechanism dominates those decays. The
NLO fragmentation functions for a heavy quark to a Bc or
B�
c have recently been given by Ref. [23]. It is interesting to

apply those NLO fragmentation functions to the present
processes, and compare the results from the fragmentation
approach with those from the fixed-order approach. In the
present paper, besides the fixed-order approach,we shall also
adopt the fragmentation approach to do the calculation. In
usual cases, because the fragmentation probability of b̄ → Bc
is about 2 orders ofmagnitude larger than that of c → Bc, the
b̄ fragmentation is generally more important than the c
fragmentation for the Bc-meson production. However, in
cases with the Wþ-boson decays, the decay width for the b̄
fragmentation shall be depressed due to the small values of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements
jVcbj and jVubj; thus, it provides a good platform to test the
fragmentation function for c → Bc.

The paper is organized as follows. In Sec. II, we briefly
present useful formulas at the LO accuracy under the fixed-
order approach. In Sec. III, we present the formulas to
calculate the NLO QCD corrections for the Bð�Þ

c -meson
production through the W-boson decays under the fixed-
order approach. In Sec. IV, we present the useful formulas
to calculate the decay widths under the fragmentation
approach up to NLO accuracy. In Sec. V, numerical results
and discussions are presented. Section VI is reserved as a
summary.

II. DECAY WIDTHS AT THE LO LEVEL

According to the NRQCD factorization, the differential
decay width for the Bc-meson production from the Wþ-
boson decays can be written as

dΓWþ→Bcþbþs̄þX

¼
X
n

dΓ̃Wþ→ðcb̄Þ½n�þbþs̄þXhOBcðnÞi; ð1Þ

where dΓ̃Wþ→ðcb̄Þ½n�þbþs̄þX denotes the decay width for the

production of a perturbative state ðcb̄Þ½n� with quantum
numbers [n]. The long-distance matrix element hOBcðnÞi is
the transition probability for a ðcb̄Þ½n� state to the Bc
meson. In the lowest-order nonrelativistic approximation,
only color-singlet contributions need to be considered, and
the long-distance matrix elements for the color-singlet
contributions can be determined through potential models.
Practically, we first calculate the decay width for an

on-shell ðcb̄Þ-pair, i.e., dΓWþ→ðcb̄Þ½n�þbþs̄þX. Then the
decay width for the Bc meson, i.e., dΓWþ→Bcþbþs̄þX,
can be obtained from dΓWþ→ðcb̄Þ½n�þbþs̄þX by replacing

hOðcb̄Þ½n�ðnÞi by hOBcðnÞi.
At the LO level, there are two Feynman diagrams for the

ðcb̄Þ½n�-pair production from the Wþ-boson decays, which
are shown in Fig. 1. The LO amplitude for the ðcb̄Þ½n�
production can be written as the sum of two terms
(MLO ¼ M1 þM2) corresponding to two Feynman dia-
grams in Fig. 1, and we have

iM1 ¼ −
igVcs

2
ffiffiffi
2

p −i
ðp12 þ p2Þ2 þ iϵ

ūðp2ÞðigsγμTaÞ

· ΠΛ1ðigsγμTaÞ i
p1 þ p2 −mc þ iϵ

· ϵνðp0Þγνð1 − γ5Þvðp3Þjq¼0; ð2Þ

iM2 ¼ −
igVcs

2
ffiffiffi
2

p −i
ðp12 þ p2Þ2 þ iϵ

ūðp2ÞðigsγμTaÞΠΛ1

· ϵνðp0Þγνð1 − γ5Þ
i

−p0 þ p11 þ iϵ

· ðigsγμTaÞvðp3Þjq¼0; ð3Þ
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where p11 and p12 are momenta of the c and b̄ quarks in the
ðcb̄Þ½n�-pair,

p11 ¼ rcp1 − q; p12 ¼ ð1 − rcÞp1 þ q; ð4Þ

where rc ¼ mc=ðmb þmcÞ. Π denotes the spin projector,
for the 1S0 state,

Π ¼ −
ffiffiffiffiffi
M

p

4mbmc
ðp12 −mbÞγ5ðp11 þmcÞ; ð5Þ

and for the 3S1 state,

Π ¼ −
ffiffiffiffiffi
M

p

4mbmc
ðp12 −mbÞ=ϵðp1Þðp11 þmcÞ: ð6Þ

Λ1 is the color-singlet projector, and

Λ1 ¼
1ffiffiffi
3

p ; ð7Þ

where 1 denotes the unit matrix of the color SUð3Þ group.
Using those amplitudes at the LO level, the LO decay

width for ðcb̄Þ-pair production can be calculated through

dΓðcb̄Þ½n�
LO ¼ 1

3

1

2mW

X
jMLOj2dΦ3; ð8Þ

where
P

denotes the sum over the color and spin states of
the initial and final particles, 1=3 comes from the spin
average of the initial Wþ-boson. dΦ3 denotes the differ-
ential phase space at the LO level,

dΦ3 ¼ ð2πÞdδd
�
p0 −

X3
f¼1

pf

�Y3
f¼1

dd−1pf

ð2πÞd−12Ef
; ð9Þ

where d stands for the dimension of the space-time. With
these formulas, the LO decay width for Wþ → ðcb̄Þ½n� þ
bþ s̄þ X can be calculated directly.

