
 

Determining the strong phase of the a1 meson decay amplitude using the
W → ντ(→νa1(→π∓π∓π�)) process

Kaoru Hagiwara,1 Hiroyuki Ishida ,1 Toshifumi Yamada ,2 and Daneng Yang 3

1KEK Theory Center, Tsukuba, Ibaraki 305-0801, Japan
2Institute of Science and Engineering, Shimane University, Matsue 690-8504, Japan

3Department of Physics, Tsinghua University, Beijing 100084, China

(Received 7 January 2020; accepted 3 February 2020; published 19 February 2020)

To measure the helicity of a spin-1 meson from the triple vector product of the three-momenta of its
decay products, one needs information about the strong phase of the decay amplitude. In this paper, taking
a1ð1260Þmeson as an example, we present a method to extract information about the strong phase from the
triple vector product of the pion momenta in the W → ντð→νa1ð→π∓π∓π�ÞÞ process, where the a1
helicity is known a priori from electroweak theory. This process is advantageous in that highly boosted a−1
mesons from τ−L decays have nearly maximal helicity asymmetry and thus most reflect the strong phase. We
revisit the theoretical calculation of the a1 meson helicity in the W → ντð→νa1Þ process. Next, we
formulate the differential decay rate of polarized a1 mesons in a manner convenient for the study of the a1
meson helicity asymmetry. Finally, we present the method for extracting information about the strong
phase, and assess its feasibility at the LHC.
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I. INTRODUCTION

The helicity of spin-1 mesons can be a probe for physics
beyond the Standard Model (SM). For example, in the
B− → K−π−πþγ process induced by b → sγ, the SM
predicts that the K−π−πþ system is mostly left-handed
because the W boson loop gives an amplitude with a left-
handed photon, while various extensions of the SM contain
an extra amplitude with a right-handed photon. The helicity
of the K−π−πþ system can be determined from the triple
vector product of the three-momenta of K−, π−, πþ, and
indeed a nonzero polarization of the system has been
confirmed experimentally [1]. Nevertheless, the helicity has
not been measured. The difficulty lies in the fact that the
triple vector product of three-momenta is a naïve T-odd
quantity [2] (odd under the reversal of all three-momenta
and spins), and in CP-conserving theories like QCD its
expectation value is nonzero only with the strong phase of
the decay amplitude of K−π−πþ resonances, which is
poorly understood. Since K1ð1270Þ and K1ð1400Þ reso-
nances (the latter is much suppressed) contribute to the
B− → K−π−πþγ process [3], efforts have been made to
theoretically or phenomenologically determine the strong
phase of K1ð1270Þ and K1ð1400Þ decay amplitudes [4–9].

Notably, Ref. [8] has pursued a purely phenomenological
approach where one extracts, from experimental data on the
B− → K−π−πþJ=ψ process, information about the strong
phase necessary for the K1ð1270Þ helicity measurement.
In this paper, we study experimental determination of the

strong phase of a spin-1 meson’s decay amplitude which
utilizes a hadronic decay of a τ lepton from a W boson
decay. Since the helicity of a spin-1 meson in the decay of a
polarized τ is known a priori from electroweak theory, we
can use W → ντð→νAÞ events (A denotes a spin-1 meson)
to determine the strong phase. Moreover, the W →
ντð→νAÞ process is advantageous in that highly boosted
spin-1 mesons in W → ντð→νAÞ events have nearly maxi-
mal helicity asymmetry (i.e. almost purely left-handed or
right-handed) and hence the impact of the strong phase is
maximized. Although our ultimate target is the strong
phase of K1ð1270Þ and K1ð1400Þ decay amplitudes, in this
paper we deal with a simpler case with an a1ð1260Þmeson.
We present a method to phenomenologically determine the
strong phase of the a−1 → π−π−πþ decay amplitude1,2 from
W → ντð→νa1ð→π∓π∓π�ÞÞ data (Fig. 1), and assess its
feasibility in W boson production events at the LHC.
Once the strong phase of the a−1 → π−π−πþ decay

amplitude is determined, one can use it to search for
new physics through the a1 polarization. Moreover, we
expect that the strong phase of the K−

1 → K−π−πþ decay
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1Throughout the paper, a1 refers to a1ð1260Þ meson.
2Theoretical study on the hadronic form factors of a−1 →

π−π−πþ decay amplitude is found, e.g., in Refs. [10–12].
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amplitude is determined in basically the same manner,
which is then utilized for the most interesting case, the
photon polarization measurement in the B− → K−π−πþγ
process.
This paper is organized as follows:
In Sec. II, we revisit the theoretical calculation of the

helicity of a−1 meson in the W− → ν̄ττ
−ð→ντa−1 Þ process.

The a−1 helicity is calculated as a function of the
energy fraction of a−1 in τ− decay in the laboratory frame,
z ¼ Ea1=Eτ. We will confirm that a−1 with z≳ 0.8 (i.e.
highly boosted a−1 ) is almost purely left-handed.
In Sec. III, we express the differential decay rate of

polarized a−1 mesons using the following parametrization:
Let p1, p2, p3 respectively denote the four-momenta of
π−; π−; πþ, with Q · p1 > Q · p2 (Q ¼ p1 þ p2 þ p3). In
an a−1 rest frame, we write the angle between p⃗3 × p⃗1 and

a−1 ’s boost direction in the laboratory frame as Ψ, and write
the angle between p⃗3 and the projection of a−1 ’s boost
direction onto the a−1 decay plane as ϕ. The anglesΨ;ϕ and
the Dalitz variables s13 ¼ ðp1 þ p3Þ2, s23 ¼ ðp2 þ p3Þ2
completely parametrize the differential decay rate. A benefit
of this parametrization is that that part of the differential
decay rate which reflects the a−1 helicity asymmetry is
simply linear in cosΨ and is independent of ϕ.3

In Sec. IV, we present a method to determine the strong
phase using W → ντð→νa1ð→π∓π∓π�ÞÞ events, based on
the theoretical calculation of the a−1 helicity in Sec. II and
the parametrization of the differential decay rate in Sec. III.
Statistical uncertainty in the above determination at the
14 TeV LHC with 300 fb−1 of data is further estimated.
Section V summarizes the paper.
In the Appendix, we give a simple derivation of the

Wigner rotation, which is used in the calculation of the a−1
helicity in boosted τ− decays in Sec. II.

