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Renormalization group procedure for effective particles (RGPEP) is applied in terms of a second-order
perturbative computation to an Abelian gauge theory, as an example of application worth studying on the
way toward derivation of a dynamical connection between the spectroscopy of bound states and their
parton-model picture in the front form of Hamiltonian dynamics. In addition to the ultraviolet transverse
divergences that are handled using the RGPEP in previously known ways, the small-x divergences are
handled by introducing a mass parameter and a third polarization state for gauge bosons using a mechanism
analogous to spontaneous breaking of global gauge symmetry, in a special limit that simplifies the theory to
Soper’s front form of massive QED. The resulting orders of magnitude of scales involved in the dynamics
of effective constituents or partons in the simplified theory are identified for the fermion and boson mass
counterterms, effective masses, and self-interactions, as well as for the Coulomb-like effective interactions
in bound states of fermions. Computations in orders higher than second are mentioned but not described in
this article.
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I. INTRODUCTION

Particle theory singularities that are associated with wee
partons of the parton model of hadrons [1] or with field
quanta that carry small kinematic momenta in the front
form (FF) of Hamiltonian dynamics [2], require a renorm-
alization group procedure that is capable of simultaneous
handling of the ultraviolet and infrared divergences in
combination with the bound-state problem, which is a
complex issue [3]. One way of approaching the issue has
been proposed recently [4] in the context of Abelian gauge
theory. The idea is to use a mechanism analogous to
spontaneous breaking of global gauge symmetry [5,6]
for introducing a mass for gauge bosons and to thus
regulate the theory in the region in question. This article
pursues that idea in terms of a study of the kind and
magnitude of Hamiltonian interaction terms it leads to in
the effective theories. Our work is carried out in a special
limit that simplifies the Abelian theory to Soper’s FF
version of massive QED [7]. The theory does not include
confinement but it does provide examples of effective
interactions that bind fermions.

It should be noted that gauge theories with Lagrangian
densities similar to Soper’s were introduced for analysis in
the instant form (IF)[2] of dynamics a long time ago [8–12].
In the FF of dynamics, Soper’s work was followed by Yan’s
[13,14]. For a review of more recent works that use massive
vector bosons as ultraviolet or infrared regulators in FF
approaches, see [15] and references therein. Soper found
that the replacement of photons in FF of QED by massive
vector bosons is quite simple if one considers in addition to
the vector field Aμ in gauge Aþ ¼ 0 a scalar field B in the
manner of Stueckelberg [8]. The Stueckelberg formalism
was also used in FF calculations of transition matrix
elements in the Feynman gauge [16]. Perhaps similar
attempts could be undertaken also in the non-Abelian
theories [17]. In view of that extensive record, it should
be stated up front in what way the present study differs
from the previous ones.
We start from a different Lagrangian than massive QED

and in the manner analogous to spontaneous breaking of
global gauge invariance arrive at Soper’s theory as a helpful
simplification in a special limit. Subsequently, instead of
aiming at reproducing or predicting observables directly
in terms of the degrees of freedom (d.o.f.) that appear in
canonical FF Hamiltonian in a diverging way, our goal is to
compute the equivalent effective FF Hamiltonian operators
that are written in terms of apparently more adequate d.o.f
[18,19]. Computation of such Hamiltonians is hoped to
eventually lead to a sequence of successive approximations
for relativistic description of strongly bound states because
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they do not diverge as the canonical FF Hamiltonians do,
see Sec. IV for details. Soper’s theory serves as a
preliminary illustration of the magnitude of terms one
has to deal with. Little is known at this point regarding
extension of our approach to non-Abelian theories.
However, since the mechanism of spontaneous breaking
of global gauge symmetry serves the purpose of regu-
larization and when one lifts the regularization the
symmetry may be restored, the author hopes that the
current exercise with Soper’s theory will turn out helpful
also in studying non-Abelian theories.
To compute effective FF Hamiltonians for the massive

Abelian gauge theory, we use the renormalization group
procedure for effective particles (RGPEP), here only
applied up to the second order in a series expansion in
powers of the coupling constant [20]. The RGPEP stems
from the similarity renormalization group (SRG) procedure
[21] and draws on the double-commutator differential
flow equation for Hamiltonian matrices [22]. The method
preserves boost-invariance of the FF of Hamiltonian
dynamics and its computations are carried out in terms
of the quantum fields on one light-front hyperplane in
space-time. We calculate the mass counterterms, effective
fermion and boson mass corrections, relativistic fermion-
antifermion interaction terms that correspond to the well-
known Yukawa or Coulomb potentials and additional terms
that do not have classical counterparts.
Section II introduces the classical gauge theory we

consider. The canonical FF version of the theory and its
quantization are described in Sec. III. The RGPEP is
applied in Sec. IV, where we compute the effective fermion
and boson self-interactions and relativistic potentials in
fermion-antifermion systems. Section V discusses the
connection between spectroscopy and the parton-model
picture of bound states in the context of the RGPEP.
Detailed plots of mass corrections and relativistic potentials
are given in Sec. VI. The paper is concluded by Sec. VII.
Appendixes provide details of our notation and the canoni-
cal Hamiltonian of Soper’s theory.

II. CLASSICAL THEORY

The FF Hamiltonian for the theory we consider was
recently derived [4] from the familiar local Lagrangian
density [5,6,23]

L ¼ Lψ þ LA þ LAϕ − Vϕ; ð1Þ

where

Lψ ¼ ψ̄ ½ði∂μ − gAμÞγμ −m�ψ ; ð2Þ

LA ¼ −
1

4
FμνFμν; ð3Þ

LAϕ ¼ ½ði∂μ − g0AμÞϕ�†ði∂μ − g0AμÞϕ; ð4Þ

Vϕ ¼ −μ2ϕ†ϕþ λ2

2
ðϕ†ϕÞ2: ð5Þ

Quanta of field ψ will correspond to fermions and quanta of
field A to transversely polarized gauge bosons. Quanta of
the phase of scalar field ϕ will supply effects associated
with the longitudinal polarization of massive gauge bosons.
This section briefly recapitulates derivation of the corre-
sponding FF Hamiltonian and presents it in a special limit
in which it matches the Hamiltonian designed by Soper
for the FF of massive QED, a long time ago [7]. Further
literature on the use of FF quantum dynamics can be traced
through reviews [15,24–29].

A. Gauge symmetry

Field ϕ in the Lagrangian density of Eq. (4) can be
written using its modulus jϕj ¼ φ=

ffiffiffi
2

p
and phase g0θ [23],

ϕ ¼ φeig
0θ=

ffiffiffi
2

p
: ð6Þ

The density LAϕ is a function of φ, ∂μφ and ∂μθ

LAϕ ¼ 1

2
ð∂μφÞ2 þ 1

2
g02ðAμ þ ∂μθÞ2φ2: ð7Þ

The modulus field can be written as φ ¼ vþ h, where v
will be treated as a parameter of the FF theory and the field
h may vary in space-time. When one sets h ¼ 0, the
potential Vϕ in Eq. (5) has its minimal value −μ4=ð2λ2Þ
for v ¼ ffiffiffi

2
p

μ=λ. Using this special value of v, one has

VðϕÞ ¼ −
μ4

2λ2
þ 1

2
ð

ffiffiffi
2

p
μÞ2h2 þ λffiffiffi

2
p μh3 þ λ2

8
h4: ð8Þ

The Lagrangian density of Eq. (1) is invariant under
substitutions

ψ ¼ e−igfψ̃ ; ð9Þ

Aμ ¼ Ãμ þ ∂μf; ð10Þ

φ ¼ φ̃; ð11Þ

θ ¼ θ̃ − f: ð12Þ

The meaning of this invariance is that the Lagrangian
density is the same function of fields with and without the
tilde. The corresponding minimal coupling that appears in
a quantum theory obtained using the RGPEP will be
discussed in Sec. IV B, see Eqs. (60) and (61).

B. Massive limit

Consider the limit of g0 → 0, v → ∞ and g0v ¼ κ kept
constant, which will be called the massive limit. In this limit,
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LAϕ ¼ 1

2
ð∂μhÞ2 þ 1

2
κ2ðAμ þ ∂μθÞ2; ð13Þ

Vϕ ¼ −
μ4

2λ2
þ 1

2
ð

ffiffiffi
2

p
μÞ2h2: ð14Þ

The field h decouples and retains an arbitrary mass
ffiffiffi
2

p
μ.

C. Gauge choice f = − θ
Using f ¼ −θ one obtains

Lψ ¼ ¯̃ψ ½ði∂μ − gÃμÞγμ −m�ψ̃ ; ð15Þ

LA ¼ −
1

4
F̃μνF̃μν; ð16Þ

LAϕ ¼ 1

2
ð∂μφ̃Þ2 þ 1

2
g02Ãμ2φ̃2; ð17Þ

Vϕ ¼ Vðφ̃=
ffiffiffi
2

p
Þ: ð18Þ

In the massive limit, LAϕ is

LAϕ ¼ 1

2
ð∂μh̃Þ2 þ 1

2
κ2Ã2; ð19Þ

the potential Vϕ reduces to μ2h̃2 plus a constant μ2=ð2λ2Þ
that can be ignored, while the densities Lψ and LA remain
unchanged. The resulting action corresponds to a free
scalar field h̃ of mass

ffiffiffi
2

p
μ and a vector field Ã of mass

κ minimally coupled to the fermion field ψ̃ . The massive-
limit theory with field h̃ removed turns out to be the same as
Soper’s [7] when one identifies his field Bwith our −κθ and
his mass parameter κ with our κ ¼ g0v.
If the gauge symmetry under consideration were realized

in nature and photons indeed had a very small mass κ,
which is theoretically possible [30], there would also exist a
decoupled scalar field h of unknown mass, as the FF of
the theory in the massive limit indicates, too. According
to [31], the photon mass is smaller than 10−18 eV=c2.
Searches for new forms of matter are motivated by data
concerning the structure and evolution of the universe,
besides questions concerning the standard model.

III. CANONICAL FF HAMILTONIAN

In the FF of dynamics, the space-time coordinate xþ ¼
x0 þ x3 is used as the evolution parameter analogous to
time in the instant form (IF) [2]. The coordinates x− ¼
x0 − x3 and x⊥ ¼ ðx1; x2Þ parametrize points on the space-
time hyperplanes that are defined by fixed values of xþ.
These hyperplanes are called “light fronts” or just “fronts,”
such as the front defined by the condition xþ ¼ 0.
Evolution in xþ from the front at xþ ¼ 0 to other fronts
is generated by the Hamiltonian P−.

Field theory relates the Lagrangian density of Eq. (1) to
the corresponding Hamiltonian density through the energy-
momentum tensor density Tμν,

Tμν ¼
X
χ

∂L
∂∂μχ

∂νχ − gμνL; ð20Þ

where χ stands for a field in a theory. The FF Hamiltonian
density is H ¼ Tþ−=2 and the Hamiltonian P− is given
by [13,32]

P− ¼
Z

d2x⊥dx−H ð21Þ

where the integral extends over the front at xþ ¼ 0. The
Lagrangian density of Eq. (1) is linear in ∂−f and the
Hamiltonian density is H ¼ −Lð∂−f → 0Þ. For construct-
ing a quantum theory, one needs to evaluate H in terms of
the fields’ independent d.o.f.

