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A new model-independent parametrization is proposed for the hadronic form factors in the semileptonic
B̄ → Dlν̄l decay. By a combined consideration of the recent experimental and lattice QCD data, we
determine precisely the Cabibbo-Kobayashi-Maskawa matrix element jVcbj ¼ 41.01ð75Þ × 10−3 and the

ratio RD ¼ BRðB̄→Dτν̄τÞ
BRðB̄→Dlν̄lÞ ¼ 0.301ð5Þ. The coefficients in this parametrization, related to phase shifts by

sumrulelike dispersion relations and hence called phase moments, encode important scattering information
of the B̄ D̄ interactions which are poorly known so far. Thus, we give strong hints about the existence of at
least one bound and one virtual B̄ D̄ S-wave 0þ states, subject to uncertainties produced by potentially
sizable inelastic effects. This formalism is also applicable for any other semileptonic processes induced by
the weak b → c transition.
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I. INTRODUCTION

One of the most primary goals in flavor physics currently
is to precisely determine the elements of the Cabibbo-
Kobayashi-Maskawa (CKM) matrix, since they afford a
sharp probe of physics beyond the standard model (SM) as
inputs of the CKM unitarity triangle. For that purpose,
experimental and theoretical efforts are extensively devoted
to study both inclusive and exclusive semileptonic decays of
bottomhadrons. For the latter ones, differentways havebeen
proposed to parametrize the hadronic form factors involved,
the most commonly used of which are the Boyd-Grinstein-
Lebed (BGL) [1] and Caprini-Lellouch-Neubert (CLN) [2]
parametrizations. There is tension in the determination of
some of the entries likeVcb fromBmeson decays, for which
the result considering inclusive decays [3] is larger than
the value obtained from exclusive ones—a discrepancy at
2-3σ significance level has existed since 2015; see e.g.,
Refs. [4–7] for recent reviews. The main source of exclusive
Vcb determinations is the B̄ → Dð�Þlν semileptonic decay.
Since 2015, significant progress has beenmade. TheBelle

Collaboration measured the differential decay rates of the
exclusive B̄ → Dlν̄l [8] and B̄ → D�lν̄l reactions [9] using

their full data set; and there have been lattice QCD (LQCD)
results on the form factors at nonzero recoils for B̄ → Dlν̄l
obtained by the HPQCD [10] and Fermilab Lattice plus
MILC (FL-MILC) [11] Collaborations. It turns out that the
CLN and BGL parametrizations lead to different values of
the extracted jVcbj; see e.g., Refs [8,9,12,13]. For instance,
the Belle determinations of this CKM matrix element
from the B → D̄ l̄ ν decay are ð39.86� 1.33Þ × 10−3 or
ð40.83� 1.13Þ × 10−3 using the CLN or BGL parametri-
zations, respectively [8]. For comparison, the updated
HFLAV averages for the inclusive determination of
jVcbjin are ð42.19� 0.78Þ× 10−3 or ð41.98� 0.45Þ× 10−3

depending on the used scheme [5]. It is pointed out in
Refs. [12,14,15] that the CLN parametrization, based upon
heavy quark effective theory, though very useful in the past,
may no longer be adequate to cope with the accuracy of the
currently available data. The BGL parametrization is a
model-independent expansion in powers of a small variable
z. To describe data, the expansion needs to be truncated at
least at the z2 order, leading to three unknown coefficients
for each form factor. The relation fþ ¼ f0 at q2 ¼ 0
imposes a constraint among these parameters, which on
the other hand do not have an obvious physical interpreta-
tion, except for those of the leading term that could be related
to the form factor normalization.
In this article, we propose a new model-independent