II. a−
1 HELICITY IN THE

W − → ν̄ττ − (→ντa−
1 ) PROCESS

Since τ− in theW− → τ−ν̄τ process is almost purely left-
handed, it suffices to consider polarized τ−. The differential
decay rate of the τ− → ντπ

−π−πþ process with polarized τ−

is expressed as

dΓðτ−h → π−π−πþντÞ

¼ 1

2mτ

����
X

λ¼�;0
Mðτ−h → ντa−1;λÞBa1ðQ2ÞMða−1;λ → π−π−πþÞ

����
2

dΦ2ðτ → a1νÞ
dQ2

2π
dΦ3ða1 → 3πÞ;

h ¼ � 1

2
∶τ− helicity; λ ¼ �; 0∶a−1 helicity; Qμ∶a−1 momentum: ð1Þ

Mðτ−h → ντa−1;λÞ denotes the helicity amplitude of the τ− →
ντa−1 process, Ba1ðQ2Þ is the form factor of a1 resonance
that satisfies BðQ2 ¼ 0Þ ¼ 1, and Mða−1;λ → π−π−πþÞ
denotes the helicity amplitude of the a−1 → π−π−πþ proc-
ess. dΦ2ðτ → a1νÞ and dΦ3ða1 → 3πÞ denote the phase
space factors of τ− → ντa−1 and a−1 → π−π−πþ processes,
respectively. In Eq. (1), the contribution from πð1300Þ
resonance is neglected, since the OPAL Collaboration has
reported, based on a fitting of τ− → π−π−πþν data, that the
branching ratio of τ− → π−ð1300Þν process is below 0.84%
of the total τ− → π−π−πþν branching ratio [14]. Also, a
single axial-vector resonance, a1ð1260Þ, is assumed to
dominate the process, since the CLEO Collaboration has

reported that the same assumption yields a good fit to the
isospin-related process τ− → π−π0π0ν [15]. Note that the
vector current contribution is negligible in the τ− →
π−π−πþντ process due to G-parity of QCD.
Integrating out the azimuthal angle of a−1 momentum

around the τ− helicity axis, we remove interference among
amplitudes with different a−1 helicities. The differential
decay rate is then factorized into the one for the τ− → ντa−1
process and the one for the a−1 → π−π−πþ process, and is
expressed as

dΓðτ−h → ντπ
−π−πþÞ

¼ 1

2mτ

X
λ¼�1;0

jMðτ−h → ντa−1;λÞj2jBa1ðQ2Þj2

× jMða−1;λ → π−π−πþÞj2

×
1

16π

�
1 −

Q2

m2
τ

�
d cos θ̂

dQ2

2π
dΦ3ða1 → 3πÞ ð2Þ

FIG. 1. W → ντð→ νa1ð→ π∓π∓π�ÞÞ process.

3Kühn-Mirkes parametrization [13] has been widely used for
describing the τ− → 3πντ decay kinematics. Our parametrization
differs from it in that the coordinate is defined independently of
τ− momentum, namely, purely the a−1 → 3π decay kinematics is
described.
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where θ̂ denotes the angle between the a−1 momentum and
the τ− helicity axis in a τ− rest frame. For convenience, we
trade θ̂ for the energy fraction of a−1 in τ− decay in the
laboratory frame, z,

z ¼ Ea1

Eτ
¼ 1þQ2=m2

τ þ βð1 −Q2=m2
τÞ cos θ̂

2
ð3Þ

where β denotes the speed of τ− in the laboratory frame.
Equation (2) is then rewritten as

dΓðτ−h → ντπ
−π−πþÞ

¼ jBa1ðQ2Þj22
ffiffiffiffiffiffi
Q2

p dQ2

2π

×
X

λ¼�1;0

dΓðτ−h → ντa−1;λÞ
dz

dzdΓða−1;λ → π−π−πþÞ; ð4Þ

with

dΓðτ−h → ντa−1;λÞ
dz

¼ 1

β

1

16πmτ
jMðτ−h → ντa−1;λÞj2; ð5Þ

dΓða−1;λ → π−π−πþÞ ¼ 1

2
ffiffiffiffiffiffi
Q2

p jMða−1;λ → π−π−πþÞj2

× dΦ3ða1 → 3πÞ: ð6Þ

dΓðτ−h → ντa−1;λÞ=dz corresponds to the differential decay
rate of τ− with helicity h decaying into a−1 with helicity λ,
for a specific value of z. dΓða−1;λ → π−π−πþÞ corresponds
to the differential decay rate of a−1 with helicity λ. dΓðτ−h →
ντa−1;λÞ=dz for h ¼ −1=2 encodes the a−1 helicity distribu-
tion in the W− → ν̄ττ

−ð→ντa−1 Þ process.
In the rest of the section, we evaluate dΓðτ−h →

ντa−1;λÞ=dz. The helicity amplitude Mðτ−h → ντa−1;λÞ is
given by

Mðτ−h → ντa−1;λÞ

¼
ffiffiffi
2

p
GF cos θC ν̄τγμ

1 − γ5
2

τðp⃗τ; hÞϵ�μðQ2; λÞ; ð7Þ

where we retain Q2 dependence of the polarization vector
ϵμ, since a1 is a broad resonance. The helicity amplitude
Mðτ−h → ντa−1;λÞ is specified in terms of the a−1 helicity
along the a−1 boost direction in a τ− rest frame, λτ, and the
angle between the a−1 momentum and the τ− helicity axis in
a τ− rest frame θ̂; we find

Mðτ−h → ντa−1;λτÞ ¼
ffiffiffi
2

p
GF cos θC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

τ −Q2

q
M̂hλτ ; ð8Þ

where

M̂−1
2
;−¼

ffiffiffi
2

p
cos

θ̂

2
; M̂−1

2
;0¼

mτffiffiffiffiffiffi
Q2

p sin
θ̂

2
; M̂−1

2
;þ¼0; ð9Þ

M̂1
2
;−¼−

ffiffiffi
2

p
sin

θ̂

2
; M̂1

2
;0¼

mτffiffiffiffiffiffi
Q2

p cos
θ̂

2
; M̂1

2
;þ¼0: ð10Þ

Experimentally, what we measure is the a−1 helicity along
the a−1 boost direction in the laboratory frame, λlab, not the
helicity along the a−1 boost direction in a τ− rest frame λτ.
Hence, we want to rewrite Eq. (8) in terms of λlab. For this
purpose, we expand the a−1 polarization vectors in the
laboratory frame in terms of those in a τ rest frame, as

