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We estimate here the electrical and Hall conductivity using a quasiparticle approach for quark matter.
We use a Boltzmann kinetic approach in the presence of external magnetic field. We confront the results
of model calculations with lattice QCD simulations for vanishing magnetic field. In general, electrical
conductivity decreases with magnetic field. The Hall conductivity on the other hand can show a
nonmonotonic behavior with magnetic field due to an intricate interplay of behavior of relaxation time and
strength of the magnetic field. We argue for vanishing quark chemical potential Hall conductivity vanishes
and quark gluon plasma with finite quark chemical potential can show Hall effect. Both electrical
conductivity and Hall conductivity increase with increasing quark chemical potential.
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I. INTRODUCTION

Relativistic heavy-ion collision experiments at Relativistic
Heavy Ion Collider (RHIC) and Large Hadron Collider
(LHC) provide an opportunity for a comprehensive under-
standing of quantum chromodynamics (QCD) in nonpertur-
bative regime, especially for the phase diagram of strongly
interacting matter. Large number of experimental data, as
well as theoretical models, gives ample evidence of the
formation and subsequent evolution of a deconfined strongly
interacting matter, known as quark gluon plasma (QGP). It is
expected that strongly interacting QCD plasma achieves
local thermal equilibrium within about a 1 fm time. For a
comprehensive and detailed understanding of the hot and
dense QCD medium, transport coefficients, e.g., shear
viscosity, bulk viscosity, electrical conductivity, are very
important. These coefficients enter as essential theoretical
input for the hydrodynamical simulations which are impor-
tant tools for interpreting heavy-ion collision data. A small
shear viscosity to entropy ratio (η=s) is consistent with the
transverse momentum spectra of the charged particles within
the framework of dissipative hydrodynamical model of
quark gluon plasma [1–3]. η=s of the strongly interacting

plasma also satisfies the lower bound of shear viscosity to
entropy ratio, η=s ¼ 1

4π, obtained using gauge gravity duality
(AdS=CFT correspondence) [3]. This apart bulk viscosity ζ
also plays an important role in the relativistic dissipative
hydrodynamics describing the evolution of quark gluon
plasma [4–12]. First principle lattice Monte Carlo simula-
tions show a nonmonotonic behavior of ζ=s as well as η=s
near the critical temperature Tc. [6–12].
Further, plausibility of a generation of strong magnetic

field in noncentral heavy-ion collision experiments
brings novel phenomenological aspects. The strength of
the magnetic field so produced strongly depends upon the
center of mass energy of the collision. In fact, at RHIC
energies, the strength of the magnetic field is expected to be
as large as eB ∼ few m2

π and at LHC energies it can go even
higher, of the order of eB ∼ 15m2

π , at least in the initial stage
[13,14]. Although the strength of the magnetic field is large
at the initial stage in these collisions, strength of the magnetic
field is expected to decay with time. Decay of the electro-
magnetic field in the absence of conducting medium is fast,
but due to finite electrical conductivity (σel) of the plasma,
the strength of the magnetic field can be nonvanishing in
QGP. Nonvanishing magnetic field can affect significantly
the evolution of the strong interacting matter [15–33]. This
apart nonvanishing magnetic field along with the topologi-
cally nontrivial non-Abelian QCD vacuum can give rise to
novel charge conjugation and parity (CP) violating effects
such as chiral magnetic effect and chiral vortical effect,
etc. [34]. To estimate various transport coefficients of
QGP and subsequent hadronic medium, different comple-
mentary approaches, e.g., perturbative QCD, QCD inspired
effective models, etc. have been investigated in literature
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[18–33,35–63]. Apart from the viscosity coefficients, the
conductivities both electrical and thermal conductivity also
play an important role in the hydrodynamical evolution of
strongly interacting medium at nonzero baryon densities
[64,65]. Recently, the thermoelectric effect of the hadronic
medium produced at the later stages of heavy-ion collisions
has been investigated within the framework of hadron
resonance gas model [63].
In the present work, we investigate electrical conduc-

tivity as well as Hall conductivity of quark gluon plasma
produced in heavy-ion collisions. The Hall effect in a
conducting medium is the manifestation of the generation
of an induced electric current transverse to an electric field
and magnetic field (perpendicular to the electric field).
Collision geometry in heavy-ion collisions can give rise to
configuration where electric field and magnetic field are
transverse to each other [66,67]. Hence, it is interesting to
study the Hall effect for the electrically conducting QCD
medium produced in heavy-ion collisions. Hall conduc-
tivity of QGP has been studied within the framework of
perturbative QCD in Ref. [68]. Recently, we studied Hall
conductivity of the hadronic medium within the frame-
work of hadron resonance gas model [69]. In the present
investigation, we estimate the electrical and Hall conduc-
tivity for the hot and dense QGP in a magnetic field using
quasiparticle picture of quark gluon plasma. It is impor-
tant to note that QGP can be approximated as an ideal gas
of quarks and gluons only at asymptotic high temper-
atures. However, lattice thermodynamics results indicate
that, for the temperature range achievable at RHIC and
LHC, QGP cannot be approximated as an ideal gas of
quarks and gluons, i.e., the Steffan Boltzmann’s limit for
an ideal gas cannot be achieved at RHIC and LHC.
Further, the plasma produced in the heavy-ion collision
is a strongly coupled liquid rather than a weakly coupled
ideal gas. Particularly, near the QCD transition temper-
ature, nonperturbative effects are important. Only first
principle lattice QCD calculations are a reliable way to
study the thermodynamics and transport properties of the
strongly interacting system. However, for a phenomeno-
logical reason, quasiparticle models are constructed. The
parameters of these quasiparticle models are fixed by
comparing thermodynamic results obtained in these mod-
els with lattice QCD results [70–90]. We have used in this
investigation two such thermodynamically consistent
well-explored quasiparticle models to estimate electrical
conductivity and Hall conductivity in the presence of a
magnetic field. Our results indicate that although the
quasiparticle models considered in this work are thermo-
dynamically on the same footing, but in the context of
transport coefficients, they are different. For the validity of
our results obtained using these quasiparticle models, we
have also given a comparison of our results with the lattice
QCD results wherever available.
Generically in quasiparticle picture, nonperturbative