A. Equations of motion and gauge Ã+ = 0

The principle of minimal action with the Lagrangian
density of Eq. (1) implies the Euler-Lagrange (EL) equa-
tions that, when written in terms of the fields ψ , A, φ and
B ¼ −κθ, read

½ði∂μ − gAμÞγμ −m�ψ ¼ 0; ð22Þ

□Aβ − ∂β∂αAα ¼ gψ̄γβψ − g02φ2ðAβ − κ−1∂βBÞ; ð23Þ

□φ ¼ g02φðAβ − κ−1∂βBÞ2 − ∂Vðφ= ffiffiffi
2

p Þ
∂φ ; ð24Þ

∂μg02φ2ðAμ − κ−1∂μBÞ ¼ 0: ð25Þ

The last equation is necessarily satisfied if the first two are.
The first equation can be written in terms of the fermion
field arranged according to the formula ψ ¼ ψþ þ ψ−,
where ψ� ¼ Λ�ψ and Λ� ¼ 1

2
γ0γ� ¼ 1

2
ð1� α3Þ are 4 × 4

projection matrices. In these terms, the fermion EL equa-
tion is equivalent to two coupled equations,

ði∂− − gA−Þψþ − ½ði∂⊥ − gA⊥Þα⊥ þmβ�ψ− ¼ 0; ð26Þ

ði∂þ − gAþÞψ− − ½ði∂⊥ − gA⊥Þα⊥ þmβ�ψþ ¼ 0: ð27Þ

Using gauge symmetry, one can transform the fields ψ , A, φ
and B to ψ̃ , Ã, φ̃ and B̃. The two coupled fermion equations
have the same form in terms of the fields with tilde and
without tilde. However, if the gauge transformation sets the
field Ãþ to zero, then

ψ̃− ¼ 1

i∂þ ½ði∂⊥ − gÃ⊥Þα⊥ þmβ�ψ̃þ: ð28Þ
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The field ψ̃− on a front is thus given in terms of the fields
ψ̃þ and Ã⊥ on the same front. Similarly, the EL Eq. (23) for
β ¼ þ in the gauge Ãþ ¼ 0 constrains the field Ã−,

Ã− ¼ 2

∂þ ∂⊥Ã⊥ −
2

∂þ2
ðg ¯̃ψγþψ̃ þ g02φ̃2κ−1∂þB̃Þ: ð29Þ

As a consequence of the constraints, the FF Hamiltonian
density is a function of fields ψ̃þ, Ã⊥, B̃ and φ̃.

B. Hamiltonian density H

We use the Lagrangian density L of Eq. (1) written in
terms of the independent field d.o.f. ψ̃þ, Ã⊥, B̃ and φ̃,

to evaluate the Hamiltonian density using Eq. (20) for
Tþ− ¼ 2H. From now on, we omit the tilde and employ
notation φ ¼ vþ h and κ ¼ g0v. We also introduce the
fields ψf and Af that are given by the constraint Eqs. (28)
and (29) in the absence of interaction [33],

A−
f ¼ 2

∂þ ∂⊥A⊥; Aþ
f ¼ 0; A⊥

f ¼ A⊥; ð30Þ

ψfþ ¼ ψþ; ψf− ¼ 1

i∂þ ½α⊥i∂⊥ þmβ�ψþ: ð31Þ

The Hamiltonian density reads

H ¼ 1

2

�
1

∂þ ½gψ̄γþψ − 2κBð1þ h=vÞ∂þh=v�
�

2

þ ð1þ h=vÞ2κB 1

∂þ ½gψ̄γþψ − 2κBð1þ h=vÞ∂þh=v�

þ ψ̄f
1

2
γþ

ði∂⊥Þ2 þm2

i∂þ ψf þ gψ̄f=Afψf þ
1

2
g2ψ̄f=Af

γþ

i∂þ =Afψf −
1

2
Aμ
f½ði∂⊥Þ2 þ κ2ð1þ h=vÞ2�Afμ

þ ð1þ h=vÞ2κAμ
f∂μBþ 1

2
h½ði∂⊥Þ2 þ ð

ffiffiffi
2

p
μÞ2�hþ μ2

v
h3 þ

�
μ

2v

�
2

h4 − ðμv=2Þ2

þ 1

2
ð1þ h=vÞ2B½ði∂⊥Þ2 þ κ2ð1þ h=vÞ2�B − ð1þ h=vÞB∂⊥B∂⊥h=v: ð32Þ

It differs from Soper’s, because it involves additional fields.
However, in the massive limit that ignores quantum effects,
see Sec. II B, in which g0 → 0, v → ∞, g0v ¼ κ is kept
constant [we could also consider the additional limit
μv → 0 to eliminate the constant −ðμv=2Þ2 and hence
arrive at massless h�, one obtains

H →
1

2

�
1

∂þ gψ̄γþψ
�
2

þ κB
1

∂þ gψ̄γþψ

þ ψ̄f
1

2
γþ

ði∂⊥Þ2 þm2

i∂þ ψf þ gψ̄f=Afψf

þ 1

2
g2ψ̄f=Af

γþ

i∂þ =Afψf þ
1

2
Ai
f½ði∂⊥Þ2 þ κ2�Ai

f

þ κAμ
f∂μBþ 1

2
h½ði∂⊥Þ2 þ ð

ffiffiffi
2

p
μÞ2�h

þ 1

2
B½ði∂⊥Þ2 þ κ2�B: ð33Þ

The second term, with the field B and fermion plus current,
can be replaced by the one that is equivalent through
integration by parts. Since Aþ

f ¼ 0 and ∂μA
μ
f ¼ 0, the

seventh term that couples field Af to the gradient of field
B is equivalent to zero. The decoupled field h will be
ignored in further discussion. Thus, one obtains the
Hamiltonian density that is precisely equivalent to Soper’s
for massive QED [7]. It can be written as

H ¼ ψ̄fγ
þ ði∂⊥Þ2 þm2

2i∂þ ψf þ
1

2
Ai
f½ði∂⊥Þ2 þ κ2�Ai

f

þ 1

2
B½ði∂⊥Þ2 þ κ2�Bþ gψ̄f=Afψf − gψ̄fγ

þψf
κ

i∂þ iB

þ 1

2
g2ψ̄f=Af

γþ

i∂þ =Afψf þ
1

2

�
1

∂þ gψ̄fγ
þψf

�
2

: ð34Þ

If the coupling constant g were set to zero, the first three
terms would describe the free fermion field ψf, free gauge
boson field Af with two polarizations and a free scalar
field B. The fourth and fifth terms describe the minimal
coupling of fields Af and B with fermions, respectively.
The sixth term additionally couples transverse bosons to
fermions as a result of the constraint Eq. (28). The last
term is the FF fermion quartic interaction that results from
the constraint Eq. (29). It is a FF analog of the Coulomb
term in the IF dynamics with its Gauss law. The
Hamiltonian density of Eq. (34) is taken as a starting
point for the canonical construction of a quantum theory
a la Refs. [7,13,32].

C. Quantization

The quantum theory is introduced by replacing the fields
ψf, Af and B in Eq. (34) by the corresponding field
operators on the front at xþ ¼ 0,
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ψ̂f ¼
X2
σ¼1

Z
½p�½upσb̂pσe−ipx þ vpσd̂

†
pσeipx�xþ¼0

; ð35Þ

Âμ
f ¼

X2
σ¼1

Z
½p�½εμpσâpσe−ipx þ εμ�pσâ†pσeipx�xþ¼0

; ð36Þ

B̂ ¼
Z

½p�½−iâp3e−ipx þ iâ†p3e
ipx�

xþ¼0
; ð37Þ

where ½p� ¼ dpþθðpþÞd2p⊥=½2pþð2πÞ3�. Further, upσ and
vpσ are spinors for fermions of mass m [33,34]. Symbols
εpσ denote polarization four-vectors for bosons [4,7]. Thus,
σ labels fermions and gauge bosons that at rest have spin
projections � 1

2
or �1 on the z-axis, respectively. Further

details of the notation are explained in Appendix A. The
creation and annihilation operators, denoted by b, d and a,
obey commutation or, in the case of fermions, anticom-
mutation relations of the form

½âpλ; â†qσ� ¼ 2pþð2πÞ3δðpþ − qþÞδ2ðp⊥ − q⊥Þδλσ; ð38Þ
with other commutators or anticommutators equal to zero.
The Hamiltonian P̂− is obtained by integrating the quantum
density Ĥ on the front xþ ¼ 0 and normal ordering.
At this point it is important to mention, on the basis of

hindsight, that the operators creating or annihilating quanta
with infinitesimal pþ, i.e., pþ negligible in comparison
with mass parameters m and κ, including the case of
κ=m → 0, could contribute divergences to the free invariant
masses of all physical states. Therefore, in the regulated and
subsequently renormalized theory such quanta need to be
suppressed. Formally, at this point one could introduce in
Eqs. (35), (36) and (37) an infinitesimal cutoff parameter
ϵþ, imposing a condition pþ > ϵþ instead of pþ > 0.
However, it will become self-evident in the next sections
that, in the RGPEP, perturbatively calculated effective
Hamiltonians for finite-size quanta with finite plus
momenta are not sensitive at all to the cutoff parameter
ϵþ → 0. Namely, it is shown in the next sections that the
gauge boson mass κ provides the required suppression
through the vertex form factors that result from solving the
RGPEP evolution Eq. (41). Regarding the divergent con-
stants and one-particle operators that result from the normal
ordering, they are dropped because constants do not count
in the quantum dynamics and one-particle operators require
counterterms anyway. In summary, the cutoff on pþ and
normal ordering do not influence the content of a theory
defined using the RGPEP.

D. Quantum Hamiltonian

Our initial quantum Hamiltonian P̂− is denoted by Ĥ,

Ĥ¼ Ĥψ2 þĤA2 þĤB2 þĤψAψ þĤψBψ þĤψAAψ þĤðψψÞ2 :

ð39Þ

The seven operators appear in one-to-one correspondence
to the seven terms in Eq. (34). To simplify notation for the
quantum theory, the operator symbol ˆ is omitted in further
formulas. The first three terms are separately denoted by

Hf ¼ Hψ2 þHA2 þHB2 ; ð40Þ

where the subscript originates in the word free. The
remaining four terms are denoted by HI. All terms are
given in full detail in Appendix B.

IV. APPLICATION OF THE RGPEP

The FF Hamiltonian of Eq. (39) leads to divergences and
as such is not acceptable. The divergences can be identified
and removed from the Hamiltonian using the RGPEP.
We apply it here in expansion in powers of the coupling
constant g up to and including terms of order g2. General
introduction to the RGPEP and perturbative formulas for
interactions of effective particles up to fourth order are
available in [20].
In brief, the Hamiltonian H of Eq. (39) is used as an

initial condition, Ht¼0 ¼ H, for solving the differential
equation

H0
t ¼ ½½Hf; H̃t�;Ht�; ð41Þ

where prime denotes differentiation with respect to the
scale parameter t ¼ s4. The parameter s has an intuitive
interpretation of the size of effective quanta, see below. The
tilde in H̃t indicates that each term in Ht is multiplied by
the square of total plus momentum carried by quanta
annihilated or, equivalently, created by that term. Such
multiplication secures that Eq. (41) preserves all kinematic
symmetries of the FF of dynamics [2]. The double
commutator used in Eq. (41) is introduced, following
Wegner [22], to satisfy the requirement that the creation
and annihilation operators for effective quanta of size s,
denoted by qt, are related to the initial ones, denoted by q0,
by such a unitary transformation U t,

qt ¼ U tq0U
†
t ; ð42Þ

that the Hamiltonian Ht can only cause limited changes of
the interacting quanta total invariant mass. The idea of
replacing the Wilsonian principle of integrating out high-
energy modes by the principle of integrating out large
changes of energy dates back to Ref. [21], which intro-
duced the so-called similarity renormalization group pro-
cedure (SRG). The initial application of SRG to the FF
Hamiltonian of QCD, using P− instead of energy, is
outlined in Ref. [3]. The RGPEP provides a relativistic
extension of the latter idea. Instead of changes of P−, we
use changes of the invariant mass. Hence the motion of
field quanta is not limited in any other way than by the
speed of light. Also, instead of considering scale evolution
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of Hamiltonian matrices, the RGPEP uses operators. The
number of quanta is not limited. These features are
prerequisite for a complete formulation of a finite theory
that includes the parton picture [1] of bound states as well
as their spectroscopy.
The operator Ht is defined to be a polynomial in the

