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In this paper we study the real-time evolution of heavy quarkonium in the quark-gluon plasma (QGP) on
the basis of the open quantum systems approach. In particular, we shed light on how quantum dissipation
affects the dynamics of the relative motion of the quarkonium state over time. To this end we present a
novel nonequilibrium master equation for the relative motion of quarkonium in a medium, starting from
Lindblad operators derived systematically from quantum field theory. In order to implement the
corresponding dynamics, we deploy the well established quantum state diffusion method. In turn we
reveal how the full quantum evolution can be cast in the form of a stochastic nonlinear Schrödinger
equation. This for the first time provides a direct link from quantum chromodynamics to phenomenological
models based on nonlinear Schrödinger equations. Proof of principle simulations in one dimension show
that dissipative effects indeed allow the relative motion of the constituent quarks in a quarkonium at rest to
thermalize. Dissipation turns out to be relevant already at early times well within the QGP lifetime in
relativistic heavy ion collisions.
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I. INTRODUCTION

Over the past decades, properties of nuclear matter in
extreme conditions have been vigorously studied both
experimentally and theoretically.
At modern collider facilities, such as the Relativistic

Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC), heavy nuclei are collided at ultrarelativistic energy
to create a multiparticle system in the collision center,
endowed with an extremely high energy density. A multi-
tude of measurements suggest that the energy densities
reached are high enough that a new phase of nuclear matter,
the “quark-gluon plasma (QGP),” is realized [1–3].
On the theory side significant progress has been made in

understanding the thermodynamic, i.e., static properties of
the QGP at the temperatures reached in heavy ion collisions
at which quantum chromodynamics (QCD) is still non-
perturbative. Lattice QCD simulations have played a
central role in this regard shedding light on e.g., the
crossover transition temperature [4,5], the physics of static
screening in QCD [6,7] and the equilibrium spectral
properties of heavy quarkonium [8–15]. On the other hand

our understanding of the dynamical properties of QCD is
much less developed due to the notorious sign problem
preventing lattice QCD simulations from being performed
directly in Minkowski time. Perturbation theory may
provide some input on dynamical properties but is appli-
cable only at much higher temperatures than achievable in
experiments.
One way to handle dynamical evolution is to turn to

effective field theories (EFTs), such as relativistic hydro-
dynamics for bulk matter or potential nonrelativistic QCD
for the bound states of heavy quarks, so-called quarkonium
[16]. An EFT allows us to systematically simplify the
theory description by focusing on the relevant degrees of
freedom (d.o.f.) at a certain energy scale only. This opens
up the possibility to use quantities, computable on the
lattice (e.g., the equation of state), to implement a dynami-
cal evolution of strongly interacting matter in a heavy ion
collision. For the case of heavy-quark pairs it has become
possible to define and derive the concept of an in-medium
potential [17–23], which summarizes how the quarkonium
interacts with the surrounding QGP. One central open
question is how to use this in general complex valued
potential to implement the microscopic evolution of the
quarkonium system. In this paper we will provide a
concrete example of how this may be achieved.
An understanding of the dynamical evolution of heavy

quarkonium is a key factor in achieving insights into the
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properties of the hot matter created in heavy-ion collisions.
The original proposal by Matsui and Satz, stating that the
survival probability of quarkonia (J=ψ) may be used as a
probe of QGP formation, points out one essential feature of
deconfinement: Debye screening [24]. In the deconfined
QGP phase, light quarks and gluons that carry color are
liberated and move about, screening the color charges of
the heavy quarks. However, in addition to the screened
potential force, the QGP constituents exert two other kinds
of forces on quarkonia, namely the drag force and random
force (kicks). The latter two are both qualitatively and
quantitatively different from the force acting in the vacuum.
Many different phenomenological approaches are cur-

rently used to describe quarkonium data. Some are based
on the Schrödinger equation with the in-medium complex
potential [25–28] and others based on kinetic Boltzmann
equations with chemical reactions between a quarkonium
and an unbound heavy quark pair in the QGP [29–36]. It
remains, however, an open question how to derive the
dynamical evolution of heavy quarkonium systematically
from QCD.
As heavy quarkonium constitutes a quantum mechanical

bound state immersed into a strongly interacting medium,
we are forced to deploy a genuinely quantum mechanical
description of its dynamics. This question of the evolution
of a small quantum system “S” coupled to an environment
“E” has been studied in detail in condensed matter physics.
In that context the open-quantum-system approach has
been developed and applied to the description of quarko-
nium in the QGP as well [37–51]. The ultimate goal then is
to eventually simulate a quarkonium as an open quantum
system in the QGP and extract information on the in-
medium forces from experimental data of ϒ and J=ψ
measured at the LHC and RHIC [2,3,52–60].
In the open quantum system approach [61], dynamical

information of the small system S is encoded via the
reduced density matrix ρSðtÞ. The master equation for the
evolution of the reduced density matrix can be derived by
integrating out the environment d.o.f. from the density
matrix of the overall system. This process requires a set of
approximations, whose validity rests on energy and time-
scale hierarchies between the system and the environment.
In this work, we introduce a novel master equation

specifically for the relative motion of quarkonium, which
turns out to be of “quantum Brownian motion” type. That
is, it exploits the fact that the system evolution is much
slower than the environment. A general master equation for
the quantum Brownian motion of quarkonia in the Lindblad
form [62] has been first derived in [41]:

∂tρSðtÞ ¼ −i½HS; ρSðtÞ� þ
X
i

ð2LiρSðtÞL†
i − L†

i LiρSðtÞ

− ρSðtÞL†
i LiÞ; ð1Þ

where HS denotes the Hamiltonian of the small system and
Li the so-called Lindblad operators. This master equation

describes a Markovian time evolution and one can prove
that it preserves the positivity of the reduced density matrix.
The initial derivation of the Lindblad equation for

quantum Brownian motion of quarkonia has led to height-
ened interest and activity in finding Lindblad type master
equations for quarkonium in various different regimes of
energy and timescale separation. One pertinent example is
the quantum optical master equation for gluo-dissociation
dynamics. It describes the process in which a singlet bound
state (quarkonium) absorbs a real gluon and turns into an
octet unbound state. It is an interesting application and at
the same time requires careful examination of the validity
of open system approach.1

In this paper, we derive the explicit Lindblad equation for
the relative motion of heavy quarkonium and present
numerical simulations of its quantum Brownian motion
using the quantum state diffusion (QSD) method. With the
explicit inclusion of dissipative effects we overcome a
central limitation of the previously deployed stochastic
potential approach [40,42], which corresponds to the low-
est order gradient expansion of the full Lindblad equation.
The present study follows in the footsteps of our recent
paper [43], where we analyzed the quantum Brownian
motion of a single heavy quark. The main outcome was that
quantum dissipation is important not only on long time-
scales such as the heavy quark equilibration but also in
the early stages, if the initial heavy quark wave function is
localized. The present paper extends this analysis to
quarkonia. With a heavy quark pair, a scattering between
a heavy quark and a gluon interferes with that between
a heavy antiquark and the gluon. Therefore quantum
Brownian motion for a heavy quark pair acquires nontrivial
correlation between the pair, in addition to the potential
force. Using simulations in one spatial dimension via the
QSD method we find the following:

(i) The effective coupling of quarkonia to the QGP
depends on the dipole size.