ϵμðQ2; λlabÞ ¼
X

λτ¼�1;0

f−ϵμðQ2; λτÞϵν�ðQ2; λτÞgϵνðQ2; λlabÞ

¼
X

λτ¼�1;0

f−ϵν�ðQ2; λτÞϵνðQ2; λlabÞgϵμðQ2; λτÞ

¼
X

λτ¼�1;0

dJ¼1
λτλlab

ðθ̃ÞϵμðQ2; λτÞ; ð11Þ

where dJ¼1
λ0λ is a d-function, and θ̃ is the angle between the

a−1 boost direction in a τ− rest frame and that in the
laboratory frame, measured in an a−1 rest frame. θ̃ is
expressed in terms of the angle between the a−1 momentum
and the τ− helicity axis in a τ− rest frame θ̂, and the speed
and boost factor of τ− in the laboratory frame β and
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
, as (see the Appendix for the derivation)

cos θ̃ ¼ ð1þ a2Þβ cos θ̂ þ 1 − a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1þ a2Þ þ ð1 − a2Þβ cos θ̂g2 − 4a2=γ2

q

ða ¼
ffiffiffiffiffiffi
Q2

p
=mτÞ; ð12Þ

or equivalently, in terms of the energy fraction of a−1 in τ−

decay in the laboratory frame z, as

cos θ̃ ¼ zð1þ a2Þ − 2a2

ð1 − a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 − a2

γ2

q ðz ¼ Ea1=EτÞ: ð13Þ

The helicity amplitude is rewritten in terms of the a−1
helicity in the laboratory frame λlab, as

Mðτ−h → ντa−1;λlabÞ ¼
X

λτ¼�1;0

dJ¼1
λτλlab

ðθ̃ÞM̂hλτðθ̂Þ ð14Þ

with θ̃ given in Eq. (12) or Eq. (13).
Assembling Eqs. (5), (8), (14), (13), we numerically

calculate dΓðτ−h → ντa−1;λÞ=dz and present it in the form of
the normalized differential decay rate
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1

Γ
dΓλlab

dz
ðz;Q2Þ

¼ 1P
λ¼�1;0

R
dz0

dΓðτ−h→ντa−1;λ;z
0;Q2Þ

dz0

dΓðτ−h → ντa−1;λlab ;z;Q
2Þ

dz

ð15Þ

in Fig. 2, for each τ− helicity h ¼ −1=2 (τ−L) and h ¼ 1=2
(τ−R). The boost factor of τ

− is fixed as γ ¼ 23, correspond-
ing to the boost factor of τ− from the decay of aW boson at
rest. However, the plots are almost independent of γ when
γ ≳ 3. Three different values of the a−1 invariant mass,ffiffiffiffiffiffi
Q2

p
¼ 1.13 GeV, 1.23 GeV, 1.33 GeV, are considered.

The left panel of Fig. 2 presents the a−1 helicity in the
W− → ν̄ττ

−ð→ντa−1 Þ process. In the left panel, we observe
that the a−1 meson with z≳ 0.8 is almost purely left-
handed (λlab ¼ −1).
We note that Fig. 2 is in agreement with the preceding

study Ref. [16].

III. DIFFERENTIAL DECAY RATE OF
POLARIZED a−

1 MESONS

We formulate the differential decay rate of the a−1 →
π−π−πþ process for each a−1 helicity, Eq. (6), in a manner
convenient for the study of the helicity asymmetry.
The helicity amplitude is written as

Mða−1;λ → π−π−πþÞ ¼ ϵμðQ2; λÞJμ; ð16Þ

where ϵμðQ; λÞ is the polarization vector of a−1 with helicity
λ, and Jμ is the hadronic current,

Jμ ¼ hπ−π−πþjð−ūγμγ5dÞj0i: ð17Þ

The most general parametrization for the hadronic current
Jμ that respects (i) Lorentz covariance, (ii) the current
conservation QμJμ ¼ 0, and (iii) Bose symmetry of two
π−’s, is given as follows: Let p1, p2, p3 respectively denote
the momenta of π−; π−; πþ [then Qμ ¼ ðp1 þ p2 þ p3Þμ],
where the two π−’s are distinguished by Q · p1 > Q · p2.
The most general parametrization is then

Jμðp1;p2;p3Þ¼−i
2

ffiffiffi
2

p

3fπ
fðp1ν−p3νÞFðQ2;s13;s23Þ

þðp2ν−p3νÞFðQ2;s23;s13Þg
�
gμν−

QμQν

Q2

�
;

ð18Þ

where s13≡ðp1þp3Þ2 and s23≡ðp2þp3Þ2, fπ ≃ 93 MeV
is the pion decay constant, and FðQ2; s13; s23Þ is a general
function of three Lorentz scalars. FðQ2; s13; s23Þ is nor-
malized in such a way that if ππ resonances were absent,
we would have FðQ2; s13; s23Þ ¼ 1 by chiral perturbation
theory [17].
We explicitly write the a−1 decay helicity amplitude

Eq. (16) in the a−1 rest frame whose z-axis is along the a−1
boost direction in the laboratory frame (thus λlab is along
this z-axis). In this frame, the momenta of the three pions
and their sum can be parametrized as

Qμ ¼ ð
ffiffiffiffiffiffi
Q2

p
; 0; 0; 0Þ; ð19Þ

pμ
3 ¼ ðE3; p⃗3Þ ¼

1

2
ffiffiffiffiffiffi
Q2

p
0
BBB@

x3
x̃3 cosϕ cosΨ

x̃3 sinϕ

−x̃3 sinΨ cosϕ

1
CCCA; ð20Þ

z
0.4 0.5 0.6 0.7 0.8 0.9 1

 

0

0.5

1

1.5

2

2.5

3

=-1λ
=0λ
=+1λ

=1.13 GeV 2Q 

=1.23 GeV 2Q 

=1.33 GeV 2Q 

 leptons-
Lτ mesons in the decays of boosted 

-

1
Helicity fractions of a

dz
λΓd

 Γ
1

z
0.4 0.5 0.6 0.7 0.8 0.9 1

 

