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In this article, based on the approach of McKeon et al., we show that the renormalization group equation
related to the radiative mass scale u operates as a summation over QCD perturbative terms. Employing the
full QCD g function within this summation, all logarithmic corrections can be presented as log-independent
contributions. In another step of this approach, the renormalization scheme dependence for QCD
observables characterized by Stevenson can be examined by specifying the renormalization scheme, in
which the g function beyond two-loop order is utilized. In this regard, there are two choices of
renormalization scheme. In the first scheme, the QCD observable involves two powers of the running
coupling constant, such that the perturbative series contains just two terms. In the second scheme, the
perturbative series expansion is written as an infinite series in terms of the two-loop running coupling,
which can be represented by the Lambert W function. In both cases, the QCD observable involves
parameters that are renormalization scheme invariant and the coupling constant, which is independent of
the renormalization scale. We then consider another approach, which is called complete renormalization
group improvement (CORGI). In this approach, by using the self-consistency principle it is possible to
reconstruct the conventional perturbative series in terms of scheme-invariant quantities and the coupling
constant as a function of the Lambert W function. It should be noted that while in the renormalization group
summation method of McKeon et al. the scheme dependence of observables is investigated separately from
their scale dependence, in the CORGI approach, through the principle of self-consistency, both scale and
scheme parameters are utilized. Then, we numerically examine these two approaches, considering two
QCD observables. The first is the R,+,- ratio, investigated at three different colliding energies, and the
second is the Higgs decay width to a gluon pair. We compare our results for R,+,- with the available
experimental data. The results based on the McKeon et al. approach are in better agreement with the

experimental data.

DOI: 10.1103/PhysRevD.101.034007

I. INTRODUCTION

There are different approaches to optimizing QCD
observables. One of them is called the principle of
maximum conformality (PMC), which was developed by
Brodsky and collaborators [1-5]. In this approach the
perturbative series is divided into a conformal and a
nonconformal part. The conformal part involves terms that
are independent of the employed scheme. The nonconfor-
mal part is absorbed into the coupling constant by choosing
proper scales. During the absorbtion, the renormalization
scales are fixed and determined, and the final result is such
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that the conformal series is independent of the scheme and
scales used. The division of the series can be done using an
auxiliary scheme called the Rs scheme [2]. Some research
activities related to the PMC approach can be found in
Refs. [6,7].

Another approach to optimizing QCD observables is
called complete renormalization group improvement
(CORG]I) [8]. In this approach, using the self-consistency
principle, it is possible to write each expansion coefficient
at high order in terms of coefficients of lower orders and
invariant scheme-independent terms, which are unknown at
that high order. If one resums the contribution of each
expansion term at lower orders, it can be shown that the
result is scale and scheme independent. This provides an
opportunity to reconstruct the initial perturbative series in
terms of scale- and scheme-independent terms and the
coupling constant which is determined at physical energy
scale, and consequently the scale ambiguity is removed.

There might be some connections between the PMC and
CORGI approaches, which have been discussed in Ref. [9].
The most important one is that the predictable terms in the
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CORGI approach can be assigned to the nonconformal part
since the predictable terms are scale and scheme dependent,
while the unpredictable terms can be related to the
conformal part of the PMC approach, which is scheme
independent. For more details, see Ref. [9].

In a third approach developed by McKeon and his
collaborators—which we call the “McKeon er al
approach”—it can be shown that upon resummation of
all perturbative series terms to all orders, using the full
QCD g function, the result is scale independent and only
depends on the physical energy scale Q, without any
ambiguity. Using the scheme dependence of the coupling
constant, it is shown that the perturbative coefficients, at a
specified high order, can be written in terms of coefficients
at lower orders up to the first order coefficient [10—14]. This
situation is like that in the CORGI approach, but with one
little difference. In the CORGI approach the perturbative
coefficients at some specified high order are obtained in
terms of coefficients at lower orders based on the self-
consistency principle. In this regard, it is necessary to
obtain the derivative of the perturbative coefficients with
respect to not only the scheme parameters, but also the
renormalization scale which is cast in terms of the variable 7
(see Ref. [15]). Therefore, in comparison with the McKeon
et al. approach, the result of the CORGI approach for the
perturbative coefficients at a specified high order not only
contains the coefficients at lower orders, but also involves
some extra terms. AS mentioned above, this occurs because
the separation between the scale and scheme dependence
does not happen during the optimization procedure in the
CORGI approach, but it does in the McKeon et al
approach. In this paper we discuss in more detail the
differences and similarities between the CORGI and
McKeon et al. approaches and investigate which one is
the preferred method. In particular, we examine these
procedures by considering two QCD observables: the ratio
of electron-positron annihilation to hadrons, and the Higgs
decay width to a gluon pair. But first we need to review the
basic concepts of theses two approaches, which we do in
the following sections.

This paper is organized as follows. In Sec. II we review
the basic concepts of the McKeon et al. approach. This
section contains two parts. In Sec. I A we describe the
renormalization group (RG) summation, and in Sec. I[I B
we describe the scheme used to characterize the QCD
observables. In Sec. III, we examine the McKeon et al. and
CORGI approaches for some QCD observables. In
Secs. IIT A and III B we investigate the ratio R+ (- ratio
in the McKeon et al. and CORGI approach, respectively.
In Sec. IV, after describing how to perform the RG
resummation, we use the McKeon et al. approach to study
the Higgs decay width to a gluon pair. The scheme
dependence for this observable is determined in Sec. IV
A, and a numerical investigation of this observable using
the McKeon et al. approach is presented in Sec. IV B. In

Sec. V we present a numerical investigation of this
observable using the CORGI approach. Finally, we give
our conclusion in Sec. VI.

