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In this article, based on the approach of McKeon et al., we show that the renormalization group equation
related to the radiative mass scale μ operates as a summation over QCD perturbative terms. Employing the
full QCD β function within this summation, all logarithmic corrections can be presented as log-independent
contributions. In another step of this approach, the renormalization scheme dependence for QCD
observables characterized by Stevenson can be examined by specifying the renormalization scheme, in
which the β function beyond two-loop order is utilized. In this regard, there are two choices of
renormalization scheme. In the first scheme, the QCD observable involves two powers of the running
coupling constant, such that the perturbative series contains just two terms. In the second scheme, the
perturbative series expansion is written as an infinite series in terms of the two-loop running coupling,
which can be represented by the Lambert W function. In both cases, the QCD observable involves
parameters that are renormalization scheme invariant and the coupling constant, which is independent of
the renormalization scale. We then consider another approach, which is called complete renormalization
group improvement (CORGI). In this approach, by using the self-consistency principle it is possible to
reconstruct the conventional perturbative series in terms of scheme-invariant quantities and the coupling
constant as a function of the LambertW function. It should be noted that while in the renormalization group
summation method of McKeon et al. the scheme dependence of observables is investigated separately from
their scale dependence, in the CORGI approach, through the principle of self-consistency, both scale and
scheme parameters are utilized. Then, we numerically examine these two approaches, considering two
QCD observables. The first is the Reþe− ratio, investigated at three different colliding energies, and the
second is the Higgs decay width to a gluon pair. We compare our results for Reþe− with the available
experimental data. The results based on the McKeon et al. approach are in better agreement with the
experimental data.

DOI: 10.1103/PhysRevD.101.034007

I. INTRODUCTION

There are different approaches to optimizing QCD
observables. One of them is called the principle of
maximum conformality (PMC), which was developed by
Brodsky and collaborators [1–5]. In this approach the
perturbative series is divided into a conformal and a
nonconformal part. The conformal part involves terms that
are independent of the employed scheme. The nonconfor-
mal part is absorbed into the coupling constant by choosing
proper scales. During the absorbtion, the renormalization
scales are fixed and determined, and the final result is such

that the conformal series is independent of the scheme and
scales used. The division of the series can be done using an
auxiliary scheme called the Rδ scheme [2]. Some research
activities related to the PMC approach can be found in
Refs. [6,7].
Another approach to optimizing QCD observables is

called complete renormalization group improvement
(CORGI) [8]. In this approach, using the self-consistency
principle, it is possible to write each expansion coefficient
at high order in terms of coefficients of lower orders and
invariant scheme-independent terms, which are unknown at
that high order. If one resums the contribution of each
expansion term at lower orders, it can be shown that the
result is scale and scheme independent. This provides an
opportunity to reconstruct the initial perturbative series in
terms of scale- and scheme-independent terms and the
coupling constant which is determined at physical energy
scale, and consequently the scale ambiguity is removed.
There might be some connections between the PMC and

CORGI approaches, which have been discussed in Ref. [9].
The most important one is that the predictable terms in the
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CORGI approach can be assigned to the nonconformal part
since the predictable terms are scale and scheme dependent,
while the unpredictable terms can be related to the
conformal part of the PMC approach, which is scheme
independent. For more details, see Ref. [9].
In a third approach developed by McKeon and his

collaborators—which we call the “McKeon et al.
approach”—it can be shown that upon resummation of
all perturbative series terms to all orders, using the full
QCD β function, the result is scale independent and only
depends on the physical energy scale Q, without any
ambiguity. Using the scheme dependence of the coupling
constant, it is shown that the perturbative coefficients, at a
specified high order, can be written in terms of coefficients
at lower orders up to the first order coefficient [10–14]. This
situation is like that in the CORGI approach, but with one
little difference. In the CORGI approach the perturbative
coefficients at some specified high order are obtained in
terms of coefficients at lower orders based on the self-
consistency principle. In this regard, it is necessary to
obtain the derivative of the perturbative coefficients with
respect to not only the scheme parameters, but also the
renormalization scale which is cast in terms of the variable τ
(see Ref. [15]). Therefore, in comparison with the McKeon
et al. approach, the result of the CORGI approach for the
perturbative coefficients at a specified high order not only
contains the coefficients at lower orders, but also involves
some extra terms. AS mentioned above, this occurs because
the separation between the scale and scheme dependence
does not happen during the optimization procedure in the
CORGI approach, but it does in the McKeon et al.
approach. In this paper we discuss in more detail the
differences and similarities between the CORGI and
McKeon et al. approaches and investigate which one is
the preferred method. In particular, we examine these
procedures by considering two QCD observables: the ratio
of electron-positron annihilation to hadrons, and the Higgs
decay width to a gluon pair. But first we need to review the
basic concepts of theses two approaches, which we do in
the following sections.
This paper is organized as follows. In Sec. II we review

the basic concepts of the McKeon et al. approach. This
section contains two parts. In Sec. II A we describe the
renormalization group (RG) summation, and in Sec. II B
we describe the scheme used to characterize the QCD
observables. In Sec. III, we examine the McKeon et al. and
CORGI approaches for some QCD observables. In
Secs. III A and III B we investigate the ratio Reþðe−Þ ratio
in the McKeon et al. and CORGI approach, respectively.
In Sec. IV, after describing how to perform the RG
resummation, we use the McKeon et al. approach to study
the Higgs decay width to a gluon pair. The scheme
dependence for this observable is determined in Sec. IV
A, and a numerical investigation of this observable using
the McKeon et al. approach is presented in Sec. IV B. In

Sec. V we present a numerical investigation of this
observable using the CORGI approach. Finally, we give
our conclusion in Sec. VI.

II. AN OVERVIEW OF THE MCKEON ET AL.
APPROACH

Here we give a brief description of the renormalization
group summation method developed by McKeon et al. For
clarity of presentation, most of the relations in this and the
following sections are adapted from Refs. [10,11]. As an
example of how the renormalization group summation is
done, we examine the QCD observable for eþe− annihi-
lation. In the following, we show that by determining a
recurrence relation between perturbative terms, the result of
the summation of all perturbative terms is independent of
the renormalization scale as an unphysical parameter.
The cross section of eþe− annihilation into hadrons, after

normalizing it to μþμ− pair production, can be written as

Reþe− ¼
�
3
X
i

q2i

�
½1þ R�: ð1Þ

The expansion of R in terms of the coupling constant a has
the following form:

R ¼
X∞
n¼0

rnanþ1; r0 ¼ 1: ð2Þ

The coefficient of rn, arising from the contributions of
Feynman diagrams to the observable R, can be represented
by [10]

rn ¼
Xn
m¼0

TnmLm: ð3Þ

In this equation T00 ¼ 1 and L ¼ b lnðμQÞ, where μ is the
renormalization scale and Q is the physical center-of-mass
energy in the eþ e− collision.
Since R is independent of the renormalization scale μ,

the renormalization group equation (RGE) implies that

μ
d
dμ

R ¼
� ∂
∂μþ βðaÞ ∂

∂a
�
R ¼ 0: ð4Þ

The μ dependence of the coupling is governed by the QCD
β-function equation [16]:

βðaÞ ¼ μ
∂a
∂μ ¼ −ba2ð1þ caþ c2a2 þ c3a3 þ � � �Þ: ð5Þ

Here b ¼ ð33 − 2NfÞ=6 and c ¼ ð153 − 19NfÞ=12b are
renormalization scheme (RS) invariant, where Nf denotes
the number of active quark flavors. The higher coefficients
c2; c3;… serve to label the RS dependence [17].
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To indicate that the coefficients b and c in Eq. (5) are
scheme independent, one can consider two different cou-
plings a and a� at two different schemes, such that [11]

a� ¼ aþ x2a2 þ x3a3 þ � � � ; ð6Þ

and therefore

β�ða�Þ ¼ μ
∂a�
∂μ ¼ βðaÞ ∂a

�

∂a : ð7Þ

Then, one can show that

β�ða�Þ ¼ −b�a�2½1þ c�a� þ c�2a
�2 þ � � ��

¼ ½1þ 2x2aþ 3x3a2 þ � � ��ð−ba2Þ
× ½1þ caþ c2a2 þ � � ��: ð8Þ

If we substitute a� from Eq. (6) into the first row of Eq. (8)
and compare the result with the second row of this
equation, we arrive at

b ¼ b�;

c ¼ c�;

c2 ¼ c�2 þ cx2 þ x22 − x3;

:

:

: ð9Þ

We now deal with the details of the McKeon et al.
approach.

A. Renormalization group summation

Using the McKeon et al. approach, it can be shown that
by a full resummation of the QCD perturbative series the
unphysical parameter μ can be removed and the final result
for any QCD observable is independent of the unphysical
parameter, as is expected. One of the features of the
McKeon et al. approach compared to the CORGI approach
is that it does not require the use of the self-consistency
principle, and in order to construct the McKeon et al.
approach, it only needs to utilize RGE by considering the
QCD β function. In the CORGI approach, one needs to
employ the self-consistency principle for not only the
scheme parameters but also the scale parameter μ.
Therefore, the scale and scheme parameters are used
simultaneously during the optimization process in the
CORGI approach, while in the McKeon et al. approach
the renormalization scale parameter and scheme parameters
are used separately.
Now we briefly review the McKeon et al. approach to

show how the unphysical parameters are removed in
perturbative series for any QCD observable, using just

the RGE of QCD β function. For this purpose, by
substituting Eq. (3) into Eq. (2) we obtain [10]

R ¼ Rpert ¼
X∞
n¼0

rnanþ1 ¼
X∞
n¼0

Xn
m¼0

Tn;mLmanþ1: ð10Þ

To satisfy the condition r0 ¼ 1 in Eq. (2), it is required that
T0;0 ¼ 1. From Eq. (10), the following expression should
be assigned to rn:

rn ¼
X
m

Tn;mLm: ð11Þ

If one sets m ¼ 0, then

rn ¼ Tn ⇒ R ¼
X∞
n¼0

Tnanþ1; ð12Þ

which is similar to Eq. (2).
Now we introduce a new grouping, denoted by An [10]:

An ¼
X∞
m¼0

Tnþm;nanþmþ1: ð13Þ

This makes it possible to sum the contribution to R by
considering the RGE. Therefore, using Eq. (13) in the
above, the R in Eq. (10) is expressed as

R ¼ RA ¼
X∞
n¼0

AnðaÞLn: ð14Þ

By substituting Eq. (14) into the renormalization group
equation (4), it can be shown that

X∞
n¼0

ðbnAnðaÞLn−1 þ βðaÞA0
nðaÞLnÞ ¼ 0: ð15Þ

Using this equation and rearranging the order of sums, An
can be written as

AnðaÞ ¼ −
βðaÞ
nb

d
da

An−1ðaÞ: ð16Þ

Considering the QCD β function (5), we find that

An

�
a

�
ln

μ

Λ

��
¼ −

1

n
d

d lnðμΛÞ
An−1

�
a

�
ln

μ

Λ

��
; ð17Þ

where Λ is related to be boundary condition in Eq. (5) such
that
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ln

�
μ

Λ

�
¼

Z
a

0

dx
βðxÞ þ

Z
∞

0

dx
bx2ð1þ cxÞ: ð18Þ

Defining η ¼ ln μ
Λ and using the recurrence relation (17),

one obtains

AnðaðηÞÞ ¼
−1
bn

d
dη

An−1ðaðηÞÞ ¼
1

n!

�
−
1

b
d
dη

�
n
A0ðaðηÞÞ:

ð19Þ

Substituting Eq. (19) into Eq. (14) gives

RA ¼
X∞
n¼0

1

n!

�
−
L
b

�
n dn

dηn
A0ðaðηÞÞ ¼ A0

�
a

�
η −

L
b

��
:

ð20Þ

To prove the above relation, it is easy to show that

RðAÞ ¼
X∞
n¼0

1

n!

�
−
L
b

�
n dn

dηn
A0ðaðηÞÞ

¼ exp
��

−
L
b

�
d
dη

�
A0ðaðηÞÞ: ð21Þ

On the other hand, using the Taylor expansion for the right-
hand side of Eq. (20), one can write

A0

�
a

�
ln

μ

Λ
− L

��
¼ A0

�
a

�
ln

μ

Λ

��
− LA0

0

�
a

�
ln

μ

Λ

��

þ L2

2!
A00
0

�
a

�
ln

μ

Λ

��
þ � � � ; ð22Þ

which is equivalent to the right-hand side of Eq. (21),
considering the expansion of the exponential term.
Consequently, based on the definitions of the parameters
L and η, one can see that [11]

RA ¼ A0

�
a

�
ln
Q
Λ

��
: ð23Þ

This equation shows that all of the dependence of R on μ
scale has been canceled. This is a pleasant result since μ is
an unphysical parameter and it is expected to be removed
by doing a full resummation of the QCD perturbative
series.

B. Renormalization scheme dependence

In the previous section we showed that the final result for
a perturbative series of any QCD observable is independent
of the renormalization scale μ as an unphysical parameter.
Here we briefly review the McKeon et al. approach to show
why the perturbative series of a QCD observable is scheme
independent, and therefore that the final result for the QCD
perturbative series is reliable and independent of the scale
and scheme parameters.
Let us to start by recalling that b and c, the first two

parameters in the QCD β function, are independent of the
renormalization scheme, while the expansion parameters
ciði ≥ 2Þ are renormalization scheme dependent. We will
now explicitly show how RA in Eq. (14) depends on the
parameters ci. Since RA arises from the sum over all
perturbative terms, it should be independent of the choice
of renormalization scheme. Therefore, one can write [17]

� ∂
∂ci þ βiðaÞ

∂
∂a

�
RA ¼ 0: ð24Þ

Here βiðaÞ is defined as

∂a
∂ci ¼ βiðaÞ ¼ −β̂ðaÞ

Z
a

0

xiþ2

ðβ̂ðxÞÞ2 dx; ð25Þ

which indicates how the coupling constant depends on the
scheme parameters c2; c3;…, where β̂ðaÞ ¼ βðaÞ=b. The
solution of this equation is [17]