III. THE NLO QCD CORRECTIONS

The NLO QCD corrections to the decay widths include
virtual and real corrections. There are ultraviolet (UV)
and infrared (IR) divergences in virtual correction, and IR

divergence in real correction. We adopt the conventional
dimensional regularization approach with d ¼ 4–2ϵ to
regulate these divergences. Then the UV and IR divergen-
ces appear as pole terms in 1=ϵ. We shall sketch the
calculations for the virtual and real corrections in the
following subsections.

A. The virtual correction

Four typical one-loop diagrams are shown in Fig. 2. The
NLO virtual corrections come from the interference of
those one-loop Feynman diagrams with the LO Feynman
diagrams shown in Fig. 1.
The virtual corrections can be calculated through

dΓðcb̄Þ½n�
Virtual ¼

1

3

1

2mW

X
2ReðM�

LOMVirtualÞdΦ3; ð10Þ

where MVirtual denotes the amplitude for the virtual cor-
rections, dΦ3 is the LO differential phase space.
As a subtle point, there are Coulomb divergences in the

hard part of the NLO amplitudes by using the traditional
matching procedure. One may observe that they appear in
both the virtual corrections to the ðcb̄Þ½n� production and
the virtual corrections to the long-distance matrix element
hOðcb̄Þ½n�ðnÞi, which shall be canceled by each other. As a
result, no Coulomb divergence appears in the resultant
pQCD series. In dimensional regularization, there is a
simpler way to extract the NRQCD short-distance coef-
ficients using the method of regions [49]. In this method,
one can calculate the hard region contributions directly by
expanding the relative momentum of the ðcb̄Þ½n� pair before
carrying out the loop integration (more explicitly, under the
present lowest-order nonrelativistic approximation, one just
needs to set q ¼ 0 before the loop integration). Then the
Coulomb divergences, which are power IR divergences,
vanish in dimensional regularization. We adopt this new

FIG. 1. The LO Feynman diagrams forWþ → ðcb̄Þ½n� þ bþ s̄.

FIG. 2. Four typical one-loop Feynman diagrams for Wþ →
cb̄½n� þ bþ s̄.
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treatment, and the Coulomb divergences shall not appear in
our present calculation.
There are UV and IR divergences in the loop-diagram

contributions. The IR divergences in the virtual correction
shall be canceled by the IR divergences in the real
correction. The UV divergences should be removed
through renormalization. We carry out the renormalization
using the counterterm approach, where the decay widths
are calculated in terms of the renormalized quark mass m,
the renormalized quark field Ψr, the renormalized gluon
field Aμ

r , and the renormalized coupling constant gs. The
relations between the renormalized quantities and their
corresponding bare quantities are

m0 ¼ Zmm; Ψ0 ¼
ffiffiffiffiffi
Z2

p
Ψr;

Aμ
0 ¼

ffiffiffiffiffi
Z3

p
Aμ
r ; g0s ¼ Zggs; ð11Þ

where Zi ¼ 1þ δZi with i ¼ m; 2; 3; g are renormalization
constants, and they are fixed by the renormalization
scheme. The renormalization scheme is adopted as follows:
The renormalization of the heavy quark mass, the heavy
quark field, the light quark field and the gluon field are
performed in the on-shell scheme, whereas the renormal-
ization of the strong coupling constant is performed in
the MS scheme. The quantities δZi can be calculated and
they are

δZOS
m;Q ¼ −3CF

αs
4π

�
1

ϵUV
− γE þ ln

4πμ2R
m2

Q
þ 4

3

�
;

δZOS
2;Q ¼ −CF

αs
4π

�
1

ϵUV
þ 2

ϵIR
− 3γE þ 3 ln

4πμ2R
m2

Q
þ 4

�
;

δZOS
2;q ¼ −CF

αs
4π

�
1

ϵUV
−

1

ϵIR

�
;

δZOS
3 ¼ αs

4π

�
ðβ00 − 2CAÞ

�
1

ϵUV
−

1

ϵIR

�

−
4

3
TF

�
1

ϵUV
− γE þ ln

4πμ2R
m2

c

�

−
4

3
TF

�
1

ϵUV
− γE þ ln

4πμ2R
m2

b

��
;

δZMS
g ¼ −

β0
2

αs
4π

�
1

ϵUV
− γE þ lnð4πÞ

�
;

where Qð¼ c; bÞ in the subscripts denotes a heavy quark,
and qð¼ sÞ denotes a light quark. μR is the renormalization
scale, γE is the Euler constant. For QCD, CA ¼ 3, CF ¼
4=3 and TF ¼ 1=2. β0 ¼ 11CA=3 − 4TFnf=3 is the one-
loop coefficient of the QCD β function, in which nf is the
number of active quark flavors. β00 ¼ 11CA=3 − 4TFnlf=3
and nlf ¼ 3 is the number light-quark flavors.

