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We reconsider the contribution due to πa1 mixing to the anomalous γ → πþπ0π− amplitude from the
standpoint of the low-energy theorem Fπ ¼ ef2πF3π , which relates the electromagnetic form factor
Fπ0→γγ ¼ Fπ with the form factor Fγ→πþπ0π− ¼ F3π both taken at vanishing momenta of mesons. Our
approach is based on a recently proposed covariant diagonalization of πa1 mixing within a standard
effective QCD-inspired meson Lagrangian obtained in the framework of the Nambu-Jona-Lasinio model.
We show that the two surface terms appearing in the calculation of the anomalous triangle quark diagrams
or AVV- and AAA-type (A, axial-vector; V, vector) amplitudes are uniquely fixed by this theorem. As a
result, both form factors Fπ and F3π are not affected by the πa1 mixing, but the concept of vector meson
dominance fails for γ → πþπ0π−.
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I. INTRODUCTION

The Wess-Zumino [1] effective action precisely
describes all effects of QCD anomalies in low-energy
processes with photons and Goldstone bosons. The topo-
logical content of this action was clarified by Witten [2].
The extension to the case with spin-1 mesons is not unique,
and has been discussed in different frameworks. In the
massive Yang-Mills approach this has been done in [3] by
gauging the chiral Uð3Þ ×Uð3Þ group. This forces one to
choose Bardeen’s form of the anomaly [4], that explicitly
breaks the global chiral Uð3Þ × Uð3Þ symmetry. The
breaking survives even if the external gauge fields are
absent. To get around this difficulty Fujiwara et al. [5] used
a framework where vector mesons were identified with
dynamical gauge bosons of the hidden local Uð3ÞV
symmetry. This approach does not change the Wess-
Zumino action, which now gets an additional anomaly-
free term with vector mesons. It represents a homogeneous
solution of the inhomogeneous linear differential equation
known as the Wess-Zumino consistency condition [1].

As the Wess-Zumino action, this term does not preserve
the intrinsic parity (the intrinsic parity of a particle is þ1 if
it transforms as a true Lorentz tensor and is −1 for a
pseudotensor). This approach has been generalized to
include the axial-vector mesons in [6], where fourteen
independent terms with a priori unknown (real) coeffi-
cients totally parametrized the structure of the homo-
geneous solution.
There are troublesome questions that arise as soon as one

includes the spin-1 states to the effective action. One of
them is related to vector meson dominance (VMD). The
Wess-Zumino action gives correct predictions for a set of
low-energy processes, e.g., π0 → γγ, γ → 3π without any
reference to the massive vector mesons. If one includes
these states one should demonstrate how VMD is possible.
In particular, it has been shown in [5] that the complete
VMD is not valid in either π0 → γγ or γ → 3π process.
The other question is about pseudoscalar—axial-vector

mixing (πa1 mixing) of meson states. If one includes axial-
vector mesons this mixing affects the hadronic amplitudes
[7,8]. Therefore, one should demonstrate how πa1 mixing
does not change the predictions of theWess-Zumino action.
This is not a trivial task. In particular, in [9] it has been
reported that in a number of well-known models [10–19]
the πa1 mixing breaks low-energy theorems for some
anomalous processes, e.g., γ → 3π, KþK− → 3π. The
anomalous action derived by Kaiser and Meißner [6] is
free from the πa1-mixing effects by construction.
Nonetheless, it would be instructive to see the mechanism
of such suppression in the pertinent hadron models.
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In this paper we address both of the above-mentioned
issues. For that we derive the low-energy amplitudes π0 →
γγ and γ → 3π in the framework of the Nambu-Jona-
Lasinio (NJL) model with spin-1 states [13–16,20–22].
Then we show how the unwanted contributions due to πa1
mixing can be suppressed in the γ → 3π amplitude. The
procedure is based on a careful treatment of the surface
terms arising due to the superficial linear divergence of the
AVV and AAA triangle graphs (A, axial-vector; V, vector)
[23–25]. One should emphasize that the corresponding
low-energy theorem of current-algebra [26–28]

Fπ ¼ ef2πF3π ð1Þ

can be fulfilled in the NJL model with spin-1 mesons only
if there is a deviation from the VMD hypothesis. We come
to this conclusion through the gauge covariant treatment of
πa1 mixing, only recently addressed [29–32].