creation and annihilation operators that appear in Eqs. (35),
(36) and (37). Solutions for the polynomial coefficients as
functions of t are found on the basis of their initial values in
H ¼ Ht¼0. However, one has to remove divergences from
the solutions. Therefore, the RGPEP includes the alteration
of the initial condition of H ¼ Ht¼0 by inclusion of
additional terms that counter the divergences in solutions.
In general, the counterterms can only be found by succes-
sive approximations. Solutions described in this explora-
tory article are limited to the lowest nontrivial order of
series expansion in powers of the coupling constant.
To be more specific, solutions for the coefficients ct of

order g are of the form ct ¼ ft 1c0, where ft 1 is a unique
form factor that vanishes exponentially fast when the
difference between a total invariant mass of quanta created
and a total invariant mass of quanta annihilated by the
associated product of creation and annihilation operators
exceeds s−1. When imagined in terms of a matrix in the
space of quantum states of specified total invariant mass
(according to Hf), the Hamiltonian Ht would appear band
diagonal with the band width ∼s−1. Now consider the
second order. One obtains solutions of the generic form
ft 2c20, since the initial Hamiltonian is squared. In a local
theory, the intermediate states in the square of the
Hamiltonian may have arbitrarily large invariant masses.
Therefore, c20 diverges when one sums over all the inter-
mediate states. One has to regulate c0 somehow to limit the
sum and obtain finite c20. So, Ht¼0 is supplied with some
regularization, which we denote by r. It is shown below how
we do it for the Abelian gauge theory. To remove depend-
ence of Ht with finite t on the regularization r, we need to
include in H0 a counterterm CTr2 of order g2. Expansion to
higher orders exhibits the same pattern. In addition, the
actual expansion needs to be carried out using an effective
coupling constant gt [35] instead of the initial g. However,
the coupling constants gt and g begin to differ first in third-
order calculation. In the present article only terms order 1, gt
and g2t are considered. Therefore, there is no need to
distinguish gt from g and we omit the subscript t in gt.
When one includes regularization factors r and the

corresponding counterterms CTr, the initial Hamiltonian
H0 ¼ H of Eq. (39) is changed to Hr,

Hr ¼ Hf þHψAψr þHψBψr þHψAAψr þHðψψÞ2r þ CTr:

ð43Þ

Thus the initial Hamiltonian H0 takes the form of a
computable series in powers of the coupling constant

Hr ¼ Hf þ gHr 1 þ g2Hr 2 þ g2CTr 2 þOðg3Þ: ð44Þ

Correspondingly, the solution of Eq. (41) also has the form
of a series

Ht ¼ Hf þ gHt 1 þ g2Ht 2 þOðg3t Þ: ð45Þ
To calculate the terms in this series one equates coefficients
of the same powers of g on both sides of Eq. (41) and
obtains equations

H0
f ¼ 0; ð46Þ

H0
t 1 ¼ ½½Hf; H̃t 1�; Hf�; ð47Þ

H0
t 2 ¼ ½½Hf; H̃t 2�; Hf� þ ½½Hf; H̃t 1�;Ht 1�: ð48Þ

These are solved in the following sections. In the last step
of solving for the renormalized Hamiltonians Ht, the
canonical operators q0 are replaced by the effective ones,
qt, according to the formula Ht ¼ Htðq0 → qtÞ. To sim-
plify our notation below, the operators q0 are denoted by q,
i.e., the subscript 0 is omitted. Thus,

Ht ¼ U tHtU
†
t ¼ Htðq → qtÞ: ð49Þ

The perturbative expansion for Ht in Eq. (45) directly
implies a similar one for Ht,

Ht ¼ Htf þ gHt 1 þ g2Ht 2 þOðg3t Þ: ð50Þ

The discussion that follows is mostly carried out in terms of
the operator Ht.

A. Free Hamiltonian terms

Since the free Hamiltonian Hf obeys H0
f ¼ 0, see

Eq. (46), it is given by the canonical Eqs. (B1), (B2)
and (B3) in Appendix. B. To obtain Htf, the creation and
annihilation operators q0 for bare, pointlike quanta are
replaced in Hf by the operators qt for effective particles of
size s, with the same quantum numbers. So,

Htf ¼ Htψ2 þHtA2 þHtB2 ; ð51Þ

where

Htψ2 ¼
X2
σ¼1

Z
½p�p

⊥2 þm2

pþ ½b†t pσbtpσ þ d†t pσdtpσ�; ð52Þ

HtA2 ¼
X2
σ¼1

Z
½p�p

⊥2 þ κ2

pþ a†t pσatpσ; ð53Þ

HtB2 ¼
Z

½p�p
⊥2 þ κ2

pþ c†t pct p: ð54Þ
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B. First-order interaction terms

According to Eq. (47), the coefficients ht 1 ca of products
c and a of creation and annihilation operators, respectively,
under the momentum integrals in Ht 1, satisfy the differ-
ential equations

h0t 1 ca ¼ −ðM2
c −M2

aÞ2ht 1 ca; ð55Þ

whereMa denotes the invariant mass of particles annihilated
and Mc particles created by the interaction. The initial
conditions at t ¼ 0, denoted by h0 1 ca, are provided by the
first-order canonical coefficients shown in Eqs. (B4) and (B5)
in Appendix B. Thus, solutions for the coefficients are

ht 1 ca ¼ ft c:ah0 1 ca; ð56Þ

which amount to the initial conditions multiplied by the
RGPEP vertex form factors,

ft c:a ¼ exp ½−tðM2
c −M2

aÞ2�: ð57Þ

TheRGPEP form factors suppress the invariantmass changes
that exceed 1=s exponentially fast. The suppression allows
one to intuitively associate the parameter swith the concept of
size of effective quanta. The local gauge theory corresponds
to pointlike quanta and s ¼ 0. The larger s the stronger the
vertex suppression. Large s implies that only small changes of
theoff-shell departures of virtual interacting quanta can occur.
This correlation is similar to the one found in quantum
mechanics of bound states of charged particles, whose form
factors suppress absorption or emission of light with momen-
tum that exceeds the inverse of their size. However, one
should keep in mind that the RGPEP effective quanta can be
in arbitrary relativistic motion with respect to each other and
they do not behave as bound states known in nonrelativistic
quantum mechanics, so that the interpretation of s as
quantum-mechanical size is merely based on an analogy.
The RGPEP form factor ft c:a appears in front of all

products of creation and annihilation operators in every
interaction term equally. Namely,

HtψAψ ¼ g
X
123

Z
½123�δ̃c:aftþtr c:a

× ½ū2=ε�1u3b†t 2a†t 1bt 3 − v̄3=ε�1v2d
†
t 2a

†
t 1dt 3

þ ū1=ε3v2b
†
t 1d

†
t 2at 3 þ H:c:�; ð58Þ

HtψBψ ¼ −gX
23

Z
½123�δ̃c:aftþtrc:a

×
�
ū2

κγþ

pþ
1

u3b
†
t 2c

†
t 1bt 3 − v̄3

κγþ

pþ
1

v2d
†
t 2c

†
t 1dt 3

þ ū1
κγþ

pþ
3

v2b
†
t 1d

†
t 2ct 3 þ H:c:

�
: ð59Þ

Note that the canonical creation and annihilation operators
for initial, pointlike quanta are replaced by the operators for
quanta of size s, corresponding to t ¼ s4.
The operator structure of the first-order solutions resem-

bles the canonical one, so that for momenta for which
ftþtr c:a ∼ 1, one has

Ht ψ tAt ψ t
¼ Hcanψ t Atψ t

; ð60Þ

Htψ tBtψ t
¼ Hcanψ tBtψ t

: ð61Þ

The subscript “can” refers to the canonical minimal
coupling Hamiltonian terms. Fields with subscript t are
built from creation and annihilation operators qt in the
same way as the canonical quantum fields are built from
the operators q0. The two Eqs. (60) and (61) express the
RGPEP interpretation of gauge symmetry as a guiding
principle in constructing relativistic quantum theory of
particles: The effective minimal coupling Hamiltonian
interaction term appears for momentum transfers much
smaller than s−1 equal to the canonical minimal coupling
term in a local gauge theory. The difference that is hard to
recognize is the one between the operators qt and q0.
The above interpretation implies also that the regulari-

zation factors introduced in Eq. (43) can be just the RGPEP
vertex form factors ft with some extremely small value of t,
denoted by tr [4]. Precisely this regularization is the origin
of the sum tþ tr as a size parameter in the vertex form
factors displayed in the solutions of Eqs. (58) and (59).
When t → 0, the regularization parameter tr remains and
makes the form factor regulate the Hamiltonian. The
regularization is lifted when tr is sent to zero.
It is now visible that in the tree approximation the

regularization influence on the renormalized theory van-
ishes when the regularization is lifted. Namely, for a fixed
finite t the infinitesimal tr is inconsequential. The regu-
larization factors ftr c:a are said to be muted as functions
of momenta by the RGPEP vertex form factors ft c:a with
finite t when tr → 0. In general, the condition that the
RGPEP factors mute regularization factors in a finite
effective theory at the tree level implies that the gauge
symmetry becomes manifest in the low-energy tree-level
processes that involve momentum changes much smaller
than the inverse size of the effective particles.

C. Fermion self-interactions

As a result of second-order self-interactions, the mass-
squared terms for fermions change from m2 in the canoni-
cal Hamiltonian to m2 þ g2δm2ðtÞ in Ht. The corrected
mass appears in the coefficients of operators b†t pσbtpσ and
d†t pσdtpσ in Ht. One calculates δm2ðtÞ by integrating its
derivative with respect to t that is contained in Eq. (41). For
terms order g2, Eq. (41) reduces to Eq. (48). The coef-
ficients of operators b†pσbpσ and d†pσdpσ are extracted from
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the right-hand side of Eq. (48). The only contributions
come from the second term,

H0
t 2δm2 ¼ ½½Hf; H̃t 1�;Ht 1�δm2 ; ð62Þ

more specifically, from creation and subsequent annihila-
tion of a fermion and a boson. That set of quanta is
symbolized by fb. Our calculation yields, in notation
explained in Appendix A,

H0
t 2δm2 ¼

X
3

Z
½3� ðδm

2
2Þ0

pþ
3

½b†3b3 þ d†3d3�; ð63Þ

where

ðδm2
2Þ0 ¼ −2

Z
½xk�f2tþtr fb:f

ðM2
fb −m2ÞFδm2 ; ð64Þ

Fδm2 ¼ 2

�
k⊥2 þ x2m2

1 − x
þ 2

k⊥2 þ ð1 − xÞκ2
x2

�
; ð65Þ

f2tþtr fb:f
¼ e−2ðtþtrÞðM2

fb−m
2Þ2 ; ð66Þ

M2
fb ¼

k⊥2 þm2

1 − x
þ k⊥2 þ κ2

x
: ð67Þ

The variables x and k⊥ denote components of the boson
momentum in the fermion self-interaction set fb. In
evaluation of the factor Fδm2, contributions of quanta
of field B turn out to amount to just adding κ2 to p⊥2

in the sum over polarizations of field-A quanta with
momentum p. Integration over t in Eq. (64) results in

δm2ðtÞ ¼ δm2ð0Þ −
Z

½xk�ðf2tr fb:f − f2tþtr fb:f
Þ

× ðM2
fb −m2Þ−1Fδm2 : ð68Þ

In the limit of tr going to zero that lifts the regularization,
the integral diverges. The divergence can be canceled by
adjusting the value of δm2ð0Þ. However, the finite part
of δm2ð0Þ can only be fixed by comparison of theory
with data.
A directly relevant observable is the Hamiltonian eigen-

value p− ¼ ðp⊥2 þm2
fÞ=pþ, in which mf stands for the

smallest mass eigenvalue for the eigenstates with fermion
quantum numbers. In the present calculation, one considers
the eigenstates approximated by a superposition of effective
single fermion and two-body effective fermion-boson
Fock states. The momentum components pþ and p⊥ are
the eigenvalues of kinematic Poincaré generators of front
translations, P̂þ and P̂⊥. These eigenvalues drop out
entirely from the fermion eigenvalue equation and the
eigenvalue reduces to m2

f. For m
2
f to match m2 in Eq. (52)

for arbitrary finite values of t, the counterterm must be

δm2ð0Þ ¼
Z

½xk�f2tr fb:fðM2
fb −m2Þ−1Fδm2 : ð69Þ

This condition determines the counterterm including its
finite part. The result for δm2ðtÞ is

δm2ðtÞ ¼
Z

½xk�f2tþtr fb:f
ðM2

fb −m2Þ−1Fδm2 ; ð70Þ

where for any finite value of t the limit of no regularization
is obtained by letting tr tend to zero. As a result, the mass-
squared Hamiltonian term for effective fermions of size
s ¼ t1=4 is corrected by a term order g2 of the form

Ht 2 δm2 ¼
X2
σ¼1

Z
½p� δm

2ðtÞ
pþ ½b†t pσbtpσ þ d†t pσdtpσ�: ð71Þ

This term is included as a part of the entire HamiltonianHt.
The latter is used to calculate masses of bound states of
fermions. Plots that show how the function δm2ðtÞ arises
are provided in Sec. VI.