B. The real correction

The real corrections come from the decay process
Wþðp0Þ → ðcb̄Þ½n�ðp1Þ þ bðp2Þ þ s̄ðp3Þ þ gðp4Þ. The
Feynman diagrams for the real corrections can be obtained
through the LO Feynman diagrams by adding an additional
gluon in the final state. Typical real correction Feynman
diagrams are shown in Fig. 3. The real correction can be
calculated through

dΓðcb̄Þ½n�
Real ¼ 1

3

1

2mW

X
jMRealj2dΦ4; ð12Þ

where dΦ4 denotes the differential phase space for the real
corrections, and

dΦ4 ¼ ð2πÞdδd
�
p0 −

X4
f¼1

pf

�Y4
f¼1

dd−1pf

ð2πÞd−12Ef
: ð13Þ

There are IR divergences in the real correction, which
come from the phase-space integration. However, integrat-
ing the squared amplitude directly over the phase space in d
dimensions is too difficult to be practical. In order to isolate
the divergent and finite terms, we adopt the two-cutoff
phase-space slicing method [50] to calculate the real
correction. Following this method, the phase space for
the real correction is decomposed into three regions by
introducing two small cutoffs, δs and δc, which should
satisfy the requirement δc ≪ δs [50]. The three regions are
the soft region (S) with E4 ≤ mWδs=2, hard-collinear
region (HC) with E4 > mWδs=2 and ðp3 þ p4Þ2 ≤ δcm2

W ,
and hard-noncollinear region (HC̄) with E4 > mWδs=2 and
ðp3 þ p4Þ2 > δcm2

W , where E4 is defined in the rest frame
of the initial Wþ-boson. The IR finite hard-noncollinear
part can be calculated numerically in four dimensions.
Applying the soft approximation to the soft part (e.g., all

the terms of order δs are neglected), we obtain

FIG. 3. Four typical real-correction Feynman diagrams for
Wþ → ðcb̄Þ½n� þ bþ s̄.
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dΓðcb̄Þ½n�
S ¼ dΓðcb̄Þ½n�

LO

�
CFαs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2R
m2

W

�
ϵ
�

·
�
1

ϵ2
þ 1

ϵ

�
1 − 2 ln δs − ln

�ð1 − βb cos θÞ2
1 − β2b

��
− 2 ln δs þ 2ln2δs þ 2 ln δs ln

�ð1 − βb cos θÞ2
1 − β2b

�

þ 1

βb
ln

�
1þ βb
1 − βb

�
þ ln2

�
1 − βb

1 − βb cos θ

�
−
1

2
ln2

�
1þ βb
1 − βb

�
þ 2Li2

�
−
βbð1 − cos θÞ

1 − βb

�

−2Li2
�
−
βbð1þ cos θÞ
1 − βb cos θ

��
; ð14Þ

where βb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

b=E
2
2

q
, and E2 is defined in the rest

frame of theWþ-boson. θ is the angle between p2 and p3 in
the rest frame of the Wþ-boson.
Applying the collinear approximation (e.g., terms of

order δc are neglected), we obtain

dΓðcb̄Þ½n�
HC ¼ dΓðcb̄Þ½n�

LO

�
CFαs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2R
m2

W

�
ϵ
�

×

�
Aq→qg
1

ϵ
þ Aq→qg

0

�
; ð15Þ

where

Aq→qg
1 ¼ 3=2þ 2 ln δ0s; ð16Þ

Aq→qg
0 ¼ 7=2 − π2=3 − ln2 δ0s − ln δcð3=2þ 2 ln δ0sÞ; ð17Þ

and δ0s ¼ m2
Wδs=½m2

W − ðp1 þ p2Þ2�.
Summing up three parts from the soft, hard-collinear and

hard-noncollinear regions, we obtain the required real
correction. Separate contributions from three regions
depend on one or both of the two cutoff parameters δs
and δc. However, the sum of those three contributions
should be independent to the choices of δs and δc. The
verification of this cutoff independence provides an impor-
tant check for the correctness of the numerical calculation.
We have checked this independence and have indeed found
that the results are independent of the δs and δc by varying
δs from 10−3 to 10−7 with δc ¼ δs=50. For clarity, we fix
δs ¼ 10−5 and δc ¼ 2 × 10−7 to do the following numerical
calculation.
Total NLO corrections can be obtained by summing

up virtual and real corrections. The UVand IR divergences
are exactly canceled after summing the real and virtual
corrections, and the finite NLO corrections are
obtained. Then the decay widths ΓWþ→Bcþbþs̄þX and
ΓWþ→B�

cþbþs̄þX can be derived from ΓWþ→ðcb̄Þ½1S0�þbþs̄þX

and ΓWþ→ðcb̄Þ½3S1�þbþs̄þX by multiplying a factor

hOBcðB�
cÞðnÞi=hOðcb̄Þ½n�ðnÞi ≈ jRSð0Þj2=4π, where n ¼ 1S0

for Bc and n ¼ 3S1 for B�
c, respectively. RSð0Þ denotes

the radial wave function at the origin of the BcðB�
cÞ meson.