(ii) Study of the late time steady state of the reduced
density matrix reveals that it is indeed consistent
with a thermal Boltzmann distribution.

(iii) Inspection of the early stages reveals that the effects
of quantum dissipation are also important there.

This paper is organized as follows. In Sec. II we briefly
review the foundations of the open quantum system
approach and introduce a novel Lindblad master equation
for the relative motion of quarkonium. The explicit form of

1In particular, the standard approximation schemes in the
literature, such as the gradient expansion (quantum Brownian
motion) and the rotating wave approximation (quantum optics)
[61], are not applicable to the transition from a deeply bound
singlet state to continuum of octet spectra by gluon absorption.
It is expected that a classical description by the Boltzmann
equation turns out to be applicable at a timescale longer than the
decoherence timescale as also discussed in the single heavy quark
case [63].
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the Lindblad operators for the relative motion is provided
and its physical meanings are discussed. We also discuss
the quantum state diffusion approach, a method of imple-
menting the Lindblad master equation in terms of an
ensemble of stochastically evolving wave functions. In
Sec. III we present the numerical setups and then in Sec. IV
we present our numerical results from a one-dimensional
simulation for different medium conditions and study the
effect of dissipation. Section V provides a summary and
outlook.

II. LINDBLAD EQUATION FOR A QUARKONIUM
IN THE QGP

A. Basics of the open quantum system

In the open quantum system approach, we consider a
composite system which consists of a small system S and an
environment E. The unitary evolution of the d.o.f. of S and
E together can be described by a Hermitian Hamiltonian
Htot ¼ HS ⊗ IE þ IS ⊗ HE þHint, which induces time
translations in the total density matrix of states ρtot.
When we are interested in the dynamics of the small

system alone, it is desirable to work with an effective
description written solely in terms of the system d.o.f.
Therefore we turn to the reduced density matrix, defined by

ρS ≡ TrEρtot; ð2Þ

and its time evolution, usually referred to as the master
equation,

∂tρS ¼ LρS; ð3Þ

which is the central object of the open quantum system
analysis. Here L refers to a superoperator that maps one
reduced density matrix into another at different times and
effectively describes how the environment couples to the
system.
Positivity (∀ α; hαjρSjαi ≥ 0), Hermiticity (ρS ¼ ρ†S) as

well as unitarity (TrSρS ¼ 1) are the basic properties that
allow a physical interpretation of ρS as a density matrix. It
can be proven that if a Markovian master equation respects
these conditions, it can be expressed in a particular form,
the Lindblad form [62]2:

∂tρSðtÞ ¼ −i½Heff ; ρSðtÞ� þ
X
i

ð2LiρSðtÞL†
i

− L†
i LiρSðtÞ − ρSðtÞL†

i LiÞ: ð4Þ

Note that the Hamiltonian Heff is not necessarily the same
as the Hamiltonian HS when the system is isolated.
In our study, the system S and the environment E

correspond to a quarkonium and the QGP (light quarks
and gluons), respectively, and the Lindblad operators Li, as
explained below, are labeled by a continuous momentum
variable k⃗ and discrete color a, i.e., i ¼ ðk⃗; aÞ.

B. Lindblad equation for quarkonium
relative motion

We consider a system, where the energy density of the
medium is high enough for the QCD coupling to be small
and at the same time the temperature is still low enough,
so that the heavy quark mass represents the largest energy
scale mQ ≫ T ≫ ΛQCD. In such a scenario, which may be
realized in heavy-ion collisions at LHC, using well con-
trolled expansions in 1=mQ and the strong coupling g, the
effective Hamiltonian and the Lindblad operators in a finite
volume L3 have been derived in the influence functional
formalism in Ref. [41]:

Heff ¼
p⃗2
Q þ p⃗2

Q̄

2M
þ
�
Vðx⃗Q − x⃗Q̄Þ −

1

8MT
fðp⃗Q − p⃗Q̄Þ;

∇⃗Dðx⃗Q − x⃗Q̄Þg
�
ðta ⊗ ta�Þ; ð5aÞ

Lk⃗a ¼
ffiffiffiffiffiffiffiffiffiffi
D̃ðk⃗Þ
2L3

s �
e
ik⃗·x⃗Q
2

�
1 −

k⃗ · p⃗Q

4MT

�
e
ik⃗·x⃗Q
2 ðta ⊗ 1Þ

− e
ik⃗·x⃗Q̄
2

�
1 −

k⃗ · p⃗Q̄

4MT

�
e
ik⃗·x⃗Q̄
2 ð1 ⊗ ta�Þ

�
; ð5bÞ

where ðx⃗Q; p⃗QÞ and ðx⃗Q̄; p⃗Q̄Þ denote the position and
momentum operators of the heavy quark and antiquark,
respectively, and ta represents color matrices in the funda-
mental representation. The in-medium real-time dynamics
is hence governed by two quantities, the real functions Vðr⃗Þ
and Dðr⃗Þ [and its Fourier transform D̃ðk⃗Þ�, which are
defined by gluon two-point functions3

2g2

N2
c − 1

Z
∞

0

dthAa
0ðt; r⃗ÞAa

0ð0; 0⃗Þi ¼ Dðr⃗Þ − iVðr⃗Þ; ð6Þ

and given explicitly using the gluon self-energy in the hard-
thermal loop (HTL) approximation,

Dðr⃗Þ ¼ g2T
Z

d3k
ð2πÞ3

πm2
De

ik⃗·r⃗

kðk2 þm2
DÞ2

;

Vðr⃗Þ ¼ −
g2

4πr
e−mDjr⃗j; ð7Þ

2The Caldeira-Leggett master equation [64] is not in the
Lindblad form; nevertheless it describes quantum Brownian
motion well. The Lindblad master equation is, however, con-
ceptually more useful.