D. Boson self-interactions

Mass corrections for the effective gauge boson quanta of
size s ¼ t1=4 are determined according to the same algo-
rithm as for the fermions. One integrates their derivatives
given in the RGPEP Eq. (41), which in order g2 reduces to
Eq. (48). Thus, the derivatives of the corrections order g2

are obtained from

H0
t 2 δκ2 ¼ ½½Hf; H̃t 1�;Ht 1�δκ2 : ð72Þ

One derives the derivatives of coefficients of terms a†a
and c†c in Ht. The derivatives come from creation and
subsequent annihilation of a fermion and an antifermion
pair, symbolized by ff̄. One integrates these derivatives
from zero to t. The finite parts of counterterms in the initial
condition at t ¼ 0 are defined by demanding that the mass-
squared eigenvalues ofHt for the gauge boson states are κ2,
equally for bosons of type A and B. The resulting mass-
squared terms for quanta of fields At and Bt turn out to
differ from each other. Namely, we obtain

Ht 2 δκ2A
¼

X2
σ¼1

Z
½p� δκ

2
AðtÞ
pþ a†t pσatpσ; ð73Þ

Ht 2 δκ2B
¼

Z
½p� δκ

2
BðtÞ
pþ c†t pct p; ð74Þ

where

δκ2AðtÞ ¼
Z

½xk�f2
tþtr ff̄:b

ðM2
ff̄

− κ2Þ−1Fδκ2A
; ð75Þ
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δκ2BðtÞ ¼
Z

½xk�f2
tþtr ff̄:b

ðM2
ff̄

− κ2Þ−1Fδκ2B
; ð76Þ

and

M2
ff̄

¼ k⊥2 þm2

xð1 − xÞ ; ð77Þ

Fδκ2A
¼ 2

½x2 þ ð1 − xÞ2�k⊥2 þm2

xð1 − xÞ ; ð78Þ

Fδκ2B
¼ 8κ2xð1 − xÞ: ð79Þ

The transverse gauge boson mass is corrected by a term that
varies rapidly with t. The third-polarization gauge boson
mass is proportional to κ2 and does not exhibit any such
rapid variation with t. Detailed discussion of how the
functions δκ2AðtÞ and δκ2BðtÞ arise is postponed to Sec. VI.

E. Boson exchange

For the purpose of discussion of an example of effective
bound-state dynamics in Sec. VI, we consider the
Hamiltonian interaction terms of order g2 that involve
exchanges of gauge bosons of types A and B between a
fermion and an antifermion. The RGPEP evolution of
second-order interaction terms is obtained from Eq. (48).
We focus on the coefficients cð121020Þ of operators
b†1d

†
2d20b10 . The fermions that come out of the interaction

carry quantum numbers labeled by 1. The antifermions come
out with quantum numbers labeled by 2. The fermions and
antifermions that come in carry quantum numbers labeled by
10 and 20, correspondingly. When it is useful, we abbreviate
notation for these coefficients or for the operators that
contain them by using the acronym or subscript qq̄,
associating q with fermions and q̄ with antifermions, a la
positronium or quarkonia. The purpose of using qq̄ instead
of ff̄ in this section is that the subscript f is more useful here
to indicate the free part of the Hamiltonians and the RGPEP
form factors, instead of fermions.
The boson-exchange terms are contained in Eq. (48) of

the form,

H0
t 2qq̄ ¼ ½½Hf; H̃t 2qq̄�;Hf� þ ½½Hf; H̃t 1�;Ht 1�qq̄: ð80Þ

The initial condition includes the regulated canonical qq̄
interaction term and, potentially, a counterterm that needs
to be calculated. The initial-condition canonical term
consists of

Hqq̄r can ¼ g2
X
121020

Z
½121020�δ̃12:1020r121020

× h0 can 2qq̄ð121020Þb†1d†2d20b10 ; ð81Þ

where, on the basis of Eq. (B9),

h0 can 2qq̄ð121020Þ ¼ −
ū1γþu3v̄4γþv2
ðpþ

1 − pþ
3 Þ2

þ ū1γþv2v̄4γþu3
ðpþ

1 þ pþ
2 Þ2

:

ð82Þ

The first term corresponds to the FF instantaneous inter-
action that is analogous to the Coulomb term in the IF
Hamiltonian. The second term corresponds to the FF
instantaneous interaction through the annihilation channel
rather than the exchange. We discuss the qq̄ annihilation
channel interaction along our discussion of the boson-
exchange interaction since both can contribute to the
dynamics of the qq̄ bound states. Both interactions result
from the FF constraint Eq. (29) for A−, analogous to the IF
Gauss law. However, instead of the inverse of Laplacian
they involve only the inverse of ∂þ2. The factor r121020
provides regularization, according to the rules set at the end
of Sec. IV B and in Appendix B 1. Namely, the form factor
ftr with infinitesimal tr is inserted in both fermion currents
that appear in the interaction.
Following [20] and using notation defined in

Appendix A, integration of Eq. (80) begins with writing
Ht 2qq̄ in the form

Ht 2 qq̄ ¼
X
121020

Z
½121020�δ̃12:1020ht 2 qq̄ð121020Þb†1d†2d20b10 :

ð83Þ

The differential equation to solve reads

X
121020

Z
½121020�δ̃12:1020h0t 2qq̄ð121020Þb†1d†2d20b10 ð84Þ

¼−
X
121020

Z
½121020�δ̃12:1020 ðM2

12−M2
1020 Þ2

×ht2qq̄ð121020Þb†1d†2d20b10 þ ½½Hf;H̃t1�;Ht1�qq̄: ð85Þ

Writing

ht 2 qq̄ð121020Þ ¼ e−tðM
2
12
−M2

1020 Þ
2

gt 2 qq̄ð121020Þ; ð86Þ

one obtains a differential equation for gt 2 qq̄ð121020Þ,
X
121020

Z
½121020�δ̃12:1020e−tðM

2
12
−M2

1020 Þ
2

g0t 2 qq̄ð121020Þb†1d†2d20b10

¼ ½½Hf; H̃t 1�;Ht 1�qq̄: ð87Þ

The first-order operator Ht 1 is a sum of the two terms,
Ht 1 ¼ Ht 1A þHt 1B. The terms Ht 1A and Ht 1B describe
the coupling of fermions to bosons of type A and B,
respectively. Their forms are identical to the ones given in
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Eqs. (58) and (59), except that the operators qt are replaced
by q. The operator H̃t 1 differs from Ht 1 by multiplication
of its terms by the square of total pþ of quanta annihilated
or, equivalently, created by a term. Since the boson creation
and annihilation operators must be contracted with each
other on the right-hand side of Eq. (87), one has

X
121020

Z
½121020�δ̃12:1020e−tðM

2
12
−M2

1020 Þ
2

g0t 2 qq̄ð121020Þb†1d†2d20b10

¼ ½½Hf; H̃t 1A�;Ht 1A�qq̄ þ ½½Hf; H̃t 1B�;Ht 1B�qq̄: ð88Þ

The result of integrating this equation, in compliance with
the general RGPEP rules [20], reads

gt 2 qq̄ð121020Þ − g0 2 qq̄ð121020Þ
¼ ½etðM2

12
−M2

1020 Þ
2

ftþtr12:xftþtrx:1020 − ftr12:xftrx:1020 �

×
pþ
12:xa12:x þ pþ

x:1020bx:1020

ðM2
12 −M2

1020 Þ2 − a212:x − b2x:1020

× ½H0 1A 12:xH0 1Ax:1020 þH0 1B 12:xH0 1Bx:1020 �12:1020 :
ð89Þ

The subscript x ¼ qbq̄ denotes the intermediate quanta.
The momentum pþ

a:b stands for the total pþ of quanta that
participate in the interaction caused by one operator H0 1.
The vertex form factors are

ft 12:x ¼ e−ta
2
12:x ; a12:x ¼ pþ

12:xðP−
12 − P−

x Þ; ð90Þ

ft x:1020 ¼ e−tb
2

x:1020 ; bx:1020 ¼ pþ
x:1020 ðP−

1020 − P−
x Þ: ð91Þ

Description of the resulting Hamiltonian coefficients
ht 2qq̄ð121020Þ in Eq. (86), will be provided in the next
section after we introduce the additional terms that also
contribute to the qq̄ bound-state dynamics.

F. Bound-state dynamics

The Hamiltonian Ht determines the structure of bound
states (BS) through the eigenvalue equation

HtjBSi ¼
P⊥2
BS þM2

BS

Pþ
BS

jBSi: ð92Þ

The kinematic total bound-state momentum components
P⊥
BS and P

þ
BS can be eliminated since the FF of Hamiltonian

dynamics and the RGPEP both explicitly preserve the
seven Poincaré symmetries that include the Lorentz boosts.
Therefore, Pþ

BS and P⊥
BS are arbitrary and only the eigen-

value M2
BS needs to be found. The relative motion of

constituents is described in terms of the wave functions that
do not depend on Pþ

BS and P⊥
BS. Therefore, the same wave

functions appear in the bound-state spectroscopy and in the

corresponding parton picture in the infinite momentum
frame [1]. However, the wave functions depend on the
constituent size s ¼ t1=4. Therefore, the parameter t plays
the role of scale of constituents one uses to describe the
bound state. An external probe may couple differently to
constituents of different size, as is the case in the electro-
weak form factors, deep inelastic scattering or virtual
Compton scattering.
In the case of bound states of a fermion and an

antifermion, the wave functions appear in the expansion

jBSi ¼
X
qq̄

ψ tqq̄jqtq̄ti þ
X
qbq̄

ψ tqbq̄jqtbtq̄ti þ � � � ; ð93Þ

where the sum extends to infinite numbers of effective
fermion, antifermion and boson quanta. In a local gauge
theory, the integrals over constituent momenta extend to
infinity and the expansion is hardly convergent [36]. In the
effective theory with constituents of size s, approached here
using the RGPEP, the convergence is conceivable because
the ultraviolet range of interactions is limited by the vertex
form factors fc:a, see Eq. (57). The infrared divergences
due to massless gauge bosons [37,38], are tamed by the
introduction of mass κ and an additional polarization state.
The mass κ also appears in the form factors ft c:a, which
thus tame small-x singularities in dynamical considerations
that concern partons [1].
When the coupling constant is very small, one may

attempt to solve Eq. (92) by assuming that the smallest
eigenvalue M2

BS corresponds to the state dominated by its
fermion-antifermion component in Eq. (93). The compo-
nent with one boson is of order g and the remaining
components are of order g2 or smaller. For example, such
approach can be adopted in QED, where g is the electron
electric charge. Expansion in powers of g allows one to
derive an effective Hamiltonian matrix that acts solely on
the wave functions ψ tqq̄ in the space of fermion-antifermion
components jqtq̄ti. We use the second-order formula [39]

h1t2tjHt eff 2 qq̄j10t20ti

¼ h1t2tjHt 2j10t20ti þ
1

2

X
x≠qq̄

�
1

P−
12 − P−

x
þ 1

P−
1020 − P−

x

�

× h1t2tjHt 1jxtihxtjHt 1j10t20ti: ð94Þ

On the right-hand side, there are six kinds of terms due to
the operator Ht 2 and similar six kinds of terms due to the
term bilinear in Ht 1. The latter terms are the effective self-
interaction of fermions, self-interaction of antifermions,
exchange of bosons of types A and B between fermions,
and annihilation of fermion-antifermion pairs into the two
types of bosons with subsequent creation of a fermion pair.
Note that the Hamiltonian Ht 2 whose matrix elements
appear as the first term on the right-hand side of Eq. (94),
results from a solution of differential Eq. (80) for a
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Hamiltonian operator that acts in the entire Fock space.
In contrast, the term bilinear in Hamiltonians Ht 1 only
describes the interactions of effective particles in the
fermion-antifermion component of the bound-state eigen-
value problem for small values of MBS. In other words,
the matrix element h1t2tjHt eff 2 qq̄j10t20ti corresponds to an
operator Ht eff 2 qq̄ that acts solely in the effective fermion-
antifermion sector of Fock space, built from quanta of
size s for description of bound-states dominated by that
component.