II. THE πa1 MIXING IN THE π0 → γγ DECAY

We start with a brief review of the π0 → γγ decay in the
context of the πa1 mixing. This process can be solely
described by the VMD-type graph shown in Fig. 1(a). Its
contribution is associated with the Lagrangian density [1,2]

Lπγγ ¼ −
1

8
Fππ0eμναβFμνFαβ; Fπ ¼ Nce2

12π2fπ
; ð2Þ

where e is the electric charge, Fμν ¼ ∂μAν − ∂νAμ stands
for the strength of the electromagnetic field, Nc is the
number of quark colors, and fπ ¼ 93 MeV denotes the
pion weak decay constant. Let us recall that in the NJL
model, one can switch to spin-1 variables without direct
photon-quark coupling, as described in the VMD picture.
Then Lπγγ follows from the direct calculation of the π0ωρ
quark triangle at leading order of derivative expansion (this,
however, does not correspond to the full picture for other
processes, a main issue of the present work). This yields the
current-algebra result Γðπ0 → γγÞ ¼ 7.1 eV, which nicely
agrees with the experimental value of 7.9 eV.
However, in the framework of effective Lagrangians

such as the massive Yang-Mills model [3], the hidden
symmetry model [17–19], or the NJL model [13–16],
there is an additional diagram due to the πa1 mixing
[see Fig. 1(b)]. In the NJL model considered here, the latter
diagram is an anomalous quark-loop amplitude with AVV
vertices. The contribution of this triangle is given by the
one-loop integral Γσμνðq; pÞ, where q and p are the out-
going four-momenta of ω and ρ vector mesons, and σ, μ, ν
are the Lorentz indices summed with the a1, ω, and ρ
polarization vectors, correspondingly.
As is well known [23–25], the evaluation of Γσμνðq; pÞ

yields a finite answer, although the graph is superficially
linearly divergent. Owing to this linear divergence, shifting

the integration momentum kα → kα þ aα in the closed
quark loop changes the value of the integral, so that there
is an essential ambiguity in the linear (in momenta of
outgoing particles) part of the loop function Γσμνðq; pÞ,

Γσμνðq; pÞ ¼ −i
Ncg3ρ
16π2

eσμναðaþ p − qÞα þ…; ð3Þ

where gρ ≃
ffiffiffiffiffiffiffiffi
12π

p
is the coupling of the ρ → ππ decay. The

dots correspond to the contributions of cubic and higher
orders in momenta, which are well defined but are not
important for our analysis here (the current-algebra theo-
rems are exact to lowest order in momenta). The arbitrary
four-momentum aα can be written, most generally, as a
linear combination aα ¼ ðc1 − 1Þpα þ ðc2 þ 1Þqα with
two dimensionless constants c1 and c2, controlling the
magnitude of this local part. In the case of the π0 → γγ
decay, one can fix completely these constants by making
use of the vector Ward identities. Indeed, due to the VMD-
induced transitions ω → γ and ρ0 → γ the conservation of
the electromagnetic current is mandatory in this process.
Requiring transversality of Γσμνðq; pÞ in each of the two
vector indices

qμΓσμνðq; pÞ ¼ 0; pνΓσμνðq; pÞ ¼ 0; ð4Þ

one finds aα ¼ qα − pα. This means that the AVV triangle
of Fig. 1(b) does not contribute at leading order of the
derivative expansion to the amplitude π0 → γγ.
The other aspect of this result is related to the Landau-