3In comparison to [41], we adopt 8T2A ¼ D for simplicity and
opposite sign convention for Vðr⃗Þ and Dðr⃗Þ for later purposes.
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with the Debye screening mass m2
D ¼ ðg2T2=3ÞðNc þ

Nf=2Þ for QCD with Nf light flavors. The Lindblad
operator describes collisions between heavy quarks and
plasma particles. The operator exp½ik⃗ · x⃗Q�ðta ⊗ 1Þ shifts

the heavy quark momentum by k⃗ and rotates its color. The
operator with k⃗ · p⃗Q=4MT describes the recoil of the heavy
quark in each collision and accounts for its dissipation.
Note that the Lindblad operator without this dissipative
term corresponds to the master equation of the stochastic
potential model [40,42].
The functions V and D in Eqs. (6) and (7) are closely

related to the real and imaginary part of the complex in-
medium potential VQQ̄ derived from the Wilson loop at
high temperatures [17,18]. Within the HTL approximation
we have

Re½VQQ̄�ðr⃗Þ ¼ Vðr⃗Þ; Im½VQQ̄�ðr⃗Þ ¼ Dðr⃗Þ −Dð0Þ:
ð8Þ

Equation (5) thus provides an explicit microscopic answer
to the question of how the real and the imaginary part of the
quarkonium in-medium potential govern the quarkonium
real-time dynamics. While the real part drives the von-
Neumann like part of the dynamics, it is the imaginary part
that encodes how fluctuations induce the decorrelation of
the quarkonium state from its initial state [40,42], as it
evolves over time. It is this decay in correlations and not the
annihilation of the static quark pair which is encoded in the
damping of the thermally averaged Wilson loop, described
by its complex potential VQQ̄.
Let us concentrate on the relative motion of the quarko-

nium and attempt to integrate out the center-of-mass (c.m.)
motion. As we will see below, a complete decoupling of
the c.m. momentum in general is not possible and it will
affect the relative motion. Thus the procedure needs to be
performed carefully. Introducing the c.m. and the relative
coordinates,

R⃗ ¼ x⃗Q þ x⃗Q̄
2

; r⃗ ¼ x⃗Q − x⃗Q̄; P⃗ ¼ p⃗Q þ p⃗Q̄;

p⃗ ¼ p⃗Q − p⃗Q̄

2
; ð9Þ

we can rewrite the effective Hamiltonian and the Lindblad
operators as

Heff ¼
P⃗2

4M
þ p⃗2

M
þ Vðr⃗Þðta ⊗ ta�Þ

−
1

4MT
fp⃗; ∇⃗Dðr⃗Þgðta ⊗ ta�Þ; ð10aÞ

Lk⃗a ¼
ffiffiffiffiffiffiffiffiffiffi
D̃ðk⃗Þ
2L3

s
eik⃗·R⃗

�
1−

k⃗
4MT

·

�
1

2
P⃗þ p⃗

��
e
ik⃗·r⃗
2 ðta ⊗ 1Þ

−

ffiffiffiffiffiffiffiffiffiffi
D̃ðk⃗Þ
2L3

s
eik⃗·R⃗

�
1−

k⃗
4MT

·

�
1

2
P⃗− p⃗

��
e−

ik⃗·r⃗
2 ð1⊗ ta�Þ:

ð10bÞ

The Hilbert space for a quarkonium consists of a direct
product of two Hilbert spaces:

HQQ̄ ¼ HR ⊗ Hr; ð11Þ

where HR is the Hilbert space for the c.m. coordinate and
Hr is that for the relative coordinate and for the color space.
The density matrix for the latter is obtained by tracing out
the c.m. coordinate,

ρr ≡ TrRðρQQ̄Þ: ð12Þ

To obtain the master equation for ρr, we need to calculate

TrR½Heff ; ρQQ̄�; TrRðLk⃗aρQQ̄L
†
k⃗a
Þ; TrRðL†

k⃗a
Lk⃗aρQQ̄Þ;

TrRðρQQ̄L†
k⃗a
Lk⃗aÞ: ð13Þ

By expressing the Hamiltonian as Heff ¼ HðRÞ
eff ⊗ 1þ

1 ⊗ HðrÞ
eff , the first term is

TrR½Heff ; ρQQ̄� ¼ ½HðrÞ
eff ; ρr�: ð14Þ

Next, by writing the Lindblad operators as

Lk⃗a ¼ eik⃗·R⃗Ck⃗aðOr; P⃗Þ; L†
k⃗a

¼ C†
k⃗a
ðOr; P⃗Þe−ik⃗·R⃗;

Or ¼ fr⃗; p⃗; ta ⊗ 1; 1 ⊗ ta�g; ð15Þ

we obtain

TrRðLk⃗aρQQ̄L
†
k⃗a
Þ ¼ TrRðCk⃗aðOr; P⃗ÞρQQ̄C†

k⃗a
ðOr; P⃗ÞÞ;

ð16aÞ

TrRðL†
k⃗a
Lk⃗aρQQ̄Þ ¼ TrRðC†

k⃗a
ðOr; P⃗ÞCk⃗aðOr; P⃗ÞρQQ̄Þ;

ð16bÞ

TrRðρQQ̄L†
k⃗a
Lk⃗aÞ ¼ TrRðρQQ̄C†

k⃗a
ðOr; P⃗ÞCk⃗aðOr; P⃗ÞÞ:

ð16cÞ

At this point it is not yet possible to express the above
equations as explicit expressions in terms of ρr ¼
TrRðρQQ̄Þ. In order to proceed, let us make the assumption
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that the c.m. momentum is fixed P⃗ ¼ P⃗CM. To be specific,
we assume the reduced density matrix is

ρQQ̄ ¼ jP⃗CMihP⃗CMj ⊗ ρr: ð17Þ

We then obtain

TrRðLk⃗aρQQ̄L
†
k⃗a
Þ ¼ Ck⃗aðOr; P⃗CMÞρrC†

k⃗a
ðOr; P⃗CMÞ; ð18aÞ

TrRðL†
k⃗a
Lk⃗aρQQ̄Þ ¼ C†

k⃗a
ðOr; P⃗CMÞCk⃗aðOr; P⃗CMÞρr; ð18bÞ

TrRðρQQ̄L†
k⃗a
Lk⃗aÞ ¼ ρrC

†
k⃗a
ðOr; P⃗CMÞCk⃗aðOr; P⃗CMÞ; ð18cÞ

which tells us that for constant P⃗CM the quantities
Ck⃗aðOr; P⃗CMÞ take the role of Lindblad operators for ρr.
Let us summarize the Lindblad master equation for the

relative coordinates and color space of quarkonium,

d
dt

ρrðtÞ ¼ −i½HðrÞ
eff ; ρr� þ

X
k⃗a

ð2LðrÞ
k⃗a
ρrL

ðrÞ†
k⃗a

− LðrÞ†
k⃗a

LðrÞ
k⃗a
ρr − ρrL

ðrÞ†
k⃗a

LðrÞ
k⃗a
Þ; ð19aÞ

HðrÞ
eff ¼

p⃗2

M
þ Vðr⃗Þðta ⊗ ta�Þ − 1

4MT
fp⃗; ∇⃗Dðr⃗Þgðta ⊗ ta�Þ;