G. Eigenvalue problem for bound-state
wave functions

The bound-state eigenvalue problem of Eq. (93), reduced
to the dominant fermion-antifermion component reads

ðp1þp2Þ2ψ t12þg2Pþ
BS

X
1020

Z
½1020�h1t2tjHteff2qq̄j10t20tiψ t1020

¼M2
BSψ t12: ð95Þ

The mass corrections δm2ðtÞ are canceled by the effective
fermion self-interactions due to the term bilinear in Ht 1 in
Eq. (94). The invariant mass squared of two constituent
fermions,M2

12 ¼ ðp1 þ p2Þ2, is calculated using on-mass-
shell values of p−

1 and p−
2 with fermion mass eigenvalue m.

The whole interaction left consists of the exchange and
annihilation terms. They involve sums over polarizations of
bosons of type A and B. The sums result in tensors dA μν and
dB μν that are contracted with the fermion currents jμq and jνq̄.
The transverse boson tensor dA μν includes the metric term
−gμν and an additional tensor that involves the boson
momentum. Using conservation of kinematic momentum
components and properties of spinors in the fermion
currents, one can reduce the additional tensor to ημην times
a coefficient, where the four-vector η has only minus
component different from zero, and equal two. The tensor
dB μν is proportional to ημην. The second-order interaction
matrix in h1t2tjHt eff 2 qq̄j10t20ti thus takes the form

h12jHt eff 2 qq̄j1020i ¼ δ̃12.1020ht eff 2 ff̄ð121020Þ; ð96Þ

where

ht eff 2 ff̄ð121020Þ ¼ L1 þ L2 þ L3 þ L4; ð97Þ

L1 ¼ EXg½hgμνexch þ hgμνboson exch�; ð98Þ

L2 ¼ EXþ½hγþexch þ hγþboson exch�; ð99Þ

L3 ¼ ANg½hgμνannih þ hgμνboson annih�; ð100Þ

L4 ¼ ANþ½hγþannih þ hγþboson annih�; ð101Þ

and the spinor factors are

EXg ¼ −ū1γμu10 v̄20γμv2=ð2mÞ2; ð102Þ

EXþ ¼ ū1γþu10 v̄20γþv2=ðpþ
1 þ pþ

2 Þ2; ð103Þ

ANg ¼ −ū1γμv2v̄20γμu1=ð2mÞ2; ð104Þ

ANþ ¼ ū1γþv2v̄20γþu10=ðpþ
1 þ pþ

2 Þ2: ð105Þ

The terms with subscripts “exch” or “annih” come from the
operator Ht 2, and terms with subscripts “boson exch” or
“boson annih” from the term bilinear in Ht 1 in Eq. (94).
Our results for the four terms in Eq. (97), denoted by L1,
L2, L3, L4 and called “lines”, are listed below. The coupling
constant square g2 does not appear in them since it is
factored out in Eq. (95). Each of the lines consists of a
dimensionless spinor factor and a dimensionless function
of fermions’ momenta in a square bracket. The latter
functions will be called relativistic potentials for two
reasons. One reason is that the functions are invariant with
respect to the seven kinematic Poincaré transformations
of FF dynamics that include boosts. The other reason is
that the corresponding Hamiltonian interaction terms do
not change the number of effective particles. Below, the
relativistic potentials in lines L1 to L4 are for brevity called
just potentials and denoted by V1 to V4, respectively. Note
the negative signs in front of spin factors in lines L1 and L3.
Thus, for small relative momenta of fermions, a positive
potential V1 implies attraction and positive potentials V2,
V3 and V4 imply repulsion. All these potentials are
dimensionless functions of kinematical momenta of four
fermions, their mass, the mass of gauge bosons and the
scale parameter s.
There are no counterterms included in the lines listed

below, because none is needed. Matrix elements of the
interaction terms between wave packets of fermions [3] do
not depend on the regularization parameter tr in the limit
tr → 0. The interaction ultraviolet behavior is limited by
the RGPEP form factors with finite parameter t. Fermions
have masses and do not produce any infrared singularities.
The infrared singularities due to the bosons are regulated by
the mass κ and small-x singularities for finite effective-
particle size s are removed by the lower bound on the
boson x on the order of s2κ2. In addition, the logarithmic
dependence on that bound cancels out in the sense of
principal value in the integrals with wave packets. More
details are reported in Secs. IV H and VI B.

H. Relativistic potentials

In the list of interaction terms in lines L1 to L4, we use
the familiar parton-model parametrization of constituents’
momenta, commonly used in the literature that employs FF
dynamics,
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pþ
1;2 ¼ x1;2P

þ
BS; ð106Þ

pþ
10;20 ¼ x10;20P

þ
BS; ð107Þ

p⊥
1;2 ¼ x1;2P⊥

BS � k⊥; ð108Þ

p⊥
10;20 ¼ x10;20P⊥

BS � k0⊥: ð109Þ

We also use the abbreviation z ¼ x10 − x1 and introduce
two four-momentum transfers for fermions,

q1 ¼ p10 − p1; ð110Þ

q2 ¼ p2 − p20 : ð111Þ

These differ only in their minus components, evaluated
using the on-mass-shell fermion four-momenta. The rela-
tivistic potentials are expressed in terms of quantities
analogous to a denominator d ¼ κ2 − p2 in the Feynman
propagator for bosons,

d1 ¼ κ2 − q21; ð112Þ

d2 ¼ κ2 − q22: ð113Þ

Four invariant-mass quantities are introduced for brevity,

a ¼ M2
12 −m2; ð114Þ

a0 ¼ M2
1020 −m2; ð115Þ

b ¼ M2
12 − κ2; ð116Þ

b0 ¼ M2
1020 − κ2: ð117Þ

All potentials are listed below ignoring the regularization
parameter tr. The RGPEP form factors with finite t mute
the presence of tr as negligible in comparison with t in the
sum tr þ t.
In the line L1 of Eq. (98), written in the form

L1 ¼ EXgV1; ð118Þ

the relativistic potential reads

V1ð121020Þ ¼ hgμν exch þ hgμνboson exch ¼ θðzÞT1 þ θð−zÞT2;

ð119Þ

where

T1 ¼ T1fe−tða−a
0Þ2 þ T1ffe

−tðd2
1
x2
10þd2

2
x2
2
Þ=z2 ; ð120Þ

T2 ¼ T2fe−tða−a
0Þ2 þ T2ffe

−tðd2
1
x2
1
þd2

2
x2
20 Þ=z

2

; ð121Þ

and

T1f ¼
4m2ðd1x210 þ d2x22Þ

d21x
2
10 þ d22x

2
2 − ðd2 − d1Þ2

; ð122Þ

T2f ¼
4m2ðd1x21 þ d2x220 Þ

d21x
2
1 þ d22x

2
20 − ðd2 − d1Þ2

; ð123Þ

T1ff ¼ 2m2=d2 þ 2m2=d1 − T1f; ð124Þ

T2ff ¼ 2m2=d1 þ 2m2=d2 − T2f: ð125Þ

Note that a − a0 ¼ ðd1 − d2Þ=z. For small momentum
transfers, line L1 provides a Yukawa potential due to the
exchange of vector bosons of mass κ between fermions,
including the familiar spin factors. However, off-shell, i.e.,
when the invariant mass of fermions before the interaction
differs from their invariant mass after the interaction, a ≠ a0,
the potential’s behavior is quite different from the commonly
known one in the nonrelativistic Schroedinger equation.
Further discussion is provided in Secs. V and VI.
The relativistic potential in line L2 of Eq. (99), written

in the form

L2 ¼ EXþV2; ð126Þ

is

V2ð121020Þ ¼ hγþexch þ hγþboson exch

¼ ½θðzÞS1 þ θð−zÞS2�ðd1 − d2Þ=z2; ð127Þ

where

S1 ¼ S1fe−tða−a
0Þ2 þ S1ffe

−tðd2
1
x2
10þd2

2
x2
2
Þ=z2 ; ð128Þ

S2 ¼ S2fe−tða−a
0Þ2 þ S2ffe

−tðd2
1
x2
1
þd2

2
x2
20 Þ=z

2

; ð129Þ

and

S1f ¼
1

2

−d1x210 þ d2x22 þ 2ðd1 − d2Þ
d21x

2
10 þ d22x

2
2 − ðd1 − d2Þ2

; ð130Þ

S2f ¼
1

2

−d1x21 þ d2x220 þ 2ðd1 − d2Þ
d21x

2
1 þ d22x

2
20 − ðd1 − d2Þ2

; ð131Þ

S1ff ¼ 1

4

d21x
2
10 − d22x

2
2 − d21 þ d22

d21x
2
10 þ d22x

2
2 − ðd1 − d2Þ2

ð1=d2 þ 1=d1Þ; ð132Þ

S2ff ¼
1

4

d21x
2
1−d22x

2
20 −d21þd22

d21x
2
1þd22x

2
20 − ðd1−d2Þ2

ð1=d1þ 1=d2Þ: ð133Þ

Since d1 − d2 ¼ zða − a0Þ, the potential V2 is capable in
the limit z → 0 of behaving like 1=z and producing a
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singularity. However, the singularity is integrable with
regular bound-state wave functions in the sense of principal
value, cf. [40]. For small momentum transfers, one has
a ∼ a0 and the potential approaches a regular function near
z ¼ 0. The entire potential V2 vanishes on shell, i.e., when
the invariant masses of fermions before and after the
interaction are the same, a ¼ a0. Hence, V2 does not
contribute to the on-shell scattering of fermions in the
Born approximation. Consequently, it does not have any
classical counterpart and differs qualitatively in this respect
from the Yukawa potential.
Our result for the annihilation channel relativistic poten-

tial in line L3 in Eq. (100), written as

L3 ¼ ANgV3; ð134Þ

reads

V3ð121020Þ ¼ hgμνannih þ hgμνboson annih

¼ e−tðb−b0Þ2
4m2ðbþ b0Þ

2bb0
: ð135Þ

On shell, i.e., when b − b0 ¼ a − a0 vanishes, our result for
V3 reduces to 4m2=b, which is fully covariant. From the
line L4 in Eq. (101), written as

L4 ¼ ANþV4; ð136Þ

we obtain the annihilation channel relativistic potential

V4ð121020Þ ¼ hγþannih þ hγþboson annih

¼ −e−tðb−b0Þ2
ðb − b0Þ2
4bb0

: ð137Þ

Note the negative sign, which implies attraction. Potential
V4 vanishes on shell. It does not contribute to fermion-
antifermion scattering matrix in the Born approximation.