Yang theorem [33,34], which states that a massive unit spin
particle cannot decay into two on shell massless photons. In
particular, the theorem forbids the a1 → γγ decay. As a
consequence, the axial-vector channel π0 → a1 → γγ
induced by the πa1 mixing is also forbidden.
Let us discuss the issue in terms of the effective

Lagrangian describing the hadronic a1ωρ vertex. Below
we present the result that takes into account the leading and
next to leading orders in the expansion of the AVV quark
triangle Γσμνðq; pÞ in powers of q and p,

(a)

(b)

FIG. 1. The two possible graphs for the π0 → γγ decay in the
NJL model with vector meson dominance.
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La1ωρ ¼
Ncg3ρ
32π2

eσμναfai1σðc1ωμρ
i
αν þ c2ρiνωαμÞ

−
1

2m2
½ρiαβðωσνai1βμ þωβμai1σνÞ þ 2ρiσνai1μ∂βωβα�g:

ð5Þ

Here bμν ¼ ∂μbν − ∂νbμ, where b ¼ ω; ρi; ai1 are spin-1
meson fields, m is the constituent quark mass, and the
summation over repeated isospin index i is assumed. The
constants c1 and c2 were defined above. Notice that they
represent the freedom related with the surface term (3)
appearing in the calculation of the quark AVV triangle. For
this reason their values are not intrinsic to the triangle
graph, but depend on the context in which they arise
[25,35]. For instance, when both vector ω and ρ mesons
couple to photons the gauge symmetry is conserved if and
only if c1 ¼ c2 ¼ 0. On the other hand, in the case of the
a1 → γρ decay one should preserve transversality of the
ω → γ index and abandon transversality by the Lorentz
index related with the ρ field; i.e., the choice is c1 ¼ 0,
c2 ≠ 0. A similar argument gives c1 ≠ 0, c2 ¼ 0 for the
a1 → γω decay. [The three-derivative part of (5) alone
(i.e., c1 ¼ c2 ¼ 0) has been used in [36] to estimate the
widths of radiative decays Γða1 → γρÞ ¼ 34 keV and
Γða1 → γωÞ ¼ 300 keV]. The future phenomenological
data should clarify the role of surface terms in these
decays]. If one enforces the conservation of the axial-
vector current in the AVV triangle, one finds c1 ¼ c2,
as it takes place, for instance, in [6]. In the latter case
the contribution of the diagram Fig. 1(b) vanishes due to the
occurrence of an accidental antisymmetry under the
exchange of fields ωμ ↔ ρ0μ.
From all the previous considerations we conclude that it

is generally most appropriate to use the hadron vertex a1ωρ
in the form (5), where the two parameters c1 and c2 should
be subsequently specified. The ambiguity contained in the
a1ωρ vertex should not scare the reader, because there is no
a priori physical process associated with these three
particles from which one could extract the values of c1
and c2. Nonetheless, these parameters can be fixed on
theoretical or/and phenomenological grounds when the
vertex (5) is an element of the Feynman diagram corre-
sponding to a real physical process. In the next section we
show how it works for the ω → 3π amplitude.

III. THE πa1 MIXING IN THE ω → 3π DECAY

Now that we have demonstrated that πa1 mixing does
not affect the π0 → γγ amplitude, and have established the
most general low-energy structure of the a1ωρ vertex, we
can address the main subject of this paper—the problem of
πa1 mixing in the ω → 3π and γ → 3π amplitudes. This
question has been studied by Wakamatsu [9] in detail. He
has found that the amplitude of the ω → 3π decay contains
uncompensated contributions generated by πa1 mixing.