∂a
∂ci ¼

1

i − 1
aiþ1

�
1 −

ði − 2Þ
i

caþ
�ði − 1Þði − 2Þ

iðiþ 1Þ c2 −
ði − 3Þ
ðiþ 1Þ c2

�
a2 þ � � �

�
: ð26Þ

By setting Tn;0 ≡ Tn in Eq. (10) and based on Eq. (24), one
can derive the following result:

X∞
n¼0

anþ1
∂Tn

∂ci þ ðnþ 1ÞβiðaÞTnan ¼ 0: ð27Þ

This leads to a set of nested equations for Tn:

∂T0

∂ci ¼ 0 ⇒ T0 ¼ τ0 ¼ 1;

∂T1

∂ci ¼ 0 ⇒ T1 ¼ τ1 ¼ const; ð28Þ

where we recall that T0;0 ¼ T0 ¼ 1.
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For the T2 coefficients we find

∂T2

∂c2 þ 1 ¼ 0 ⇒ T2 ¼ −c2 þ τ2; ð29Þ

where τ2 is again constant and scheme invariant.
For the T3 coefficient, we have the following set of two

equations:

∂T3

∂c2 þ 2τ1 ¼ 0;

∂T3

∂c3 þ
1

2
¼ 0: ð30Þ

The simultaneous solution of these two differential
equations is

T3 ¼ −2c2τ1 −
1

2
c3 þ τ3; ð31Þ

where again τ3 is a constant of integration and is scheme
invariant.
For the T4 coefficient, we get

∂T4

∂c2 þ
1

3
c2 þ 3T2 ¼ 0;

∂T4

∂c3 þ T1 −
c
6
¼ 0;

∂T4

∂c4 þ
1

3
¼ 0: ð32Þ

Simultaneously solving the differential equations in
Eq. (32) gives the following result:

T4 ¼ −
1

3
c4 − c3

�
τ1 −

c
6

�
þ 4

3
c22 − 3c2τ2 þ τ4; ð33Þ

where once again τ4 is a constant of integration and is RS
invariant.
Following the procedure introduced in Ref. [10], we

consider two specific choices of renormalization scheme. In
the first scheme, the ci are selected so that Tn ¼ 0ðn ≥ 2Þ.
With this choice, from Eqs. (28), (29), (31), and (33) we
find that

c2 ¼ τ2;

c3 ¼ 2ð−2c2τ1 þ τ3Þ;

c4 ¼ −
3

2
c3

�
−
c
3
þ 2τ1

�
þ 4c22 − 9c2τ2 þ 3τ4: ð34Þ

In this case, the expansion series in Eq. (10) [or, equiv-
alently, Eq. (23)] contains just two terms [10]:

Rð1Þ ¼ að1Þ þ τ1a2ð1Þ

�
ln
Q
Λ

�
; ð35Þ

where the coupling að1Þ, in addition to the universal
parameters b and c, depends also on c2, c3, and the other
scheme parameters. It should be noted that since Eq. (23) is
independent of the renormalization scale μ, the finite
expansion in Eq. (35) has been written in terms of the
physical energy scale Q. As can be seen, the result for the
observable R is scheme independent since τ1 is RS
invariant and the coupling constant að1Þ is independent
of the renormalization scale.
In the second scheme, the scheme parameters are

selected so that ci ¼ 0ði ≥ 2Þ, which corresponds to the
’t Hooft scheme [18]. With this choice, considering again
Eqs. (28), (29), (31), and (33) will lead to Tn ¼ τn. In this
case, Eq. (10) contains the infinite series

Rð2Þ ¼
X∞
n¼0

τna
nþ1
ð2Þ

�
ln
Q
Λ

�
¼ að2Þ

�
ln
Q
Λ

�
þ τ1a2ð2Þ

�
ln
Q
Λ

�

þ τ2a3ð2Þ

�
ln
Q
Λ

�
þ � � � ð36Þ

Like the expansion in Eq. (35) and for similar reasons, only
the physical energy scale Q appears in the series expansion
of Eq. (36), while τ1, τ2, etc., are RS invariants.
The coupling að2Þ in Eq. (36) is obtained from the

solution of the QCD β function, where we only keep the
two universal parameters b and c. Therefore, it can be
expressed in terms of the LambertW function. In particular,
by using Eq. (5) the general solution reduces to

1

a
þ c ln

�
ca

1þ ca

�
¼ τ −

Z �
1

−a2ð1þ caþ c2a2 þ � � �Þ

þ 1

a2ð1þ caÞ
�
da; ð37Þ

where τ is the RS parameter, defined by τ ¼ b lnðQΛÞ. By
setting cn ¼ 0 in Eq. (37), we get

1

a0
þ c ln

�
ca0

1þ ca0

�
¼ b ln

�
Q
ΛR

�
: ð38Þ

To solve this equation, the WðQÞ function is defined such
that

1þWðQÞ ¼ −
1

ca0
: ð39Þ

Here a0 ¼ a0ðQÞ. Finally, one can write
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−
1

ca0
− ln

�
ca0

1þ ca0

�
¼ ln

�
Q
ΛR

�
−b=c

⇒ WeW ¼ −
1

e

�
Q
ΛR

�
−b=c

: ð40Þ

If zðQÞ ¼ − 1
e ðQΛR

Þ−b=c is introduced, then Eq. (40) leads to

WðzÞeWðzÞ ¼ z: ð41Þ

The solution of this equation is called the Lambert W
function [19,20]. Then, from Eq. (39) we obtain

að2Þ ≡ a0ðQ2Þ ¼ −
1

c½1þW−1ðzðQÞÞ� : ð42Þ

Although two different cases for the McKeon et al.
approach have been introduced, it can be shown that the
expansions for Rð1Þ and Rð2Þ given by Eq. (35) and Eq. (36)
are equivalent to each other. For this purpose, we consider
two different couplings ac and ad which are evaluated
using different renormalization schemes associated with the
parameters ci and di, respectively [10],

ac ¼ ad þ λ2ðci; diÞa2d þ λ3ðci; diÞa3d þ � � � ð43Þ

The couplings ac and ad are each satisfied by their related
QCD β functions such that

βcðacÞ ¼ −ba2cð1þ cac þ c2a2c þ � � �Þ;
βdðadÞ ¼ −ba2dð1þ cad þ d2a2d þ � � �Þ: ð44Þ

Since dac
ddi

¼ 0, this can be written as

� ∂
∂dj þ βjðadÞ

∂
∂ad

�X∞
n¼1

λnðci; diÞand ¼ 0: ð45Þ

Using the boundary condition λnðci; ciÞ ¼ 0, a set of
differential equations can be obtained for λn whose sol-
utions lead to the following relation for the couplings:

ac ¼ ad − ðd2 − c2Þa3d −
1

2
ðd3 − c3Þa4d

þ
�
−
1

6
ðd22 − c22Þ þ

3

2
ðd2 − c2Þ2

þ c
6
ðd3 − c3Þ −

1

3
ðd4 − c4Þ

�
a5d þ � � � ð46Þ

Substituting this equation into Eq. (35) and using the ’t
Hooft scheme in which di ¼ 0ði ≥ 2Þ, the expansion for
Rð1Þ reads

Rð1Þ ¼ ad þ c2ad3 þ ð1=2Þc3ad4
þ τ1ðad þ c2ad3 þ ð1=2Þc3ad4Þ2: ð47Þ

Evaluating ci from Eq. (34) in terms of the τi’s, substituting
them into the above equation, and properly rearranging the
desired series expansion, we obtain [10]

Rð1Þ ¼ að2Þ þ τ1að2Þ2 þ τ2að2Þ3 þ τ3að2Þ4 þ � � � ; ð48Þ

which is corresponding exactly to the series expansion for
Rð2Þ in Eq. (36). We recall that the coupling ad in Eq. (47) is
evaluated for scheme parameters di ¼ 0ði ≥ 2Þ. Therefore,
að2Þ is given in terms of the Lambert W function, and this
gives us full agreement between Eqs. (35) and (36).