II. AN OVERVIEW OF THE MCKEON ET AL.
APPROACH

Here we give a brief description of the renormalization
group summation method developed by McKeon et al. For
clarity of presentation, most of the relations in this and the
following sections are adapted from Refs. [10,11]. As an
example of how the renormalization group summation is
done, we examine the QCD observable for e"e~ annihi-
lation. In the following, we show that by determining a
recurrence relation between perturbative terms, the result of
the summation of all perturbative terms is independent of
the renormalization scale as an unphysical parameter.

The cross section of e e~ annihilation into hadrons, after
normalizing it to gt u~ pair production, can be written as

R = (szq%) 14 R (1)

The expansion of R in terms of the coupling constant a has
the following form:

R= Z rpa ro=1. (2)
n=0

The coefficient of r,, arising from the contributions of
Feynman diagrams to the observable R, can be represented
by [10]

ry = Z TnmLm‘ (3)
m=0

In this equation Ty = 1 and L = bIn(5), where y is the
renormalization scale and Q is the physical center-of-mass
energy in the e* e~ collision.

Since R is independent of the renormalization scale g,
the renormalization group equation (RGE) implies that

d 0 0
y%R: <8_,u+ﬁ(a)%)R_O' (4)

The ¢ dependence of the coupling is governed by the QCD
p-function equation [16]:

pla) = ,u—a =-ba’(1 +ca+ c;a*>+cza®>+---).  (5)

Here b = (33 —2N;)/6 and ¢ = (153 — 19N,)/12b are
renormalization scheme (RS) invariant, where N, denotes
the number of active quark flavors. The higher coefficients
¢y, C3, ... serve to label the RS dependence [17].
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To indicate that the coefficients b and ¢ in Eq. (5) are
scheme independent, one can consider two different cou-
plings a and a* at two different schemes, such that [11]

a*=a-+xa*+x3a> + -, (6)
and therefore

Oa* da*
pla) = uy = Ba) (7)

Then, one can show that

ﬂ*(a*) — _b*a*Z[l —|—C*Cl* +C§Cl*2 _|_ . ]
= [1 +2x,a + 3x3a°> + - - -|(=ba?)
X [14 ca+ c,a® +--]. (8)

If we substitute a* from Eq. (6) into the first row of Eq. (8)
and compare the result with the second row of this
equation, we arrive at

C) = C5 + cxy + X3 — X3,

©)

We now deal with the details of the McKeon et al.
approach.

A. Renormalization group summation

Using the McKeon et al. approach, it can be shown that
by a full resummation of the QCD perturbative series the
unphysical parameter u can be removed and the final result
for any QCD observable is independent of the unphysical
parameter, as is expected. One of the features of the
McKeon et al. approach compared to the CORGI approach
is that it does not require the use of the self-consistency
principle, and in order to construct the McKeon et al
approach, it only needs to utilize RGE by considering the
QCD g function. In the CORGI approach, one needs to
employ the self-consistency principle for not only the
scheme parameters but also the scale parameter p.
Therefore, the scale and scheme parameters are used
simultaneously during the optimization process in the
CORGI approach, while in the McKeon et al. approach
the renormalization scale parameter and scheme parameters
are used separately.

Now we briefly review the McKeon et al. approach to
show how the unphysical parameters are removed in
perturbative series for any QCD observable, using just

the RGE of QCD g function. For this purpose, by
substituting Eq. (3) into Eq. (2) we obtain [10]

R= Rpert = i: rnan_'—1 = i zn: Tn,mLman+1' (10)
n=0

n=0 m=0

To satisfy the condition ry = 1 in Eq. (2), it is required that
Ty = 1. From Eq. (10), the following expression should
be assigned to r,:

Fu = Tuml™. (11)
If one sets m = 0, then
ra=Ty=R=Y T,a""", (12)
n=0

which is similar to Eq. (2).
Now we introduce a new grouping, denoted by A,, [10]:

An = Z Tn+m,nan+m+l- (13)
m=0

This makes it possible to sum the contribution to R by
considering the RGE. Therefore, using Eq. (13) in the
above, the R in Eq. (10) is expressed as

R=R,=Y A,(a)L". (14)

By substituting Eq. (14) into the renormalization group
equation (4), it can be shown that

3 (bnd, (@)L + Bla)A @L7) =0, (15)
n=0

Using this equation and rearranging the order of sums, A,
can be written as

_ P9, ), (16)

An<a) nb da n—1

Considering the QCD f function (5), we find that

A, <a (ln%)) - _%dlni(j‘\—)A"_l <a (m%)) (17)

where A is related to be boundary condition in Eq. (5) such
that
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o) = Lt w08

Defining # = In% and using the recurrence relation (17),
one obtains

An(aln) = 2L A, (al) = ( 1 d>nAo(a(’7))-

~ bndy T\ bay
(19)

Substituting Eq. (19) into Eq. (14) gives

e S e -a-2)

n=0
(20)

To prove the above relation, it is easy to show that

—ep((-5) 5 JAntat). )

On the other hand, using the Taylor expansion for the right-
hand side of Eq. (20), one can write

Ao <a (mj{— L)) = Ag (a <1nﬁ>> - LA, (‘* <1“Z>)
)

which is equivalent to the right-hand side of Eq. (21),
considering the expansion of the exponential term.
Consequently, based on the definitions of the parameters
L and 5, one can see that [11]

Ry = Ao <a (m %) > . (23)

This equation shows that all of the dependence of R on u
scale has been canceled. This is a pleasant result since y is
an unphysical parameter and it is expected to be removed
by doing a full resummation of the QCD perturbative
series.

B. Renormalization scheme dependence

In the previous section we showed that the final result for
a perturbative series of any QCD observable is independent
of the renormalization scale y as an unphysical parameter.
Here we briefly review the McKeon et al. approach to show
why the perturbative series of a QCD observable is scheme
independent, and therefore that the final result for the QCD
perturbative series is reliable and independent of the scale
and scheme parameters.