parametrization based on a dispersion relation, which
successfully describes high-accuracy Belle and LQCD
data and allows for an extraction of jVcbj with a small
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uncertainty comparable to that obtained from BGL fits.
Furthermore, all the involved parameters are physically
meaningful, encoding scattering information on elastic and
inelastic B̄ D̄ interaction through dispersion relations to
phase shifts. Having validated the new parametrization, the
crucial point resides in the physical meaning that can be
ascribed to the fitted parameters, which is, however,
difficult to find for the BGL and CLN ones.
The interaction between two heavy-light mesons close to

threshold has attracted much attention in recent years,
triggered by the discoveries by BABAR, Belle, BESIII,
LHCb and other experiments of many exotic hidden
charm/bottom states, like the isoscalarXð3872Þ or isovector
Zcð3900Þ, Zbð10610Þ or Zbð10650Þ resonances, that cannot
be accommodated as c̄c or b̄b (see e.g., general discussions
in Refs. [16] and [17]). Actually, they are believed to be
largely hadronic molecules, i.e., Hð�ÞH̄ð�Þ loosely bound or
resonant states (H ¼ B or D). This possibility opens new
exciting scenarios to learn about details of the nonperturba-
tive QCD regime. The hidden charm and bottom spectra
should have a counterpart with bc̄ heavy-flavor content, and
the scheme established in this work offers an interesting
opportunity to obtain some model-independent constraints
from the existing accurate data on semileptonic decays.
The B̄ D̄ interaction, related to the B̄ → D transition

amplitude by crossing, is poorly known so far; however, it is
essential to explore the spectrum of hadrons containing one
bottom quark and one charm antiquark, i.e., Bc mesons; see
Ref. [18] for example. Up to now, the discovery of the Bc
mesons has been restricted to two states only [19]:Bcð6275Þ
and Bcð2SÞð6871Þ, both with JP ¼ 0− [although the vector
B�
cð2SÞ was reported recently by both ATLAS [20] and

LHCb [21], its mass has not been measured because of the
unconstructed low-energy photon in both experiments]. In
view of the well-established bottomonium or charmonium
spectra, it is clear that many Bc states are still missing.
Hopefully, states will be unraveled in the near future due to
the advent of the LHCb, which is an efficient factory to
produce bc̄ or bc states. Besides, prognosis of charmed-
bottom hadrons from LQCD has been made very recently
[22]. Our new parametrization, bringing information from
semileptonic decays to the scattering problem, will defi-
nitely shed light on those newly predicted/discovered states.

II. NEW PARAMETRIZATION

To proceed, let us first introduce the semileptonic
B̄ðpÞ → Dðp0Þlðq1Þν̄lðq2Þ differential decay rate [23]

dΓ
dq2

¼ 8N jp⃗�j
3

��
1þ m2

l

2q2

�
jH0j2 þ

3m2
l

2q2
jHtj2

�
; ð1Þ

with q≡ p − p0 ¼ q1 þ q2 and jp⃗�j being the modulus of
the three-momentum of the D meson in the B̄ rest frame.
The normalization factor is

N ¼ G2
F

256π3
η2EWjVcbj2

q2

m2
B

�
1 −

m2
l

q2

�
2

; ð2Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi coupling
constant and the factor ηEW ¼ 1.0066 accounts for the
leading order electroweak corrections [24]. Here mB (mD)
andml denote themasses of theB (D) meson and the lepton,
respectively. We use the valuesmD ¼ 1867.22 MeV,mB ¼
5279.47 MeV and mτ ¼ 1776.91 MeV. Furthermore, the
helicity amplitude H0 amounts to the longitudinal part of
the spin-1 hadronic contribution, while Ht corresponds
to the spin-0 hadronic contribution, owing its presence to
the off-shellness of the weak current. They are related to
the conventional hadronic vector (JP ¼ 1−) and scalar
(JP ¼ 0þ) form factors, i.e., fþðq2Þ and f0ðq2Þ, respec-
tively, through