0

0.5

1

1.5

2

2.5

3

=-1λ
=0λ
=+1λ

=1.13 GeV 2Q 

=1.23 GeV 2Q 

=1.33 GeV 2Q 

 leptons-
Rτ mesons in the decays of boosted 

-

1
Helicity fractions of a

dz
λΓd

 Γ
1

FIG. 2. Left: normalized differential decay rate Eq. (15) for τ− with helicity h ¼ −1=2ðτ−LÞ, for each final-state a−1 helicity in the
laboratory frame λlab ¼ �; 0. The horizontal axis is z ¼ Ea1=Eτ, the energy fraction of a−1 in τ− decay in the laboratory frame. The boost
factor of τ− in the laboratory frame is fixed as γ ¼ 23. The dot-dashed, solid, and dashed lines correspond to different a−1 invariant

masses
ffiffiffiffiffiffi
Q2

p
¼ 1.13 GeV, 1.23 GeV, 1.33 GeV. Right: same as the left plot except that τ− has helicity h ¼ 1=2ðτ−RÞ.
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pμ
1 ¼ ðE1; p⃗1Þ

¼ 1

2
ffiffiffiffiffiffi
Q2

p
0
BBB@

x1
x̃1 cosΨðcosϕ cos θ1 − sinϕ sin θ1Þ

x̃1ðsinϕ cos θ1 þ cosϕ sin θ1Þ
−x̃1 sinΨðcosϕ cos θ1 − sinϕ sin θ1Þ

1
CCCA;

ð21Þ

pμ
2 ¼ ðE2; p⃗2Þ

¼ 1

2
ffiffiffiffiffiffi
Q2

p
0
BBB@

x2
x̃2 cosΨðcosϕ cos θ2 þ sinϕ sin θ2Þ

x̃2ðsinϕ cos θ2 − cosϕ sin θ2Þ
−x̃2 sinΨðcosϕ cos θ2 þ sinϕ sin θ2Þ

1
CCCA;

ð22Þ

where xi and x̃i are defined in terms of Q2, s13, s23 as

xi ¼ 2Q · pi ¼ Q2 − sjk þm2
π

ðði; j; kÞ ¼ ð1; 2; 3Þ; ð2; 3; 1Þ; ð3; 1; 2ÞÞ; ð23Þ

x̃i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2i − 4Q2m2

π

q
: ð24Þ

θi (i ¼ 1, 2) denotes the angle between p⃗i and p⃗3, which is
given in terms of x̃i as

cosθ1 ¼
x̃22 − x̃21 − x̃23

2x̃1x̃3
; cosθ2 ¼

x̃21 − x̃22 − x̃23
2x̃2x̃3

: ð25Þ

Ψ is the angle between the p⃗3 × p⃗1 vector and the z-axis,
and ϕ is the angle between the p⃗3 vector and the projection
of the z-axis onto the a−1 decay plane, which satisfy

p⃗3 × p⃗1 ¼
1

4Q2
x̃3x̃1 sin θ1ðsinΨ; 0; cosΨÞ: ð26Þ

The polarization vectors are given by

ϵμðQ2; λlab ¼ �Þ ¼ 1ffiffiffi
2

p ð0;∓1;−i; 0Þ;

ϵμðQ2; λlab ¼ 0Þ ¼ ð0; 0; 0; 1Þ: ð27Þ

From Eqs. (16), (18), (27), the helicity amplitudes are
expressed as

Mða−1;λlab¼� → π−π−πþÞ ¼ 1

3fπ

1ffiffiffiffiffiffi
Q2

p ½� cosΨfcosϕAðQ2; s13; s23Þ − sinϕBðQ2; s13; s23Þg

þ ifsinϕAðQ2; s13; s23Þ þ cosϕBðQ2; s13; s23Þg�; ð28Þ

Mða−1;λlab¼0 → π−π−πþÞ ¼
ffiffiffi
2

p

3fπ

1ffiffiffiffiffiffi
Q2

p sinΨfcosϕAðQ2; s13; s23Þ − sinϕBðQ2; s13; s23Þg; ð29Þ

where A and B are structure functions with mass dimension þ2 defined as4 [remember that x̃i is related to Q2,
s13, s23 through Eq. (24)]

AðQ2; s13; s23Þ ¼ ðcos θ1x̃1 − x̃3ÞFðQ2; s13; s23Þ þ ðcos θ2x̃2 − x̃3ÞFðQ2; s23; s13Þ; ð32Þ

BðQ2; s13; s23Þ ¼ sin θ1x̃1fFðQ2; s13; s23Þ − FðQ2; s23; s13Þg: ð33Þ

4In the mπ → 0 limit, they asymptote as

AðQ2; s13; s23Þ ⟶
mπ→0

�
x1 − x3 −

2ð1 − x2Þ
x3

�
FðQ2; s13; s23Þ þ

�
x2 − x3 −

2ð1 − x1Þ
x3

�
FðQ2; s23; s13Þ; ð30Þ

BðQ2; s13; s23Þ ⟶
mπ→0 2

x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − x1Þð1 − x2Þð1 − x3Þ

p
fFðQ2; s13; s23Þ − FðQ2; s23; s13Þg: ð31Þ
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Finally, we plug Eqs. (28), (29) into the formula for the polarized a−1 differential decay rate

dΓða−1;λlab → π−π−πþÞ ¼ 1

2
ffiffiffiffiffiffi
Q2

p jMða−1;λlab → π−π−πþÞj2dΦ3ða1 → 3πÞ

¼ 1

2
ffiffiffiffiffiffi
Q2

p jMða−1;λlab → π−π−πþÞj2 1

128π3
1

Q2
ds13ds23

d cosΨ
2

dϕ
2π

and obtain

d4Γða−1;λlab¼� → π−π−πþÞ
d cosΨdϕds13ds23

¼ 1

512π4
1

2Q4
ffiffiffiffiffiffi
Q2

p 1

9f2π
½jAj2 þ jBj2 − ð1 − cos2ΨÞfcos2 ϕjAj2 þ sin2 ϕjBj2 − sin 2ϕReðA · B�Þg � 2 cosΨ ImðA · B�Þ�;

ð34Þ

d4Γða−1;λlab¼0 → π−π−πþÞ
d cosΨdϕds13ds23

¼ 1

512π4
1

2Q4
ffiffiffiffiffiffi
Q2

p 1

9f2π
2ð1 − cos2ΨÞfcos2 ϕjAj2 þ sin2 ϕjBj2 − sin 2ϕReðA · B�Þg: ð35Þ

Consider a general a1 production process, not limited to the W → ντð→a1νÞ process. In terms of the transverse and
asymmetric helicity fractions in the laboratory frame defined by