Let us to start by recalling that » and c, the first two
parameters in the QCD f function, are independent of the
renormalization scheme, while the expansion parameters
c;(i > 2) are renormalization scheme dependent. We will
now explicitly show how R, in Eq. (14) depends on the
parameters c;. Since R, arises from the sum over all
perturbative terms, it should be independent of the choice
of renormalization scheme. Therefore, one can write [17]

(ai + pi(a) a%) R, =0. (24)

Here f;(a) is defined as

aa n a xi+2
o = =) [ Gndn 09

which indicates how the coupling constant depends on the

scheme parameters c,, cs. ..., where 3(a) = f(a)/b. The
solution of this equation is [17]

da I (i-2) (
b i+l X2 7/
de, i—-1" {1 i Ca+<

By setting T',, o = T, in Eq. (10) and based on Eq. (24), one
can derive the following result:
- oT
> @ S (n+ Dp(@T,a =0 (27)
C.

n=0 !

This leads to a set of nested equations for 7,:

i-06-2) , (-3,
iy TG 2
|

oT,

8C?:0:>T0:10:1,

oT

86::0=>T1:11:const, (28)

where we recall that Ty = Ty = 1.
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For the T, coefficients we find

oT
24 1=0=>T, = -+ (29)
aCZ

where 7, is again constant and scheme invariant.
For the 75 coefficient, we have the following set of two
equations:

T,
— 427, =0,
acz + 71
oT; 1
—+-=0. 30
8C3 + 2 ( )

The simultaneous solution of these two differential
equations is

1
T3 = —26271 —§C3 + 73, (31)

where again 75 is a constant of integration and is scheme
invariant.
For the T, coefficient, we get

T, 1
—+= 3T, =0,
802 + 3 cy + 2
8T4 C
—+T,——=0,
8C3 + ! 6
or, 1
—+-=0. 32
6C4 + 3 ( )

Simultaneously solving the differential equations in
Eq. (32) gives the following result:

1 c 4
T,= —364 63 (’L’l _6> +§C% =3¢t + 174, (33)
where once again 74 is a constant of integration and is RS
invariant.

Following the procedure introduced in Ref. [10], we
consider two specific choices of renormalization scheme. In
the first scheme, the c; are selected so that 7, = 0(n > 2).
With this choice, from Egs. (28), (29), (31), and (33) we
find that

Cy = 1o,
c3 = 2(-2cr71 + 73),

3 c
cy = _563 <—§ + 211> + 46% =9¢y7; + 374, (34)

In this case, the expansion series in Eq. (10) [or, equiv-
alently, Eq. (23)] contains just two terms [10]:

0
Ry =ap + Tla%l) <an>, (35)

where the coupling a(;), in addition to the universal
parameters b and ¢, depends also on c¢,, c3, and the other
scheme parameters. It should be noted that since Eq. (23) is
independent of the renormalization scale p, the finite
expansion in Eq. (35) has been written in terms of the
physical energy scale Q. As can be seen, the result for the
observable R is scheme independent since 7; is RS
invariant and the coupling constant a(;) is independent
of the renormalization scale.

In the second scheme, the scheme parameters are
selected so that ¢; = 0(i > 2), which corresponds to the
’t Hooft scheme [18]. With this choice, considering again
Egs. (28), (29), (31), and (33) will lead to T,, = 7,,. In this
case, Eq. (10) contains the infinite series

i (1,2 0 0
Rp) = Zrna(j)l <1n K) =ap) (ln X) + Tlaé) (ln X)

n=0

+ 72“?2) <ln%> 4. (36)

Like the expansion in Eq. (35) and for similar reasons, only
the physical energy scale Q appears in the series expansion
of Eq. (36), while 7, 7,, etc., are RS invariants.

The coupling a(; in Eq. (36) is obtained from the
solution of the QCD f function, where we only keep the
two universal parameters b and c. Therefore, it can be
expressed in terms of the Lambert W function. In particular,
by using Eq. (5) the general solution reduces to

1+ [ <4 / 1
4 —r—
a 1+ ca —a*(1 +ca+ca®>+ )

+ m) da, (37)

where 7 is the RS parameter, defined by 7 = bln(%). By
setting ¢, = 0 in Eq. (37), we get

1
—+cln< o ) = bln(g). (38)
ag 1 + cay AR

To solve this equation, the W(Q) function is defined such
that

14+ W(Q) = - (39)

cay

Here ay = ag(Q). Finally, one can write
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Lo =t (2> o (40)

Ifz2(Q) =-1(2 )" ~b/¢ is introduced, then Eq. (40) leads to

W(z)eV® =z, (41)

The solution of this equation is called the Lambert W
function [19,20]. Then, from Eq. (39) we obtain

1
c[l+W_(z(Q)]

=ay(0*) = - (42)

Although two different cases for the McKeon et al
approach have been introduced, it can be shown that the
expansions for R(;) and Ry given by Eq. (35) and Eqg. (36)
are equivalent to each other. For this purpose, we consider
two different couplings a,. and a,; which are evaluated
using different renormalization schemes associated with the
parameters c¢; and d;, respectively [10],

ac = ag+ A (e dy)ag + A(c dy)ay + - (43)

The couplings a,. and a, are each satisfied by their related
QCD g functions such that

ﬂc(ac) = _ba ( +ca. + C2a% + - '),

ﬁd(ad) = —bad(l + cay + dzaé + - ) (44)

da. __
dd; —

Since 0, this can be written as

B
(W + Bjlay) )Z/l (cid)at =0.  (45)

Using the boundary condition 4,(c;,¢;) =0, a set of
differential equations can be obtained for 4, whose sol-
utions lead to the following relation for the couplings:

1
a.=aq—(dy - Cz)agz - E(ds - 03)02

1 3
+ —6(d§—63)+§(d2—c2)2
c 1 5
g(d3—c3)—§(d4—c4) ag+--- (46)

Substituting this equation into Eq. (35) and using the ’t
Hooft scheme in which d; = 0(i > 2), the expansion for
R(;) reads

Ry = ay+ cra, + (1/2)cza,’
+ 71 (Cld + C2“d3 + (1/2)c3ad4)2. (47)

Evaluating c¢; from Eq. (34) in terms of the z;’s, substituting
them into the above equation, and properly rearranging the
desired series expansion, we obtain [10]

R(l) =ap) + Tla(2)2 + 72a<2)3 + T3a(2)4 —+ -, (48)

which is corresponding exactly to the series expansion for
R(5) in Eq. (36). We recall that the coupling a, in Eq. (47) is
evaluated for scheme parameters d; = 0(i > 2). Therefore,
ay) is given in terms of the Lambert W function, and this
gives us full agreement between Eqgs. (35) and (36).