III. CONSIDERING OBSERVABLES IN THE
MCKEON Et Al. AND CORGI APPROACHES

After obtaining the required mathematical framework for
the McKeon et al. approach, we now examine it by
considering two QCD observables. We calculate them
numerically and compare them with the results obtained
from the CORGI approach. We first employ the McKeon
et al. approach to obtain the ratio of cross sections for
electron-positron annihilation into hadrons at a center-of-
mass energy

ffiffiffi
s

p ¼ 31.6 GeV.

A. Electron-positron annihilation
in the McKeon et al. approach

The expansion up to fourth order of the ratio for electron-
positron annihilation Reþe− into hadrons with Nf ¼ 5 can
be written as [21,22]

Reþe−ðsÞ ¼
11

3
½1þ as þ 1.40902a2s − 12.80a3s

− 80.434a4s þ � � ��: ð49Þ

According to the notation of the McKeon et al. approach,
one can write

T0 ¼ 1; T1 ¼ 1.409; T2 ¼−12.80; T3¼−80.434:

ð50Þ

Using Eqs. (28), (29), and (31), the numerical values for the
required RS invariants are given by

τ1 ¼ T1 ¼ 1.409; τ2 ¼ T2 þ c2 ¼ −11.3252;

τ3 ¼ T3 þ
1

2
c3 þ 2c2τ1 ¼ −71.3600: ð51Þ

We take the number of active quark flavors Nf ¼ 5 at a
colliding energy

ffiffiffi
s

p ¼ 31.6 GeV and consider the QCD
cutoff value in the MS scheme as ΛMS ¼ 419þ222

−168 MeV,
which is determined from the empirical value for Reþe− [2].
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The final numerical result for the ratio of the cross section
in the McKeon et al. approach up to fourth order is

3

11
Reþe− ¼ 1þ aþ τ1a2 þ τ2a3 þ τ3a4 ¼ 1.0556þ0.006

−0.006 ;

ð52Þ

which is in good agreement with its available experimental
value Reþe− ¼ 1.0527þ0.005

−0.005 [23]. We recall that the cou-
pling constant a in Eq. (52) is given in terms of the Lambert
W function [see Eq. (42)].
There is a possibility to obtain a more precise numerical

value for Reþe− if we first do the calculations in Euclidean
space, and then take the contour-improved result back to
Minkowski space. This is because the perturbative coef-
ficients for the concerned observable are computed more
precisely in Euclidean space. In this regard, we need a
relation between the ratio for eþe− annihilation and the
AdlerD function in Euclidean space, which can be found in
Ref. [24],

DðQ2Þ ¼ Q2

Z
∞

4m2
π

Reþe−ðEÞ
ðE þQ2Þ2 dE: ð53Þ

The Adler D function has the following expansion:

DðQ2Þ ¼ a

�
1þ

X
n>0

dnan
�
; ð54Þ

where the coefficients di can be found in Refs. [21,22].
Nevertheless, if one is interesting, can do some computa-
tions which finally yields the di coefficients in terms of the
ri coefficients. Similar computations for the Higgs decay
width to a gluon pair are shown in Sec. IV B. Doing the
same calculations but for Reþe− leads to

d1 ¼ r1; d2 ¼ r2 þ
1

3
β20π

2;

d3 ¼ r3 þ π2r1β20 þ
5

6
β0π

2β1: ð55Þ

From Eqs. (28), (29), and (31) one can obtain τi as follows,
where in these equations the Ti are replaced by di:

τ1¼ d1; τ2¼ d2þc2; τ3 ¼ d3þ
1

2
c3þ2c2d1: ð56Þ

We take the result back to Minkowski space via analytic
continuation, and then the observable R can be written
as [25]

RðsÞ ¼ 1

2π

Z
π

−π
WðθÞDðseiθÞdθ: ð57Þ

Here WðθÞ is the weight function, which is taken to be 1
for Reþe−. The contour-improved numerical result, taking

ΛMS ¼ 419þ222
−168 MeV at the center-of-mass energy

ffiffiffi
s

p ¼
31.6 GeV, is 3

11
Reþe− ¼ 1.0547þ0.005

−0.005 which is, as expected,
in better agreement with the available experimental data
3
11
Rexp
eþe−ð

ffiffiffi
s

p ¼ 31.6 GeVÞ ¼ 1.0527þ0.005
−0.005 [23].

If we take ΛM̄S ¼ 210þ14
−14 MeV, which corresponds to

the world average value αsðMZÞ ¼ 0.1181 [26], then we get
3
11
Reþe− ¼ 1.0471þ0.0006

−0.0007 . The related conventional value
for this observable is 3

11
Reþe− ¼ 1.0461þ0.0015

−0.0008 [5].
Since there are experimental data for Reþe− up to a

center-of-mass energy of 208 GeV [27] or even more, we
also do the required calculations in the McKeon et al.
approach, taking ΛMS ¼ 210þ14

−14 MeV at the energy scales
42.5 and 56.5 GeV. The values we obtain for 3

11
Reþe− at

these energy scales are 1.0463 and 1.0441, respectively,
which are comparable with their experimental values, i.e.,
1.0554 [28] and 1.0745 [29]. A summery of the numerical
results is given in Table I. It seems that as the energy scale
increases the experimental data gradually diverges from the
theoretical prediction, which was also seen in Ref. [30] (see
their Fig. 8.4). But we should note that this conclusion is in
fact based on only photon exchange. If a full theory is taken
into account, including the electroweak contribution from
eþe− annihilation into Z boson, then it is expected to
achieve good agrement with available experimental data.