dynamics is encoded in the masses of quasiparticles.
The masses of the particles can be imagined to be arising

from the energy contained in a strongly coupled volume
determined by the correlation range of the interaction. Once
the effect of interaction is taken care of this way, the
quasiparticles behave like free gas of massive constituents
[70–79]. Instead of medium-dependent mass, one can also
consider the quasiparticle picture by introducing effective
fugacity parameter in the distribution function [88]. This
effective fugacity does not change the mass of the particles
rather it changes the single particle dispersion relation. It is
important to note that in low energy condensed matter
systems with specific type of charge carriers (either
electrons or holes), e.g., semiconductors etc., show Hall
effect [91]. Similarly, an electron-ion plasma also shows
Hall effect, because in electron-ion plasma mobility of
electrons and ions is different. Hence, a net Hall current
exists in electron-ion plasma. However, for pair plasma
(e.g., electron positron plasma) due to vanishing net
gyration frequency of the charge carriers net Hall current
vanishes [92–94]. Quark gluon plasma at vanishing baryon
chemical potential is analogous to the case of pair plasma.
Hence, QGP at vanishing quark chemical potential does not
show Hall effect due to the exact cancellation of Hall
current due to particles and their antiparticles. However, at
finite baryon chemical potential, numbers of positive and
negative charge carriers are not same, due to asymmetry
between the numbers of baryons and antibaryons. Hence,
electrically charged quark gluon plasma with net baryon
number, expected to be produced at low energy collisions,
will also show Hall effect [95,96].
Keeping the above motivation in mind, we calculate

the electrical conductivity and Hall conductivity of
quark gluon plasma in a magnetic field within the kinetic
theory framework using relaxation time approximation. In
Ref. [68], electrical conductivity and Hall conductivity
have been estimated using perturbative QCD approach.
However, QGP formed in heavy-ion collision experiments
is strongly coupled. Hence, perturbative approach may not
be sufficient to study the transport coefficients of quark
gluon plasma. In this context, quasiparticle model of QGP,
where quasiparticle nature of the particles encodes the
nonperturbative effects, has been used to study various
transport coefficients [21,97–105]. In this investigation, we
estimate the electrical conductivity and Hall conductivity in
a magnetic field using quasiparticle picture of QGP. In the
initial stage of the heavy-ion collision, the strength of the
magnetic field is very large compared to the QCD scale
(ΛQCD). But what fraction of this magnetic field can survive
in the strongly interacting medium is not a settled issue, and
the strength of the magnetic field in the plasma is intimately
connected with the value of electrical conductivity. In fact,
for magnetohydrodynamic modeling of the strongly inter-
acting medium, the electrical conductivity usually is taken
to be infinity, which is far from the practical situation
[15,16]. Due to finite and small electrical conductivity, only
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a fraction of the initial large magnetic field can survive in
the thermalized strongly interacting medium.
As mentioned earlier, we attempt to calculate the

electrical conductivity and Hall conductivity in the pres-
ence of magnetic field using the relaxation time approxi-
mation in Boltzmann kinetic equation. In this context, it
may be noted that the thermalization of the strongly
interacting medium is governed by QCD processes. In
this thermalization process, gluons play a dominant role,
because the initial density of the gluons is large with respect
to the quarks and antiquarks. Magnetic field does not affect
directly the interaction between gluons. Only quarks and
antiquarks are affected by the magnetic field. Since in the
thermalization of the strongly interacting medium, gluons
play a dominant role, it is expected that the effect of the
magnetic field should be subdominant. In fact, if we take
the initial temperature of the strongly interacting matter to
be of the order of T ∼ 2–3Tc, then T2 > qB where B ∼m2

π .
Hence, temperature can be the dominant scale in QGP. Of
course, if one is interested in the case where qB ≫ T2, then
the magnetic field becomes the dominant scale and, in that
case, one needs to consider the effect of the magnetic field
on the distribution function and collision integral of the
Boltzmann equation. Again, in the hadronic medium, the
magnetic field should be even smaller than that of QGP.
Hence, if we consider the magnetic field to be subdominant
scale, which is quite reasonable, then the relaxation time
approximation can be used as the simplest approximation
of the collision integral to solve the Boltzmann equation
and this approximation in the presence of magnetic field
for QGP has been used in Refs. [68,106–110], etc.
However, to capture the effect of the magnetic field in
its full glory, one should consider general collision integral
with magnetic field-dependent scattering matrix, which
however is beyond the scope of this work. More general
collision term including the effect of magnetic field in the
scattering cross section as well as in the phase space has
been considered in the strong magnetic field limit in
Refs. [111,112]. Hence, in this investigation, we assume
thermalization is governed by the strong interaction and the
phase space and the single particle energies are not affected
by magnetic field through Landau quantization [68]. Effect
of magnetic field only enters in the calculation through the
cyclotron frequency of the charged particles. In this
investigation, we consider that the thermalization of the
strongly interacting medium is achieved due to the strong
interaction and the external magnetic field which is
generically relatively small with respect to the dominant
scale of the system. Hence, external field only produces a
small deviation of the system from the equilibrium.
This paper is organized as follows: in Sec. II, we briefly

summarize the formalism to estimate electrical conductivity
and Hall conductivity using kinetic theory within relaxation
time approximation as given in Refs. [68,69]. In Sec. III,
we briefly discuss the quasiparticle models of quark gluon

plasma considered in this work. In Sec. IV, we present and
discuss the results for electrical and Hall conductivity.
Finally, we summarize our work with an outlook in the
conclusion section.