PT ¼ ðNumber of a−1 mesons with λlab ¼ þÞ þ ðNumber of a−1 mesons with λlab ¼ −Þ
ðTotal number of a−1 mesonsÞ ;

PA ¼ ðNumber of a−1 mesons with λlab ¼ þÞ − ðNumber of a−1 mesons with λlab ¼ −Þ
ðTotal number of a−1 mesonsÞ ;

the a−1 differential decay rate in a general a1 production process satisfies

1

Γða−1 → π−π−πþÞ
d4Γða−1 → π−π−πþÞ
d cosΨdϕds13ds23

¼ PT
1

4πNnor
½jAj2 þ jBj2 − 3ð1 − cos2 ΨÞfcos2 ϕjAj2 þ sin2 ϕjBj2 − sin 2ϕReðA · B�Þg� ð36Þ

þ PA
1

4πNnor
2 cosΨ ImðA · B�Þ ð37Þ

þ 1

4πNnor
2ð1 − cos2ΨÞfcos2 ϕjAj2 þ sin2 ϕjBj2 − sin 2ϕReðA · B�Þg; ð38Þ

where

Nnor ¼
2

3

ZZ
ds12ds13ðjAj2 þ jBj2Þ:

From Eq. (37), we find that the cosΨ asymmetry is proportional to both the helicity asymmetry PA and the term
ImðA · B�Þ=Nnor, the latter of which is nonzero only with the strong phase. cosΨ is a naïve T-odd quantity, and its
expectation value is nonzero only with the strong phase, in accordance with what is stated in Sec. I.
Once the function ImðA · B�Þ=Nnor is known, one can measure PA using asymmetry of the number of events with

cosΨ > 0 and cosΨ < 0. Conversely, if the helicity asymmetry of a−1 is known a priori, one can determine
ImðA · B�Þ=Nnor by measuring the asymmetry of the number of events with cosΨ > 0 and cosΨ < 0. This is indeed
feasible in the τ−L → ντa−1 ð→π−π−πþÞ process, for which the a−1 helicity is theoretically calculable as done in Sec. II. To be

specific, we write the differential decay rate of the τ−L → ντa−1 ð→π−π−πþÞ process in terms of 1
Γ
dΓλlab
dz Eq. (15) for τ−L as
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1

Γðτ−L → ντa−1 ð→π−π−πþÞÞ
d5Γðτ−L → ντa−1 ð→π−π−πþÞÞ

d cosΨdϕds13ds23dz

¼
�
1

Γ
dΓþ
dz

þ 1

Γ
dΓ−

dz

�
1

4πNnor
½jAj2 þ jBj2 − ð1 − cos2ΨÞ

× fcos2 ϕjAj2 þ sin2 ϕjBj2 − sin 2ϕReðA · B�Þg� ð39Þ

þ
�
1

Γ
dΓþ
dz

−
1

Γ
dΓ−

dz

�
1

4πNnor
2 cosΨ ImðA · B�Þ ð40Þ

þ 1

Γ
dΓ0

dz
1

4πNnor
2ð1 − cos2ΨÞfcos2 ϕjAj2

þ sin2 ϕjBj2 − sin 2ϕReðA · B�Þg: ð41Þ

Since 1
Γ
dΓλlab
dz can be computed theoretically, it is possible

to determine ImðA · B�Þ=Nnor from the cosΨ asymmetry
of τ−L → ντa−1 ð→π−π−πþÞ events. A problem is that when
we use pp → W∓ → ντ∓ð→νπ∓π∓π�Þ events to collect
τ−L, it is difficult to reconstruct z, since two neutrinos
contribute to the missing transverse momentum. In this
paper, we evade the reconstruction of z by exploiting a
positive correlation between z and a−1 ’s transverse mass
MT . We impose a tight selection cut on MT and thereby
select events with large z. ImðA · B�Þ=Nnor is determined
from the cosΨ asymmetry of events, divided by the
convolution of theoretically calculated 1

Γ
dΓþ
dz − 1

Γ
dΓ−
dz and

the reweighting function of z under given selection
cuts (the reweighting function is obtainable from a
Monte Carlo simulation).
An advantage of the above method is that, for τ−L and for

large z, j 1Γ dΓþ
dz − 1

Γ
dΓ−
dz j is maximized (see the left panel of

Fig. 2). Hence, the cosΨ asymmetry is maximized and the
statistical uncertainty in the determination of ImðA · B�Þ=Nnor
is reduced.
We comment that, for τ−L and for z → 1, 1

Γ
dΓþ
dz − 1

Γ
dΓ−
dz

quickly approaches to its value at z ¼ 1 and is insensitive
to the precise value of z. Hence, once we collect large-z
events, the convolution of 1

Γ
dΓþ
dz − 1

Γ
dΓ−
dz and the reweight-

ing function of z is not affected by details of the
reweighting function, which reduces the systematic
uncertainty associated with the estimation of the
reweighting function. However, confirming this reduction
of the systematic uncertainty is beyond the scope of the
present paper.

IV. METHOD TO DETERMINE Im(A · B�)=Nnor

A. Method

ImðA · B�Þ=Nnor satisfies the following relation stem-
ming from Eq. (40):

ImðA · B�Þ
Nnor

ðQ2; s13; s23ÞNðQ2Þ
�
1

Γ
dΓþ
dz

−
1

Γ
dΓ−

dz

����
z;Q2;for τ−L

�

¼ d3N
dzds13ds23

ðcosΨ > 0; z;Q2; s13; s23Þ

−
d3N

dzds13ds23
ðcosΨ < 0; z;Q2; s13; s23Þ ð42Þ

where d3NðcosΨ > 0; z;Q2; s13; s23Þ=dzds13ds23 denotes
the number of pp → W∓ → ντ∓ð→νπ∓π∓π�Þ events with
cosΨ > 0 per z; s13; s23 for fixed Q2 (and likewise for
cosΨ < 0), andNðQ2Þ is the total number of events for any
z; s13; s23 for fixed Q2 given by