ð19bÞ

LðrÞ
k⃗a

¼
ffiffiffiffiffiffiffiffiffiffi
D̃ðk⃗Þ
2L3

s �
1 −

k⃗
4MT

·

�
1

2
P⃗CM þ p⃗

��
e
ik⃗·r⃗
2 ðta ⊗ 1Þ

−

ffiffiffiffiffiffiffiffiffiffi
D̃ðk⃗Þ
2L3

s �
1 −

k⃗
4MT

·

�
1

2
P⃗CM − p⃗

��
e−

ik⃗·r⃗
2 ð1 ⊗ ta�Þ:

ð19cÞ

In this derivation, the c.m. momentum P⃗CM is given as an
external parameter and can depend on time. This explicit
dependence provides a way to incorporate the relative
motion of quarkonium traversing the QGP in the real-time
description when the quarkonium velocity P⃗CM=2M is
small. We find that this effect on the quarkonium relative
motion is mild (see Appendix A for details) and we fix P⃗CM

at 0⃗ in all of the simulations in Sec. IV. Note that there is
another way to introduce the c.m. momentum P⃗CM of the
heavy quark pair by putting them in a moving frame of
the QGP. This situation is called “hot-wind” and discussed
in the literature [65–67].
Let us mention how the above master equation differs

from previous proposals in the literature. In a recent study
[45], the effects of dissipation have been considered in a
quarkonium master equation; however, the author did not
derive a self-consistent Lindblad equation, and as a result

additional terms needed to be added by hand. A Lindblad-
like master equation in a weakly coupled setting has been
derived in [46] with a focus of further simplifying the
dynamics using semiclassical approximations. While our
master equation relies on the weak-coupling approximation,
we will avoid any further semiclassical approximations and
instead implement the full quantum time evolution.

C. Quantum state diffusion

In quantum mechanics, we can either consider the time
evolution of a system based on its density matrix or go over
to a mixed state description in terms of wave functions. The
change from one to the other is called stochastic unraveling
of the master equation. Since evolving the density matrix in
the position basis incurs high numerical cost, it is often
advantageous to carry out simulations in the language of
wave functions.
While the lowest order gradient expansion of the

quarkonium Lindblad equation can be stochastically unrav-
elled into unitary time evolution of wave functions based on
a linear Schrödinger equation with a stochastic potential
[40,42], the full Lindblad equation requires a more sophis-
ticated treatment. As has been worked out in detail in the
quantum physics community, any Lindblad master equa-
tion may be unravelled stochastically via the “quantum
state diffusion (QSD)” method [68].
In the QSD method, the density matrix ρS is obtained

from the ensemble average of wave functions,

ρS ¼ M½jψðtÞihψðtÞj�; ð20Þ

and the wave functions evolve according to the following
nonlinear stochastic Schrödinger equation,

jdψi≡ jψðtþ dtÞi − jψðtÞi
¼ −iHeff jψðtÞidtþ

X
i

ð2hL†
i iψLi − L†

i Li − hL†
i iψ

× hLiiψ ÞjψðtÞidtþ
X
i

ðLi − hLiiψ ÞjψðtÞidξi;

ð21Þ

where M represents taking the ensemble average and dξi
is complex white noise satisfying

M½dξi� ¼ M½ℜðdξiÞℑðdξjÞ� ¼ 0; ð22aÞ

M½ℜðdξiÞℜðdξjÞ� ¼ M½ℑðdξiÞℑðdξjÞ� ¼ δijdt: ð22bÞ

The nonlinearity arises from the terms containing the
expectation value of the Lindblad operator with respect
to the wave function hLiiψ . The above QSD equation can
be shown to be equivalent to the following nonlinear
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stochastic Schrödinger equation for unnormalized wave
functions:

jdψðtÞi¼−iHeff jψðtÞidtþ
X
i

ð2hL†
i iψLi−L†

i LiÞjψðtÞidt

þ
X
i

LijψðtÞidξi; ð23aÞ

ρSðtÞ≡M

�jψðtÞihψðtÞj
hψðtÞjψðtÞi

�
; ð23bÞ

which we employ in our numerical simulation. When we
calculate the occupation number of some specific state
ϕiðx⃗Þ of a quarkonium, we thus calculate

NiðtÞ≡
Z

dx⃗dy⃗ϕiðx⃗Þ�ρSðx⃗; y⃗; tÞϕiðy⃗Þ ¼ M

�jhϕijψðtÞij2
hψðtÞjψðtÞi

�
:

ð24Þ
We would like to emphasize that with Eq. (23b) the full

quantum time evolution of the in-medium quarkonium
system has been cast into the form of a stochastic nonlinear
Schrödinger equation. As our derivation originates in the
influence functional treatment of the QCD path integral and
deploys a well-defined set of approximations, it is hence
possible for the first time to provide a direct link between
QCD and previous phenomenological models that introduce
a nonlinear Schrödinger equation in an ad hoc manner.

III. NUMERICAL SETUP

Let us introduce our simulation prescription for the
relative motion of a quarkonium in the QGP. The evolution
equation for the wave function from the QSD method
consists of two parts: The effective Hamiltonian term, as
well as additional terms related to the Lindblad operators
(including the stochastic ones). They represent a stochastic
integro-differential equation, whose explicit form for three
dimensions is shown in Appendix B.
For simplicity, in this study, we simulate the full

dissipative dynamics in one spatial dimension and ignore
the heavy quark colors. The heavy quark pair interacts
with QGP particles via scalar potential Aa

0 and we do not
expect the difference between one and three dimensions to
be essential to its behavior. In this analysis, we rather focus
on qualitative effects caused by dissipation in addition
to Debye potential and stochastic forces. We solve the
Hamiltonian term via the fourth order Runge-Kutta method
and the Lindblad terms via a simple forward Euler time step.
Our goal is to showcase how dissipative effects influence

the evolution of quarkonium states. Thus we wish to
compare to simulations in which these effects are absent.
Within the QSD framework this can be achieved by
discarding all terms (except for the kinetic energy) that
are not finite in the T=M → 0 limit. This leads to the
following evolution equation:

dψðxÞ ¼ −idt
�
−
∇2

M
þ VðxÞ

�
ψðxÞ − dt½Dð0Þ −DðxÞ�ψðxÞ

þ 2dt
hψ jψi

Z
dy

�
D

�
x − y
2

�
−D

�
xþ y
2

��

× ½ψ†ðyÞψðyÞ�ψðxÞ þ
�
dξ

�
x
2

�
− dξ

�
−x
2

��
ψðxÞ

þOðT=MÞ; ð25aÞ
M½dξðxÞdξ�ðyÞ� ¼ Dðx − yÞdt; ð25bÞ

which is equivalent to the master equation of the stochastic
potential model [42] in spite of rather different appear-
ances. The former is nonlinear while the latter is linear in
the wave function.
The parametrization for the functions VðxÞ and DðxÞ is

given as follows:

VðxÞ ¼ −
αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ x2c
p e−mDjxj; DðxÞ ¼ γ expð−x2=l2

corrÞ:

ð26Þ
The form of this potential VðxÞ is motivated by the three-
dimensional Debye screened potential, which behaves as
∝ −1=jxj close to the origin and exhibits screening in the
long distance. From perturbative calculations (7), we have

α¼ g2

4π
; mD ¼ gT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc

3
þNf

6

r
≃

2

lcorr
; γ¼Dð0Þ¼ g2T

4π
;

ð27Þ

so that we choose α ¼ 0.3, mD ¼ 2l−1
corr ¼ 2T,4 and

γ ¼ T=π. Since the one-dimensional Coulomb force is
singular at the origin, we regularize the potential by a cutoff
xc ¼ 1=M corresponding to the validity of the nonrelativ-
istic approximation jpj < M [69]. In the simulations in the
next section, the temperature of the QGP is chosen to be
T=M ¼ 0.1–0.3 or TðtÞ ¼ T0 · ½t0=ðt0 þ tÞ�1=3 with t0 ¼
0.84 fm and T0 ¼ 0.47 GeV for the case of Bjorken
expansion. The c.m. momentum is set to PCM ¼ 0 as the
dependence of the quarkonium dynamics on its values is
found to be small (see Appendix A for the details).
To simulate quarkonium physics with this setup, we

discretize space and time by Δx ¼ 1=M and Δt ¼
0.1MðΔxÞ2. The spatial discretization Δx is chosen much
finer than the typical medium length scales m−1

D ∼
lcorr=2 ∼ 1=2T. We also take the system volume L ¼
NxΔx ¼ 254Δxmuch larger than the medium length scales
m−1

D ∼ lcorr=2 ∼ 1=2T. These parameters and the lattice
setup are summarized in Table I.
Finally, let us remark on the boundary conditions used

for the noise field dξðxÞ. To simulate on a finite size lattice

4mD ≃ 2=lcorr in (27) is obtained by equating the full width
half maximum of DðrÞ in (7) and that in (26).
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½−L=2; L=2�, we impose periodic boundary conditions on
the wave function ψðxÞ. Then the boundary condition for
the noise field is given by

dξ

�
−
L
4

�
¼ dξ

�
L
4

�
; ð28Þ

requiring that the noise field dξðxÞ obeys a periodicity
of L=2. Correspondingly, the noise correlation function
Dðx − yÞ for −L=4 ≤ x, y ≤ L=4 should be interpreted as
DðrxyÞ:

M½dξðxÞdξ�ðyÞ� ¼ DðrxyÞdt;

rxy ≡min

�
jx − yj; L

2
− jx − yj

�
: ð29Þ

In this way, we redefine the function DðxÞ for a finite
system with an interval −L=2 ≤ x ≤ L=2, which is all that
is needed for solving the QSD equation.

IV. NUMERICAL RESULTS

We study and simulate how quantum dissipation and c.m.
motion of a quarkonium affect the dynamical evolution of its
relative motion (seeAppendixA for the latter).We first show
in Sec. IVA how quantum dissipation influences the time
evolution. We numerically confirm that in the presence of
quantum dissipation the quarkonium system approaches a
steady state at late times that is independent of the initial
conditions from which the evolution commenced. We
furthermore find that the late time distribution is very close
to the Boltzmann distribution, whose slope is well within
10% of the input temperature of the surrounding medium.
The quarkonium system thus appears to approach genuine
thermal equilibrium at late times, assisted by the interplay of
quantum fluctuations and dissipation.
We then show in Sec. IV B how the evolution depends on

temperature and heavy quark mass by comparing with
simulations with T=M ¼ 0.1 and 0.3. By rescaling the
evolution time t by the heavy quark relaxation time, we find
that a similar relaxation behavior shows up in both of the
cases. Finally in Sec. IV C, we present the quarkonium
evolution in a time-dependent background with temper-
ature TðtÞ, which decreases according to Bjorken expan-
sion. To make closer contact with experimental data, we
project the quarkonium wave functions onto the eigenstates
in Cornell potential.

A. Equilibration with quantum dissipation

We first simulate at T=M ¼ 0.1 and compare the two
cases where the initial condition is either given by the
ground state or the first excited state of the Hamiltonian,

HDebye ¼
p2

M
−

αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2c

p e−mDjxj: ð30Þ

Note that the Hamiltonian HDebye here is different from the
effective Hamiltonian Heff in (19b).
In Fig. 1, we plot the time evolution of the occupation

number NiðtÞ of the ith eigenstate for the ground state
(i ¼ 0) and the first (i ¼ 1) excited state of HDebye for two
different initial conditions N0ð0Þ ¼ 1 and N1ð0Þ ¼ 1. We
find that each of the occupation numbers relaxes to a
constant value irrespective of the initial condition and
hence confirm that the dissipative effects lead to a steady
state. This behavior is indicative that the relative motion of
a quarkonium in the QGP becomes equilibrated.
Next we plot in Fig. 2 the occupation numbers of the

lower levels at late timesMt ¼ 4650, well within the steady
state regime, as a function of the eigenenergy Ei of the

FIG. 1. Time evolution of the occupation numbers of the
ground state and the first excited state. The system reaches a
thermal steady state independent of the initial conditions at late
times. Error bars represent the statistical errors within the
ensemble average.

FIG. 2. Steady state distributions of the eigenstates in −0.10 ≤
Ei=M ≤ 0.06 are measured at Mt ¼ 4650 for T=M ¼ 0.1 and at
Mt ¼ 900 for T=M ¼ 0.3. The data is fitted by the Boltzmann
distribution ∝ exp½−Ei=T fit� for levels with relative velocity less
than 0.5 (lowest 21 levels) for T=M ¼ 0.1 and 0.3. The fitted
temperatures are Tfit=M ¼ 0.099� 0.004 for T=M ¼ 0.1 and
Tfit=M ¼ 0.288� 0.013 for T=M ¼ 0.3.

TABLE I. Numerical setup, parametrization of VðxÞ and DðxÞ,
and center-of-mass momentum.