This breaks the low-energy theorem at the order of 1=a2,
where

a ¼ m2
ρ

g2ρf2π
¼ 1.84 ð6Þ

and mρ ¼ 775.26� 0.25 MeV is the empirical mass of the
ρ meson. Obviously, this conclusion is based on the
assumption that VMD is valid.
First, let us recall and complement the calculations made

in [9]. The diagrams contributing to the ω → 3π decay are
shown in Fig. 2, where we have additionally included the
box diagram with three πa1 transitions and took into
account the contribution of the ωρða1 → πÞ vertex in the
ρ-exchange graph neglected in [9]. The corresponding
amplitude is given by

Aω→3π ¼ −
Ncgρ
4π2f3π

eμναβϵμðqÞpν
0p

αþpβ
−Fω→3π; ð7Þ

where p0; pþ; p− denote the momenta of the three pions,
ϵμðqÞ is the polarization of the ω meson with the momen-
tum q, and the form factor Fω→3π is found to be

Fω→3π ¼
�
1 −

3

a
þ 3

2a2
þ 1

8a3

�

þ
�
1 −

c
2a

� X
k¼0;þ;−

g2ρf2π
m2

ρ − ðq − pkÞ2
: ð8Þ

Here, in the first parentheses, the contributions of box
diagrams without and with one, two, and three πa1
transitions are given correspondingly. The last term repre-
sents the contribution of two ρ-exchange graphs, where c ¼
c1 − c2 controls the magnitude of an arbitrary local part of
the AVV-quark triangle.

(a)

(b)

FIG. 2. The quark loop graphs contributing to the ω → 3π
decay in the NJL model. The graph (a) represents a full set of
possible diagrams without and with one, two, and three πa1-
mixing effects on the pion line. The graph (b) represents the
diagrams without and with one πa1 transitions. The graph with
two πa1 transitions in the vertex ρ → ππ is neglected because it
contributes to the amplitude only at the next order of derivative
expansion.
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In the low-energy limit, the sum is approximated by the
factor 3=a, arising if one neglects the dependence on
momenta in (8). Then one can see that there is a full
cancellation among the terms of order 1=a. This is a well-
known result of [9]. The surface term contributes at order of
1=a2. Without this contribution (c1 ¼ c2) we reproduce the
πa1-mixing effect found in [9] at this order.
Heuristically one might have thought that the retention of

the surface term in the AVV vertex could be used to cancel
the πa1-mixing effect. This might be reached by demand-
ing that c ¼ 1þ 1=ð12aÞ. However, this naive theoretical
reasoning is not supported from the phenomenological
point of view. For c ¼ 1, the estimate Γðω → πþπ0π−Þ ¼
3.2 MeV is too low compared with the well-known
experimental value Γðω → πþπ0π−Þ ¼ 7.57� 0.13 MeV.
Actually, there is a solid theoretical fact established by

Cohen [37]. He has shown that the chiral Ward identities for
the γ → 3π process imply that both the chiral triangle and
the box anomaly contribute to the total amplitude in a well-
defined way,

Atot
γ→3π ¼

3

2
AAVV −

1

2
AVAAA; ð9Þ

where Atot
γ→3π , A

AVV , and AVAAA are, respectively, the total
γπππ amplitude, the point γ → ω → πππ amplitude, and
the amplitude for the γ → ω → πρ → πππ process. This
result is consistent both with the chiral Ward identities and
with the usual Kawarabayashi-Suzuki-Fayyazuddin-
Riazuddin relation [38,39], which arises in the NJL model
at a ¼ 2. Indeed, one can easily see from Eq. (8) that, if one
neglects the terms of order 1=a2 and higher in the box
contribution and puts c ¼ 0 in the ρ-exchange term, the
amplitude AVAAA has a factor ð1 − 3=aÞ ¼ −1=2, and the
AAVV amplitude has a factor ð1 − c=ð2aÞÞ3=a ¼ 3=2, as is
required by the chiral Ward identities. On the other hand, if
c is chosen to cancel πa1-mixing effects, these amplitudes
contribute with a relative weight of −7=64 and 71=64,
correspondingly.
Thus, the surface term c cannot be used to resolve the