H0 ¼
2mBjp⃗�jffiffiffiffiffi

q2
p fþðq2Þ; Ht ¼

m2
B −m2

Dffiffiffiffiffi
q2

p f0ðq2Þ: ð3Þ

At q2 ¼ 0, the two form factors coincide: fþð0Þ ¼ f0ð0Þ.
According to Refs. [25–27], and using general argu-

ments from QCD, one expects vector and scalar form
factors to fall off as 1=s (up to logarithms) when jsj → ∞.
Thus, based on analyticity, unitarity and crossing sym-
metry, once-subtracted dispersion relations for each form
factor admit solutions of the Omnès form

fiðq2Þ ¼ fiðs0Þ exp
�
q2 − s0

π

Z
∞

sth

ds
s − s0

αiðsÞ
s − q2

�
; ð4Þ

for q2 < sth. In addition, i ¼ þ; 0, sth ¼ ðmB þmDÞ2 is the
B̄ D̄ threshold, s0 is the subtraction point and αiðsÞ is the
phase of the corresponding form factor. This solution
can be easily obtained noticing fiðsþ iϵÞ ¼ jfiðsÞjeiαiðsÞ
and using the Schwarz reflection principle fiðs − iϵÞ ¼
f�i ðs þ iϵÞ ¼ jfiðsÞje−iαiðsÞ so that ln fiðs þ iϵÞ−
ln fiðs − iϵÞ ¼ 2iαiðsÞθðs − sthÞ. It is worthwhile to
emphasize that Eq. (4) holds even in the inelastic regime,
i.e., when channels with a higher threshold such as
B̄�D̄� are open. In the elastic region (

ffiffiffi
s

p
< mB� þmD

for i ¼ þ and
ffiffiffi
s

p
< mB� þmD� for i ¼ 0), the phase αiðsÞ

coincides with the P- and S-wave B̄ D̄ scattering phase shift
for fþ and f0, respectively, according to the Watson’s
theorem [28].
In the physical B̄ → Dlν̄l decay, the maximum value of

q2 is q2max ¼ ðmB −mDÞ2. Given that s ≥ sth ≫ q2max ≥ q2,
Eq. (4) can be recast into a new form,

fiðq2Þ ¼ fiðs0Þ
Y∞
n¼0

exp

�
q2 − s0
sth

Ai
n
q2n

snth

�
; ð5Þ

with the dimensionless coefficients (phase moments)
defined as
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Ai
n ≡ 1

π

Z þ∞

sth

ds
s − s0

αiðsÞ
ðs=sthÞnþ1

: ð6Þ

Since the power of s in the denominator of the integrand
above grows as nþ 1, higher moments become sensitive
only to the details of the form-factor phases αiðsÞ in the
vicinity of threshold. Equation (5) provides a new para-
metrization of the form factors in B̄ → D semileptonic
decays. The coefficients Ai

n are called phase moments
hereafter, due to the fact that they are related to the phases
of the form factors in the physical B̄ D̄ scattering region.
Note that the exponential form for form factors was

also obtained within the Isgur-Scora-Grinstein-Wise con-
stituent quark potential model through completely different
reasoning [29,30].

III. FIT TO BELLE AND LQCD DATA

Let us first define the recoil variable ω ¼
ðm2

B þm2
D − q2Þ=ð2mBmDÞ. It ranges from 1 at zero recoil,

q2 ¼ ðmB −mDÞ2, to about ðm2
B þm2

DÞ=ð2mBmDÞ ≈ 1.59
at q2 ¼ 0, for the decays into electron or muon leptons. To
determine the phase moments Ai

n introduced in Eq. (5), we
perform a combined fit to the recent experimental data
measured by Belle [8] together with the LQCD results of
the vector and scalar form factors at nonzero recoil obtained
by the HPQCD [10] and FL-MILC [11] collaborations.
The Belle data consist of the weighted averaged differ-

ential decay rates for 10ω-bins (see Table II of Ref. [8]),
and should be confronted with