III. CONSIDERING OBSERVABLES IN THE
MCKEON Et Al. AND CORGI APPROACHES

After obtaining the required mathematical framework for
the McKeon et al. approach, we now examine it by
considering two QCD observables. We calculate them
numerically and compare them with the results obtained
from the CORGI approach. We first employ the McKeon
et al. approach to obtain the ratio of cross sections for
electron-positron annihilation into hadrons at a center-of-
mass energy /s = 31.6 GeV.

A. Electron-positron annihilation
in the McKeon et al. approach

The expansion up to fourth order of the ratio for electron-

positron annihilation R,+,- into hadrons with Ny =5 can
be written as [21,22]

11
Ry~ () = 3 1+ a, + 1.40902a2 — 12.8043

—80.434a% + - - 1]. (49)

According to the notation of the McKeon et al. approach,
one can write

To=1, T;=1409, T,=-12.80, T5;=-80.434.

(50)

Using Egs. (28), (29), and (31), the numerical values for the
required RS invariants are given by

T = Tl == 1409, Ty = T2 + Cyr = —113252,

1

T3:T3 +§C3+20271 = —71.3600. (51)
We take the number of active quark flavors N, =35 at a
colliding energy /s = 31.6 GeV and consider the QCD
cutoff value in the MS scheme as A5 = 419+12§§ MeV,
which is determined from the empmcal Value for R,+.- [2].
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The final numerical result for the ratio of the cross section
in the McKeon et al. approach up to fourth order is

3
ﬁRe+e— =1+4+a+r14ad*+1ad +nad = 1.05561’8'882,

(52)

which is in good agreement with its available experimental
value R+~ = 1.052770005 [23]. We recall that the cou-
pling constant a in Eq. (52) is given in terms of the Lambert
W function [see Eq. (42)].

There is a possibility to obtain a more precise numerical
value for R,+ .- if we first do the calculations in Euclidean
space, and then take the contour-improved result back to
Minkowski space. This is because the perturbative coef-
ficients for the concerned observable are computed more
precisely in Euclidean space. In this regard, we need a
relation between the ratio for eTe™ annihilation and the
Adler D function in Euclidean space, which can be found in

Re*e (5)

Ref. [24],
pe =0 |

The Adler D function has the following expansion:

D(0?) —a( +) d, a) (54)

n>0

de. (53)

where the coefficients d; can be found in Refs. [21,22].
Nevertheless, if one is interesting, can do some computa-
tions which finally yields the d; coefficients in terms of the
r; coefficients. Similar computations for the Higgs decay
width to a gluon pair are shown in Sec. IV B. Doing the
same calculations but for R,+,- leads to

1
dl:r], d2:r2+§ﬁ%ﬂ'2

5
dy = ry +m°r i} + gﬁoﬂzﬁp (55)

From Egs. (28), (29), and (31) one can obtain z; as follows,
where in these equations the 7'; are replaced by d;:

1
’l'l:dl, T2:d2+C2, 73 :d3+503 +202d1. (56)
We take the result back to Minkowski space via analytic

continuation, and then the observable R can be written
as [25]

1

R(S) g

W(a) (s¢)d. (57)

Here W(0) is the weight function, which is taken to be 1
for R,+,-. The contour-improved numerical result, taking

Ags = 419+]262§ MeV at the center-of-mass energy /s =
31.6 GeV,is 2 R, = 1.05472500° which is, as expected,
in better agreement with the available experimental data
ZROP (s =31.6 GeV) = 1.052710 63 [23].

If we take A,;5 = 2101]{ MeV, which corresponds to
the world average value a, (M) = 0.1181 [26], then we get
F R = 10471700008, The related conventional value
for this observable is & R+~ = 1.046175005 [5].

Since there are experimental data for R,+,- up to a
center-of-mass energy of 208 GeV [27] or even more, we
also do the required calculations in the McKeon et al
approach, taking Agx = 210:12 MeV at the energy scales
42.5 and 56.5 GeV. The values we obtain for %Rﬁ[ at
these energy scales are 1.0463 and 1.0441, respectively,
which are comparable with their experimental values, i.e.,
1.0554 [28] and 1.0745 [29]. A summery of the numerical
results is given in Table I. It seems that as the energy scale
increases the experimental data gradually diverges from the
theoretical prediction, which was also seen in Ref. [30] (see
their Fig. 8.4). But we should note that this conclusion is in
fact based on only photon exchange. If a full theory is taken
into account, including the electroweak contribution from
ete™ annihilation into Z boson, then it is expected to
achieve good agrement with available experimental data.

B. Electron-positron annihilation
in the CORGI approach

Here we do the same calculation for electron-positron
annihilation into hadrons, but using the CORGI approach.
The required information for this approach can be found in
Refs. [8,9,15]. We recall that in this approach, using the
self-consistency principle and taking the scheme parameters
and renormalization scale into account, it is possible to obtain
an expression for the perturbative coefficients of QCD
observables at high order in terms of coefficients at lower
orders. Then, by doing the resummation over the perturbative
expansion but at a specified order, the resummed result at
next-to-leading order (NLO), next-to-NLO (NNLO), etc., is
RS invariant, and the renormalization scale is removed.
Hence, there is a possibility to reconstruct the perturbative
series in terms of RS invariants, and this new constructed
series also does not depend on the renormalization scale as an
unphysical parameter. Thus, we are now able to calculate the
numerical result for the ratio R,-,+ using the CORGI
approach.