Δx Δt Nx γ lcorr α mD xc PCM

1=M 0.1MðΔxÞ2 254 T=π 1=T 0.3 2T 1=M 0
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Hamiltonian HDebye. We also show the results for the same
analysis with T=M ¼ 0.3 at time Mt ¼ 900. The distribu-
tion can be fitted by the Boltzmann distribution ∝
expð−Ei=TfitÞ with Tfit=M ¼ 0.099� 0.004 for T=M ¼
0.1 and Tfit=M ¼ 0.288� 0.013 for T=M ¼ 0.3. The
fitting range is limited to the eigenstates ϕi with velocityffiffiffiffiffiffiffiffiffi

hp2iϕi
p
M=2 < 0.5.5 This corresponds to fitting the lowest 21

levels for both T=M ¼ 0.1 and 0.3.
As we have seen above, the relative motion is equili-

brated with quantum dissipation. To see the importance of
the quantum dissipation, we switch off theOðT=MÞ terms,
i.e., keeping only those terms explicit in (25), and
compare with the full simulation. The comparison is
made at T=M ¼ 0.1 and is shown in Fig. 3. We can see
the clear differences not only in the asymptotic behavior
on long timescales but also in the initial behavior. When
the dissipation is switched off, the initial decay of the
ground state occupation is faster and approaches a much
smaller value than in the case with dissipation. Physically,
the drag force prevents the heavy quark pair from
dissociating in the QGP and balances with the thermal
fluctuations to maintain the system in equilibrium. Since
we observe clear dissipative effects in the initial decay, we
conclude that it may not be ignored even within the finite
QGP lifetime ∼10 fm. We will come back to this issue in a
slightly more realistic setup in Sec. IV C.

B. Dependence of the temperature and
the heavy quark mass

Here we study how the time evolution of the occupation
numbers depends on the temperature. We compare the
results with T=M ¼ 0.1 and 0.3 starting from the ground
state of HDebye in Fig. 4(a). For bottomonium, this

corresponds to comparing T ≃ 0.47 and 1.41 GeV, respec-
tively. As we can see in the figure, the relaxation takes
place much faster at higher temperature T=M ¼ 0.3
because of two physical effects: (i) The heavy quark
damping rate is larger, and (ii) the ground state wave
function is more extended and receives decoherence
more easily. To cancel out the first effect, we plot the
timescale in the unit of heavy quark damping rate τeq ≡
MTl2

corr=γ ¼ πðM=TÞ2=M in Fig. 4(c). There is still some
difference between T=M ¼ 0.1 and 0.3, which we ascribe
to the other effect: The decoherence of the ground state
wave function. The decoherence rate for a wave function

of size lψ≡
ffiffiffiffiffiffiffiffiffiffiffi
hx2iψ

q
is estimated as τ−1dec¼Dð0Þ−Dðlψ Þ,

which amounts to τdec ≃ 456=M and 19=M for the ground
state at T=M ¼ 0.1 and 0.3, respectively. By rescaling to
τeq, we get τdec=τeq ¼ 1.45 and 0.55 for T=M ¼ 0.1 and
0.3, respectively, which qualitatively explains the reason
why the initial decay for T=M ¼ 0.3 is faster even after
rescaling to τeq.

6

We can also interpret T=M ¼ 0.1 and 0.3 as a botto-
monium and a charmonium at T ¼ 0.47 GeV, respectively.
As shown in Fig. 4(b), we find the relaxation of a
bottomonium proceeds more slowly than that of a char-
monium again with the same two physical effects as above.

C. Phenomenological implication to heavy
ion collision experiments

In order to relate these simulations to quarkonia in heavy
ion collisions, we take account of the expansion of the QGP
by solving the QSD equation in a time-dependent envi-
ronment undergoing Bjorken expansion:

TðtÞ ¼ T0

�
t0

t0 þ t

�1
3

; T0 ¼ 0.47 GeV;

t0 ¼ 0.84 fm: ð31Þ

We define occupation numbers by projecting the wave
functions onto the eigenstates of the Hamiltonian with the
vacuum Cornell potential,

HCornell ¼
p2

M
−

αffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ x2c

p þ σx;

α ¼ 0.3; xc ¼
1

M
;

σ ¼ 1.12 GeV=fm; M ¼
�
4.7 GeV ðbottomÞ;
1.6 GeV ðcharmÞ;

ð32Þ

FIG. 3. Effect of the dissipation on the occupation numbers.
Shown is the time evolution of the occupation numbers of the
ground state and the first excited state with and without
dissipation. The bars represent statistical errors.

5We expect that the steady state of the Lindblad evolution is the
Boltzmann distribution only when the velocity is small. See
Appendix C for more details.

6To be strict, the inclusion of the dissipation changes the initial
decay rate from the estimate by the decoherence rate as we saw in
the previous section.
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so that the quarkonium yield is related to these occupation
numbers at kinetic freeze-out. This description is based on
the assumption that (i) the quarkonium wave function at the
hadronization is the same as that of the vacuum eigenstate
and (ii) the quarkonium rarely interacts in the hadronic
matter.
Note that we use the Debye screened potential for VðxÞ

in the QSD evolution equation. Since the initial quarko-
nium wave function is not understood well and still an open
issue, we adopt the eigenstates of HCornell in this study. We
take the ground state and the first excited state as the initial
conditions and show in Fig. 5 how the occupation numbers

of these states evolve in time. From Fig. 5, we find that for
both bottomonium and charmonium the occupation number
of the first excited state decays faster than that of the ground
state, which supports the phenomenological idea of sequen-
tial melting. Also the charmonium ground state/first excited
state decays faster than the bottomonium ground state/first
excited state. It is expected because bottomonium is more
localized so that the decoherence is more ineffective and
because bottomonium is heavier and thus the relaxation
time is longer.
To see the effect of quantum dissipation, we also simulate

without the dissipative terms as we did in Sec. IVA and plot
in Fig. 5. Since the temperature at around 18 fm is about
the transition temperature 170 MeV,7 the dissipative effects
on the relative motion of a quarkonium in the QGP are up to
20% effect for the ground states and marginally effective for
the first excited state. The reason why dissipation affects the
ground state more is that the decoherence is ineffective for
localized states and that the relative importance of the
dissipation enhances as we found in [43]. By comparing
with Fig. 3, one may notice that the dissipative effects appear
to be much less important here in Fig. 5. However, when
making a comparison, one needs to consider the temperature
decrease for the latter because the decoherence and damping
proceed much slower at lower temperatures.

V. SUMMARY

In this paper, we study the quantum Brownian motion of
a heavy quark pair in the quark-gluon plasma (QGP).
Treating the heavy quark pair as an open quantum system in
the QGP, we derive and solve the master equation for the

FIG. 5. Time evolution of the occupation numbers of the
ground state and the first excited state in Cornell potential.
The parameter is chosen to simulate bottomonium and charmo-
nium in the Bjorken expanding QGP with the initial temperature
T0 ¼ 0.47 GeV and the initial time t0 ¼ 0.84 fm. To see the
effect of dissipation, we also plot the simulation without
dissipation. The bars represent statistical errors.

(a)

(b)

(c)

FIG. 4. (a) Time evolution of the occupation numbers of the
lowest two levels for T=M ¼ 0.1 and 0.3. In (b) and (c), time is
rescaled by (b) the temperature Tt and (c) the heavy quark
damping rate t=τeq. In (a) and (b), we show the results for T=M ¼
0.3 only until the system reaches the steady state. The bars
represent the statistical errors.