B. Electron-positron annihilation
in the CORGI approach

Here we do the same calculation for electron-positron
annihilation into hadrons, but using the CORGI approach.
The required information for this approach can be found in
Refs. [8,9,15]. We recall that in this approach, using the
self-consistency principle and taking the scheme parameters
and renormalization scale into account, it is possible to obtain
an expression for the perturbative coefficients of QCD
observables at high order in terms of coefficients at lower
orders. Then, by doing the resummation over the perturbative
expansion but at a specified order, the resummed result at
next-to-leading order (NLO), next-to-NLO (NNLO), etc., is
RS invariant, and the renormalization scale is removed.
Hence, there is a possibility to reconstruct the perturbative
series in terms of RS invariants, and this new constructed
series also does not depend on the renormalization scale as an
unphysical parameter. Thus, we are now able to calculate the
numerical result for the ratio Re−eþ using the CORGI
approach.
The full theoretical expression for the electron-positron

annihilation into hadrons can be written as [31]

RðsÞ ¼ N
X

f
Q2

f

�
1þ 3

4
CFR̃ðsÞ

�
þ
�X

f
Qf

�
2

R̄ðsÞ;

ð58Þ
where R̃ is the perturbative corrections to the parton model
result and has the following expansion:
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R̃ðsÞ ¼ a

�
1þ

X
n

rnan
�
: ð59Þ

In Eq. (58) R̄ refers to the “light-by-light” contribution and,
because the factor

P
f Qf

2 is zero for light-quark flavors, it
would is eliminated from the calculations.
In Minkowski space, using the CORGI approach the

perturbative part of observable can be written as [9]

R̃ðsÞ ¼ a0 þ X2a30 þ X3a40 þ � � � ð60Þ

X2 and X3 are scheme-invariant quantities and, according to
the notation of the McKeon et al. approach, can be written
in terms of the coefficients Ti [see Eq. (12)]. The explicit
expressions for these quantities were given in Ref. [32] [see
their Eq. (26)]. Then, we obtain our numerical results:

X2 ¼ −15.0870; X3 ¼ −16.6423: ð61Þ

By substituting the above numerical values into Eq. (60)
(where a0 is the coupling constant at the two-loop level
written in terms of Lambert W function) and then inserting
Eq. (60) into Eq. (58), we determine that the value of
Re−eþ in Minkowski space is Reþe−ð

ffiffiffi
s

p ¼ 31.6 GeVÞ ¼
1.05440� 0.006. As before, we have set ΛMS ¼
419þ222

−168 MeV and the energy scale
ffiffiffi
s

p ¼ 31.6 GeV.
If one decides to do first the calculations in Euclidean

space, the connection between the Adler D function in this
space and the observable R̃ðsÞ in Minkowski space [which
is like Eq. (53)] is again needed. The perturbative expan-
sion of the Adler D function in Eq. (54) has the following
form in the CORGI approach:

D̃ðsÞ ¼ a0 þ X2a30 þ X3a40 þ � � � þ Xna
nþ1
0 : ð62Þ

Here, the Xi’s are RS invariants and can be written in term
of di [9]. The numerical values X2 and X3 for the Adler D
function are

X2 ¼ −7.2775; X3 ¼ 39.9935: ð63Þ

Using the analytic continuation given by Eq. (57) and
substituting Eq. (62) into it, the numerical value for the full
expression RðsÞ in Minkowski space can be obtained. The
numerical result for the observable at NNLO using the

CORGI approach is Reþe−ð
ffiffiffi
s

p ¼ 31.6 GeVÞ ¼ 1.0523�
0.005, where again ΛMS ¼ 419þ222

−168 MeV. This result is in
better agreement with the reported experimental data
(1.0527� 0.005 [23]) than the result obtained from direct
calculations in Minkowski space.
As in the previous approach, we calculate 3

11
Reþe− in the

CORGI approach at the energy scales 42.5 and 56.5 GeV,
taking ΛMS ¼ 210� 14. We obtain 1.0436 and 1.0425,
respectively, while their experimental values are 1.0554
[28] and 1.0745 [29]. Similar calculations in the CORGI
approach at

ffiffiffi
s

p ¼ 31.6 GeV but with ΛMS ¼ 210� 14

have also been done. The related numerical values are listed
in Table I.

IV. HIGGS DECAY GLOUN PAIR
IN THE MCKEON Et Al. APPROACH

As a second observable in the McKeon et al. approach
we take into account the Higgs decay width to a gluon pair
(H → gg). This observable is of fundamental phenomeno-
logical importance and its dominant contribution is given
by [33]

ΓðH → ggÞ ¼ 4GFM3
H

9
ffiffiffi
2

p
π

RðMHÞ; ð64Þ

where GF is the Fermi constant andMH is the Higgs boson
mass. The numerical and perturbative series expansion of
RðMHÞ is given later on in Secs. IV B and V, respectively.
As before, we first review how the scale renormalization

is removed when we do a resummation over all perturbative
terms of this observable. The RG summation procedure for
H → gg is very similar to that for Reþe−. Nonetheless, it is
worth doing it again for this observable. According to the
notation of the McKeon et al. approach, the expansion
series of RðMHÞ has the following representation:

RðMHÞ ¼ a2s
X∞
n¼1

Xn
m¼0

Tn;mansLm; ð65Þ

where T0;0 ¼ 1 and L ¼ ln μ
MH

. Equation (65) depends on
the renormalization scale μ as an unphysical quantity and,
similarly to the perturbative expansion in Eq. (10),
it is possible to show that all of the dependence on μ in
ΓðH → ggÞ can be removed by summing over all

TABLE I. Numerical results for Reþe− at
ffiffiffi
s

p ¼ 31.6, 42.5, and 56.5 GeV, using the two different approaches.

McKeon et al. approach CORGI approach Conventional pQCD Experimental value ΛMS

Reþe−ð
ffiffiffi
s

p ¼ 31.6 GeVÞ 1.04711þ0.0006
−0.0007 1.04615þ0.00003

−0.00005 1.04617þ0.00015
−0.00008 1.0527þ0.005

−0.005 210� 14 MeV

Reþe−ð
ffiffiffi
s

p ¼ 42.5 GeVÞ 1.0463þ0.0004
−0.0004 1.0436þ0.0004

−0.0005 1.0437þ0.0004
−0.0005 1.0554� 0.2 210� 14 MeV

Reþe−ð
ffiffiffi
s

p ¼ 52.5 GeVÞ 1.0441þ0.0005
−0.0004 1.0425þ0.00045

−0.0004 1.0424þ0.0004
−0.0004 1.0745� 0.11 210� 14 MeV
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logarithmic terms. We should note that the series expansion
in Eq. (65) has an extra factor a2s with respect to Eq. (10). In
this regard, a different grouping is introduced:

AnðaÞ ¼
X∞
m¼0

Tnþm;nanþmþ2ðn ¼ 0; 1; 2;…Þ: ð66Þ

Now Eq. (64) can be represented by

ΓðH → ggÞ ¼ 4GFM3
H

9
ffiffiffi
2

p
π

X∞
n¼0

AnðaÞLn: ð67Þ

The RG equation implies that

�
μ
∂
∂μþ βðaÞ ∂

∂a
�
ΓðH → ggÞ ¼ 0; ð68Þ

which like before leads to

AnðaÞ ¼ −
βðaÞ
n

d
da

An−1ðaÞ: ð69Þ

By introducing the η scale, it follows that [11]

η ¼
Z

aðηÞ

aI

dx
βðxÞ ; aI ¼ const: ð70Þ

Then,

βðaÞ d
da

¼ d
dη

: ð71Þ

By substituting Eq. (71) into Eq. (69), we obtain

AnðaÞ ¼ −
1

n
d
dη

An−1ðaðηÞÞ; ð72Þ

where Λ is defined by Eq. (18). Now one can show that
A0; A1; ...; An can be represented in terms of A0. Therefore,
we can write

A1 ¼ −1
d

d ln μ
Λ
A0;

A2 ¼
−1
2

d
d ln μ

Λ
A1 ¼

−1
2

d
d ln μ

Λ

�
−1
1

d
d ln μ

Λ
A0

�

¼ 1

2

d2

dln2 μ
Λ
A0;

A3 ¼ −
1

3

d
d ln μ

Λ
A2 ¼ −

1

3

d
d ln μ

Λ

1

1.2
d2

dln2 μ
Λ
A0

¼ −1
1.2.3

d3

dln3 μ
Λ
A0;

:

:

:

An ¼
ð−1Þn
n!

dn

dn ln μ
Λ
A0: ð73Þ

If one defines η ¼ ln μ
Λ, then

AnðaÞ ¼
1

n!