In the calculation, we adopt the FeynArts package [51] to
generate the Feynman diagrams and the corresponding
amplitudes, and the FeynCalc package [52,53] to carry out
the Dirac and color traces. Then we use the $Apart package
[54] and the FIRE package [55] to do partial fraction and
integration-by-parts (IBP) reduction of the loop integrals.
After the IBP reduction, only a few master integrals (e.g.,
A0, B0, C0, and D0 functions) need to be calculated, which
shall be dealt with by using the LoopTools package [56].
Numerical phase-space integrations are carried out by the
VEGAS program [57].

IV. DECAY WIDTHS UNDER THE
FRAGMENTATION APPROACH

We take the process Wþ → Bc þ X as an example to
illustrate the calculation under the fragmentation approach.
The formulas for the B�

c production are similar to the
Bc case.
The differential decay width for Wþ → Bc þ X under

the fragmentation approach can be written as

dΓWþ→BcþX

dz
¼

X
i

Z
1

z

dy
y
dΓ̂Wþ→iþXðy; μFÞ

dy

·Di→Bc
ðz=y; μFÞ; ð18Þ

where dΓ̂Wþ→iþXðy; μFÞ denotes the decay width (coeffi-
cient function) for a Wþ to a parton i,1 Di→Bc

ðz=y; μFÞ
denotes the fragmentation function for a parton i into a Bc,
and μF is the factorization scale which separates the energy
scales of two parts.
For comparison, we adopt several strategies to obtain the

fragmentation predictions. More details about those strat-
egies can be found in Refs. [23,58]. For convenience, we

1Due to the coefficient function dΓ̂Wþ→iþXðy; μFÞ is IR safe,
the heavy-quark mass mQ in the coefficient function can be
approximately set to 0, and this approximation brings only a
small error of Oðm2

Q=m
2
WÞ. In the following fragmentation

calculations, we shall adopt this approximation for simplicity.
The neglected higher-power terms will be included in the results
by combining the fixed-order and fragmentation approaches.
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denote them as “Frag, LO,” “Frag, NLO” and “Frag,
NLOþ NLL,” respectively. For the case of Frag, LO,

dΓFrag;LO
Wþ→BcþX

dz
¼

Z
1

z

dy
y

dΓ̂LO
Wþ→cþs̄ðy; μFÞ

dy
·DLO

c→Bc
ðz=y; μFÞ

¼ ΓLO
Wþ→cþs̄ ·D

LO
c→Bc

ðz; μFÞ; ð19Þ

where ΓLO
Wþ→cþs̄ is the LO decay width forWþ → cþ s̄ and

DLO
c→Bc

ðz; μFÞ is the LO fragmentation function. In the
calculation, the factorization and renormalization scales are
set as μF ¼ 2mb þmc and μR ¼ 2mb.
For the case of Frag, NLO,

dΓFrag;NLO
Wþ→BcþX

dz
¼

Z
1

z

dy
y

dΓ̂NLO
Wþ→cþXðy; μFÞ

dy

·DNLO
c→Bc

ðz=y; μFÞ; ð20Þ

where the NLO fragmentation function DNLO
c→Bc

ðz; μFÞ can
be found in Ref. [23]. In the calculation, the factorization
and renormalization scales are set as μF ¼ 2mb þmc and
μR ¼ 2mb, and the factorization scheme is chosen as the
MS scheme.
For the case of Frag, NLOþ NLL,

dΓFrag;NLOþNLL
Wþ→BcþX

dz
¼

Z
1

z

dy
y

dΓ̂NLO
Wþ→cþXðy; μFÞ

dy

·DNLOþNLL
c→Bc

ðz=y; μFÞ; ð21Þ

where the upper factorization and renormalization scales in
the coefficient function dΓ̂NLO

Wþ→cþXðy; μFÞ=dy are set as
μF ¼ μR ¼ mW , so as to avoid the large logarithms of
μ2F=m

2
W or μ2R=m

2
W appear in the coefficient function. The

fragmentation function DNLOþNLL
c→Bc

ðz; μF ¼ mWÞ is obtained
through solving the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution equation [59–61] with NLO
splitting function for c → c [62–64], where the NLO
fragmentation function DNLO

c→Bc
ðz; μF0 ¼ 2mb þmcÞ with

the lower factorization and renormalization scales μF0 ¼
2mb þmc andμR0 ¼ 2mb is used as the boundary condition.
To solve the DGLAP evolution equation, the Mellin trans-
formationmethod is adopted, and the related formulas for the
Mellin transformation method can be found in Ref. [65].2

V. NUMERICAL RESULTS AND DISCUSSIONS

To do the numerical calculation, the input parameters are
taken as follows:

mb ¼ 4.9GeV; mc ¼ 1.5GeV; mW ¼ 80.4GeV;

GF ¼ 1.166×10−5 GeV−2; jVcsj ¼ 1;

jRSð0Þj2¼ 1.642GeV3; ð22Þ

where GF is the Fermi coupling constant. The input value
for jRSð0Þj2 is taken from the potential-model calculation
[66]. For the strong coupling constant, we use the two-loop
formula

αsðμRÞ ¼
4π

β0 lnðμ2R=Λ2
QCDÞ

�
1 −

β1 ln lnðμ2R=Λ2
QCDÞ

β20 lnðμ2R=Λ2
QCDÞ

�
;

where β1 ¼ 34C2
A=3 − 4TFCFnf − 20TFCAnf=3 is the

two-loop coefficient of the QCD β-function. According

to αsðmZÞ ¼ 0.1185 [67], we obtain Λnf¼5

QCD ¼ 0.233 GeV

and Λnf¼4

QCD ¼ 0.337 GeV.