7The typical QGP lifetime is ∼10 fm in full three-dimensional
hydrodynamic simulations.
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relative motion among the pair. In this master equation,
three different forces govern the evolution of the heavy
quarks: Debye screened potential force, thermal noise, and
drag force. Thus the classical counterpart of our quantum
mechanical description is given by the Langevin equation
of two Brownian particles interacting with each other
through the Debye screened potential. It is the first time
that a full quantum mechanical simulation including dis-
sipation is performed for heavy quarks in the QGP.
The master equation of the heavy quark pair takes the

Lindblad form (19), which ensures the basic physical
properties of the reduced density matrix: positivity,
Hermiticity, and unitarity. Among the three different
forces stated above, the Lindblad operator is responsible
for the thermal noise and the drag force. The thermal noise
is represented by a momentum shift operator while the
drag force by the recoil of heavy quarks during each
microscopic collision. The Lindblad operator for the
relative motion of the heavy quark pair depends on the
c.m. momentum, but its dependence is found to be small
so that we only considered the static case (PCM ¼ 0) in our
simulations.
We solved the Lindblad master equation by a stochas-

tic unravelling method called quantum state diffusion
(QSD). Using this method, any Lindblad master equation
is shown to be equivalent to a nonlinear stochastic
Schrödinger equation by which we can correctly produce
a mixed state ensemble for the density matrix. In our
numerical simulation in one dimension, we first checked
basic properties of the master equation (Sec. IVA). The
occupation number of eigenstates relaxes toward a value
independent of the initial condition, and the steady state
distribution is consistent with the Boltzmann distribution.
We also studied the effect of quantum dissipation by
comparing a simulation without dissipation. The quantum
dissipation delays the relaxation toward equilibrium,
which is consistent with our intuitive classical picture
that the drag force prevents a heavy quark pair from
dissociating. We next simulated the temperature and
heavy quark mass dependences on the time evolution
(Sec. IV B). The time evolution strongly depends on
these quantities but is found to scale to a considerable
extent with the heavy quark damping time. Finally, we
take into account the expansion of the QGP in relativistic
heavy ion collisions and solved the master equation with
a time-dependent temperature (Sec. IV C). By simulating
the bottomonium and charmonium yields in the QGP
undergoing the Bjorken expansion, we found that char-
monium dissociates faster than bottomonium and that the
excited states decay faster than the ground states. We also
found that the quantum dissipation delays the ground
state dissociation compared to the case without dissipa-
tion while the excited state dissociation is totally insen-
sitive to the quantum dissipation. This difference comes
from the fact that for an extended state the decoherence

due to thermal fluctuation is the driving force of the
dissociation while for a localized state (such as the
ground state) the decoherence is ineffective and as a
result the dissipation becomes as important as the
decoherence.
Through this analysis, it becomes clear that quarkonia

probe fundamental length scales of the QGP: the screen-
ing length 1=mD and the correlation length lcorr as shown
in (26). The screening length has been evaluated via the
real part of the heavy quark potential (see e.g., [70–72])
and the heavy quark free energies (see e.g., [73]) in
various lattice QCD simulations. On the other hand, the
correlation length is related to the imaginary part, whose
determination from the lattice is much less robust. Using
heavy quark observables in heavy-ion collisions such as
single leptons and open heavy flavor mesons, the single
heavy quark damping rate has been determined phenom-
enologically with some accuracy. The corresponding
quantity in the quarkonium Lindblad equation is given
by τeq ¼ MTl2

corr=γ. Therefore, the suppression pattern of
quarkonium yields provides a way to determine the
correlation length of colored excitations lcorr, a funda-
mental dynamical quantity of the QGP which has not yet
been calculated precisely on the lattice. To perform such a
comprehensive study in the future, we need to implement
a more realistic computation, such as a three-dimensional
simulation on a three-dimensional hydrodynamic back-
ground and include the color of the heavy quarks, to name
a few.
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APPENDIX A: DEPENDENCE OF THE
CENTER-OF-MASS MOTION

Here we show the effects of the c.m. motion on the
relative motion of a quarkonium in the QGP at T=M ¼ 0.1.
Note that we do not solve Eqs. (5) or (10) which include
both the relative and the c.m. motions, whose simulation is
expected to show full thermalization of both of them. We
are interested in the relative motion and solve Eq. (19) for
the relative motion. We set the c.m. momentum at different
values PCM=M ¼ 0, 0.4, 0.6, 0.8, and 1.0, which are
equivalent to the c.m. velocity vCM ¼ 0, 0.2, 0.3, 0.4,
and 0.5, respectively. The time evolution for the ground
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state occupation numbers is shown in Fig. 6. The result
shows that the effect of PCM is rather small. In Fig. 7, we
also show the occupation number for each eigenstate at late

enough time (Mt ¼ 4650) when the system has reached
a (nonequilibrium) steady state. Again, the result is quite
insensitive to the value of PCM.

APPENDIX B: EXPLICIT FORM OF THE QSD EQUATION

We present here the explicit form of the QSD equation (23a) with heavy quark colors ignored:

dψðx⃗Þ ¼ dt

�
i
∇⃗2

M
ψðx⃗Þ − iVðx⃗Þψðx⃗Þ

�
þ 2dt
hψ jψi

�Z
dy⃗ðG̃1ðx⃗; y⃗ÞNðy⃗Þψðx⃗Þ þ ⃗H̃1ðx⃗; y⃗Þ · Nðy⃗Þ∇⃗xψðx⃗Þ

þ ⃗G̃2ðx⃗; y⃗Þ · J⃗ðy⃗Þψðx⃗Þ þ H̃ij
2 ðx⃗; y⃗ÞJjðy⃗Þ∇i

xψðx⃗ÞÞ
�
− dt½I1ðx⃗Þψðx⃗Þ þ I⃗2ðx⃗Þ · ∇⃗ψðx⃗Þ þ Iij3 ðx⃗Þ∇i∇jψðx⃗Þ�

þ
�
ζ1

�
x⃗
2

�
ψðx⃗Þ − ζ⃗2

�
x⃗
2

�
· ∇⃗ψðx⃗Þ

�
; ðB1Þ

with

G1ðx⃗Þ ¼ Dðx⃗Þ þ ∇⃗2

8MT
Dðx⃗Þ; ðB2Þ

G⃗2ðx⃗Þ ¼ ∇⃗Dðx⃗Þ þ ∇⃗∇⃗2

8MT
Dðx⃗Þ; ðB3Þ

G̃1ðx⃗; y⃗Þ ¼ G1

�
x⃗ − y⃗
2

�
−G1

�
x⃗þ y⃗
2

�
; ðB4Þ

⃗G̃2ðx⃗; y⃗Þ ¼
1

4MT

�
G⃗2

�
x⃗ − y⃗
2

�
þ G⃗2

�
x⃗þ y⃗
2

��
; ðB5Þ

⃗H̃1ðx⃗; y⃗Þ ¼
1

4MT

�
½∇⃗D�

�
x⃗ − y⃗
2

�
− ½∇⃗D�

�
x⃗þ y⃗
2

��
;