πa1-mixing puzzle. Moreover, its value is unambiguously
fixed by the chiral Ward identities, which require that
c ¼ 0. Exactly this pattern has been considered in [3,6,9],
which reproduces well the phenomenological value of the
width. That allows us to conclude, following [9], that if the
VMD is a valid theoretical hypothesis, the γ → ω → 3π
amplitude contains the contributions due to πa1 mixing and
as a consequence the low-energy theorem (1) is violated,

Aγ→3π ¼ −F3πeμναβϵμðqÞpν
0p

αþpβ
−; ð10Þ

F3π ¼ Nce
12π2f3π

�
1þ 3

2a2
þ 1

8a3

�
≠

Nce
12π2f3π

: ð11Þ

The impossibility of ensuring the fulfilment of the low-
energy theorem without violating the so-called complete

VMD was known earlier [5,40,41]. The peculiarity of the
case under consideration is that the violation (11) is
associated with the presence of πa1 transitions, i.e., occurs
only when axial-vector mesons are present in the
theory. In the following we show that it is possible to
combine the phenomenologically successful value c ¼ 0
with a full cancellation of πa1-mixing effects within the
NJL approach.

IV. THE πa1 MIXING AND γ → 3π AMPLITUDE

To make further progress, let us recall that the πa1
diagonalization is generally performed by a linearized
transformation of the axial vector field. In the NJL model
it has the following form,

aμ → aμ þ
∂μπ

agρfπ
; ð12Þ

where π ¼ τiπ
i, aμ ¼ τiaiμ and τi are the SUð2Þ Pauli

matrices. It was this replacement that has been used in our
calculations above.
It is known, however, that the gauge noncovariant

replacement (12) leads to the violation of gauge symmetry.
The anomalous low-energy amplitude describing the
a1 → γπþπ− decay is not transverse [29,30]. It has been
also argued that gauge symmetry of the a1 → γπþπ−
amplitude can be restored if one uses the covariant
derivative Dμπ instead of the gauge noncovariant one ∂μπ,

aμ → aμ þ
Dμπ

agρfπ
; Dμπ ¼ ∂μπ − ieAμ½Q; π�: ð13Þ

This modification of the theory does not affect any of the
usual current-algebra theorems, which involve amplitudes
independent of eμναβ, whereas, it is important for processes
with breaking of the intrinsic parity. Since we are dealing
with exactly such a case here, let us apply this idea to the
calculation of the γ → 3π amplitude. For that one should
take into account an additional diagram that contributes to
the γ → 3π amplitude (see Fig. 3). The q̄qγπ vertex of this
diagram stems from Dμπ and induces a deviation of the
theory from the complete VMD. The graph has three πa1
transitions. One can easily check that similar diagrams with

FIG. 3. The quark-loop graph contributing to the γ → 3π decay
in the NJL model with the covariant πa1 diagonalization (13).
Both single pion lines are the result of πa1 mixing. The graphs
without πa1 mixing on the single pion lines vanish.
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one and without πa1-mixing effects on the separate pion
lines do not contribute.
The amplitude A, obtained by evaluation of the anoma-

lous AAA triangle shown in Fig. 3, is

A ¼ Nce
4a3f3π

fpσ
−½Jμνσðp0; p−Þ − Jμσνðp−; p0Þ�

þ pσþ½Jμνσðp0; pþÞ − Jμσνðpþ; p0Þ�gϵμðqÞpν
0: ð14Þ

The low-energy expansion of the loop integral Jμνσ starts
from a linear term,

Jμνσðp0; p−Þ ¼
1

24π2
eμνσρðp0 − p− − 3υÞρ þ… ð15Þ

Owing to the shift ambiguity related to the formal linear
divergence of this integral, the result depends on the
undetermined four-vector υρ, which survives in the final
expression,