II. BOLTZMANN EQUATION IN RELAXATION
TIME APPROXIMATION

In the presence of external electromagnetic field, the
relativistic Boltzmann transport equation for a particle with
electric charge e can be written as [68]

pμ∂μfðx; pÞ þ eFμνpν
∂fðx; pÞ
∂pμ ¼ C½f�; ð1Þ

where the electromagnetic field strength tensor is denoted
as Fμν. On the right-hand side of Eq. (1), C½f� represents the
collision integral which in the relaxation time approxima-
tion can be written as

C½f� ≃ −
pμuμ
τ

ðf − f0Þ≡ −
pμuμ
τ

δf; ð2Þ

where uμ is the fluid four velocity and in the local rest frame

it has the form, uμ ≡ ð1; 0⃗Þ. In Eq. (2), τ is the relaxation
time. At this point, it is important to emphasize that in
general relaxation time (τ) depends on the scattering cross
section and the number density of the particles. The
scattering cross section is a function of the momenta
and energy of the particles. One could use energy and
momenta-dependent relaxation time to solve the
Boltzmann equation. However, for simplicity in the relax-
ation time approximation, one uses the relaxation time
averaged over the distribution function of the particles in
thermal equilibrium. Hence, the thermal averaged relaxa-
tion time is independent of the energy and momentum.
However, temperature and chemical potential dependence
come through the equilibrium distribution function. In the
present investigation, we consider thermal averaged relax-
ation time. Relaxation time determines the time scale over
which a nonequilibrium system relaxes toward its equilib-
rium state in the presence of small external perturbation.
The equilibrium state of the system is characterized by
the equilibrium distribution function f0. f represents out
of equilibrium distribution function. The underlying
assumption of the relaxation time approximation is that
the external perturbation takes the system slightly away
from equilibrium and then it relaxes toward equilibrium,
exponentially with a time scale τ. In this approximation, the
external perturbation, which in this case is external electro-
magnetic field, not dominant scale with respect to the
characteristic scale of the thermal system in equilibrium.
Hence, we are not considering the effect of Landau
quantization on the phase space of the particles and in
the scattering processes. The equilibrium distribution
function satisfies (f0),
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∂f0
∂p⃗ ¼ v⃗

∂f0
∂ϵ ;

∂f0
∂ϵ ¼ −βf0ð1 − f0Þ;

f0 ¼
1

1þ eβðϵ�μÞ ; ð3Þ

where ϵðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þm2

p
is the single particle energy, μ is

the quark chemical potential, and β ¼ 1=T is the inverse of
temperature. Using Eq. (2), the Boltzmann equation (1) can
be written in the following manner [68,69]:

∂f
∂t þ v⃗:

∂f
∂r⃗ þ e½E⃗þ v⃗ × B⃗�: ∂f∂p⃗ ¼ −νðf − f0Þ; ð4Þ

where ν ¼ 1=τ is the inverse of relaxation time. In case of
uniform and static medium, where f and f0 are indepen-
dent of time and space [68], Eq. (4) simplifies to

−e½E⃗þ v⃗ × B⃗� ∂f∂p⃗ ¼ νðf − f0Þ: ð5Þ

Here without loss of generality, electric field and magnetic
field transverse to each other and can be chosen in the
following way: E⃗ ¼ Ex̂ and B⃗ ¼ Bẑ. For this representa-
tion of E⃗ and magnetic field B⃗, the out of equilibrium
distribution function which is a solution of Eq. (5) can be
shown to be [69]

fðpÞ ¼ f0 − eEvx

�∂f0
∂ϵ

�
ν

ν2 þω2
c
þ eEvy

�∂f0
∂ϵ

�
ωc

ω2
c þ ν2

:

ð6Þ

Here ωc ≡ ðeBÞ=(εðpÞ) is the cyclotron frequency.

Electric current can be defined in the following way [68]:

ji ¼ e
Z

d3p
ð2πÞ3 v

iδf ¼ σijEj ¼ σelδijEj þ σHϵijEj; ð7Þ

where ϵij is the antisymmetric 2 × 2 unity tensor, with
ϵ12 ¼ −ϵ21 ¼ 1. Using Eqs. (6) and (7), the electrical and
the Hall conductivity for a system of multiple charge
particle species can be expressed as [68,69]

σel ¼
X
i

e2i τigi
3T

Z
d3p
ð2πÞ3

p2

ϵ2i

1

1þ ðωciτiÞ2
f0ð1 − f0Þ; ð8Þ

σH ¼
X
i

e2i τigi
3T

Z
d3p
ð2πÞ3

p2

ϵ2i

ωciτi
1þ ðωciτiÞ2

f0ð1 − f0Þ; ð9Þ

where ei, τi, gi, and ωci are electric charge, thermal
averaged relaxation time, degeneracy factor, and cyclotron
frequency of the ith charged particle species, respectively. It
is important to note that in the absence of magnetic field,
Eq. (8) reproduces the standard expression of electrical
conductivity in relaxation time approximation [21,113].