ðB6Þ

H̃ij
2 ðx⃗; y⃗Þ ¼

1

16M2T2

�
½∇i∇jD�

�
x⃗ − y⃗
2

�

þ ½∇i∇jD�
�
x⃗þ y⃗
2

��
; ðB7Þ

I1ðx⃗Þ¼Dð0⃗Þ−Dðx⃗Þþ ∇⃗2Dð0⃗Þ
4MT

þð∇⃗2Þ2Dð0⃗Þ
64M2T2

þð∇⃗2Þ2Dðx⃗Þ
64M2T2

þ ∇⃗2Dðx⃗Þ
4MT

; ðB8Þ

I⃗2ðx⃗Þ ¼
∇⃗∇⃗2Dðx⃗Þ
16M2T2

−
∇⃗Dðx⃗Þ
2MT

; ðB9Þ

Iij3 ðx⃗Þ ¼
∇i∇jDð0⃗Þ
16M2T2

þ∇i∇jDðx⃗Þ
16M2T2

; ðB10Þ

Nðx⃗Þ ¼ ψ†ðx⃗Þψðx⃗Þ; ðB11Þ

FIG. 6. Effects of the center-of-mass motion on the ground state
occupation number. The center-of-mass momenta are PCM=M ¼
0, 0.4, 0.6, 0.8, and 1.0. The bars represent the statistical errors.

FIG. 7. Effects of the center-of-mass momentum on the eigen-
state occupation numbers at late enough time Mt ¼ 4650. The
center-of-mass momenta are PCM=M ¼ 0, 0.4, 0.6, 0.8, and 1.0.
The bars represent statistical errors.
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J⃗ðx⃗Þ ¼ ψ†ðx⃗Þ∇⃗ψðx⃗Þ; ðB12Þ

ζ1ðx⃗Þ ¼ dξðx⃗Þ − dξð−x⃗Þ þ ∇⃗2dξðx⃗Þ
2MT

−
∇⃗2dξð−x⃗Þ

2MT
; ðB13Þ

ζ⃗2ðx⃗Þ ¼
∇⃗dξðx⃗Þ
2MT

−
∇⃗dξð−x⃗Þ
2MT

: ðB14Þ

APPENDIX C: EQUILIBRIUM DISTRIBUTION
IN THE CLASSICAL LIMIT

The explicit form of the quantum master equation for
a heavy quark and antiquark pair has been given in [41].

By considering up to the second order in the derivative
expansion for the time coarse graining, we obtain the
influence functional SIF ¼ Spot þ Sfluct þ Sdiss þ SL, where
each term corresponds to a specific power counting in
the heavy quark velocity v as Spot ∼ Sfluct ∼ v0, Sdiss ∼ v,
and SL ∼ v2. Let us ignore SL, which is justified when the
velocity is small v ≪ 1, and take the classical limit in the
master equation. For simplicity, we do not consider color
d.o.f. here. Then, in contrast to the fully quantum system
considered in the main text, the master equation for the
c.m. motion can be integrated. The result is

∂tρðx; yÞ ¼
�
i
M

ð∇⃗2
x − ∇⃗2

yÞ − ifVðxÞ − VðyÞg
�
ρðx; yÞ þ

�
2F1

�
x − y
2

�
− 2F1ð0Þ þ F1ðxÞ

þ F1ðyÞ − 2F1

�
xþ y
2

��
ρðx; yÞ þ

"
2F⃗2ðx−y2 Þ · ð∇⃗x − ∇⃗yÞ þ 2F⃗2ðxÞ · ∇⃗x þ 2F⃗2ðyÞ · ∇⃗y

−2F⃗2ðxþy
2
Þ · ð∇⃗x þ ∇⃗yÞ

#
ρðx; yÞ; ðC1Þ

with

F1ðxÞ≡DðxÞ þ ∇⃗2DðxÞ
4MT

≃DðxÞ;

F⃗2ðxÞ≡ ∇⃗DðxÞ
4MT

≃
∇⃗F1ðxÞ
4MT

: ðC2Þ

Using the coordinates

R ¼ xþ y
2

; r ¼ x − y; ðC3Þ

it is written as

∂tρðR; rÞ ¼
�
2i
M

∇⃗R · ∇⃗r − i
�
V
�
Rþ r

2

�
− V

�
R −

r
2

���
ρðR; rÞ

þ
�
2F1

�
r
2

�
− 2F1ð0Þ þ F1

�
Rþ r

2

�
þ F1

�
R −

r
2

�
− 2F1ðRÞ

�
ρðR; rÞ

þ
��

4F⃗2

�
r
2

�
þ 2F⃗2

�
Rþ r

2

�
− 2F⃗2

�
R −

r
2

��
· ∇⃗r

þ
�
F⃗2

�
Rþ r

2

�
þ F⃗2

�
R −

r
2

�
− 2F⃗2ðRÞ

�
· ∇⃗R

�
ρðR; rÞ: ðC4Þ

In the classical limit, we can prove that the equilibrium
distribution is the Boltzmann distribution. By performing
the Wigner transformation

fpðRÞ ¼
Z

d3r exp

�
−i

p⃗ · r⃗
ℏ

�
ρðR; rÞ; ðC5Þ

and taking the classical limit ℏ → 0,8 we obtain the
classical kinetic equation:

∂tfpðRÞ ¼

2
64

− 2
Mp⃗ · ∇⃗Rþ ∇⃗VðRÞ · ∇⃗p

− 1
4
f∂i∂jF1ð0Þþ ∂i∂jF1ðRÞg∂p

i ∂p
j

−2f∂iF2jð0Þþ ∂iF2jðRÞg∂p
i pj

3
75fpðRÞ:

ðC6Þ
Using the approximation F⃗2ðxÞ ¼ ∇⃗F1ðxÞ=4MT employed
in (C2), the equilibrium distribution is

feqp ðRÞ ∝ exp
�
−
1

T

�
p2

M
þ VðRÞ

��
: ðC7Þ

If we do not use this approximation, the correction is
estimated as

8When the dimension of ℏ is recovered, the kinetic term
becomes ∇R∇rℏ, potential V=ℏ, fluctuation F1=ℏ2, and dissi-
pation F2 is unchanged.
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F1ðxÞ ∼DðxÞ
�
1 −

1

4MTl2
corr

�
∼DðxÞ

�
1 −

T
4M

�
; ðC8Þ

and the effective temperature slightly deviates from the environment temperature,

Teff ≡ ∇⃗F1ðxÞ=4M
F⃗2ðxÞ

∼ T

�
1 −

T
4M

�
; ðC9Þ

which gives a rough explanation of the difference between Tfit and T in Fig. 2.
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