A. Basic results

The decay widths forWþ → Bc þ bþ s̄þ X andWþ →
B�
c þ bþ s̄þ X under the fixed-order approach are given

in Tables I and II, where ΓNLO ¼ ΓLO þ ΓCor
NLO. and ΓCor

NLO.
denotes the NLO corrections, ΓCor:

NLO ¼ Γvirtual þ ΓReal. In the
calculation, we take two typical energy scales (2mb and
mW) as the renormalization scale, and we have αsð2mbÞ ¼
0.180 and αsðmWÞ ¼ 0.121. Tables I and II show that the
NLO corrections are significant. After including the NLO
corrections, the total decay width forWþ → BcðB�

cÞ þ bþ
s̄þ X is increased by 69% (43%) for μR ¼ 2mb and 109%
(92%) for μR ¼ mW.

TABLE I. The total decay widths ofWþ → Bc þ bþ s̄þ X up
to NLO level under the fixed-order approach. Two typical
renormalization scales are adopted.

ΓLO (keV) ΓCor:
NLO (keV) ΓNLO (keV) ΓCor:

NLO=ΓLO

μR ¼ 2mb 2.89 2.00 4.89 0.69
μR ¼ mW 1.30 1.42 2.72 1.09

TABLE II. The total decay widths of Wþ → B�
c þ bþ s̄þ X

up to NLO level under the fixed-order approach. Two typical
renormalization scales are adopted.

ΓLO (keV) ΓCor:
NLO (keV) ΓNLO (keV) ΓCor:

NLO=ΓLO

μR ¼ 2mb 2.48 1.07 3.55 0.43
μR ¼ mW 1.12 1.03 2.15 0.92

2In Ref. [65], the authors adopted an approximation that the
singularity of the NLO splitting function PQ→QðzÞ at z ¼ 1 is
regularized by an overall “+” prescription. Then,

R
1
0 Pc→cðzÞdz ¼ 0.

This approximation is reasonable and applicable, since the proba-
bility to produce an additional heavy quark pair in the evolution
process is very low at the energy of mW . For simplicity, we shall
adopt this approximation in the present paper.
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The momentum of the produced b-quark jet can be
measured using vertex tagging technology, so the invariant

mass of the Bð�Þ
c and b quark in the final state can be

determined experimentally. We present the differential
decay widths dΓ=ds1 for Wþ → BcðB�

cÞ þ bþ s̄þ X in
Figs. 4 and 5, where μR ¼ 2mb and μR ¼ mW , respectively.
Here s1 ≡ ðp1 þ p2Þ2. Figures 4 and 5 show that there is a
peak near the minimum value of s1, indicating the
dominant contributions of the decay processes come from
the phase-space region near the threshold of producing the
BcðB�

cÞ and b quark. This property may be helpful to
distinguish the Bc or B�

c mesons produced through theWþ-
boson decays from the those produced through other
production mechanisms at the high-energy colliders.
Tables I and II show that after including the NLO

corrections, the renormalization scale dependence is soft-
ened. However, such scale dependence is still very large,
e.g., Wþ → BcðB�

cÞ þ bþ s̄þ X, the NLO total decay

width decreases by 44% ð39%Þ, when μR changes from
2mb to mW .
As mentioned in the Introduction, the PMC scale-setting

approach provides a way to eliminate the renormalization
scale ambiguity [44–48]. As an attempt of showing how the
PMC affects the decay width, we present the PMC
predictions in the following.
To apply the PMC, we first schematically rewrite the

NLO decay width as

Γ¼Aα2sðμRÞ
�
1þðaþbnfÞ

αsðμRÞ
π

�

¼Aα2sðμRÞ
�
1þ

�
−
3b
2
β0þ

�
aþ33b

2

��
αsðμRÞ

π

�
: ð23Þ

Using the RGE, the nonconformal term (− 3b
2
β0) can be

adopted to fix the strong running coupling. A PMC scale
μPMC is then determined, which corresponds to the (correct)
typical momentum flow of the process. Then, following
the standard PMC procedures, the NLO decay width
changes to

ΓPMC
NLO ¼ AαsðμPMCÞ2

�
1þ

�
aþ 33b

2

�
αsðμPMCÞ

�
; ð24Þ

where μPMC ¼ μRe3b=2. It is interesting to find that the
PMC scale μPMC is independent to any choice of renorm-
alization scale μR, e.g., μPMC ≡ 6.67 GeV for Bc and
μPMC ≡ 7.17 GeV for B�

c, thus the conventional renormal-
ization scale ambiguity is really eliminated. The PMC
scales are closer to μR ¼ 2mb than μR ¼ mW , the con-
ditions for the total decay widths are similar, thus the usual
guessing choice of μR ¼ 2mb is more reasonable for
conventional prediction. Thus in the following analysis,
we fix μR ¼ 2mb for predictions when use conventional
pQCD series.
Numerical results for the total decay widths of Wþ →

BcðB�
cÞ þ bþ s̄þ X up to NLO accuracy under the PMC

are shown in Table III. After applying the PMC scale-
setting approach, the convergence is slightly better than
conventional series, e.g., after including the NLO QCD
corrections, the decay width forWþ →BcðB�

cÞþbþ s̄þX
is increased by 58% (32%).
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FIG. 4. Differential decay widths dΓ=ds1 for Wþ → BcðB�
cÞ þ

bþ s̄þ X under the fixed-order approach. μR ¼ 2mb.