The full theoretical expression for the electron-positron
annihilation into hadrons can be written as [31]

on (o) - (S ) 5
(58)

where R is the perturbative corrections to the parton model
result and has the following expansion:
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TABLE 1. Numerical results for R,+,- at /s = 31.6, 42.5, and 56.5 GeV, using the two different approaches.

McKeon et al. approach CORGI approach Conventional pQCD  Experimental value Agis
Ry (/s = 31.6 GeV) 104711506005 10461550 00005 1.04617 50 00008 1052759005 210+ 14 MeV
R, (y/s =425 GeV) 1.046320 0004 1.043610000% 1.04377 00004 10554 £0.2 210+ 14 MeV
R+ (/s = 52.5 GeV) 10441550007 1.04257 500045 1.042470.0004 1.0745£0.11 210+ 14 MeV

R(s)=a <1 + Zra) (59)

In Eq. (58) R refers to the “light-by-light” contribution and,
because the factor ) ;. Q % is zero for light-quark flavors, it
would is eliminated from the calculations.

In Minkowski space, using the CORGI approach the
perturbative part of observable can be written as [9]

R(S) :ao+X26l(3)+X3ag+"' (60)

X, and X5 are scheme-invariant quantities and, according to
the notation of the McKeon et al. approach, can be written
in terms of the coefficients T; [see Eq. (12)]. The explicit
expressions for these quantities were given in Ref. [32] [see
their Eq. (26)]. Then, we obtain our numerical results:
X, = —15.0870, X; = —16.6423. (61)
By substituting the above numerical values into Eq. (60)
(where ay is the coupling constant at the two-loop level
written in terms of Lambert W function) and then inserting
Eq. (60) into Eq. (58), we determine that the value of
R,-,+ in Minkowski space is R,+,-(1/s =31.6 GeV) =
1.05440 +0.006. As before, we have set Agyg=
419f1262§ MeV and the energy scale /s = 31.6 GeV.

If one decides to do first the calculations in Euclidean
space, the connection between the Adler D function in this
space and the observable R(s) in Minkowski space [which
is like Eq. (53)] is again needed. The perturbative expan-
sion of the Adler D function in Eq. (54) has the following
form in the CORGI approach:

D(s) = ap + Xaa3 + Xzag + -+ + X,agtt. (62)

Here, the X;’s are RS invariants and can be written in term
of d; [9]. The numerical values X, and X3 for the Adler D
function are

X, = -7.2775, X3 =39.9935. (63)
Using the analytic continuation given by Eq. (57) and
substituting Eq. (62) into it, the numerical value for the full

expression R(s) in Minkowski space can be obtained. The
numerical result for the observable at NNLO using the

CORGI approach is R,+,-(y/s =31.6 GeV) = 1.0523+
0.005, where again Agz = 419772 MeV. This result is in
better agreement with the reported experimental data
(1.0527 £ 0.005 [23]) than the result obtained from direct
calculations in Minkowski space.

As in the previous approach, we calculate 13—1 R, .- in the
CORGI approach at the energy scales 42.5 and 56.5 GeV,
taking Ag;s =210 £ 14. We obtain 1.0436 and 1.0425,
respectively, while their experimental values are 1.0554
[28] and 1.0745 [29]. Similar calculations in the CORGI
approach at /s =31.6 GeV but with Ayx =210+ 14
have also been done. The related numerical values are listed
in Table I.

IV. HIGGS DECAY GLOUN PAIR
IN THE MCKEON Et Al. APPROACH

As a second observable in the McKeon et al. approach
we take into account the Higgs decay width to a gluon pair
(H — gg). This observable is of fundamental phenomeno-
logical importance and its dominant contribution is given
by [33]

4GpM3,

9\/271'

where Gy is the Fermi constant and My is the Higgs boson
mass. The numerical and perturbative series expansion of
R(Mp) is given later on in Secs. IV B and V, respectively.

As before, we first review how the scale renormalization
is removed when we do a resummation over all perturbative
terms of this observable. The RG summation procedure for
H — gg is very similar to that for R,+,-. Nonetheless, it is
worth doing it again for this observable. According to the
notation of the McKeon et al. approach, the expansion
series of R(My) has the following representation:

I(H — gg) = R(Mp). (64)

RMp) =23 S Tl (65)

n=1 m=0

where Ty =1 and L = In MLH Equation (65) depends on
the renormalization scale y as an unphysical quantity and,
similarly to the perturbative expansion in Eq. (10),
it is possible to show that all of the dependence on g in
['(H - gg) can be removed by summing over all
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logarithmic terms. We should note that the series expansion
in Eq. (65) has an extra factor a2 with respect to Eq. (10). In
this regard, a different grouping is introduced:

a2 (n =0,1,2,...). (66)

Z Tn+

Now Eq. (64) can be represented by

I'(H - gg) = 4GFM”§°°:A (a)L". (67)

The RG equation implies that

(ua% e %)rm g =0, (68)

which like before leads to

By introducing the 7 scale, it follows that [11]

a(m) dx
= — a; = const. 70
=" (70)
Then,
d d
—=—. 1
Pla) - i (71)

By substituting Eq. (71) into Eq. (69), we obtain

1d
An(a) = _;d—i’] n

~1(a(n)), (72)

where A is defined by Eq. (18). Now one can show that
Ag, Ay, ..., A, can be represented in terms of A,. Therefore,
we can write

d
A =—1-7A
: dInk"”
-1 d -1 d (-1 d
A= GnEM T 2 Gz (TWA°>
A A A
1 &
:_—AO’
2din’ %
1 d 1d 1 &
A= — oAy =
7 3dmA™? T 3dlnA12dIn* AT
-1 &