V. SPECTROSCOPY AND THE
PARTON-MODEL PICTURE

This section provides a brief discussion that relates the
computations described in previous sections to the well-
known physics of bound states in Abelian theory and their
parton picture. The theory does not involve confinement.
For the purpose of this discussion, we first need to clarify
the relationship between the expansion in powers of g used
in the computations and the nonperturbative nature of the
bound-state problem. The clarification is needed because
the computed Hamiltonians only include terms of order 1, g
and g2. As a consequence, the bound-state eigenvalue
Eq. (95) does not contain interaction terms of higher order
than second.
The RGPEP usage of formal expansion in powers of g

does not mean that the bound states are described by

perturbation theory. The actual situation is in this respect
analogous to the situation in the original nonrelativistic
Schroedinger equation in atomic physics [41]. The
Coulomb potential in that equation is just quadratic in
the electric charge. Despite such low power of charge, the
atomic bound states are successfully described using the
Coulomb potential. They are not describable using pertur-
bation theory. The critical step beyond perturbation
theory is made by solving the eigenvalue problem for
the Hamiltonian. Similarly, the second-order RGPEP leads
to Eq. (95) that is capable of describing bound-state wave
functions as nonperturbative objects.
We wish to stress at this point that the RGPEP compu-

tation can also be carried out in expansion to higher orders
than second. Results could suggest the structure of effective
FF Hamiltonians needed to properly account for some
nonperturbative effects of the theory. For examples of
computing or guessing such terms, see [3,42,43] and
references therein. It is also worth stressing that the
Hamiltonians computed using the RGPEP are obtained
without putting any restriction on the motion of field quanta
and without making any nonrelativistic approximation
concerning their motion. This is relevant to our discussion
because for self-evident reasons the connection between
spectroscopy and parton picture for bound states cannot be
rigorously formulated in a nonrelativistic theory.
Suppose that a wave function ψ t 12 is a solution not of

Eq. (95) but of the analogous eigenvalue equation that is
derived by first solving the RGPEP Eq. (41) forHt exactly,
and subsequently reducing the eigenvalue problem for Ht
to the bound-state dominant effective Fock-space compo-
nent eigenvalue equation also exactly, instead of using
expansions in powers of g that we used to derive Eq. (95).
The exact wave functions ψ t 12 would describe the bound
states in terms of the effective constituents of scale s ¼ t1=4.
Using the analogy with the Schroedinger equation, one
would then expect that the spectroscopy of bound states
could be developed in terms of such constituents and their
wave functions. The wave functions could be used for
calculating bound-state observables.
As an example of a bound-state observable, consider

scattering of electrons off a bound state. It is characterized
by the momentum transfer Q and possibly other parame-
ters, such as the Bjorken x in deep inelastic scattering
(DIS). The cross section in DIS will involve the bound-
state’s structure functions. The cross section in the elastic
scattering will involve the bound-state’s form factors, etc.
Once the wave functions are known, the observables can be
studied using familiar FF formulas [24–29]. However, the
Hamiltonian interaction terms one could so use apply for
the effective constituents of size s, instead of the abstract,
pointlike quanta of canonical theory.
Calculation of the bound-state observables will produce

results that depend on the scale Q and other parameters,
such as x. The dependence will result from the kinematics
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and dynamics of the constituents of size s. As in other
approaches, e.g., see [44,45], one expects that the calcu-
lation will take the simplest form when the constituent size
s will be optimized for the purpose. For example, setting
s ¼ 1=Q or s ¼ ffiffiffi

x
p

=Q makes the corresponding loga-
rithms of the products sQ or s2Q2=x vanish. In other words,
although the size of constituents does not influence the
values of observables, since it plays the role of a renorm-
alization group parameter in the full theory that is not
limited to any perturbative expansion, the choice of s does
influence the complexity of calculation.
When the Hamiltonian Ht and associated effective few-

body interactions are derived using the RGPEP in a
perturbative expansion, which is the case in Eq. (95), there
will be residual dependence of calculated bound-state
observables on the size of effective quanta s. This depend-
ence should be reduced by using the running coupling
constant gt as the expansion parameter for description of
phenomena of scale s.
Connection between the bound-states’ spectroscopy

developed in terms of the wave functions such as ψ t 12
in Eq. (95), and the bound-states’ features, such as parton
distributions, is based on the following observations. When
the coupling constant g is very small, the dominant
interaction term in Eq. (95) is the Yukawa potential that
for an extremely small boson mass is practically equivalent
to the Coulomb potential. Namely, when one denotes by k⃗
the relative momentum of fermions 1 and 2 and by k⃗0 the
relative momentum of fermions 1’ and 2’, using the relative
three-momentum variables defined in Appendix A, then the
dominant interaction term in Eq. (96), through Eq. (119),
takes the form

htð121020Þ ¼ −e−16tðk⃗
2−k⃗02Þ2 4m2

ðk⃗ − k⃗0Þ2 þ κ2
: ð138Þ

The boson mass can be extremely small. For the values of t
that correspond to the size s much smaller than the Bohr
radius of the system, the RGPEP form factor in front can be
ignored and we obtain a picture that closely resembles the
nonrelativistic Schroedinger equation for positronium.
In such a system, the concept of spectroscopy is well
understood.
The associated parton picture is obtained on the basis of

observation that the relative momentum variables in the FF
of Hamiltonian dynamics are invariant with respect to
boosts. The bound-state wave function ψ t 12 ¼ ψ tðk⃗Þ as a
function of variables x and k⊥, see Appendix A,

x ¼ ð1þ kz=EkÞ=2; ð139Þ

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k⃗2

q
; ð140Þ

is the same in the bound-state rest frame as in the infinite
momentum frame (IMF). Therefore, the wave function
ψ t 12 ¼ ϕtðx; k⊥Þ provides the probability distribution fðxÞ
of constituents as partons in the IMF,

fðxÞ ∼
Z

d2k⊥ϕ2
t ðx; k⊥Þ: ð141Þ

In the integrals over relative motion of constituents or
partons, one has to also keep track of minimal relativity
factors indicated in Eq. (A11) in Appendix A. The main
point is, however, that the size s of the constituents plays
the role of scale parameter. Our computations in the
previous sections need to be improved by including
variation of the coupling constant gt with t, cf. [35].
Moreover, according to Eq. (42), the operators for quanta
corresponding to different scales are related by a unitary
operator Wt1 t2 ¼ U t1U

†
t2,

qt1 ¼ Wt1 t2qt2W
†
t1 t2 : ð142Þ

The parton distributions obtained from the wave functions
such as ϕtðx; k⊥Þ will vary with t due to the effects of
fermions emitting bosons, bosons splitting into fermion
pairs and the corresponding reverse processes. These
effects are hidden in the transformation Wt1 t2 , which is
computable order by order using the RGPEP [46,47].
The transformation Wt1 t2 relates the field quanta of size
s1 that most efficiently describe the binding mechanism, to
the field quanta of size s2 that the external probe is most
sensitive to.
The bound-state eigenvalue problem of Eq. (92) for the

Hamiltonian Ht, will also lead to the intrinsic Fock-space
components of the eigenstates written in terms of constitu-
ents or partons of size s. These intrinsic components are not
described just by the RGPEP evolution operator Wt1 t2, but
by the nonperturbative solutions to the eigenvalue problem.
In handling these components using perturbation theory,
one needs to be careful in order to avoid double counting.
In summary, the RGPEP opens a way for seeking a

connection between the spectroscopy of bound states with
their parton-distribution picture. Most succinctly, one could
say that the present formulation of Abelian gauge theory,
with the gauge boson mass introduced as a regulator of
infrared and small-x divergences, provides a partial hint on
seeking a “satisfactory method of truncating the theory”
and identifying the binding mechanism of constituent
quarks and partons [18,19].

VI. PLOTS OF MASSES AND POTENTIALS

This section provides plots that illustrate the Hamiltonian
mass correction and potential interaction terms that are
computed in Secs. IV C, IV D and IV H. Plots of correc-
tions to masses squared may appear superfluous to some
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extent because the self-interactions of effective quanta
cancel them precisely. However, the plots show the orders
of magnitude of the terms that cancel out. Their magnitude
raises questions about formal applicability of perturbation
theory for realistic values of the coupling constant, which
we shall comment on. Regarding the interactions between
fermions, plots that illustrate the effective one-boson-
exchange interaction and the interaction in the annihilation
channel, show in what way and how much the quantum off-
shell dynamics of effective quanta differ from the non-
relativistic Schroedinger equation with the Coulomb or
Yukawa potential.

A. Mass corrections

As a result of quantitative control on ultraviolet and
infrared singularities through the RGPEP and gauge-boson
mass parameter κ, one can plot the behavior of mass
corrections in the Hamiltonian Ht. Note that κ is a priori
arbitrary and can be made extremely small simultaneously
with lifting the regularization. The latter is done by making
the regularization parameter tr negligible in comparison with
the finite RGPEP parameter t. After carrying out integration
over transverse momentum in the mass-correction formulas
given in Eqs. (70), (75) and (76), we obtain

g2δm2ðtÞ ¼ αg

4
ffiffiffiffiffiffi
2π

p IFEðtÞffiffiffiffiffiffiffiffiffiffiffi
tþ tr

p −
αg
4π

ð2m2 þ κ2ÞIFGðtÞ; ð143Þ

g2δκ2AðtÞ ¼
αg

4
ffiffiffiffiffiffi
2π

p IAEðtÞffiffiffiffiffiffiffiffiffiffiffi
tþ tr

p þ αg
4π

ð2m2 þ κ2ÞIAGðtÞ; ð144Þ

g2δκ2BðtÞ ¼
αg
4π

κ2IBGðtÞ; ð145Þ

where αg ¼ g2=ð4πÞ and the scale-dependent integrals are

IFEðtÞ ¼
Z

1

0

dx
1þ ð1 − xÞ2

x
erfc½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðtþ trÞ

p
δM2

fb�;

ð146Þ

IFGðtÞ ¼
Z

1

0

dxΓ½0; 2ðtþ trÞδM4
fb�; ð147Þ

IAEðtÞ ¼
Z

1

0

dx½x2 þ ð1 − xÞ2�erfc½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðtþ trÞ

p
δM2

ff̄
�;

ð148Þ

IAGðtÞ ¼
Z

1

0

dx

�
1 −

κ2xð1 − xÞ
m2 þ κ2=2

�
Γ½0; 2ðtþ trÞδM4

ff̄
�;

ð149Þ

IBGðtÞ ¼
Z

1

0

dx 4xð1 − xÞΓ½0; 2ðtþ trÞδM4
ff̄
�: ð150Þ

Symbols erfc and Γ denote the complementary error and
incomplete gamma functions. They are referred to by the
subscripts FE, FG, AE, AG and BG of the integrals, in
correspondence to fermion erfc, fermion gamma, boson A
erfc, boson A gamma and boson B gamma. The degrees of
off-shell departure of invariant masses squared are