102 103

s
1
(GeV 2 )

10-14

10-12

10-10

10-8

d
/d

s 1
(G

eV
  -

1 )

B
c
, LO

B
c
, NLO

B
c
* , LO

B
c
* , NLO

FIG. 5. Differential decay widths dΓ=ds1 for Wþ → BcðB�
cÞ þ

bþ s̄þ X under the fixed-order approach. μR ¼ mW .

TABLE III. Total decay widths of Wþ → BcðB�
cÞ þ bþ s̄þ X

up to NLO accuracy under the PMC scale-setting approach.

ΓLO (keV) ΓNLO;Cor. (keV) ΓNLO (keV) ΓNLO;Cor:=ΓLO

Bc 3.53 2.05 5.58 0.58
B�
c 2.92 0.92 3.84 0.32
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B. Comparison of the decay widths under the
fixed-order and fragmentation approaches

It is interesting to know the differential distributions of
those decay processes. We define the energy fraction
z≡ E1=Emax

1 , where E1 and Emax
1 are the energy and the

maximum energy of the BcðB�
cÞ meson in the rest frame of

the initial Wþ-boson. The differential decay widths dΓ=dz
for Wþ → B�

c þ bþ s̄þ X are presented in Figs. 6 and 7.
In addition to the fixed-order results, we also present the
results from the fragmentation approach up to NLO level.
Here, in order to know whether the fragmentation mecha-
nism dominates the decay processes, we do not resum the
leading logarithms of m2

Q=m
2
W , i.e., the coefficient function

and the fragmentation functions are both calculated at the

LO or NLO level without the DGLAP evolution. The
factorization and renormalization scales are set as 2mb þ
mc and 2mb respectively in the fragmentation calculation,
and the renormalization scale is set as 2mb in the fixed-
order calculation.
Figures 6 and 7 show that the fragmentation mechanism

dominates the decay processes Wþ→BcðB�
cÞþbþ s̄þX,

since the fixed-order and fragmentation shapes are close at
the LO and NLO levels. Differences appear in the small z
region, indicating in this z region, the nonfragmentation
terms become important. The neglected logarithms of
m2

Q=m
2
W may give sizable contributions, which can be

resumed in the fragmentation approach by using the
DGLAP evolution equation. More explicitly, the NLO
fragmentation results without or with resummation labeled
as Frag, NLO and Frag, NLOþ NLL are presented in
Figs. 8 and 9, which are calculated by using Eqs. (20) and
(21), respectively. The choices of the factorization and
renormalization scales for the Frag, NLO and Frag, NLOþ
NLL calculations have been given below Eqs. (20) and (21)
accordingly. Here the NLO fixed-order results labeled as
“FO, NLO” are presented as a comparison. The decay
widths for Frag, NLO and Frag, NLOþ NLL are presented
in Table IV. One may observe that by resuming the next-to-
leading logarithms of m2

Q=m
2
W , more accurate behavior in

the large z region can be achieved, and the total decay
widths shall be reduced by about 2% for both Bc and B�

c
productions.
In the fixed-order prediction, the large logarithms of

m2
Q=m

2
W may appear in the specific kinematic region, and

the fragmentation approach provides us a way to give a
reasonable contribution in this region by resuming all the
large logarithms. Thus a combination of those two
approaches may be helpful. As an attempt, we combine
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FIG. 6. The differential width dΓ=dz for Wþ → Bc þ bþ s̄þ
X under the fixed-order (FO) and fragmentation (Frag) ap-
proaches.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z

0

1

2

3

4

5

6

7

8

9

10

d
/d

z(
ke

V
)

FO, LO
FO, NLO
Frag, LO
Frag, NLO

FIG. 7. The differential width dΓ=dz for Wþ → B�
c þ bþ s̄þ

X under the fixed-order (FO) and fragmentation (Frag) ap-
proaches.
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FIG. 8. The NLO differential decay width dΓ=dz for Wþ →
Bc þ bþ s̄þ X under the fixed-order approach (FO), fragmen-
tation approach (Frag) and the combination of two approaches
(Combined), respectively.
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the NLO results from the fixed-order and fragmentation
approaches in the following way:

dΓCombined;NLOþNLL

Wþ→Bð�Þ
c þX

¼ dΓFO;NLO

Wþ→Bð�Þ
c þX

þ
	
dΓFrag;NLOþNLL

Wþ→Bð�Þ
c þX

− dΓFrag;NLO

Wþ→Bð�Þ
c þX



:

Here, the choices of the factorization and renormalization
scales for the Frag, NLO and Frag, NLOþ NLL calcu-
lations have been given below Eqs. (20) and (21) accord-
ingly, and the renormalization for the “FO” calculation is
set as μR ¼ 2mb. The differential decay widths dΓ=dz for
“Combined, NLOþ NLL” are also presented in Figs. 8 and
9. The total decay widths are

ΓCombined;NLOþNLL
Wþ→BcþX ¼ 4.78 keV; ð25Þ

ΓCombined;NLOþNLL
Wþ→B�

cþX ¼ 3.47 keV: ð26Þ

These combined results are the definitive results in the
presented paper because the large logarithms of m2

Q=m
2
W

have been resummed and the theoretical uncertainties are
reduced compared to the fixed-order results.