= A
1.23dIn £

(_1)11 dn
= . 7
"I &k (73)
If one defines # = In, then
1 d\"
aa(@) = (=) Aala), (74)
and finally
ROMy) = 3~ (LT pofa(n)
= n! dn"
d
= exp( L5 ) Aolaln). (75)

The series expansion of the exponential term in Eq. (75)
makes the right-hand side of this equation similar to the
Taylor expansion of Ay(a(Ink — L)). For this purpose, as
before one can write

wle(ri=t)) = (e (0)) - efe()
o) o
Consequently, the sum in Eq. (75) gives
R(My) = Ag(aln—L)) = A, (a (m% - 1nMLH))
()

As shown by Eq. (77), the renormalization scale u for the
Higgs decay width to a gluon pair has been removed by
summing over all of its perturbative series terms.
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Finally, using Eq. (66) with m = 0, Eq. (77) becomes

(%) ()

(78)

AGpM3,

92z

I'(H - gg) =

A. Renormalization scheme dependence for H — gg

Here we specifically investigate how the series expan-
sion for the Higgs decay width to a gluon pair can become
RS invariant.

As before, the RS dependence of the expansion coef-
ficients 7, in Eq. (78) can be found by using the RG
equation

(a% +pi(a) %)F(H —99) =0. (79)

where f3;(a) is given by Eq. (25). Considering the pertur-
bative part of Higgs decay in Eq. (78) as

R(My) = a* + Z T,a"2, (80)
n=1

and employing Eq. (79), we arrive at

2ap;(a) + Zanﬂ +(n+2)a""'T, =0. (81)

i

This equation leads to a sequence of equations for 7', order
by order in terms of a, whose solutions are

oT,
=0=>T, =4,
e, 1 1
oT
Z242=0=>T,=—2c,+ Ay, (82)
86‘2

where 4; and A, are constants of integration and RS
invariants. For the coefficient 75, one can write

8T3
3T, =0,

862 + =
0T,
—+1=0, 83
9e, + (83)

which leads to
T3 = —3/116'2 —C3 + 13. (84)

To obtain the 7, coefficient, we need to derive the
following differential equations

8T4 2C2
292 ar, =0,
82+ 3 T2
8T4 C 3
S S T
8C3 3+2 !
oT, 2
=0, 85
] (85)

which leads to the final result

C%—4/12C2 +£C3 —§1163 —%C4+/14. (86)
3 2 3

This process can be followed to obtain the other expres-

sions for higher-order coefficients T';.

As for T and T, 13 and 4,4 in the coefficients of 75 and
T, are constants of integration and RS invariant, and they
can be determined once 7; and c¢; have been evaluated in
some mass-independent RS.

Since the summation of the concerned perturbative series
is scheme invariant, again two particular RSs are of special
interest. In the first scheme one can set ¢; = 0(i > 2), and
consequently 7, = 4,. In this case, Eq. (80) becomes

R( )(MH —a

o Z/l ap (87)

In the second scheme, by setting 7; = 0(i > 2), Eq. (80)
involves just two terms,

R(l)(MH> :Cl2+/11613. (88)

We recall that the coupling a in Eq. (88) depends on the
scheme parameters c;, while the coupling Eq. (87) only
depends on the two universal scheme parameters b and c,
which can be expressed in terms of the Lambert function
W(x), i.e., x = W(x)e"W).

Again, considering the relation between the couplings in
two different schemes, one can show that Eqs. (88) and (87)
are equivalent, such that

R (My) = Ry (Mp). (89)

B. Numerical value for the Higgs decay
width to a gluon pair

In this section we perform a numerical investigation of the
Higgs decay width to a gluon pair in the McKeon et al.
approach. The Higgs boson decay to a gluon pair is given by
Eq. (64), where R(My) in this equation has a numerical
expansion in conventional perturbative QCD as follows [33]:

R(Mpy) = a*(1 + 17.9167a + 153.15787a>
+393.822a% + -+ ). (90)
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TABLE II. Numerical results for Higgs decay to a gluon pair in the two different approaches.

McKeon et al. CORGI Conventional Experimental

approach approach pQCD value A3rs

H — gg(Mp =126 + 4) 0.37023 5! 0.37910%2 03491037 210 + 14 MeV
H — gg(My = 125.18 £0.16) 0.3697 00050 0.3781 50015 0.3491 5007 210 & 14 MeV
According to the notation of the McKeon et al. approach, d =T, dy =T, + Bin°,
from Eq. (90) one can obtain the following numerical values 7
for the coefficients T;: dy =Ty +22°T\ 5 + 3 o’ B (95)

T,=179167, T,=153.1578788, T;=2393.822046.

(O1)

From Egs. (82) and (84) we obtain the following numerical
values for the 4; as RS invariants:

ﬂ.] = T] - 179167,
Ay = T, + 2¢, = 156.1074561,
Ay = T3+ c3 + 3c4; = 482.927999. (92)

Now, using the 't Hooft scheme, Eq. (87) becomes
R(MH) = a(2)2 + /lla(2)3 + /1261(2)4 + /1361(2)5 + - (93)

In this equation, as illustrated before, the coupling constant
ay) can be written in terms of the Lambert W function, which
depends on the physical energy scale Q and the A; coef-
ficients are scheme invariants. To numerically calculate the
decay width H — gg in the McKeon et al. approach we
consider again G = 1.16638 x 107> GeV~2 and the Higgs
mass My = 126 =4 GeV, while we take the number of
active quark flavors Ny =5 and the QCD cutoff Ag5 =
210 £ 14 MeV. The value we obtain for the decay width is
I'(H — gg) = 0.383 + 0.01 MeV, which can be compared
to the conventional value 0.349 + 0.05 MeV [34,35].

As for R,+ .-, it is possible to perform the numerical
calculation in Euclidian space, and then take the contour-
improved result back to Minkowski space to get a more
precise result.