It is easy to see from Eqs. (8) and (9) that particles and their
antiparticles contribute to the electrical conductivity in a
same manner and their behavior is opposite in case of Hall
conductivity. Using quasiparticle picture of quark gluon
plasma, one can get relaxation time (τ), medium-dependent
mass (m), as well as the medium-dependent dispersion
relation. Once these quantities are known using Eqs. (8)
and (9), electrical conductivity and the Hall conductivity
can be estimated.
At this point, it is important to emphasize that in this

investigation we have considered only magnetic field and
the electric field perpendicular to each other; however, for a
more general configuration of electric and magnetic field,
the electrical conductivity tensor can be expressed as [114]

σij ¼ δijσ0 − ϵijmhmσ1 þ hihjσ2; ð10Þ

where h⃗ ¼ B⃗
jB⃗j and

σn¼
e2

3T

Z
d3p
ð2πÞ3 τ

�
p2

ϵ2

� ðωcτÞn
1þðωcτÞ2

f0ð1−f0Þ; n¼0;1;2:

ð11Þ

Hence, for a general configuration of electric and magnetic
field, the electrical conductivity tensor has three compo-
nents σ0, σ1, and σ2. σ1 and σ2 are associated with E⃗ × B⃗
and E⃗:B⃗ terms in the electrical conductivity tensor.
However, when the electric and the magnetic field are
perpendicular to each other, we only have σ0 and σ1. σ0
can be identified with the electrical conductivity in the
presence of a magnetic field (σel), and σ1 can be identified
as the Hall conductivity σH. σ2 is nonvanishing when the
electrical and magnetic field are not perpendicular to each
other. If we consider the magnetic field along the z
direction, then the electrical conductivity along the z
direction, σzz ¼ σ0 þ σ2, which is independent of the
magnetic field as can be seen from the explicit expres-
sions of σ0 and σ2. However, σ1, the Hall conductivity, is
perpendicular to the magnetic field.
Let us note that in Refs. [115,116] transport coefficients

have also been calculated using a 14-moment approxima-
tion for dissipative magnetohydrodynamics. In these stud-
ies, the effects of Landau quantization have not been
considered. As is the case in the present work, the effect
of Landau quantization is not included and further more
number of transport coefficients arise in the presence of
magnetic field with respect to zero magnetic field case.
Comparison of our analysis with Refs. [115,116] is in order
here. For a single species, the Hall conductivity can be
expressed as

σH ¼ e2τ
3T

Z
d3p
ð2πÞ3

p2

ϵ2
ωcτ

1þ ðωcτÞ2
f0ð1 − f0Þ: ð12Þ
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In the Boltzmann approximation, for massless case with
τ ¼ λmfp,

σH ¼ e2τ
3T

Z
d3p
ð2πÞ3

ωcτ

1þ ðωcτÞ2
f0

¼ e2τ
3T

Z
d3p
ð2πÞ3

ξB=3
1þ ðξB=3Þ2

f0

¼ e2λmfp

3T
3ξB

9þ ξ2B
n; ð13Þ

where ξB ¼ eBλmfp

T . To derive this, we have replaced ωcτ≡
eBτ
ϵðpÞ by its thermal averaged value, i.e., eBτ

ϵ̄ ≡ 1
3
ξB, where

ϵ̄ ¼ 3T, the average single particle energy at a given
temperature. For ξB ≫ 1, σH is independent of λmfp.
WiedemannFranz law connects electrical conductivity with
the heat-diffusion coefficient. For massless Boltzmann gas
in the presence of magnetic field and for ξB ≫ 1, it has been
shown in Refs. [115,116] that the Hall type heat-diffusion
coefficient is independent of the mean free path. Due to
Wiedemann Franz law, this also means that the Hall
conductivity is also independent of the mean free path
for ξB ≫ 1. This is consistent with the formalism consid-
ered in this investigation.

III. QUASIPARTICLE MODEL OF
QUARK GLUON PLASMA

To describe the thermal properties of QGP, one uses
QCD at finite temperature and baryon chemical potential.
At very high temperature, due to asymptotic freedom, a
system of quarks and gluons can be treated as ideal gas.
But at relatively low temperature, near Tc, nonperturbative
effects become important. In the nonperturbative domain,
first principle lattice calculations give reliable prediction
about different thermal properties of the system. However,
for phenomenological aspects, one needs an effective
description of QGP near T ∼ Tc. In this context, one can
use quasiparticle description of quarks and gluons in
medium to investigate thermal properties of QGP. The basic
idea behind various quasiparticle pictures of QGP is that one
can approximate the thermodynamic properties of a system
of strongly interacting quarks and gluon by a systemof quasi
quarks and quasi gluons, where the information about the
interaction is encoded in the physical properties, e.g.,
medium-dependent mass of the quasiparticles. In literature,
various types of quasiparticle models are discussed [70–90].
In this investigation, we have considered two quasiparticle
models, quasiparticle model I (QPM I) and quasiparticle
model II (QPM II). In QPM I, quark gluon plasma is
described by an ideal gas of quasiparticles having temper-
ature-dependent mass arising from the interactions with the
surrounding quarks and gluons in the medium [81–83]. In
QPM II, we consider the effective fugacity quasiparticle

model, where the quasiparticle nature is implemented by
modifying the distribution function for free quarks and
gluons by introducing an effective fugacity, which encodes
information of the interaction [88].

A. Quasiparticle model I (QPM I)

In this quasiparticle model, effective mass of all the
quark (antiquark) has bare mass (m0) as well as thermal
mass (mth), which can be expressed as [81–83]

m2 ¼ m2
0 þ

ffiffiffi
2

p
m0mth þm2

th: ð14Þ

The thermal mass (mth) arises due to the interaction of
quarks and antiquarks with the other constituents of the
plasma and can be expressed as [117]

m2
thðT; μÞ ¼ g2ðT; μÞT2

N2
c − 1

8Nc

�
1þ μ2

π2T2

�
; ð15Þ

where g2ðT; μÞ is the two loop QCD running coupling
constant at finite temperature (T) and quark chemical
potential (μ) [81,83],

g2ðT;μÞ¼ 24π2

ð33−2nfÞ ln
�

T
ΛT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa μ2

T2

q �

×

0
B@1−

3ð153−19nfÞ
ð33−2nfÞ2

ln
�
2 ln

�
T
ΛT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa μ2

T2

q ��

ln
�

T
ΛT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa μ2

T2

q �
1
CA;