C. Uncertainty analysis

In this subsection, we shall estimate the theoretical
uncertainties for these decay widths. The main uncertainty
sources for these decay widths include the heavy quark
masses (mc and mb), the renormalization scale and the
radial wave function at the origin jRSð0Þj. jRSð0Þj2 is an
overall factor in the calculation, the uncertainty due to it can
be figured out easily. So we shall not consider the
uncertainty of jRSð0Þj2 and concentrate our attention on
the uncertainties from the heavy quark masses and the
renormalization scale. To clarify, when considering the
uncertainty caused by one input parameter, the other input
parameters are fixed to their center values.
We first consider the uncertainties caused by the heavy

quark masses. We estimate the uncertainties by varying the
heavy quark masses with mc ¼ 1.5� 0.1 GeV and
mb ¼ 4.9� 0.2 GeV. The uncertainties caused by mc
and mb are presented in Tables V and VI respectively.
For comparison, the fixed-order results and the combined
NLOþ NLL results are presented explicitly. From the two
tables, we can see that the decay widths decrease with the
increment of mc and mb, but they are more sensitive to mb
than mc. Adding these two uncertainties caused by mc and
mb in quadrature, we obtain the uncertainties caused by the
heavy quark masses:

ΓFO;NLO
Wþ→BcþX ¼ 4.89þ0.82

−0.65 keV;

ΓFO;NLO
Wþ→B�

cþX ¼ 3.55þ0.59
−0.46 keV; ð27Þ

and

ΓCombined;NLOþNLL
Wþ→BcþX ¼ 4.78þ0.80

−0.63 keV;

ΓCombined;NLOþNLL
Wþ→B�

cþX ¼ 3.47þ0.58
−0.45 keV: ð28Þ
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FIG. 9. The NLO differential decay width dΓ=dz for Wþ →
B�
c þ bþ s̄þ X under the fixed-order approach (FO), fragmen-

tation approach (Frag) and the combination of two approaches
(Combined), respectively.

TABLE IV. The total decay widths (in unit: keV) for Wþ →
BcðB�

cÞ þ bþ s̄þ X under the fragmentation approach.

Frag, NLO Frag, NLOþ NLL

Bc 5.82 5.71
B�
c 4.15 4.07

TABLE V. The decay widths (in unit: keV) for Wþ →
BcðB�

cÞ þ bþ s̄þ X with a variation of mc ¼ 1.5� 0.1 GeV.

mc (GeV) 1.4 1.5 1.6

Bc (FO, NLO) 4.95 4.89 4.84
Bc (Comb, NLOþ NLL) 4.84 4.78 4.74
B�
c (FO, NLO) 3.57 3.55 3.53

B�
c (Comb, NLOþ NLL) 3.50 3.47 3.46

TABLE VI. The decay widths (in unit: keV) for Wþ →
BcðB�

cÞ þ bþ s̄þ X with a variation of mb ¼ 4.9� 0.2 GeV.

mb (GeV) 4.7 4.9 5.1

Bc (FO, NLO) 5.71 4.89 4.24
Bc (Comb, NLOþ NLL) 5.58 4.78 4.15
B�
c (FO, NLO) 4.14 3.55 3.09

B�
c (Comb, NLOþ NLL) 4.05 3.47 3.02
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Then we consider the uncertainties caused by the
renormalization scale and the factorization scale. For the
fixed-order results under the conventional scale setting,
the uncertainties caused by the renormalization scale can be
estimated by varying the renormalization scale between
the two typical energy scales 2mb and mW . The fixed-order
results with μR ¼ 2mb and μR ¼ mW have been presented
in Tables I and II, i.e., ΓFO;NLO

Wþ→BcþX ∈ ½2.72; 4.89� keV and

ΓFO;NLO
Wþ→B�

cþX ∈ ½2.15; 3.55� keV with a variation of μR ∈
½2mb;mW �. These uncertainties caused by the choice of
the renormalization scale in the fixed-order results are big.
For the combined NLOþ NLL results, there are

several renormalization and factorization scales in-
volved in the calculation. We can decompose the
combined NLOþ NLL results into fragmentation contri-
bution dΓFrag;NLOþNLL