The Adler D function related to Eq. (93) has the
following expansion:

D(My) = a* <1 + Zdna")
n=1
= a2+d1a3 +d2(14+d3615 + - (94)

We have the following relations between the coefficients
d; and T; in Eq. (80), which we address in the next section:

Now, using Eqgs. (82) and (84) we obtain the invariants 4;:

j’l :Tl’ 12:d2+2C2, ),3 :d3+C3+3C211.
(96)

Finally, the perturbative part in Minkowski space

converts to

D(MH) = 0(2)2 +/110(2)3 +/1261<2)4 +/13a(2)5 +---, (97)

where in addition to the RS invariants 4;, the coupling a,
(written in terms of the Lambert W function) is independent
of the renormalization scheme and depends only on the
physical energy scale Q = My. Now the results for the
Higgs decay width to a gluon pair in the McKeon et al.
approach and in Euclidian space are accessible. We can get
the decay width in Minkowski space by using the contour-
improved integral:

R(My) = — /_ " D(Myei?)do. (98)

T

Finally, by taking M(H) =126+4 GeV and Agep =

210 £ 14 MeV, the result is T'(H — gg) = 0.370 +
0.01 MeV, which is compatible with the conventional
value 0.349 +0.05 MeV. At the moment there is no
experimental data for the Higgs decay width to a gluon
pair, but we expect that the result determined from the
contour-improved integral will be closer to the experimen-
tal value. Similar calculations with updated value for the
Higgs mass, My = 125.18 £0.16 GeV [26] have also
been done. The relevant numerical results are displayed
in Table II.

V. HIGGS DECAY TO A GLUON PAIR
IN THE CORGI APPROACH

Here we review how to obtain the result for Higgs decay
to a gluon pair in the CORGI approach. More details can be
found in Ref. [9]. Nevertheless, for the sake of clarity, some
main steps to arrive at the CORGI approach for I'(H — gg)
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are given here. We recall that in conventional perturbative
series the Higgs decay width to a gluon pair is given by
_AGp M3,
92r
+rds +rsal + 0(af)).  (99)

I'(H - gg) la? + ria3,

where a = % is a coupling constant and the coefficients r;
can be found in Ref. [33]. As it is obvious that the
perturbative part of Eq. (99) is given by

R=a>+ra’+ra*+ra+--- (100)

The self-consistency principle for this observable up to nth
order gives [17]
OR™
d(RS)

= O(a!), (101)
where n = 1,2, ..., n and RS stands for the scale parameter
7=>blInk as well as the scheme parameters, such as
€3, C3,C4, .. [9,15]. Considering the first two terms in
Eq. (100), that is,

R=ad>+ra, (102)
and using the self-consistency principe with respect to the
variable 7, we obtain

0
j:2=>r1—2‘r:p1.

= (103)

Here p, is RS invariant and independent of the unphysical
scale parameter 7. Adding the third term to Eq. (102)m
which contains the coefficient r,, we obtain

R =d>+ra® + ra. (104)

Then, by taking derivatives of R with respect to the related
RS parameters, one arrives at

o _

8C2

8}’2

e S 105
61’1 c+2r1’ ( )

where in deriving the first differential equation in above
Eq. (26) has been used. The simultaneous solution of the
differential equations (105) leads to

3
ry=cry+=r} =2c; + X,.

0 (106)

Here X, is a constant of integration and is RS invariant. If
the forth term of the series expansion in Eq. (100) is
considered, such that,

R(Q) = a* + ra® + ra* + r;a, (107)
then the self-consistency principle implies that
8’"3
=3 = _3r,,
aCZ "
81"3 — 1
8C3 - ’
or; 3
a—rfzicrl—V—Zrz—l—cz. (108)

Considering the above differential equations, the result for
r3(ry, ca.c3) is

3

ri 7
r3(ry, ¢, c3) ZEUFZ”% —3cary +2X5r — 3 + X,

(109)

where X5 is a constant of integration and is RS invariant.
Substituting Eqgs. (106) and (109) into Eq. (100), we get

3
R(Q)=a’>+ra®+ (crl —|—er —2c, —|—X2> a*

37
+ (%+ZCV%—3C27'1+2X2r1—C3+X3)a5+"'

(110)

Resuming the individual NLO, NNLO, etc., contributions
in the above equation and employing the 't Hooft scheme at
any specified order such that ¢, = ¢c3 =... = ¢, =0 (for
convenience we set r; = 0), we arrive at the following
result [9]:
R(Q) = a3 + Xaa$ + Xza3 + -+ (111)
In this equation a, and X; are scale and scheme invariant
and a, can be expressed in terms of the Lambert W
function. Now we can determine the numerical result for
the Higgs decay width to a gluon pair directly in
Minkowski space. To do this, we first need to calculate
the numerical values for X, and X5 in Eq. (111), which can
be done using Eqs. (106) and (109) where the coefficients
r; were calculated in Ref. [25]. The numerical results for
these RS-invariant quantities are
X, =—-107.2392,

X; =3269.9755. (112)

By substituting the above results into Eq. (111) and
taking M(H)=126+4GeV and Ang:DS =210+ 10 MeV,

the numerical result for the Higgs decay width is
I'(H - gg) = 0.393 + 0.025 MeV.

Since the calculation can be done in Euclidean space
similarly as for R,+,-, we have to convert the calculations
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from Minkowski to Euclidean space. To do this, we need a
relation between the coupling constants at different scales:

a(Q) = a(u)(1 + hya(u) + hya(u)®

+ hza(p)® + haa(u)* +---). (113)
The following relations exist for the coefficients h; [36]:
hy = =poL.