NðQ2Þ

¼
Z

dz
ZZ

ds12ds13

�
d3N

dzds13ds23
ðcosΨ>0;z;Q2;s13;s23Þ

þ d3N
dzds13ds23

ðcosΨ<0;z;Q2;s13;s23Þ
�
: ð43Þ

Remember that NðQ2Þ and ImðA · B�Þ=Nnor do not depend
on z.
In real experiments, we cannot measure the right-hand

side of Eq. (42), since we do not reconstruct z. Instead, we
propose to measure the following quantity:

d2Ncut

ds13ds23
ðcosΨ > 0;Q2; s13; s23Þ

−
d2Ncut

ds13ds23
ðcosΨ < 0;Q2; s13; s23Þ; ð44Þ

where d2NcutðcosΨ > 0;Q2; s13; s23Þ=ds13ds23 denotes the
number of events with cosΨ > 0 per s13, s23 for fixed Q2,
under given selection cuts on the absolute values of the
transverse momentum and pseudorapidity of a1, the abso-
lute value of the missing transverse momentum, and a1’s
transverse mass. When one flips the sign of all three-
momentum vectors, the above selection cuts are invariant
and so are z;Q2; s13; s23 and ϕ. On the other hand, cosΨ,
which is proportional to the triple vector product of p⃗3; p⃗1

and the a1 boost direction, flips its sign. As a result, if
z;Q2; s13; s23;ϕ are the same, the above selection cuts do
not discriminate an event with cosΨ ¼ c and one with
cosΨ ¼ −c. Therefore, we can recast Eq. (44) in the form

ð44Þ ¼
Z

dz fcutðz;Q2; s13; s23Þ

×

�
d3N

dzds13ds23
ðcosΨ > 0; z;Q2; s13; s23Þ

−
d3N

dzds13ds23
ðcosΨ < 0; z;Q2; s13; s23Þ

�
ð45Þ
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where fcutðz;Q2; s13; s23Þ denotes the fraction of events with specific values of z;Q2; s13; s23 that pass the selection cuts,
which is common for cosΨ > 0 and cosΨ < 0. From Eqs. (42), (45) and z-independence of NðQ2Þ and ImðA · B�Þ=Nnor,
we have

ImðA · B�Þ
Nnor

ðQ2; s13; s23ÞNðQ2Þ
Z

dz fcutðz;Q2; s13; s23Þ
�
1

Γ
dΓþ
dz

−
1

Γ
dΓ−

dz

����
z;Q2;for τ−L

�

¼ d2Ncut

ds13ds23
ðcosΨ > 0;Q2; s13; s23Þ −

d2Ncut

ds13ds23
ðcosΨ < 0;Q2; s13; s23Þ: ð46Þ

The right-hand side is measured in experiments. As for the
left-hand side, NðQ2Þ is known from the pp → W∓ total
cross section and branching fractions of W− → τ−ν̄τ and

τ− → π−π−πþντ decays. 1
Γ
dΓλlab
dz has been calculated theo-

retically in Sec. II. fcutðz;Q2; s13; s23Þ can be evaluated
with a Monte Carlo simulation by exploiting generator-
level information on z. Therefore, it is possible to determine
ImðA · B�Þ=Nnor.
For practical purposes, it is convenient to use

wðz;Q2; s13; s23Þ defined below, in place of
fcutðz;Q2; s13; s23Þ:

wðz;Q2; s13; s23Þ ¼
NðQ2Þfcutðz;Q2; s13; s23Þ

NcutðQ2Þ ð47Þ

where NcutðQ2Þ is the total number of events for fixed Q2

that pass the selection cuts,

NcutðQ2Þ ¼
ZZ

ds12ds13

�
d2Ncut

ds13ds23
ðcosΨ > 0;Q2; s13; s23Þ

þ d2Ncut

ds13ds23
ðcosΨ < 0;Q2; s13; s23Þ

�
: ð48Þ

wðz;Q2; s13; s23Þ is interpreted as the reweighting of events
with specific values of z; s13; s23; Q2 due to the selection
cuts, which is again common for cosΨ > 0 and cosΨ < 0.
In terms of wðz;Q2; s13; s23Þ, Eq. (46) is recast in the form

ImðA · B�Þ
Nnor

ðQ2; s13; s23ÞNcutðQ2Þ
Z

dz wðz;Q2; s13; s23Þ
�
1

Γ
dΓþ
dz

−
1

Γ
dΓ−

dz

����
z;Q2;for τ−L

�

¼ d2Ncut

ds13ds23
ðcosΨ > 0;Q2; s13; s23Þ −

d2Ncut

ds13ds23
ðcosΨ < 0;Q2; s13; s23Þ: ð49Þ

In Sec. IV B, we generate detector-level Monte Carlo
events for the 14 TeV LHC and impose selection cuts on
them. Using these events, in Sec. IV C, we evaluate
wðz;Q2; s13; s23Þ. In Sec. IV D, we estimate statistical
uncertainty in a measurement of the right-hand side of
Eq. (49) with 300 fb−1 of data.

B. Monte Carlo event generation and selection cuts

Using MadGraph5_aMC@NLO [18] with the TauDecay pack-
age [19], we generate parton-level events for the process
(charged-conjugated process is also considered),

pp→W−ð→ν̄ττ
−ð→ντπ

−π−πþÞÞþ0;1;2 partonðsÞ ð50Þ

for
ffiffiffi
s

p ¼ 14 TeV pp collisions. Then, we use PYTHIA8

[20] to simulate parton showering. The groups of events
with 0, 1, 2 parton(s) are matched with MLM-matching
[21] algorithm.

For the events generated, we use the Delphes3

program [22] to simulate the CMS detector effects, con-
sidering jητ-jetj < 2.5, pτ-jetT > 1 GeV and 60% tagging
efficiency for the identification of a three-prong τ-jet. We
reconstruct an a−1 meson from a three-prong τ-jet by
requiring that the three charged tracks have charges
summed to that of a−1 and that the invariant mass (calcu-
lated by assuming that each charged track is a pion) be less
than 2 GeV. The variables cosΨ, s13, s23 are calculated as
described in Sec. III.
We impose the following selection cuts on the above

samples:
(i) Event must contain exactly one reconstructed

a−1 meson.
(ii) Missing transverse momentum must satisfy

=pT > 25 GeV.
(iii) Invariant mass of the a−1 must satisfy 1.26 GeV >ffiffiffiffiffiffi

Q2
p

> 1.20 GeV.
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Additionally, we impose
(i) Transverse mass for the a−1 ,

MT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j=⃗pT j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗a1T j2 þQ2

q
ð1 − cosϕa1=pT

Þ
r

ð51Þ

where p⃗a1T denotes the transverse momentum of the
a−1 , and ϕa1=pT

is the azimuthal angle between the a−1
and the missing transverse momentum, must satisfy
either MT > 50, 60, or 70 GeV.