�
−

d
dη

�
n
A0ðaÞ; ð74Þ

and finally

RðMHÞ ¼
X∞
n¼0

1

n!
ð−LÞn dn

dηn
A0ðaðηÞÞ

¼ exp

�
−L

d
dη

�
A0ðaðηÞÞ: ð75Þ

The series expansion of the exponential term in Eq. (75)
makes the right-hand side of this equation similar to the
Taylor expansion of A0ðaðln μ

Λ − LÞÞ. For this purpose, as
before one can write

A0

�
a
�
ln

μ

Λ
− L

��
¼ A0

�
a
�
ln

μ

Λ

��
− LA0

0

�
a
�
ln

μ

Λ

��

þ L2

2!
A00

0

�
a

�
ln

μ

Λ

��
þ � � � ð76Þ

Consequently, the sum in Eq. (75) gives

RðMHÞ ¼ A0ðaðη − LÞÞ ¼ A0

�
a
�
ln

μ

Λ
− ln

μ

MH

��

¼ A0

�
a

�
MH

Λ

��
: ð77Þ

As shown by Eq. (77), the renormalization scale μ for the
Higgs decay width to a gluon pair has been removed by
summing over all of its perturbative series terms.
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Finally, using Eq. (66) with m ¼ 0, Eq. (77) becomes

ΓðH → ggÞ ¼ 4GFM3
H

9
ffiffiffi
2

p
π

a

�
MH

Λ

�
2
�
1þ

X∞
n¼1

Tna

�
MH

Λ

�
n
�
:

ð78Þ

A. Renormalization scheme dependence for H → gg

Here we specifically investigate how the series expan-
sion for the Higgs decay width to a gluon pair can become
RS invariant.
As before, the RS dependence of the expansion coef-

ficients Tn in Eq. (78) can be found by using the RG
equation

� ∂
∂ci þ βiðaÞ

∂
∂a

�
ΓðH → ggÞ ¼ 0; ð79Þ

where βiðaÞ is given by Eq. (25). Considering the pertur-
bative part of Higgs decay in Eq. (78) as

RðMHÞ ¼ a2 þ
X∞
n¼1

Tnanþ2; ð80Þ

and employing Eq. (79), we arrive at

2aβiðaÞ þ
X∞
n¼1

anþ2
∂Tn

∂ci þ ðnþ 2Þanþ1Tn ¼ 0: ð81Þ

This equation leads to a sequence of equations for Tn order
by order in terms of a, whose solutions are

∂T1

∂ci ¼ 0 ⇒ T1 ¼ λ1;

∂T2

∂c2 þ 2 ¼ 0 ⇒ T2 ¼ −2c2 þ λ2; ð82Þ

where λ1 and λ2 are constants of integration and RS
invariants. For the coefficient T3, one can write

∂T3

∂c2 þ 3T1 ¼ 0;

∂T3

∂c3 þ 1 ¼ 0; ð83Þ

which leads to

T3 ¼ −3λ1c2 − c3 þ λ3: ð84Þ

To obtain the T4 coefficient, we need to derive the
following differential equations

∂T4

∂c2 þ
2c2
3

þ 4T2 ¼ 0;

∂T4

∂c3 −
c
3
þ 3

2
T1 ¼ 0;

∂T4

∂c4 þ
2

3
¼ 0; ð85Þ

which leads to the final result

T4 ¼
11

3
c22 − 4λ2c2 þ

c
3
c3 −

3

2
λ1c3 −

2

3
c4 þ λ4: ð86Þ

This process can be followed to obtain the other expres-
sions for higher-order coefficients Ti.
As for T1 and T2, λ3 and λ4 in the coefficients of T3 and

T4 are constants of integration and RS invariant, and they
can be determined once Ti and ci have been evaluated in
some mass-independent RS.
Since the summation of the concerned perturbative series

is scheme invariant, again two particular RSs are of special
interest. In the first scheme one can set ci ¼ 0ði ≥ 2Þ, and
consequently Tn ¼ λn. In this case, Eq. (80) becomes

Rð2ÞðMHÞ ¼ að2Þ2 þ
X∞
n¼1

λnað2Þnþ2: ð87Þ

In the second scheme, by setting Ti ¼ 0ði ≥ 2Þ, Eq. (80)
involves just two terms,

Rð1ÞðMHÞ ¼ a2 þ λ1a3: ð88Þ

We recall that the coupling a in Eq. (88) depends on the
scheme parameters ci, while the coupling Eq. (87) only
depends on the two universal scheme parameters b and c,
which can be expressed in terms of the Lambert function
WðxÞ, i.e., x ¼ WðxÞeWðxÞ.
Again, considering the relation between the couplings in

two different schemes, one can show that Eqs. (88) and (87)
are equivalent, such that

Rð1ÞðMHÞ ¼ Rð2ÞðMHÞ: ð89Þ

B. Numerical value for the Higgs decay
width to a gluon pair

In this section we perform a numerical investigation of the
Higgs decay width to a gluon pair in the McKeon et al.
approach. The Higgs boson decay to a gluon pair is given by
Eq. (64), where RðMHÞ in this equation has a numerical
expansion in conventional perturbativeQCDas follows [33]:

RðMHÞ ¼ a2ð1þ 17.9167aþ 153.15787a2

þ 393.822a3 þ � � �Þ: ð90Þ
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According to the notation of the McKeon et al. approach,
from Eq. (90) one can obtain the following numerical values
for the coefficients Ti:

T1 ¼ 17.9167; T2¼ 153.1578788; T3¼ 393.822046:

ð91Þ

From Eqs. (82) and (84) we obtain the following numerical
values for the λi as RS invariants:

λ1 ¼ T1 ¼ 17.9167;

λ2 ¼ T2 þ 2c2 ¼ 156.1074561;

λ3 ¼ T3 þ c3 þ 3c2λ1 ¼ 482:927999: ð92Þ

Now, using the ’t Hooft scheme, Eq. (87) becomes

RðMHÞ ¼ að2Þ2 þ λ1að2Þ3 þ λ2að2Þ4 þ λ3að2Þ5 þ � � � ð93Þ

In this equation, as illustrated before, the coupling constant
að2Þ can bewritten in terms of theLambertW function,which
depends on the physical energy scale Q and the λi coef-
ficients are scheme invariants. To numerically calculate the
decay width H → gg in the McKeon et al. approach we
consider againGF ¼ 1.16638 × 10−5 GeV−2 and the Higgs
mass MH ¼ 126� 4 GeV, while we take the number of
active quark flavors Nf ¼ 5 and the QCD cutoff ΛMS ¼
210� 14 MeV. The value we obtain for the decay width is
ΓðH → ggÞ ¼ 0.383� 0.01 MeV, which can be compared
to the conventional value 0.349� 0.05 MeV [34,35].
As for Reþ;e−, it is possible to perform the numerical

calculation in Euclidian space, and then take the contour-
improved result back to Minkowski space to get a more
precise result.
The Adler D function related to Eq. (93) has the

following expansion:

DðMHÞ ¼ a2
�
1þ

X∞
n¼1

dnan
�

¼ a2 þ d1a3 þ d2a4 þ d3a5 þ � � � ð94Þ

We have the following relations between the coefficients
di and Ti in Eq. (80), which we address in the next section:

d1 ¼ T1; d2 ¼ T2 þ β20π
2;

d3 ¼ T3 þ 2π2T1β
2
0 þ

7

3
β0π

2β1: ð95Þ

Now, using Eqs. (82) and (84) we obtain the invariants λi:

λ1 ¼ T1; λ2 ¼ d2 þ 2c2; λ3 ¼ d3 þ c3 þ 3c2λ1:

ð96Þ

Finally, the perturbative part in Minkowski space
converts to

DðMHÞ¼ að2Þ2þλ1að2Þ3þλ2að2Þ4þλ3að2Þ5þ�� � ; ð97Þ

where in addition to the RS invariants λi, the coupling a2
(written in terms of the LambertW function) is independent
of the renormalization scheme and depends only on the
physical energy scale Q ¼ MH. Now the results for the
Higgs decay width to a gluon pair in the McKeon et al.
approach and in Euclidian space are accessible. We can get
the decay width in Minkowski space by using the contour-
improved integral:

RðMHÞ ¼
1

2π

Z
π

−π
DðMHeiθÞdθ: ð98Þ

Finally, by taking MðHÞ ¼ 126� 4 GeV and Λnf¼5

QCD ¼
210� 14 MeV, the result is ΓðH → ggÞ ¼ 0.370�
0.01 MeV, which is compatible with the conventional
value 0.349� 0.05 MeV. At the moment there is no
experimental data for the Higgs decay width to a gluon
pair, but we expect that the result determined from the
contour-improved integral will be closer to the experimen-
tal value. Similar calculations with updated value for the
Higgs mass, MH ¼ 125.18� 0.16 GeV [26] have also
been done. The relevant numerical results are displayed
in Table II.

V. HIGGS DECAY TO A GLUON PAIR
IN THE CORGI APPROACH

Here we review how to obtain the result for Higgs decay
to a gluon pair in the CORGI approach. More details can be
found in Ref. [9]. Nevertheless, for the sake of clarity, some
main steps to arrive at the CORGI approach for ΓðH → ggÞ

TABLE II. Numerical results for Higgs decay to a gluon pair in the two different approaches.

McKeon et al.
approach

CORGI
approach

Conventional
pQCD

Experimental
value ΛMS

H → ggðMH ¼ 126� 4Þ 0.370þ0.01
−0.01 0.379þ0.02

−0.02 0.349þ0.007
−0.007 … 210� 14 MeV

H → ggðMH ¼ 125.18� 0.16Þ 0.369þ0.0018
−0.0020 0.378þ0.0018

−0.0015 0.349þ0.007
−0.007 … 210� 14 MeV
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are given here. We recall that in conventional perturbative
series the Higgs decay width to a gluon pair is given by

ΓðH → ggÞ ¼ 4GFM3
H

9
ffiffiffi
2

p
π

½a2s þ r1a3s ;

þ r2a4s þ r3a5s þOða6sÞ�; ð99Þ

where a ¼ αs
π is a coupling constant and the coefficients ri

can be found in Ref. [33]. As it is obvious that the
perturbative part of Eq. (99) is given by

R ¼ a2 þ r1a3 þ r2a4 þ r3a5 þ � � � ð100Þ

The self-consistency principle for this observable up to nth
order gives [17]

∂RðnÞ

∂ðRSÞ ¼ Oðαnþ1
s Þ; ð101Þ

where n ¼ 1; 2;…; n and RS stands for the scale parameter
τ ¼ b ln μ

Λ as well as the scheme parameters, such as
c2; c3; c4;… [9,15]. Considering the first two terms in
Eq. (100), that is,

R ¼ a2 þ r1a3; ð102Þ

and using the self-consistency principe with respect to the
variable τ, we obtain

∂r1
∂τ ¼ 2 ⇒ r1 − 2τ ¼ ρ1: ð103Þ

Here ρ1 is RS invariant and independent of the unphysical
scale parameter τ. Adding the third term to Eq. (102)m
which contains the coefficient r2, we obtain

R ¼ a2 þ r1a3 þ r2a4: ð104Þ

Then, by taking derivatives of R with respect to the related
RS parameters, one arrives at

∂r2
∂c2 ¼ −2;

∂r2
∂r1 ¼ cþ 3

2
r1; ð105Þ

where in deriving the first differential equation in above
Eq. (26) has been used. The simultaneous solution of the
differential equations (105) leads to

r2 ¼ cr1 þ
3

4
r21 − 2c2 þ X2: ð106Þ

Here X2 is a constant of integration and is RS invariant. If
the forth term of the series expansion in Eq. (100) is
considered, such that,

RðQÞ ¼ a2 þ r1a3 þ r2a4 þ r3a5; ð107Þ

then the self-consistency principle implies that

∂r3
∂c2 ¼ −3r1;

∂r3
∂c3 ¼ −1;

∂r3
∂r1 ¼

3

2
cr1 þ 2r2 þ c2: ð108Þ

Considering the above differential equations, the result for
r3ðr1; c2; c3Þ is

r3ðr1; c2; c3Þ ¼
r31
2
þ 7

4
cr21 − 3c2r1 þ 2X2r1 − c3 þ X3;

ð109Þ

where X3 is a constant of integration and is RS invariant.
Substituting Eqs. (106) and (109) into Eq. (100), we get

RðQÞ¼ a2þ r1a3þ
�
cr1þ

3

4
r21−2c2þX2

�
a4

þ
�
r31
2
þ7

4
cr21−3c2r1þ2X2r1−c3þX3

�
a5þ�� �

ð110Þ

Resuming the individual NLO, NNLO, etc., contributions
in the above equation and employing the ’t Hooft scheme at
any specified order such that c2 ¼ c3 ¼ … ¼ cn ¼ 0 (for
convenience we set r1 ¼ 0), we arrive at the following
result [9]:

RðQÞ ¼ a20 þ X2a40 þ X3a50 þ � � � ð111Þ

In this equation a0 and Xi are scale and scheme invariant
and a0 can be expressed in terms of the Lambert W
function. Now we can determine the numerical result for
the Higgs decay width to a gluon pair directly in
Minkowski space. To do this, we first need to calculate
the numerical values for X2 and X3 in Eq. (111), which can
be done using Eqs. (106) and (109) where the coefficients
ri were calculated in Ref. [25]. The numerical results for
these RS-invariant quantities are