5
hy = —p3L> + §ﬂ0ﬁ1L2 - AL,

hy = 5L = L,

13 1
hy = pjL* — ?ﬂ%ﬁﬁﬁ +3 (iﬂ% + ﬂoﬁz) L?> - psL.
(114)

Here L = ln(l;—yz), where s is a new scale and the j;’s are the

coefficients of the QCD f function. Substituting Eq. (113)
into Eq. (100) will yield the observable R in terms of the
variable s. Using the dispersion relation (53) but for the
Higgs decay width to a gluon pair will yield this observable
in Euclidian space. To move the result from the y scale to
the Q scale, we again use the displacement relation (113) in
a proper state. Finally, we arrive at

D(Q) = a(Q)* + ria(Q)* + (ry + pia*)a(Q)*
+ (gﬂoﬁlﬂz +r3+ 2ﬂ%ﬂ2r1>a(Q)5 + 0(aQ)°.
(115)

By comparing Egs. (100) and (115), we obtain the
following relations between the coefficients d; and r;:
dlzrl, d2:r2+ﬂ(2)ﬂ2,

7
d3 = r3+2ﬂ'2r1/j3+§ﬂ0ﬂ'2ﬁ1. (116)

We can get the decay width in Minkowski space by using
the contour-improved integral:

4GFM§, 1 /z,;
I'H - = — A+ X,at+Xa2 +---]do,
( 99) 9\/5”2770[0 24y 34y ]
(117)
where
X, =472.8741, X3 =10096.8174.  (118)

To compute the above numerical results, we again need
Egs. (106) and (109) while the coefficients r; are replaced
by d;, given by Eq. (116). As before, ay(s¢e’) is the
coupling constant in the CORGI approach. To numerically
calculate the decay width H — gg in the CORGI approach,

we take as before Gr = 1.16638 x 10~ GeV~2 and the
Higgs mass My = 126 +4 GeV, while we take N, =5
and Ayj¢ =210+ 14 MeV. The value we obtain is
I'(H - gg) = 0.379 & 0.03 MeV, which can be compared
with the conventional result 0.349 4 0.05 MeV [34,35].
The numerical results, considering the updated value for the
Higgs mass My = 125.18 £ 0.16 GeV [26], are shown in
Table II.

VI. CONCLUSION

In this article, we first reviewed the principles of the
McKeon et al. approach [10-14]. This approach involves
two essential steps. By defining a new summed group
denoted by A(n), we attempted to find a pattern that gives a
recurrence relation between the nth and (n — 1)th order of
A(n) by taking the RGE into account. Finally, the con-
cerned quantity at nth order can be written in terms of its
expression at first order. In deriving this pattern the QCD S
function plays an essential role. Then, by constructing the
primary series of the QCD observable in terms of A(n) and
resuming over all perturbative terms, the renormalization
scale as an unphysical quantity disappears and the final
result for the QCD observable depends only on the physical
energy scale Q [see Eq. (23)].

In the second step of this approach, the RS dependence
of perturbative series coefficients were investigated.
Considering the differential equation for the coupling con-
stant with respect to the scheme parameters c;, (i > 2),
based on Eq. (25) one can rewrite the perturbative series of
the QCD observable in terms of scheme-invariant quan-
tities, while the coupling constant depends only on the
physical energy scale, written in terms of the Lambert W
function [see Eq. (36)]. We recall that in this approach there
is a possibility to render the series expansion RS invariant
and scale independent, such that the series contains just two
terms. However, in this case the related coupling constant is
scale independent, but it depends on the scheme parameters
¢y, C3, etc., but overall the series is independent of the
renormalization scale and scheme [see Eq. (35)]. At the end
of Sec. II B it was shown that these two series expansions
are equivalent.

In the second approach, called the CORGI approach,
using the self-consistency principle there is a possibility to
express the coefficient r; at the nth order in terms of the
coefficients at lower orders, which finally includes just the
coefficient at first order, i.e., r;. When using this principle,
we require the derivative of the observable with respect to
the scheme parameters c;(i > 2) as well as the derivative

g(RT%)) derivative the RSs

can be labeled by the parameters (7, ¢,, ¢3, ...) [17]. Later
on, the parameter r| can be cast in terms of 7 =In% as a
scale parameter [9]. Using the self-consistency principle,
the simultaneous solution of the differential equations
obtained for r; can be represented as a function of the

with respect to r;, such that in the
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parameters (71, s, c3, ...). Rewriting the initial perturba-
tive series of the QCD observable (2) in terms of the
relations between the coefficients r;, it is possible to resum
the perturbative series NLO, and then at NNLO, and so on.
Then, the desired perturbative series can be rewritten in
terms of scheme invariants and coupling constants which
only depend on the physical energy scale.

From this point of views, the CORGI and McKeon et al.
approaches have achieved the same goal. Both of them
were able to reconstruct the conventional perturbative
series in terms of the scheme invariants and coupling
constant, which does not depend on renormalization
scheme. But, which one is more useful? At first, one
may assign the priority to the McKeon et al. approach. In
this approach the renormalization scale parameter and
scheme parameters are investigated separately (as we
explained in the Introduction), while in the CORGI
approach this separation, utilizing the self-consistency
principle, does not occur.

We reexamined these two approaches and used them to
numerically compute the ratio R,+,- and the Higgs decay
width to a gluon pair. The numerical results, based on
contour-improved integrations, are listed in Tables I and II.
Inspecting Table I indicates that the results of the McKeon
et al. approach are in better agreement with the avail-
able data.

In addition to these two approaches, there is another
approach called the principle of maximum conformality
(PMC). We talked about this approach in the Introduction.
Based on this approach there is a possibility to absorb the
nonconformal parts of the perturbative series coefficients
into the renormalized coupling constant, and finally to
attain a perturbation series in terms of only the conformal
parts, while the renormalization scales can be fixed at any
specified order. It is possible to convert the McKeon et al.
approach to the PMC, which was done in Ref. [13]. Some
other studies related to the PMC approach can be found in
Refs. [6,7].

Converting the CORGI approach to the PMC approach is
a difficult task, and we hope to report on it in the future. The
McKeon et al. approach can be considered at an infrared
fixed point where the QCD /3 function is taken to be zero
[37-39]. This subject is also interesting from other points of
view, such as the infrared safe mode of QCD [40] or the
AdS/CFT correspondence [41], and we hope to address
these subjects in future research.
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