ð16Þ

where ΛT is the QCD scale parameter and a ¼ 1=π2.
The relaxation time τ of quarks (antiquarks) and gluon

can be given by the following expression [5,100]:

τqðq̄Þ ¼
1

5.1Tα2s lnð 1αsÞð1þ 0.12ð2nf þ 1ÞÞ ð17Þ

and

τg ¼
1

22.5Tα2s lnð 1αsÞð1þ 0.06nfÞ
; ð18Þ

where αsðT; μÞ ¼ g2ðT;μÞ
4π , g2ðT; μÞ is the temperature (T),

and quark chemical potential (μ) dependent strong coupling
constant. It is important to note that the above mentioned
relaxation time, as given in Eqs. (17) and (18), has been
derived in massless case and for μ ≪ T. It has been argued
in Ref. [118] that the effect of mass on the scattering cross
sections is small. Thus, mass has nonqualitative difference
in the relaxation time as well as on transport coefficient in
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the quasiparticle model. In this model, light quark masses
have been chosen to be 0.1 times the strange quark mass,
which is consistent with the chiral perturbation theory results
[119–121]. The parameters ΛT=Tc and the strange quark
mass can be adjusted to fit the lattice data [119]. The fitted
parameters are ΛT=Tc ¼ 0.35, with Tc ¼ 200 MeV and
ms0 ¼ 80 MeV [83].

B. Quasiparticle model II (QPM II)

In this model, the basic ansatz is that lattice QCD EOS
can be reproduced in terms of noninteracting quasiparticle
degrees of freedom having effective fugacities (zq; zg)
which encodes all the interaction effects of the particles
in the system. These effective fugacities enter through the
equilibrium distribution function of gluons and quarks
(antiquarks) at finite temperature and vanishing baryon
chemical potential, which can be expressed as [122]

fg0 ¼
zg expð−βpÞ

1 − zg expð−βpÞ
; ð19Þ

fq=q̄0 ¼ zq expð−βϵðpÞÞ
1þ zq expð−βϵðpÞÞ

¼
zq exp

�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p �

1þ zq exp
�
−β

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p � :
ð20Þ

From Eqs. (19) and (20), one gets the equilibrium dis-
tribution function of ideal quarks and gluon in the limit
when quark/antiquark fugacity (zq) and gluons fugacity (zg)
approach unity, i.e., zq ∼ zg ∼ 1.0. For the complete infor-
mation of the quasiparticle distribution functions as
given in Eqs. (19) and (20), one requires the temperature
dependence of the fugacities zq and zg. Temperature
dependence of fugacities zq and zg can be obtained by
matching the thermodynamic properties of this quasipar-
ticle model with that of lattice QCD results. Fitting the
thermodynamic properties of this model with lattice QCD
data, for phenomenological purpose one can get a para-
metric form for zq and zg as a function of temperature [122].
Following Ref. [122], the temperature dependence of the
fugacities zq and zg can be given as

zq;g ¼ aq;g expð−bq;g=x5Þ; for; x < xq;g;

zq;g ¼ a0q;g expð−b0q;g=x2Þ; for; x > xq;g;

xq;g ≡ Tq;g=Tc ∼ 1.70; 1.68; ð21Þ

where the fitting parameters aq;g, a0q;g, bq;g, b0q;g are given in
Table I [122]. In this investigation, for simplicity, we have
considered Tq;g=Tc ¼ T=Tc ∼ 1.70 and the central values
of all the fitting parameters for zq and zg. Variation of zq
and zg with temperature as shown in the Fig. 1 is consistent
with the estimate of zq and zg, as given in Ref. [122].
It can be shown that effective fugacity parameters in

the equilibrium distribution function affect single particle
dispersion relation in the following way [122]:

ωg
p ¼ pþ T2∂T lnðzgÞ; ð22Þ

ωq
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
þ T2∂T lnðzqÞ: ð23Þ

Although the dispersion relations are modified, it is
important to note that in effective fugacity quasiparticle
model, group velocity of the quasiparticles remains
unchanged, i.e.,

v⃗ ¼ ∂p⃗ωp ¼ ∂p⃗ϵðpÞ ¼
p⃗

ϵðpÞ : ð24Þ

This model can be extended at finite quark chemical
potential by introducing quark chemical potential in quark/
antiquark distribution function [123],
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FIG. 1. Variation of zq and zg with temperature (T).

TABLE I. Fitting parameters for zq and zg [122].

zg;q ag;q bg;q a0g;q b0g;q
Gluon 0.803� 0.009 1.837� 0.039 0.978� 0.007 0.942� 0.035
Quark 0.810� 0.010 1.721� 0.040 0.960� 0.007 0.846� 0.033
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fq=q̄0 ¼ zq expð−βðϵðpÞ ∓ μÞÞ
1þ zg expð−βðϵðpÞ ∓ μÞÞ ¼

zq exp
�
−β

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ∓ μ
��

1þ zq exp
�
−β

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p ∓ μ
�� : ð25Þ

It is important to note that although quark chemical potential is introduced in the distribution function at finite chemical
potential, fugacities are assumed to be independent of chemical potential as they are fixed with lattice data at finite
temperature and zero chemical potential.
The thermal averaged relaxation time of quarks, antiquarks, and gluons at finite temperature and chemical potential in the

effective fugacity quasiparticle model has been considered as [123,124]