The number of the sum of Wþ and W− events with
300 fb−1 of data at each stage of event selection and for
each MT cut is tabulated in Table I.

C. Estimation of w(z;Q2; s13; s23)

Using the above event samples, we estimate
wðz;Q2; s13; s23Þ Eq. (47), which is the reweighting of
events with specific values of z; s13; s23; Q2 due to the
selection cuts, which is common for cosΨ > 0 and
cosΨ < 0. In fact, the selection cuts of Sec. IV B do
not distort the distributions of Q2, s13, s23 and we simply
have

wðz;Q2;s13;s23Þ¼wðzÞ for 1.26GeV>
ffiffiffiffiffiffi
Q2

p
>1.20GeV;

wðz;Q2;s13;s23Þ¼0; otherwise:

In Fig. 3, we present wðzÞ for the selection cuts with
MT > 50, 60, and 70 GeVand for the case withoutMT cut.
We have confirmed that large-z events are efficiently

collected with a tight MT cut such as MT > 70 GeV.

D. Statistical uncertainty

We estimate statistical uncertainty in a measurement of
the right hand side of Eq. (49) with 300 fb−1 of data.
The statistical uncertainty is given as follows: Let

δNþ (δN−) denote the number of events after the selection
cuts of Sec. IV B, in a bin of Q2, s13, s23 with cosΨ > 0
(cosΨ < 0). If the bins are sufficiently narrow, the right-
hand side of Eq. (49) is approximated by

δNþ − δN−; ð52Þ

for which the ratio of the statistical uncertainty over its
value is given by

ΔstatðδNþ − δN−Þ
δNþ − δN−

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δNþ þ δN−

p
δNþ − δN−

: ð53Þ

This corresponds to the relative statistical uncertainty
in the determination of ImðA · B�Þ=Nnor, and hence we
obtain

ΔstatðImðA · B�Þ=NnorÞ
ImðA · B�Þ=Nnor

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δNþ þ δN−

p
δNþ − δN−

: ð54Þ

In Fig. 4, we present the relative statistical uncertainty
Eq. (54) in each bin of ðs13; s23Þ with 1.26 GeV >ffiffiffiffiffiffi
Q2

p
> 1.20 GeV, for various MT cuts, at the 14 TeV

LHC with 300 fb−1 of data.
We observe that the relative statistical uncertainty is

below 2% in multiple bins of ðs13; s23Þ, and so the
determination of ImðA · B�Þ=NnorÞ is feasible at the
14 TeV LHC with 300 fb−1 of data, at least in light of
statistics.
A tighter MT cut diminishes overall statistics, but it

enhances the relative cosΨ asymmetry j δNþ−δN−
δNþþδN−

j, because
this asymmetry is proportional to j 1Γ dΓþ

dz − 1
Γ
dΓ−
dz j and the

latter is largest for z ∼ 1. Nevertheless, we do not find
improvement in relative statistical uncertainty with tighter
MT cuts. This is because in the present simulation, the loss
of overall statistics is more significant than the enhance-
ment of the relative cosΨ asymmetry.

TABLE I. Number of the sum of pp → W∓ → ντ∓ð→
νπ∓π∓π�Þ events at the 14 TeV LHC with 300 fb−1 of data,
after each selection cut.

Selection cut
Number of Wþ
and W− events

One reconstructed a−1 and =pT > 25 GeV 40.7 × 106

& 1.26 GeV >
ffiffiffiffiffiffi
Q2

p
> 1.20 GeV 5.12 × 106

& MT > 50 GeV 4.47 × 106

& MT > 60 GeV 3.00 × 106

& MT > 70 GeV 1.43 × 106

FIG. 3. wðzÞ, the reweighting of events with specific value of z
due to the selection cuts of Sec. IV B (which does not depend on
s13, s23 and is uniform in the bin ofQ2). The cases withMT > 50,
60, and 70 GeV and the case without MT cut are plotted.
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V. SUMMARY

We have presented a method to extract information
about the strong phase of the a−1 → π−π−πþ decay
amplitude necessary for the a1 helicity measurement.
Our method utilizes W → ντð→νπ∓π∓π�Þ events, for
which the a1 helicity is theoretically calculable. The
method has an advantage that a−1 mesons from τ−L decays
with large boost (i.e. with z ¼ Ea1=Eτ ∼ 1 in the labo-
ratory frame) have nearly maximal helicity asymmetry
and thus most reflect the strong phase. We have revisited
the theoretical calculation of the a−1 helicity in the
laboratory frame in the W− → ν̄ττ

−ð→ντa−1 Þ process.
We have formulated the differential decay rate of polar-
ized a1 mesons, where the information about the strong
phase necessary for the helicity measurement is encapsu-
lated by the term ImðA · B�Þ=Nnor. Finally, we have
proposed a method to determine ImðA · B�Þ=Nnor from
pp → W → ντð→νπ∓π∓π�Þ events, and by estimating the
statistical uncertainty at the 14 TeV LHC with 300 fb−1 of

data, we have revealed that this method is feasible at least
in the light of statistics.
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APPENDIX: WIGNER ROTATION

The rotation between two angular momentum quantiza-
tion axes of a massive particle in its rest frame, where the
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FIG. 4. Relative statistical uncertainty in the determination of ImðA · B�Þ=Nnor at the 14 TeV LHC with 300 fb−1 of data, in each bin of

ðs13; s23Þ (in units of GeV2) with 1.26 GeV >
ffiffiffiffiffiffi
Q2

p
> 1.20 GeV. The upper-left, upper-right, lower-left, and lower-right panels

correspond to the event selection without MT cut, with MT > 50 GeV, with MT > 60 GeV, and with MT > 70 GeV, respectively.
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two axes are chosen along its three momentum in different
Lorentz frames, is called Wigner rotation, following his
historical paper Ref. [23]. In this appendix, we give its
simple derivation because it is not widely known to
contemporary high energy physicists.
In Fig. 5, we show all the relevant Lorentz frames: The

Lorentz frame ① and ④ is a vector boson rest frame, where
angular-momentum-quantization axis z⃗1 is chosen along
the vector boson’s three-momentum in the τ rest frame ②,
while axis z⃗4 is chosen along the vector boson’s three-
momentum in the laboratory frame ③. The τ rest frame ② is
obtained from the laboratory frame ③ by a boost along the
τ momentum direction z⃗ in the laboratory frame. Since the
above successive transformations are all on the ðz; xÞ plane,
the quantization axis z⃗1 in the vector boson rest frame is
recovered by a rotation by θ̃ about the common y-axis,
namely, we have