ΔΓk

Δω
¼ 1

Δω

Z
ωk;max

ωk;min

dΓ
dω

dω; k ¼ 0;…; 9; ð7Þ

where the Δω is the width of each bin; ωk;min ðmaxÞ is the
minimal (maximal) value of ω in the kth bin. The lepton
masses, except for the tau case to be discussed later, are
neglected.
The FL-MILC Collaborations [11] provide results both

for both fþ and f0 at three differentω ∈ f1.00; 1.08; 1.16g.
The HPQCD Collaboration [10] presents their results in
terms of the Bourrelly-Caprini-Lellouch (BCL, a simple
alternative to BGL; see Ref. [31]) parametrization for the
entire kinematic decay region (see the gray bands in the
upper panel of Fig. 1). However, they only performed
numerical lattice simulations for three different q2 con-
figurations, which lead to ω values in the range of
½1;∼1.11�. Therefore, as done in Refs. [12,13], we prefer
to extract, from the BCL parametrization obtained in
Ref. [10], three values for each of the form factors, fþ
and f0, at ω ∈ f1.00; 1.06; 1.12g. The 12 lattice data points
with error bars are shown in the upper panel of Fig. 1. We
note that the HPQCD errors are significantly larger than the
FL-MILC ones.

In our fit, in addition to the phase moments Ai
n, the

subtraction f0ðs0Þ and the CKM matrix element jVcbj are
treated as free parameters as well. The kinematic constraint
fþð0Þ ¼ f0ð0Þ imposes a relation for the subtractions of
both form factors,

fþðs0Þ ¼ f0ðs0Þ exp
�
s0
sth

ðAþ
0 −A0

0Þ
�
: ð8Þ

We choose s0 ¼ 0 as the subtraction point, and find that a
truncation of the expansion in Eq. (5) to the first order, i.e.,
n ¼ 0, is sufficient to accurately describe the data as seen in
Fig. 1. Consequently, we have a total of four free param-
eters: f0ð0Þ, A0

0, A
þ
0 and jVcbj. Fit results are collected in

Table I, where the errors in brackets are obtained from the
minimization procedure. Moreover, it is found that the
precision of the data set at hand is not sufficient to reliably
pin down the phase moments Ai

n with n ≥ 1. We already
observe large correlation in Table I. In Fig. 1, the form
factors and the differential decay rates from the combined
fit are plotted as a function of q2 in the whole kinematic
region. We also show the prediction of the differential
decay rate for the B̄ → Dτν̄τ decay. For comparison, the
Belle and LQCD (HPQCD and FL-MILC) data are dis-
played as well.
From the best fit, we get

jVcbj ¼ ð41.01� 0.75Þ × 10−3; ð9Þ

which is in agreement with the determination reported in
Ref. [8] using the BGL parametrization, but higher than the
values obtained using the CLN one [8,9,12,14,15]. It also

FIG. 1. Upper panel: vector and scalar form factors. Lower
panel: differential decay rates. The gray bands stand for the
HPQCD results from the BCL continuous parametrization
provided in [10].
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agrees with the world average of the inclusive determi-
nations [5]. Our result confirms the conclusion that the
previous tension between the exclusive and inclusive
determinations was mostly due to the use of the CLN
parametrization. The error in our determination is 2%,
which is comparable to that obtained from the combined fit
in Ref. [12] to the experimental data (BABAR [32] and Belle
[8]) and LQCD results (HPQCD [10] and FL-MILC [11])
using the BGL parametrization. Furthermore, as already
commented, the fitted phase moments A0;þ

0 provide valu-
able information to constrain the B̄D interaction.
Note that we expect a systematic error of the order of

q2=sth, which is negligible in the low q2 region where there
are no lattice results, and at most q2max=sth in the high q2

region. This source of systematical uncertainties can be
arbitrarily reduced by increasing the truncation order.
With the parameters in Table I, we predict the ratio