τ−1g ¼ gg

Z
d3p⃗g

ð2πÞ3 f
g
0ð1þ fg0Þ

�
9g4eff

16πhsigg

�
ln
hsigg
k2

− 1.267

��
þ gq

Z
d3p⃗q

ð2πÞ3 f
q
0ð1 − fq0Þ

�
g4eff

4πhsigq

�
ln
hsigq
k2

− 1.287

��

þ gq̄

Z
d3p⃗q̄

ð2πÞ3 f
q̄
0ð1 − fq̄0Þ

�
g4eff

4πhsigq̄

�
ln
hsigq̄
k2

− 1.287

��
; ð26Þ

τ−1q ¼ gg

Z
d3p⃗g

ð2πÞ3 f
g
0ð1þ fg0Þ

�
g4eff

4πhsiqg

�
ln
hsiqg
k2

− 1.287

��
þ gq

Z
d3p⃗q

ð2πÞ3 f
q
0ð1 − fq0Þ

�
g4eff

9πhsiqq

�
ln
hsiqq
k2

− 1.417

��

þ gq̄

Z
d3p⃗q̄

ð2πÞ3 f
q̄
0ð1 − fq̄0Þ

�
g4eff

9πhsiqq̄

�
ln
hsiqq̄
k2

− 1.417

��
; ð27Þ

τ−1q̄ ¼ gg

Z
d3p⃗g

ð2πÞ3 f
g
0ð1þ fg0Þ

�
g4eff

4πhsiq̄g

�
ln
hsiq̄g
k2

− 1.287

��
þ gq

Z
d3p⃗q

ð2πÞ3 f
q
0ð1 − fq0Þ

�
g4eff

9πhsiq̄q

�
ln
hsiq̄q
k2

− 1.417

��

þ gq̄

Z
d3p⃗q̄

ð2πÞ3 f
q̄
0ð1 − fq̄0Þ

�
g4eff

9πhsiq̄ q̄

�
ln
hsiq̄ q̄
k2

− 1.417

��
; ð28Þ

where thermal average of the quantity s is denoted as hsikl ¼ 2hpkihpli, with hpki ¼
R

d3pk
ð2πÞ3jp⃗kjfk0R
d3pk
ð2πÞ3jf

k
0

and k2 ¼ g2effT
2. Effective

strong coupling constant geff in this model can be determined using charge renormalization, by computing the Debye mass
in the medium within the framework of effective fugacity quasiparticle model and comparing it to the hard thermal loop
results. For μ=T ≡ μ̃ < 1, effective strong coupling constant can be shown to be [123]

αseff ðT; μÞ ¼
g2eff
4π

¼ αsðT; μÞ
2Nc
π2

PolyLog½2; zg� − 2Nf

π2
PolyLog½2;−zq� þ μ̃2ðNf

π2
zq

1þzq
Þ

ðNc
3
þ Nf

6
Þ þ μ̃2

Nf

2π2

; ð29Þ

where αsðT; μÞ is the temperature and chemical potential–
dependent strong coupling constant [83]. In this inves-
tigation, we have considered strange quark mass (ms) to be
80 MeV and the light quark masses are taken as one tenth
of the strange quark mass for QPM II. QCD transition
temperature is taken as Tc ¼ 200 MeV [119].

IV. RESULTS AND DISCUSSIONS

In Fig. 2, we show the variation of the normalized
electrical conductivity (σel=T) with temperature at vanish-
ing magnetic field (eB ¼ 0.0) and quark chemical potential
(μ) for QPM I and QPM II. From this figure, it is clear that
normalized electrical conductivity (σel=T) in QPM I is
consistent with the lattice QCD data given by Amato et al.

[26]. On the other hand, normalized electrical conductivity
(σel=T) as estimated in QPM II is consistent with the lattice
QCD data given by Gupta et al. [27]. For comparison, we
have also shown in Fig. 2 normalized electrical conduc-
tivity obtained in Nambu-Jona-Lassinio model as given by
Marty et al. [28]. Values of the normalized electrical
conductivity in these two quasiparticle models are order
of magnitude different. This is because electrical conduc-
tivity is proportional to the relaxation time, which is order
of magnitude larger in QPM II with respect to QPM I as can
be seen from Fig. 3.
In Figs. 3(a) and 3(b), we show the variation of

relaxation time of u quarks with temperature (T) and quark
chemical potential (μ). For the QPM I, relaxation time of
the quarks and gluons, as given in Eqs. (17) and (18), was
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derived for the case of μ ≪ T [5]. Hence, throughout this
investigation, we have considered relaxation time in QPM I
for vanishing quark chemical potential. It is important to
mention that in this investigation we have not considered
the effect of magnetic field on the relaxation time as
magnetic field is not the dominant scale. From Fig. 3, it
is clear that the thermal average relaxation time in QPM II

is order of magnitude larger that its counterpart in QPM I.
This is because of the different quasiparticle nature of the
partons in these models, as can be seen from Eqs. (17) and
(27). This apart from Figs. 3(a) and 3(b) we can also see
that with increasing temperature relaxation time decreases.
Physically, this means with increasing temperature as the
number density of the partons increases collision rate
increases. From Fig. 3(b), it is clear that with increasing
chemical potential relaxation time decreases in QPM II.
Although the dependence of relaxation time on the chemi-
cal potential in QPM II is convoluted as can be seen from
Eq. (27), but physically one can understand the variation of
relaxation time with quark chemical potential in the
following way. With increasing chemical potential, number
density of the scatterer increases due to increasing number
density of the particles. Hence, interaction rate increases
with increasing quark chemical potential, which gives rise
to decreasing behavior of relaxation time with increasing
quark chemical potential.
In Fig. 4, we show the variation of normalized electrical