δM2
fb ¼ κ2=xþm2=ð1 − xÞ −m2; ð151Þ

δM2
ff̄

¼ m2=xþm2=ð1 − xÞ − κ2: ð152Þ

In the limit t → 0, Eqs. (143)–(145) provide the values of the
mass-squared counterterms introduced in the initial, canoni-
cal Hamiltonian that is regulated using tr → 0.
For moderate values of t, the integrands of five integrals

that contribute to the effective mass-squared corrections are
plotted in Figs. 1 and 2. The purpose of these figures is
to show the origin of characteristic behavior of the mass-
squared corrections as functions of the size of effective
particles. For simplicity of the presentation and later
discussion of what happens when the boson mass
decreases, we set in these figures the boson mass κ equal
to the fermion mass m. The corresponding values of mass-
squared corrections, all in ratio to m2, are listed in Table I.
We observe that the corrections are small for the size s on
the order of or greater than the Compton wavelength of
fermions. The corrections grow quickly when s decreases
below the Compton wave length.
The fermion and transverse-boson (type A) mass-

squared terms exhibit the dominant behavior s−2. In
contrast, the mass squared of longitudinal bosons
(type B) is proportional to the physical value κ2 and does
not share with other quanta the rapid increase with s−2.
The fermion mass exhibits additional logarithmic increase
with s−2 due to the singular x−1 behavior of the integral
IFE for x → 0, which is limited by the function erfc. The
latter limits x from below by a number order s2κ2, so the
smaller s the smaller allowed values of x and the factor
1=x extends the support of fermion integrand toward
x ¼ 0. In contrast, the boson mass integrands all behave
symmetrically with respect to x ¼ 1=2. The difference
between the fermion and boson integrands originates in
the first-order Hamiltonian interaction term that causes a
fermion to emit a boson, which includes the factor ∼1=

ffiffiffi
x

p
that is squared in δm2. The boson mass-squared correction
comes from the interaction that produces a fermion-
antifermion pair, in which no such x-dependent, fast
growing factor arises. In Fig. 2 the integrands are shown
for values of s hundred and thousand times smaller than
the fermion Compton wavelength, approaching magni-
tudes comparable with the proton radius if the fermions
have masses like electrons. The last two columns in
Table I show how large the associated mass corrections
become. The correction for fermions grows much faster
with s−1 than the correction for bosons A does. The mass
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correction for bosons B is much smaller than for bosons A
and exhibits also much smaller rate of increase with s−1.
The large values of mass corrections for αg ¼ 1=137may

raise readers’ eyebrows. Indeed, such large values suggest
that the perturbative expansion is under suspicion of
inapplicability. However, the Hamiltonian Ht leads to
the self-interactions of effective particles that cancel the
large mass-squared corrections. One may hope that such
precise cancellation among large terms survives in the
nonperturbative solutions of the eigenvalue equations
similar to Eq. (95). Indeed, once the large terms order
s−2 log sκ and s−2 are canceled by the effective particle
self-interaction and the remaining small parts are adjusted
using eigenvalue equations for a single physical fermion
and a single physical boson, the bound-state equation for
the fermion-antifermion system is left with mass terms m2

and κ2 for all values of t. However, the warning that these
results provide is that one needs a precise conceptual and
quantitative control on the renormalized FF Hamiltonians,
in order to describe binding of partonlike systems in gauge
theories as well as one describes binding energies of
constituents in spectroscopy of atomic systems.
In order to exhibit the actual magnitude of terms whose

cancellation would have to be preserved, if one insisted on

FIG. 2. The five integrands of the integrals in Eqs. (146) to
(150) as indicated by their subscripts for two much smaller values
of the effective particle size s, necessarily in logarithmic scale, for
all other parameters without change.

FIG. 1. Five integrands of the integrals in Eqs. (146) to (150)
that contribute to the fermion and boson effective masses, as
indicated by their subscripts, for four values of the effective
particle size s. The sequence shows how the integrands vary when
the size s is decreased. The coupling constant αg ¼ 1=137 and the
gauge boson mass is set equal to the fermion mass, κ ¼ m. The
corresponding values of the mass corrections are given in Table I.
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solving bound-state problems in canonical theory with
some cutoff regularization that is meant to be lifted at the
end of calculation, one can consider the gauge boson mass
κ ¼ 10−18 eV. This is the currently accepted experimental
upper bound on the photon mass [31]. In the computation,
one can set κ ¼ 10−25m, imagining that m could be the
electron mass. On the basis of Figs. 1 and 2, one can foresee
the result. It is illustrated in Fig. 3 in terms of the plots
of three integrands as functions of x. Only three integrands
are displayed because the remaining two are too small for
showing them on the same figure. Instead, Table II provides
the resulting mass-squared corrections themselves, in ratio
to the physical fermion mass.
The fermion mass correction is much larger than the

boson mass corrections. One can see that it is logarithmi-
cally sensitive to the lower bound on x, which is effectively
set by the RGPEP form factor to be around

ffiffiffi
2

p
s2κ2 divided

by a number on the order of 100 or 1000. However, the
dominant increase of the fermion mass correction is due to
the factor s−2 that multiplies the logarithm. The factor s−2 is
due to the integration over large transverse momenta of a
boson with respect to a fermion in the intermediate state in
fermion self-interaction.
Boson masses behave differently. They do not exhibit

the logarithmic behavior in s that fermions do because the
intermediate states of the boson self-interaction only
consist of fermion-antifermion pairs. The pair mass is
1025 times larger than the boson mass and the boson mass
correction varies mostly due to the spinor factors that after
integration over transverse momenta render continuous and
relatively slowly varying functions of x.
The intriguing feature of the boson mass corrections is

that the types A and B are quite different, the latter being
very small in comparison to the former. This result can be
confronted with the expectation that in the limit of κ → 0
the third-polarization boson decouples from fermions
because the coupling is proportional to κ [7,13].
However, the actual coupling is of the form κ=x.
Therefore, the small-x behavior of the theory for x order
s2κ2 or smaller includes contributions from the bosons of
type B. Only after the cancellation of small-x singularities
for finite s, the limit κ → 0 can be considered in quantum
theory.
Concerning the magnitude of second-order mass cor-

rections, we wish to state that in the case of constituent

dynamics described by Ht their values critically depend on
the size of effective particles, see Tables I and II. When
the size of effective fermions increases toward and above
their Compton wavelengths, the magnitude of corrections
rapidly decreases. For example, the entries in Table II for
sm ¼ 2 would be from top to bottom 3.95 10−2, 1.40 10−5

and an incredibly small 7.01 10−280. For sm ¼ 4, we obtain,
correspondingly, 9.63 10−3, 1.05 10−6 and a number too
small to quote. In Table I, increasing sm to 2 results in mass
corrections of order 10−131. If the RGPEP tendency for
mass stabilization when s crosses the fermion Compton
wavelength survives in advanced computations, the models
of bound states based on a few-body Schroedinger picture
with potentials and practically fixed effective constituent
masses could be adopted as a leading approximation. In the
next section, we describe behavior of the second-order
relativistic potentials in a fermion-antifermion system.

B. Plots of relativistic potentials

The relativistic potentials for effective fermions of size s
are illustrated in this section by their action on wave
functions of simple states. Consider a fermion-antifermion
state described in terms of the parton-model variables. Let
the fermions have equal momenta, so that they share their
total momentum equally and their relative momentum is
zero. To establish notation used for plotting potentials, this
state of fermions is represented by

j1020i ¼ b†t 10d
†
t 20 j0i; ð153Þ

where the individual momenta of fermions are p10 ¼ p20 ¼
p0 and their total momentum is P1020 ¼ 2p0. We use labels
with primes as in Eq. (95), reserving the labels without
primes for the states that result from action by the
Hamiltonian. Thus, the plus and perpendicular components
of fermions momenta are p0þ ¼ Pþ

1020=2 and p
0⊥ ¼ P⊥

1020=2.
In the FF dynamics, we can consider arbitrary values of
the fermions total momentum components Pþ

1020 and P⊥
1020 ,

while the individual fermions’ kinematic momentum com-
ponents are always of the form given in Eqs. (107) and
(109), in which x0 ¼ x10 ¼ x20 ¼ 1=2 and k0⊥ ¼ 0. The
wave function ψ t 1020 in Eq. (95) that would correspond to
the state j1020i would enforce with arbitrary accuracy that

TABLE I. Values of mass corrections for equal boson and fermion masses, κ ¼ m, and six values of the size s of effective fermion and
boson field quanta in units of the fermion Compton wavelength, according to Eqs. (143)–(145) for αg ¼ 1=137. The entries correspond
to the integrands shown in Figs. 1 and 2. These corrections cancel out with the effective particle self-interactions.

sm 1 0.5 0.25 0.1 0.01 0.001

g2δm2=m2 3.19 10−13 3.03 10−4 1.88 10−2 3.67 10−1 1.04 102 1.71 104

g2δκ2A=m
2 2.73 10−13 1.69 10−4 5.17 10−3 4.67 10−2 4.85 4.85 102

g2δκ2B=m
2 5.64 10−14 3.38 10−5 6.21 10−4 1.96 10−3 5.52 10−3 9.09 10−3
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ðx0; k0⊥Þ ¼ ð1=2; 0Þ. We illustrate the relativistic potentials
by results of their action on such wave functions.
We extract the relativistic potentials from the matrix

elements h1t2tjHt eff 2 qq̄j10t20ti in Eq. (95) one by one in the
order of lines L1 to L4 in Eq. (97). We remind the reader
that the coupling constant is factored out. The potentials
are functions of kinematic components of momenta of the
two fermions that enter and two fermions that leave the
interaction. Together, these are 12 arguments. But the total
momentum of fermions is conserved and the potentials do
not depend on it, no matter how large it is. So, they are
functions of only 6 variables x, k⊥, x0 and k0⊥. In action on
the wave functions ψ t 1020 that we introduced above, the
primed variables have fixed values x0 ¼ 1=2 and k0⊥ ¼ 0.
In addition, as a consequence of rotational symmetry
around the z-axis and k0⊥ being zero, the result of an
action of a potential depends only on the variables x and
k⊥2. We denote

Q ¼ jk⊥j: ð154Þ

This way we obtain four functions V1ðx;QÞ to V4ðx;QÞ
from the potentials V1ð121020Þ to V4ð121020Þ in Eqs. (119),
(127), (135) and (137), so that for i ¼ 1, 2, 3 and 4 we have

Viðx;QÞ ¼ Við12p0p0Þ: ð155Þ

These functions are plotted in comparison with two
reference functions defined below. The reference functions
correspond to the intuitive potentials that apply in non-
relativistic quantum mechanics.
The first reference function is defined using the momen-

tum representation of the attractive Yukawa potential in
nonrelativistic quantum mechanics, which reads

VYðk⃗; k⃗0Þ ¼
−g2

ðk⃗ − k⃗0Þ2 þ κ2
: ð156Þ

Since the relative momentum in the state j1020i that we use
is zero, one sets k⃗0 to zero. The argument of the Yukawa

FIG. 3. Three integrands of the integrals in Eqs. (146) to (148) for
thebosonmassmuchsmaller than the fermionmass,κ ¼ 10−25m for
four values of the effective particle size s. The figure illustrates
behavior of the fermion integrand like 1=x, where x is the fraction of
fermionmomentumcarriedby the boson. Integrands inEqs. (149) to
(150) are relatively so small that they cannot be shown on the figure.
The couplingconstantαg ¼ 1=137. The correspondingvaluesof the
mass corrections for fermions and bosons are given in Table I.