RD ¼ BRðB̄ → Dτν̄τÞ
BRðB̄ → Dlν̄lÞ

¼ 0.301ð5Þ; ð10Þ

with l ¼ e or μ. It is well consistent with the predictions
using the LQCD form factors: RD ¼ 0.299ð11Þ by FL-
MILC [11] andRD ¼ 0.300ð8Þ by HPQCD [10]. However,
the central value is significantly smaller than the values
measured by BABAR, RD ¼ 0.440ð58Þð42Þ [33], and by
Belle,RD ¼ 0.375ð64Þð26Þ [34]. Yet, the deviation is 1.8σ
from the former and only 1.0σ from the latter, given the
large uncertainties in the experimental measurements. It is
intriguing to see whether the deviation persists under more
precise measurements. Actually very recently, the Belle
collaboration announced a new preliminary measurement
ofRD ¼ 0.307ð37Þð16Þ [35] compatible with the SM at the
1.2σ level.
We checked the dependence of the above results on

the subtraction point s0 by redoing fits with s0 varied in the
range ½0; q2max�. We find that the fit quality keeps exactly the
same as for s0 ¼ 0, and the values of jVcbj and RD are
independent of the choice of s0 as well. This is because in
the Omnès representation, one is free to choose any s0. The
dependence of s0 in the exponential in Eq. (4) or Eq. (5) is
compensated by the parameter f0ðs0Þ that behaves as a
normalization factor.

The high correlations between the fitted parameters
could weaken the statistical power of the fit in Table I,
leading to somehow unreliable and unstable estimates of
the resulting observables. This is extremely important given
the physical relevance that we ascribe here to the phase
moments. Thus, we have carried out a normality test by
looking at the residual distribution central moments of
order r, defined as

μr ¼
1

nD

XnD
i¼1

�
Ri − R̄
ΔR

�
r

; Ri ¼
yfiti − ydatai

Δydatai
; ð11Þ

with Ri, the resulting residuals of the fit. They should
follow a normal distribution within a given confidence level
(CL) [36]. We have nD ¼ 22, the number of fitted inputs,

R̄ ¼ PnD
i¼1 Ri=nD and ðΔRÞ2 ¼ R2 − ðR̄Þ2, with R2 being

the average of the nD values for R2
i . Making use of the

central limit theorem [36], implicitly accepting that nD is
sufficiently large, it can be also shown that the variables μr
are Gaussian distributed, with means and standard devia-
tions ðhμri;ΔμrÞ collected in Table I of Ref. [37] up to
r ¼ 8.1 We have computed the estimators jμfitr − hμrij=Δμr,
and obtained (0.12,0.69,0.02,0.58,0.00,0.33) for r¼3;…8.
This shows that the fit of Table I passes the normality test
widely. Thus, the high correlations between the parameters
do not lead to statistically unreliable or unstable estimates
of the first-order phase moments or jVcbj, beyond the CL
accounted for by the error bars quoted in Table I.
In addition, we have also contemplated the possibility of

performing a six-parameter fit, including the two higher
moments A0;þ

1 in the expansions of Eq. (5) for fþ and f0.
We find an improved description of the inputs, particularly
of the FL-MILC LQCD results, with χ2=dof reduced from
0.36 to 0.17, at the expense of errors in the lowest moments
being increased by a factor between 2 or 3. Central values
and errors of f0ð0Þ, jVcbj × 103, A0

0 andA
þ
0 are now 0.684

(18),40.76(70),0.89(35) and 1.93(27), respectively. In addi-
tion, the higher moments are determined with large errors,
A0

1 ¼ 1.4� 1.3 and Aþ
1 ¼ 2.3� 1.1, and highly anticorre-

lated (rij ∼ −0.91) with their respective zero-order counter-
parts, as expected. Besides, the rest of the parameters are
mostly statistically independent, except for a moderate
jVcbj − f0ð0Þ correlation (−0.63) that still remains. Thus,
we conclude that the four-parameter fit of Table I is quite
robust in front of the inclusion of the next-to-leading terms
in the expansion of Eq. (5), especially for jVcbj and f0ð0Þ.
With regard to the phase moments the situation is not as
satisfactory, since the covered q2 range and the precision of

TABLE I. Results from the combined fit to Belle [8] and LQCD
[10,11] data.