conductivity with temperature at vanishing quark chemical
potential but with finite magnetic field. From Figs. 4(a)
and 4(b), we see that with increasing magnetic field
normalized electrical conductivity (σel=T) decreases. In
QPM II, the decrease in σel=T is much larger than its
counterpart in QPM I. This behavior can be understood
from Eq. (8). Since in QPM I value of the relaxation time
is order of magnitude smaller than the relaxation time in
QPM II, ωcτ in the denominator in Eq. (8) is larger in
QPM II. This gives rise to larger decrease in the normalized
electrical conductivity in QPM II with respect to QPM I.
Physically, electrical conductivity decreases with magnetic
field because with increasing magnetic field more particles
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FIG. 2. Variation of normalized electrical conductivity (σel=T)
with temperature (T) at vanishing magnetic field and vanishing
quark chemical potential. Lattice data are also shown in this plot
for comparison. Value of σel=T in QPM I is consistent with lattice
data given by Amato et al. [26]. On the other hand, σel=T as
estimated in QPM II is consistent with the lattice QCD data given
by Gupta et al. [27].
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FIG. 3. Plot (a): variation of thermal averaged relaxation time of u quark with temperature for vanishing magnetic field and quark
chemical potential in QPM I. Plot (b): variation of relaxation time of u quark with temperature for vanishing magnetic field but with
different values quark chemical potential in QPM II. From plot (a) and plot (b), we see that with increasing temperature thermalized
relaxation time decreases for both the quasiparticle models. For QPM II, relaxation time decreases with increase in quark chemical
potential.
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are deviated from the direction of electric field, hence
reduction in electrical current. Variation of normalized
electric conductivity with temperature for a fixed magnetic
field and quark chemical potential depends crucially on
the temperature dependence of relaxation time and the
equilibrium distribution function. For the range of quark
chemical potential, temperature, and magnetic field con-
sidered in this investigation, from Fig. 4(a) we can see that
with temperature σel=T increases. This increasing behavior
of σel=T is predominately due to the Boltzmann factor
expð−ϵðpÞ=TÞ in the distribution function, which increases
with increasing temperature. Similarly, for QPM II, with

temperature normalized, electrical conductivity increases
for nonvanishing magnetic field as can be seen in Fig. 4(b).
With increasing temperature, the relaxation time decreases
and the Boltzmann factor in the distribution function
increases, giving rise to this increasing behavior of nor-
malized electrical conductivity at nonvanishing magnetic
field in QPM II.
Next, we show the variation of normalized electrical

conductivity with temperature for vanishing magnetic field
but with finite quark chemical potential in Fig. 5. From
Figs. 5(a) and 5(b), we can see that for both the quasipar-
ticle models σel=T increases with quark chemical potential.
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FIG. 4. Plot (a): variation of normalized electrical conductivity (σel=T) with temperature for vanishing quark chemical potential but
with different values of magnetic fields in QPM I. Plot (b): variation of normalized electrical conductivity (σel=T) with temperature for
vanishing quark chemical potential but with different values of magnetic fields in QPM II. From plot (a) and plot (b), we can see that for
both the quasiparticle models, normalized electrical conductivity decreases with increasing magnetic field. Decrease of normalized
electrical conductivity is significantly larger in QPM II with respect to its counterpart in QPM I.
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FIG. 5. Plot (a): variation of normalized electrical conductivity (σel=T) with temperature for vanishing magnetic field and different
values of quark chemical potential in QPM I. Plot (b): variation of normalized electrical conductivity (σel=T) with temperature for
vanishing magnetic field and different values of quark chemical potential in QPM II. For QPM I [plot (a)] and QPM II [plot (b)], with
increasing quark chemical normalized electrical conductivity increases.
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Variation of normalized electrical conductivity with quark
chemical potential intimately connected with the variation
of relaxation time with quark chemical potential and the
Boltzmann factor expð�μ=TÞ in the equilibrium distri-
bution function. For QPM I, thermal average relaxation
time has been calculated for vanishing quark chemical
potential. Hence, relaxation time does not change with
quark chemical potential. At finite chemical potential,
number density of quarks is larger than antiquarks; hence,
in the total electrical conductivity, contribution from the
quarks is larger with respect to the antiquarks. With
increasing quark chemical potential, Boltzmann factor
in the distribution function increases. This increasing
behavior of the Boltzmann factor in the distribution
function results in the increasing behavior of normalized
electrical conductivity with quark chemical potential in
QPM I. On the other hand, for QPM II, from Fig. 3(b), we
can see that with increasing quark chemical potential
relaxation time decreases. But this decrease in the
relaxation time with increasing quark chemical potential
is compensated by the Boltzmann factor [expðμ=TÞ] in the
distribution function. Hence, in QPM II, normalized
electrical conductivity increases with quark chemical
potential. It is also important to note that at relatively
high temperature normalized electrical conductivity does
not change by a large amount with chemical potential.
This is because at high temperature Boltzmann factor
[(expðμ=TÞ] is not large within the temperature and
chemical potential range considered here.
Now, we turn our focus to the variation of normalized

Hall conductivity σH=T with temperature. For vanishing
quark chemical potential, the relaxation time of quarks and

antiquarks is same. Hence, in the Hall conductivity,
particles and antiparticle contributions are exact but oppo-
site. So, the net Hall current at vanishing quark chemical
potential is zero as can be explicitly seen in Eq. (9). Only
for nonvanishing quark chemical potential, Hall conduc-
tivity has nonzero value. In Fig. 6, we show the variation of
normalized Hall conductivity (σH=T) with temperature for
nonvanishing quark chemical potential and magnetic field.
From Fig. 6(a), for QPM I, we see that for finite quark
chemical potential Hall conductivity increases with mag-
netic field. However, for QPM II, Hall conductivity has a
nonmonotonic behavior with temperature, as can be seen in
Fig. 6(b), where at small temperature Hall conductivity
decreases with increase in magnetic field and at relatively
high temperature Hall conductivity increases with increase
in magnetic field. This different behavior of Hall conduc-
tivity in QPM I and QPM II is mainly due to different
values of relaxation time in these quasiparticle models. This
behavior of σH=T as shown in Fig. 6(b) with magnetic field
is plausibility due to the factor ωcτ

1þðωcτÞ2 in the Hall

conductivity as can be seen from Eq. (9). At relatively
small temperature, relaxation time is large and σH=T ∼ 1

ωc
.