A ¼ −
Nce
4π2f3π

eμνσρϵμðqÞpν
0ðpþ þ p−Þσ

�
υρ

4a3

�
: ð16Þ

Notice that this is the complete result for this triangle
diagram. Terms of quartic and higher order in momenta are
well defined (actually they vanish), while the cubic term
has an undetermined, local contribution as given
by Eq. (16).
The four-vector υρ can be represented as a linear

combination of three independent momenta characterizing
the process, υμ ¼ b1qμ þ b2ðpþ − p−Þμ þ b3ðpþ þ p−Þμ,
where only the second term survives upon substituting this
form into (16). Thus, the graph shown in Fig. 3 gives an
additional contribution ΔF3π to the form factor F3π,

ΔF3π ¼ Nce
12π2f3π

�
−3b2
2a3

�
; ð17Þ

where b2 is dimensionless and as yet undetermined. To fix
it we use the low-energy theorem (1). By requiring that the
unwanted terms in (11) vanish we find that

b2 ¼ aþ 1

12
¼ 1.92: ð18Þ

Thus, the solution of the πa1-mixing problem in the γ → 3π
amplitude can be associated with the surface contribution
of the anomalous non-VMD diagram shown in Fig. 3.

V. CONCLUSIONS

The QCD-inspired NJL model with vector and axial-
vector mesons and electromagnetic interactions has been
used to resolve a long-standing puzzle—the breaking
of the low-energy theorem (1) due to πa1-mixing effects.
The proposed solution includes a new important step—the

covariant (with respect to the electromagnetic gauge trans-
formations) πa1 diagonalization (13). Since the gauge
covariant derivative involves the electromagnetic field, a
direct interaction of the photon with a pseudoscalar meson
and a quark-antiquark pair appears. It gives rise to a new
triangle graph that is finite but contains a superficial linear
divergence. Because of the linear divergence, shifting the
integration momentum in the closed quark loop changes the
value of the integral, so that there is an essential ambiguity
used to satisfy the low-energy theorem (1). This mechanism
is beyond the VMD framework and deserves to be further
investigated in the future.
Let us notice that the γ → 3π amplitude is already the

second example (after the a1 → γπþπ− decay [29,30])
where surface terms associated to an anomalous AAA
contribution arising within a gauge covariant description of
πa1 mixing allow us to meet the important symmetry
requirements. At the core of both problems has been the
nongauge invariant VAAA box amplitude (TF

μνσλ in nota-
tions of [28]). In the NJL model with spin-1 mesons this
vertex appears also in the context of πa1 mixing. For
instance, in the description of the a1 → γπþπ− decay this
graph arises in the amplitude with two πa1 transitions, i.e.,
at the level of two derivatives, and leads to gauge-symmetry
breaking. In the γ → 3π amplitude it is an integral element
of two types of problematic Feynman diagrams—with two
and three πa1 transitions. Fortunately, the problem, as we
just showed, is solved due to the contribution of the surface
term of the diagram Fig. 3. Incidentally, it was the inclusion
of surface contributions in Ward identities that made it
possible to obtain a reliable field-theoretical picture in
relating γ → 3π to π0 → γγ through Ward identities. The
Ward identities involved there are in fact not anomalous.
However, the surface term, which is normally dropped in
standard applications of current algebra, cannot be dropped
in the correct Ward identities for γ → 3π, where we must
keep terms to third order in momentum. The reason for that
is well explained in [28].
It is known that one can satisfy the integrability con-

ditions for the anomalous Ward identities by constructing a
particular effective Lagrangian that describes exactly the
anomalous interactions between the low-lying pseudoscalar
mesons and their vector and axial-vector partners (see, for
instance, [6]). Our present and previous studies [29,30]
apparently indicate that the underlying quark structure of
the bosonized NJL Lagrangian allows for a natural imple-
mentation of the anomalous Ward identities based on the
appropriate classification of the surface terms that emerge
in the calculations of the anomalous one-quark-loop
triangle diagrams. The realization of this program in the
form of some subtraction procedure would make our
approach more general and would help to shed light on
the role of surface terms in the construction of the
anomalous effective action. Work in this direction is in
progress.
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