X2 ¼ −107.2392; X3 ¼ 3269.9755: ð112Þ

By substituting the above results into Eq. (111) and

taking MðHÞ¼126�4GeV and Λnf¼5

QCD ¼ 210� 10 MeV,
the numerical result for the Higgs decay width is
ΓðH → ggÞ ¼ 0.393� 0.025 MeV.
Since the calculation can be done in Euclidean space

similarly as for Reþe−, we have to convert the calculations
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from Minkowski to Euclidean space. To do this, we need a
relation between the coupling constants at different scales:

aðQÞ ¼ aðμÞð1þ h1aðμÞ þ h2aðμÞ2
þ h3aðμÞ3 þ h4aðμÞ4 þ � � �Þ: ð113Þ

The following relations exist for the coefficients hi [36]:

h1 ¼ −β0L; h2 ¼ β20L
2 − β1L;

h3 ¼ −β30L3 þ 5

2
β0β1L2 − β2L;

h4 ¼ β40L
4 −

13

3
β20β1L

3 þ 3

�
1

2
β21 þ β0β2

�
L2 − β3L:

ð114Þ

Here L ¼ lnð s
μ2
Þ, where s is a new scale and the βi’s are the

coefficients of the QCD β function. Substituting Eq. (113)
into Eq. (100) will yield the observable R in terms of the
variable s. Using the dispersion relation (53) but for the
Higgs decay width to a gluon pair will yield this observable
in Euclidian space. To move the result from the μ scale to
theQ scale, we again use the displacement relation (113) in
a proper state. Finally, we arrive at

DðQÞ ¼ aðQÞ2 þ r1aðQÞ3 þ ðr2 þ β20π
2ÞaðQÞ4

þ
�
7

3
β0β1π

2 þ r3 þ 2β20π
2r1

�
aðQÞ5 þOðaQÞ6:

ð115Þ

By comparing Eqs. (100) and (115), we obtain the
following relations between the coefficients di and ri:

d1 ¼ r1; d2 ¼ r2 þ β20π
2;

d3 ¼ r3 þ 2π2r1β20 þ
7

3
β0π

2β1: ð116Þ

We can get the decay width in Minkowski space by using
the contour-improved integral:

ΓðH→ ggÞ¼ 4GFM3
H

9
ffiffiffi
2

p
π

1

2π

Z
2π

0

½a20þX2a40þX3a50þ�� ��dθ;

ð117Þ

where

X2 ¼ 472.8741; X3 ¼ 10096.8174: ð118Þ

To compute the above numerical results, we again need
Eqs. (106) and (109) while the coefficients ri are replaced
by di, given by Eq. (116). As before, a0ðs0eiθÞ is the
coupling constant in the CORGI approach. To numerically
calculate the decay width H → gg in the CORGI approach,

we take as before GF ¼ 1.16638 × 10−5 GeV−2 and the
Higgs mass MH ¼ 126� 4 GeV, while we take Nf ¼ 5

and ΛM̄S ¼ 210� 14 MeV. The value we obtain is
ΓðH → ggÞ ¼ 0.379� 0.03 MeV, which can be compared
with the conventional result 0.349� 0.05 MeV [34,35].
The numerical results, considering the updated value for the
Higgs mass MH ¼ 125.18� 0.16 GeV [26], are shown in
Table II.

VI. CONCLUSION

In this article, we first reviewed the principles of the
McKeon et al. approach [10–14]. This approach involves
two essential steps. By defining a new summed group
denoted by AðnÞ, we attempted to find a pattern that gives a
recurrence relation between the nth and (n − 1)th order of
AðnÞ by taking the RGE into account. Finally, the con-
cerned quantity at nth order can be written in terms of its
expression at first order. In deriving this pattern the QCD β
function plays an essential role. Then, by constructing the
primary series of the QCD observable in terms of AðnÞ and
resuming over all perturbative terms, the renormalization
scale as an unphysical quantity disappears and the final
result for the QCD observable depends only on the physical
energy scale Q [see Eq. (23)].
In the second step of this approach, the RS dependence

of perturbative series coefficients were investigated.
Considering the differential equation for the coupling con-
stant with respect to the scheme parameters ci; ði ≥ 2Þ,
based on Eq. (25) one can rewrite the perturbative series of
the QCD observable in terms of scheme-invariant quan-
tities, while the coupling constant depends only on the
physical energy scale, written in terms of the Lambert W
function [see Eq. (36)]. We recall that in this approach there
is a possibility to render the series expansion RS invariant
and scale independent, such that the series contains just two
terms. However, in this case the related coupling constant is
scale independent, but it depends on the scheme parameters
c2, c3, etc., but overall the series is independent of the
renormalization scale and scheme [see Eq. (35)]. At the end
of Sec. II B it was shown that these two series expansions
are equivalent.
In the second approach, called the CORGI approach,

using the self-consistency principle there is a possibility to
express the coefficient ri at the nth order in terms of the
coefficients at lower orders, which finally includes just the
coefficient at first order, i.e., r1. When using this principle,
we require the derivative of the observable with respect to
the scheme parameters ciði ≥ 2Þ as well as the derivative
with respect to r1, such that in the ∂RðiÞ

∂ðRSÞ derivative the RSs
can be labeled by the parameters ðr1; c2; c3;…Þ [17]. Later
on, the parameter r1 can be cast in terms of τ ¼ ln μ

Λ as a
scale parameter [9]. Using the self-consistency principle,
the simultaneous solution of the differential equations
obtained for ri can be represented as a function of the
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parameters ðr1; c2; c3;…Þ. Rewriting the initial perturba-
tive series of the QCD observable (2) in terms of the
relations between the coefficients ri, it is possible to resum
the perturbative series NLO, and then at NNLO, and so on.
Then, the desired perturbative series can be rewritten in
terms of scheme invariants and coupling constants which
only depend on the physical energy scale.
From this point of views, the CORGI and McKeon et al.

approaches have achieved the same goal. Both of them
were able to reconstruct the conventional perturbative
series in terms of the scheme invariants and coupling
constant, which does not depend on renormalization
scheme. But, which one is more useful? At first, one
may assign the priority to the McKeon et al. approach. In
this approach the renormalization scale parameter and
scheme parameters are investigated separately (as we
explained in the Introduction), while in the CORGI
approach this separation, utilizing the self-consistency
principle, does not occur.
We reexamined these two approaches and used them to

numerically compute the ratio Reþe− and the Higgs decay
width to a gluon pair. The numerical results, based on
contour-improved integrations, are listed in Tables I and II.
Inspecting Table I indicates that the results of the McKeon
et al. approach are in better agreement with the avail-
able data.

In addition to these two approaches, there is another
approach called the principle of maximum conformality
(PMC). We talked about this approach in the Introduction.
Based on this approach there is a possibility to absorb the
nonconformal parts of the perturbative series coefficients
into the renormalized coupling constant, and finally to
attain a perturbation series in terms of only the conformal
parts, while the renormalization scales can be fixed at any
specified order. It is possible to convert the McKeon et al.
approach to the PMC, which was done in Ref. [13]. Some
other studies related to the PMC approach can be found in
Refs. [6,7].
Converting the CORGI approach to the PMC approach is

a difficult task, and we hope to report on it in the future. The
McKeon et al. approach can be considered at an infrared
fixed point where the QCD β function is taken to be zero
[37–39]. This subject is also interesting from other points of
view, such as the infrared safe mode of QCD [40] or the
AdS=CFT correspondence [41], and we hope to address
these subjects in future research.
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