Wþ→Bð�Þ
c þX

and power-correction contribution

ðdΓFO;NLO

Wþ→Bð�Þ
c þX

−dΓFrag;NLO

Wþ→Bð�Þ
c þX

Þ. For the fragmentation con-

tribution, there are lower factorization and renormalization
scales, and upper factorization and renormalization scales
involved in the calculation. The lower scales should be
OðmQÞ and the upper scales should be OðmWÞ. Since we
adopt the approximation used in Ref. [65] whereR
1
0 dzPc→cðzÞ ¼ 0, the fragmentation probabilities for c →
BcðB�

cÞ do not change under the DGLAP evolution. Thus,
for the total decay widths, we need not consider the
uncertainties caused by the lower and upper factorization
scales, and only need to consider the uncertainties caused
by the lower and upper renormalization scales. For the
power-correction contribution, the renormalization scales
in dΓFO;NLO

Wþ→Bð�Þ
c þX

and dΓFrag;NLO

Wþ→Bð�Þ
c þX

should be the same. We

take the renormalization scales in the power-correction
contribution as the same as the lower renormalization scale
in the fragmentation contribution for simplicity. In order to
estimate the uncertainties for the combined NLOþ NLL
results, we vary the lower and upper renormalization scales
by a factor of 2 from their center values.
The decay widths with lower renormalization scale μR0 ¼

2mb andμR0 ¼ 4mb are presented inTableVII, and thedecay
widths with upper renormalization scale μR ¼ mW and μR ¼
mW=2 are presented in Table VIII.More explicitly, we obtain
ΓCombined;NLOþNLL
Wþ→BcþX ∈½3.93;4.78�keVandΓCombined;NLOþNLL

Wþ→B�
cþX ∈

½2.97; 3.47� keV with a variation of the lower renormaliza-
tion scale μR0 ∈ ½2mb; 4mb�, and ΓCombined;NLOþNLL

Wþ→BcþX ∈
½4.78; 4.81� keV and ΓCombined;NLOþNLL

Wþ→B�
cþX ∈ ½3.47; 3.49� keV

with a variation of upper renormalization scale μR ∈
½mW=2; mW �.
The results in Tables VII and VIII show that the

combined NLOþ NLL results are more sensitive to the
lower renormalization scale than the upper renormalization
scale. Comparing the results in Tables VII and VIII with
those in Tables I and II, we can see that after resumming the
large logarithms ofm2

Q=m
2
W , the uncertainties caused by the

choice of the renormalization scale are reduced explicitly.

VI. SUMMARY

In the present paper, we have calculated the Wþ-boson
decays, Wþ → BcðB�

cÞ þ bþ s̄þ X, up to NLO QCD
corrections under the NRQCD framework. Both the
fixed-order and fragmentation approaches are adopted
for the calculations. The theoretical uncertainties are
analyzed through varying the heavy quark masses and
the renormalization scale. Our results show the NLO
corrections are significant. Under the conventional scale-
setting approach, the decay widths for Wþ → BcðB�

cÞ þ
bþ s̄þ X shall be increased by 69% (43%) for the case of
μR ¼ 2mb after including the NLO corrections. The scale
dependence can be suppressed after including the NLO
corrections, even though it is still large. By using the PMC,
we show that the renormalization scale ambiguity can be
eliminated for those two decay processes; thus they provide
another successful application of the PMC.
The differential distributions dΓ=dz for the Wþ-boson

decays Wþ → BcðB�
cÞ þ bþ s̄þ X have been given under

the fixed-order and the fragmentation approaches, respec-
tively. Our results show that both decay processes are
dominated by the fragmentation mechanism, and the
differences exist in the small z region. By combining the
fixed-order prediction with the fragmentation approach to
resum the leading and next-to-leading logarithms of
m2

Q=m
2
W , a more accurate distribution to the fixed-order

prediction can be achieved.
The total W-boson decay width is ΓW ¼ 2.09 GeV [67].

Using the combined results (25) and (26) from the fixed-
order and fragmentation approaches, we obtain the branch-
ing fractions for the considered channels, e.g.,

ΓWþ→Bcþbþs̄þX=ΓW ¼ 2.29 × 10−6; ð29Þ

ΓWþ→B�
cþbþs̄þX=ΓW ¼ 1.66 × 10−6: ð30Þ

TABLE VII. The combined, NLOþ NLL decay widths (in
unit: keV) with a variation of the lower renormalization scale μR0.

μR0 2mb 4mb

Bc 4.78 3.93
B�
c 3.47 2.97

TABLE VIII. The combined, NLOþ NLL decay widths (in
unit: keV) with a variation of the upper renormalization scale μR.

μR mW mW=2

Bc 4.78 4.81
B�
c 3.47 3.49
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If the LHC runs with a luminosity of 1034 cm−2 s−1 [37], the
expectedWþ-boson events are about 3.07 × 1010 events per
operation year. Then, there are about 7.03 × 104 Bc mesons
and 5.10 × 104 B�

c mesons to be produced through theWþ-
boson decays per operation year. Two 2S-level excited states
Bcð21S0Þ andBcð23S1Þ have recently been observed byCMS
and LHCb collaborations [68,69]. Using jR2Sð0Þj2 ¼
0.983 GeV3 [66], there are about 4.21 × 104 Bcð21S0Þ and
3.05 × 104 B�

cð23S1Þ to be produced through theWþ-boson
decays per operation year. Those excited states can also be
important sources for the ground-state Bc meson. Thus by
carefully measuring the Wþ-boson decays, we may have a
good chance to study the Bc-meson properties.
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