1 ¼ Ryðθ̃ÞB−1
z4 ðyvÞRyðθÞBzðyτÞRyð−θ̂ÞBz1ðŷvÞ; ðA1Þ

where RyðθÞ ¼ e−iJ2θ denotes rotation about the common
y-axis and BzðyÞ ¼ e−iK3y denotes boost along the corre-
sponding z-direction depicted in Fig. 5. Only two gener-
ators of the Lorentz transformations appear in Eq. (A1),
whose nonzero components are ðJ2Þjk ¼ −iϵ2jk, ðK3Þ0k ¼
ðK3Þk0 ¼ iδk3. In Eq. (A1), θ̂ denotes the angle between
z-axis and the vector boson three-momentum in the τ rest
frame, θ denotes the angle between the z-axis and the vector
boson’s three-momentum in the laboratory frame, and θ̃ is
the Wigner rotation angle we want to derive. The rapidity
along each direction satisfies

tanh ŷv ¼ p̂v=mv ¼ k̂; ðA2aÞ
tanh yτ ¼ pτ=mτ ¼ γβ; ðA2bÞ

tanh yv ¼ pv=mv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðβω̂þ k̂ cos θ̂Þ2 þ ðk̂ sin θ̂Þ2

q
;

ðA2cÞ
where p̂v denotes the vector boson’s three-momentum
in the τ rest frame, pv denotes the vector boson’s
three-momentum in the laboratory frame, and pτ denotes
the τ lepton’s three-momentum in the laboratory frame.
Here, we have parametrized the τ lepton’s four-momentum
in the laboratory frame ③ as

pμ
τ ¼ ðEτ; 0; 0; pτÞ ¼ mτðγ; 0; 0; γβÞ: ðA3Þ

p̂v and the corresponding energy are easily derived as

Êv ¼
mτ

2
ð1þ a2Þ ¼ mv

1þ a2

2a
¼ mvω̂; ðA4aÞ

p̂v ¼
mτ

2
ð1 − a2Þ ¼ mv

1 − a2

2a
¼ mvk̂; ðA4bÞ

with a ¼ mv=mτ.
The vector boson’s four-momentum in the laboratory

frame can be expressed as

Ev ¼ mvγðω̂þ βk̂ cos θ̂Þ; ðA5aÞ
p1
v ¼ mvk̂ sin θ̂; ðA5bÞ

p2
v ¼ 0; ðA5cÞ

p3
v ¼ mvγðk̂ cos θ̂ þ βω̂Þ; ðA5dÞ

and hence pv and tan θ are derived as

pv ¼ mv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2ðk̂ cos θ̂ þ βω̂Þ2 þ ðk̂ sin θ̂Þ2

q
; ðA6Þ

and

tan θ ¼ k̂ sin θ̂

γðk̂ cos θ̂ þ βω̂Þ : ðA7Þ

Equation (A6) determines the boost factor (A2c).
Straightforward calculation gives

RyðθÞBzðyτÞRyð−θ̂ÞBz1ðŷÞ ¼

0
BBBBB@

γðω̂ þ ĉ k̂ βÞ γŝβ 0 γðk̂ þ ĉ ω̂ βÞ
γsðĉ k̂ þ ω̂βÞ − cŝ k̂ cĉþ γsŝ 0 γsðĉ ω̂ þ k̂βÞ − cŝ ω̂

0 0 1 0

γcðĉ k̂ þ ω̂βÞ þ sŝ k̂ −sĉþ γcŝ 0 γcðĉ ω̂ þ k̂βÞ þ sŝ ω̂

1
CCCCCA
; ðA8Þ

FIG. 5. Wigner rotation angle θ̃. ① and ④ are vector meson rest
frames, where z⃗1 is chosen along the meson momentum direction
in the τ rest frame ②, whereas z⃗4 is along the meson momentum
direction in the laboratory frame ③.
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where cðĉÞ and sðŝÞ denote cos θðcos θ̂Þ and sin θðsin θ̂Þ,
respectively. From the definition of the Wigner rotation
Eq. (A1), we get that Eq. (A8) should be equal to the
following quantity:

Bz4ðyvÞRyð−θ̃Þ

¼

0
BBB@

cosh yv sinh yv sin θ̃ 0 sinh yv cos θ̃

0 cos θ̃ 0 − sin θ̃

0 0 1 0

sinh yv cosh yv sin θ̃ 0 cosh yv cos θ̃

1
CCCA:

ðA9Þ

Comparison of (1,1) components of (A8) and (A9) gives

cos θ̃ ¼ cos θ cos θ̂ þ γ sin θ sin θ̂: ðA10Þ

In the Gallilean transformation limit with γ ¼ 1, the Wigner
rotation angle becomes

θ̃ ¼ θ̂ − θ; ðA11Þ

as depicted in Fig. 5. In generic Lorentz transformations,
the relation (A11) no longer holds, and the Wigner rotation
angle θ̃ is obtained from Eq. (A10). By inserting (A7) into
(A10), we obtain

cos θ̃¼ βð1þa2Þcos θ̂ þ1−a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβð1þa2Þþð1−a2Þcos θ̂Þ2þðð1−a2Þsin θ̂=γÞ2

q ;

ðA12Þ

which gives Eq. (12) by noting 1=γ2 ¼ 1 − β2.
Let us give a few remarks on the Wigner rotation angle θ̃.

As is clear from the expression Eq. (A6), the Gallilean limit
of θ̃ ¼ θ̂ − θ is recovered for γ → 1. Since γ > 1, the
relativistic correction gives θ̃ < θ̂ − θ. In the ultrarelativ-
istic limit with γ → ∞ðβ → 1Þ, we find

cos θ̃⟶
β→1

ð1þ a2Þ cos θ̂ þ 1 − a2

ð1 − a2Þ cos θ̂ þ 1þ a2
; ðA13Þ

which is a good approximation for a vector meson in the
decay of a τ lepton coming from the decay ofW, Z. Finally,
it is worth noting that the expression Eq. (A9) gives the
helicity conservation

cos θ̃⟶
a→0

1; ðA14Þ

in the massless limit of the vector meson with a ¼
mv=mτ → 0. There is no rotation (θ̃ ¼ 0) in the massless
limit, because the helicity of a massless particle is an
invariant of Lorentz transformations.
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