Correlation matrix

χ2

dof ¼ 6.47
22−4 ≃ 0.36 f0ð0Þ A0

0 Aþ
0 jVcbj × 103

f0ð0Þ 0.658(17) 1.000 −0.979 −0.978 −0.818
A0

0
1.38(12) −0.979 1.000 0.957 0.801

Aþ
0

2.60(12) −0.978 0.957 1.000 0.774
jVcbj × 103 41.01(75) −0.818 0.801 0.774 1.000

1We have also proceeded by Monte Carlo sampling nD
Gaussian numbers and computing the distribution of moments,
as mentioned in the latter reference, to estimate deviations from
the large nD limit predictions given in [37], and found very small
corrections already for the nD ¼ 22 case considered here.
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the available inputs are not enough to fully disentangle the
first and second order phase moments. Nevertheless, the
new A0

0 (A
þ
0 ) is within 1 (2) σ from the value obtained in

the leading order fit, which makes us confident to conclude
that this phase moment is around 1 (2), if not larger.
Finally, we should mention that LQCD correlation

matrices are not taken into account in the fit of Table I.
Their inclusion produces variations in the central values of
the fitted parameters, well taken into account by the errors
collected in the table. Actually, these are negligible for
f0ð0Þ, and only around 3=4, 5=6 and 3=5 of the corre-
sponding sigmas for A0

0, A
þ
0 and jVcbj, respectively. In

addition, errors on f0ð0Þ, A0
0 and Aþ

0 become around a
factor 1=2 smaller, driven by the FL-MILC input, which
exhibits an extraordinary precision.

IV. COMPARISON

For decades, the CLN parametrization [2] has been
widely used. In the work of Ref. [2], the ratio

S1ðωÞ
V1ðωÞ

¼ ð1þ rÞ2
2rð1þ ωÞ

f0ðωÞ
fþðωÞ

¼ A½1þ Bðω − ω0Þ þ Cðω − ω0Þ2 þ � � �� ð12Þ

is reported as a series of ω expanded around some ω0, with
r ¼ mD=mB. The coefficients A, B and C were determined
from available LQCD results at that time, HQET and sum-
rule calculations and unitary constrains, and included
leading short-distance and 1=mQ corrections [38,39] as
well. Given the above relations and our new parametriza-
tion of fþ;0ðq2Þ in Eq. (5), we obtain the HQET prediction
of the difference between Aþ

0 and A0
0 as

½Aþ
0 −A0

0�HQET ¼ ð1þ rÞ2
1 − 2ω0rþ r2

ln
ð1þ rÞ2

2rAð1þ ω0Þ
ð13Þ

by matching at ω ¼ ω0. In Ref. [2], A was given by
expanding the results for the ratio of Eq. (12) for two
different choices of ω0 (see Tables A.1 and A.2 of that
reference). For ω0 ¼ 1, A ¼ 1.0036, while A ¼ 1.0018 for
ω0 ≃ 1.267. These spread of values for A leads to

½Aþ
0 −A0

0�HQET ≃ 1.05 ∼ 1.12: ð14Þ

As mentioned, Eq. (13) was obtained only from the
constant term in Eq. (12). As a further check, we have
also found the above difference of phase moments by
matching the ðω − ω0Þ term,

½Aþ
0 −A0

0�HQET ¼ ð1þ rÞ2
2r

Bð1þ ω0Þ þ 1

ð1þ ω0Þ
; ð15Þ

which gives values in the 1.13 ∼ 1.28 range, showing some
inconsistency with those obtained from the first term of the

expansion carried out in Ref. [2]. This gives strong
indications that higher order HQET corrections, neglected
in the CLN parametrization, are sizable, in agreement with
the conclusion in Refs. [12,14,15].
The difference ½Aþ

0 −A0
0� can be also obtained from our

results in Table I,

½Aþ
0 −A0

0�this work ¼ 1.22ð3Þ; ð16Þ

where we have taken into account the large statistical
correlation between Aþ

0 and A0
0 to obtain the error above.