On the other hand, at high temperature, relaxation time is
smaller and σH=T ∼ ωc. Thus, at smaller temperature with
increasing magnetic field, normalized Hall conductivity
decreases and at high temperature it increases with mag-
netic field in QPM II. As we have already mentioned in
QPM I, relaxation time is order of magnitude smaller than
that of in QPM II; hence, in this case, σH=T ∼ ωc for the
range of temperature, chemical potential, and magnetic
field considered here. Hence, in QPM I, Hall conductivity

0.0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

(a)

0.0

0.005

0.01

0.015

0.02

0.025

2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

(b)

FIG. 6. Plot (a): variation of normalized Hall conductivity (σH=T) with temperature for a nonvanishing quark chemical potential and
various values of magnetic field in QPM I. Plot (b): variation of normalized Hall conductivity (σH=T) with temperature for a
nonvanishing quark chemical potential and various values of magnetic field in QPM II. For QPM I, as shown in plot (a), σH=T increases
with magnetic field. Contrary to QPM I, in QPM II, as shown in plot (b) for relatively low temperature, normalized Hall conductivity
decreases with magnetic field and for higher temperature it increases with magnetic field. For a fixed value of magnetic field and quark
chemical potential in QPM I [plot(a)], σH=T decreases with temperature. On the other hand, for QPM II [plot (b)], σH=T first increases
with temperature for relatively small temperature and eventually it decreases with temperature at large temperature.
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increases with magnetic field. For a fixed magnetic field,
variation of normalized Hall conductivity with temperature
is rather convoluted. In QPM II, for a fixed magnetic field,
at relatively low temperature due to large relaxation time,
σH=T ∼ f0ð1 − f0Þ=T2, which increases with increasing
temperature for the parameter range considered in this
work. On the other hand, at relatively high temperature,
due to small relaxation time, σH=T ∼ τ2f0ð1 − f0Þ=T2,
which decreases with increasing temperature.
In Fig. 7, we show the variation of normalized hall

conductivity (σH=T) with temperature for different values
of quark chemical potential and finite magnetic field. For
Figs. 7(a) and 7(b), it is clear that with increasing quark
chemical potential Hall conductivity increases. At vanish-
ing quark chemical potential, Hall conductivity is zero
because of the exact cancellation of Hall current of
particles and its antiparticles. At finite quark chemical
potential, number density of particles is larger than that of
antiparticles. Hence, at finite quark chemical potential,
there is a net Hall current and nonvanishing Hall con-
ductivity. With increasing quark chemical potential, con-
tribution of the particles increases, which results in the
increasing behavior of σH=T with quark chemical poten-
tial, as can be seen in Fig. 7. Similar to Fig. 6 for a fixed
chemical potential and magnetic field, variation of nor-
malized Hall conductivity with temperature is convoluted
and it depends upon various factors, e.g., relaxation time,
distribution function, etc.

V. CONCLUSIONS

In this investigation, we study the electrical conduc-
tivity and Hall conductivity in the presence of magnetic
field for quark gluon plasma within the framework of

quasiparticle models. Here we have considered two
specific quasiparticle models of QGP, QPM I, where
the quasiparticle nature of the quarks and gluon are
encoded in thermal mass of the quasi partons, and
QPM II, where the quasiparticle nature is encoded in
the effective fugacity parameter in the distribution func-
tion. Both of these models have been explored earlier in
literature. We found that with increasing magnetic field
normalized electrical conductivity (σel=T) decreases in
both quasiparticle models. However, due to widely differ-
ent values of relaxation time in these models, decrease in
normalized electrical conductivity with magnetic field is
larger in QPM II than its counterpart in QPM I. In both
these models, thermal averaged relaxation time decreases
with temperature. In QPM II, relaxation time decreases
with increasing quark chemical potential, plausibility due
to increasing number density of quasi partons and increas-
ing interaction rates. In both models, normalized electrical
conductivity increases with increasing quark chemical
potential. For a pair plasma at vanishing quark chemical
potential, Hall current due to particles and antiparticles
cancels each other. Hence, Hall conductivity can have a
nonzero value only for finite quark chemical potential. In
QPM I, with increasing magnetic field, normalized Hall
conductivity (σH=T) increases. On the other hand, for
QPM II, at relatively small temperature, σH=T decreases
with increasing magnetic field and at high temperature
σH=T increases with increase in magnetic field. Finally,
with finite magnetic field, σH=T increases with increase in
quark chemical potential. This is due to the fact that at
finite quark chemical potential contributions of the par-
ticles are larger than their antiparticles in the net Hall
conductivity and with increasing chemical potential
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FIG. 7. Plot (a): variation of normalized Hall conductivity (σH=T) with temperature (T) for various values of quark chemical potential
(μ) and fixed nonvanishing magnetic field in QPM I. Plot (b): variation of normalized Hall conductivity (σH=T) with temperature (T) for
various values of quark chemical potential (μ) and fixed nonvanishing magnetic field in QPM II. From these plots, we can see that with
increasing quark chemical potential σH=T increases. For QPM I, with increasing temperature, normalized Hall conductivity decreases.
On the other hand, for QPM II, normalized Hall conductivity varies nonmonotonically with temperature.
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contribution of the quarks increases, resulting in an
increasing behavior of σH=T with quark chemical poten-
tial. Our results clearly demonstrate that while the two
quasiparticle models considered here are consistent with
lattice results regarding thermodynamics, the resulting
transport coefficients are quite different from the numeri-
cal values for the same differing by an order of magnitude.
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