Our result is larger than the HQET prediction in Eq. (14),
but it could be accommodated within the range deduced
from the linear term of the CLN expansion. Furthermore,
uncertainties in Eq. (16) are certainly larger because of the
systematic error produced by neglecting second-order
moments, as discussed above.

V. FURTHER CONSIDERATIONS

As we stressed above, one of the advantages of the
parametrization proposed in this work is that the fitted
phase moments may be used to learn details on the B̄ D̄
dynamics. Let us focus on A0

0, and let us note that if α0ðsÞ
is replaced by the constant π in Eq. (6), the zeroth order
S-wave phase moment would be 1 (taking s0 ¼ 0). In the
elastic region,

ffiffiffi
s

p
< ðmB� þmD� Þ, the phase α0 coincides

with the S-wave B̄ D̄ phase shift. Let us suppose that the
integration in Eq. (6) is being dominated by phase-space
regions close to threshold; then according to Levinson’s
theorem, it would be justified to replace α0ðsÞ by π if there
exists one, but only one, B̄ D̄ bound state. This scenario
easily explains a value for A0

0 of 1. Moreover, since the best
fit value is 1.38(12), we might conjecture either the
existence of two bound states or of one bound and one
virtual state.2 We recall here that for an energy-independent
interaction, which seems a reasonable approach to describe
low-energy S− wave B̄ D̄ scattering, Levison’s theorem
establishes that δðsthÞ ¼ nbπ, with nb being the number of
bound states of the potential,3 and δð∞Þ ¼ 0 [40]. In the
case of two B̄ D̄ bound states, we envisage a situation
where the phase shift takes the value of 2π at threshold and
after decreases with

ffiffiffi
s

p
(positive scattering length), pro-

viding an integrated value larger than 1 for A0
0. In the

second case, one bound and one virtual state, the phase shift
begins taking the value of π at threshold, but it would grow
in the vicinity of s ¼ sth (negative scattering length) to
make possible the phase moment to reach magnitudes of

2We refer to a virtual state as a pole that is not located on the
first Riemann sheet, but that nevertheless strongly influences the
scattering in the physical region. A well-known example can be
found in the isovector 1S0 [2Sþ1LJ] nucleon-nucleon wave.

3An S-wave bound state of zero binding energy gives a
contribution of π=2 instead of π.
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around 1.4. We notice, however, that the above discussion
might be altered by inelastic-channel effects that induce
energy dependent interactions.

VI. SUMMARY

In this article, we have proposed a new model-
independent parametrization for the form factors in the
semileptonic B̄ → Dlν decays. It provides an excellent
simultaneous reproduction of experimental measurements
of the differential decay rate and the LQCD results for fþ
and f0, leading to a quite accurate determination of jVcbj.
We also confirm that the previous tension between the
exclusive and inclusive determinations was mostly due to
the use of the CLN parametrization. Furthermore, the fitted
phase moments A0;þ

0 provide valuable information to con-
strain the S- and P-wave B̄ D̄ interactions. Any model for
them should be consistent with the determination of these
parameters extracted here from the B̄ → D semileptonic
decays. As an example, we have given strong hints about the
existence of at least one bound and one virtual B̄ D̄ S-wave
0þ states, subject to uncertainties produced by potentially
sizable inelastic effects. The same parametrization can be

also employed to other b → c semileptonic processes such
as B̄ → D�lν̄l and Λb → Λclν̄l.
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