TABLE II. Values of mass corrections for the boson mass much
smaller than the fermion mass, κ ¼ 10−25m, in agreement with
current experimental upper bound on the photon mass. Results
for four values of the size s of effective fermion and boson field
quanta are shown in units of the fermion Compton wavelength,
according to Eqs. (143)–(145) for α ¼ 1=137. The entries
correspond to integrands shown in Fig. 3. These corrections
cancel out with the effective particle self-interactions.

sm 1 10−1 10−3 10−6

g2δm2=m2 1.62 10−1 1.71 10þ1 1.85 10þ5 2.05 10þ11

g2δκ2A=m
2 1.39 10−4 4.93 10−2 4.85 10þ2 4.85 10þ8

g2δκ2B=m
2 3.17 10−70 1.79 10−53 8.92 10−53 1.96 10−52
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nonrelativistic potential reduces to k⃗2. We identify the
nonrelativistic k⃗ with its FF counterpart using formulas of
Appendix A,

k⃗2 ¼ M2
12=4 −m2 ¼ Q2 þ ½ðx − 1=2Þ2m�2

4xð1 − xÞ : ð157Þ

In the nonrelativistic limit the denominator 4xð1 − xÞ turns
into 1. Therefore, the Yukawa potential function we could
use as a reference would be

−g2

Q2 þ ½ðx − 1=2Þ2m�2 þ κ2
: ð158Þ

However, in lines L1 to L4 we have factored out spinor
matrix elements and the square of the coupling constant
with proper signs. Our Yukawa reference function is
therefore defined to be

VYðx;QÞ ¼ 4m2

Q2 þ ½ðx − 1=2Þ2m�2 þ κ2
: ð159Þ

For small κ=m, the maximal value of this function equals
4m2=κ2 and the minimal one is zero.
Our second reference function is designed for the

annihilation channel potentials. We strip the RGPEP form
factor from the potential V3 in Eq. (135) and obtain

2m2

�
1

b
þ 1

b0

�
ð160Þ

with b ¼ M2
12 − κ2 and b0 ¼ 4m2 − κ2. Our annihilation

reference function is hence defined to be

VAðx;QÞ ¼ 2m2

�
xð1 − xÞ

Q2 þm2 − κ2xð1 − xÞ þ
1

4m2 − κ2

�
:

ð161Þ

Its maximal value is one and it tends to 1=2 for large values
of Q or extreme values of x, when κ ≪ m.
In all figures that illustrate the relativistic potentials, we

use the same boson mass κ ¼ m=7 and the same size of
effective particles s ¼ ð1.5mÞ−1. These choices are made
for purely graphical reasons, to satisfy the condition that the
characteristic features of the interactions are well visible.
When the mass κ decreases, the Yukawa potential at
small momentum transfers becomes increasingly spiky
and approximates the Coulomb potential near x ¼ 1=2
and Q ¼ 0 increasingly well. For the parameters chosen in
the figures, the Yukawa-like potentials reach the value
4m2=κ2 ¼ 196, see Eq. (159). When the size s increases,
the potentials lose strength off shell, which means they
are exponentially limited to a smaller range of x and Q.
When s decreases, the range increases according to the
rule ½Q2 þm2ð2x − 1Þ2�=½xð1 − xÞ� ≲ s−2.
Figure 4 contains three panels that show, counting from

the top to bottom, the boson exchange potential function
V1ðx;QÞ of Eq. (119), the Yukawa potential function
VYðx;QÞ of Eq. (159) and their ratio

FIG. 4. Relativistic gauge-boson exchange potential V1ð121020Þ
of Eq. (119). The upper plot illustrates V1ð121020Þ in terms of the
potential function V1ðx;QÞ of Eq. (155). For graphical reasons,
the boson mass κ is set to one seventh of the fermion mass m and
the RGPEP running size parameter s to the inverse of 1.5m. The
variable x corresponds to the parton-model x of the fermion labeled
by 1. The variable Q is the magnitude of transverse momentum of
that fermion with respect to the antifermion labeled by 2. The
middle panel shows the Yukawa potential function VYðx;QÞ of
Eq. (159), hardly discernible from V1ðx;QÞ. The bottom figure
presents the ratio R1ðx;QÞ ¼ V1ðx;QÞ=VYðx;QÞ of Eq. (162).
The ratio exhibits the exponential suppression of effective inter-
actions when the invariant mass changes by more than the inverse
of the RGPEP scale parameter s. More details are in the text.
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R1ðx;QÞ ¼ V1ðx;QÞ=VYðx;QÞ: ð162Þ

These figures demonstrate the role of the RGPEP form
factors in effective interactions. The form factors
exponentially suppress the interactions that change the
effective fermions invariant mass by more than the inverse
of an effective fermion size s. While the relativistic
potential function V1ðx;QÞ appears almost indistinguish-
able from the Yukawa potential function VYðx;QÞ, their
ratio displays a huge difference from one, due to the
RGPEP form factors. In the figures, fermions 1’ and 2’
have the invariant mass squared equal to M02 ¼ 4m2.
Fermions 1 and 2 have the invariant mass squared equal to
M2 ¼ ðQ2 þm2Þ=½xð1 − xÞ�. Generally, the RGPEP form
factors exponentially suppress the interactions off-shell
extent according to the rule ðM2 −M02Þ ≲ s−2. When
the variable x0 introduced below Eq. (153) deviates from
0.5, the Yukawa peak of Fig. 4 shifts and centers on x ¼ x0

instead of 0.5. If the transverse momentum k0⊥ significantly
differs from zero, the potential function behaves in a
somewhat more complicated way due to its additional
dependence on x0, Q0 and the angle between k⊥ and k0⊥ in
the transverse plane, but it follows the rule that ðQ2 þm2Þ=
½xð1 − xÞ� does not differ from ðQ02 þm2Þ=½x0ð1 − x0Þ� by
much more than 1=s2.
Figure 5 shows the relativistic FF potential of Eq. (127)

in terms of the function V2ðx;QÞ in Eq. (155), in
comparison with the potential function V1ðx;QÞ, shown

in Fig. 4 for the same parameters κ and s. It is visible
that the relativistic FF potential V2ð121020Þ has support
only off shell. In the region of binding, it is very small
in comparison to the one-boson-exchange potential
V1ð121020Þ. In the language of SRG [21], it has significant
matrix elements only outside the band of a band-diagonal
matrix of the effective Hamiltonian, whose width in terms
of the invariant mass is 1=s. Far away from the diagonal,
the function V2ðx;QÞ briefly exceeds the function

FIG. 5. Relativistic potential V2ð121020Þ of Eq. (127). It is
drawn in terms of the potential function V2ðx;QÞ of Eq. (155), in
orange. For comparison, the Yukawa-like potential function
V1ðx;QÞ of Eq. (155), see Fig. 4, is shown in blue. The functions
are displayed with the same sign to show their relative magni-
tudes well. The view of potentials is arranged to be from the
opposite point to that in Fig. 4 in order to show the relative
magnitude of the two functions at small momentum transfers,
which is the region where the bound-state formation mechanism
is most active. In that region, the potential function V2ðx;QÞ is
much smaller in size than the Yukawa-like function V1ðx;QÞ.
The Yukawa peak reaches 4 × 49, as explained below Eq. (159).
The potential function V2ðx;QÞ vanishes at that point.

FIG. 6. Relativistic annihilation-channel potential V3ð121020Þ
of Eq. (135), shown in terms of the potential function V3ðx;QÞ of
Eq. (155). One sees the effect of the RGPEP form factors. The
middle panel shows the annihilation-channel potential function
VAðx;QÞ of Eq. (161). The ratio R3ðx;QÞ ¼ V3ðx;QÞ=VAðx;QÞ
is shown in the bottom panel, see the text.
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V1ðx;QÞ, where the latter is already 2 orders of magnitude
smaller than in the band. This partial dominance of
V2ðx;QÞ over V1ðx;QÞ is the origin of the hufflike pattern
visible in Fig. 5.
The potential V2 does not contribute to the on-shell

scattering matrix in the Born approximation and does not
have a classical counterpart, contrary to the potential V1

that corresponds to the Yukawa potential. This is a welcome
feature because the potential V2 multiplies the noncovariant
spin structure EXþ of Eq. (103), see Eq. (126). The factor
EXþ preserves spins of fermions and introduces the factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1 − xÞx0ð1 − x0Þp

that further suppresses the interaction
for extreme values of x or x0. The alien feature of V2ðx;QÞ
near x ¼ 1=2 originates from the factor 1=ðx − x0Þ that
produces a discontinuous variation of the potential as a
function of x for x0 ≠ 1=2. The discontinuity is suppressed
by additional powers of x − 1=2 for x0 ¼ 1=2. For x0 ≠ 1=2,
it is integrable with regular wave functions of x and x0 in
the sense of principal value.
Figure 6 shows three panels that, counting from top to

bottom, illustrate the boson annihilation channel potential
function V3ð121020Þ of Eq. (135). The top panel shows
the function V3ðx;QÞ of Eq. (155). The middle panel shows
the potential function VAðx;QÞ of Eq. (161). The ratio
R3ðx;QÞ ¼ V3ðx;QÞ=VAðx;QÞ is shown in the bottom
panel. Comparing the panels top with middle, one sees
again the role of the RGPEP form factors. In the SRG
language, they squeeze the potential to the band of effective
theory. The bottom-panel ratio function R3ðx;QÞ is char-
acterized by a little more flat shape than the top panel
potential function V3ðx;QÞ. This effect shows that the
RGPEP form factor introduces a relativistic annihilation-
channel potential that is close to the function VAðx;QÞ
times the RGPEP form factor.
Finally, Fig. 7 illustrates the relativistic FF annihilation-

channel potential V4ð121020Þ of Eq. (137) in terms of the
potential function V4ðx;QÞ in Eq. (155), shown simulta-
neously with the potential function V3ðx;QÞ of Eq. (155).

The comparison shows the smallness of V4ðx;QÞ. Its sign
is changed and its value is multiplied by 10 in order to
obtain an informative picture. The relativistic potential
V4ð121020Þ appears in the line L4 in Eq. (136) multiplied by
the frame-dependent spin factor ANþ of Eq. (105). It does
not contribute to the on-shell scattering matrix in the Born
approximation and does not have any familiar counterpart
in quantum mechanics. However, it does participate in
the off-shell bound-state dynamics, in addition to the
potential V3. Its significance in that dynamics is not known
at this point. The actual magnitude of the boson mass κ
much smaller than the fermion mass m, does not influence
the potentials V3 and V4 in any significant way.

VII. CONCLUSION

The RGPEP allows one to calculate second-order effec-
tive masses and interactions in the fermion-antifermion
systems in Abelian gauge theory. The canonical
Hamiltonian leads to difficulties with unambiguous han-
dling of small x and large k⊥ singularities because the
singular terms involve the ratio k⊥2=x and the ultraviolet
divergences are mixed with the small x divergences. As a
result, the ultraviolet counterterms involve unknown func-
tions of x and small-x counterterms contain functions
of k⊥ [3]. However, once the mass parameter for gauge
bosons is introduced according to the principles of local
gauge symmetry and spontaneous violation of the global
gauge symmetry, a mass gap is introduced and one achieves
unambiguous control on the divergences. The ultraviolet,
small-x and infrared singularities are separated from
each other in a way specific to the FFHamiltonian dynamics
and the RGPEP evolution of Hamiltonian operators.
Namely, the longitudinal small-x region is controlled by
the parameter sκ while the transverse ultraviolet region is
controlled by s, where s is theRGPEP a priori arbitrary scale
parameter. The origin of the separation lies in the expression

s2δM2 ¼ ðsκÞ2 þ ðsk⊥Þ2
x

ð163Þ

for the contribution of bosons to the arguments of exponen-
tially falling-off RGPEP form factors in the effective inter-
actions. It is visible that one cannot make s2δM2 small for
small x bymaking sk⊥ small because eventually sκ begins to
count and sδM always diverges for fixed s when x → 0.
Using expansion in the coupling constant g, one can

employ the RGPEP to study what happens when the boson
mass κ is varied and what comes out in terms of the
effective theory when κ is made very small. The result of
second-order calculations described in this article is that the
fermion mass counterterms can reach enormous values.
Their contribution is canceled precisely in the second-order
mass eigenvalue equation for physical fermions or bosons,
but the canceled terms are much greater than the eigen-
values, if the size of effective quanta is very small.

FIG. 7. Relativistic annihilation-channel potential functions
−10V4ðx;QÞ and V3ðx;QÞ. See the text for details.
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However, when that size is increased toward the fermions
Compton wavelength and above, the mass corrections
become very small.
It is also found that the effective boson masses vary

differently with the size s for the commonly known trans-
verse bosons and for the less known longitudinal ones. The
mass corrections for the latter stay small or very small in
comparison to the mass corrections for the former.
The RGPEP also allows one to calculate interaction

terms that drive the fermion-antifermion bound state
dynamics. One obtains Yukawa potentials that tend to
the Coulomb potential when the boson mass tends to zero
and the size of effective quanta increases to and above the
fermion Compton wavelength. However, the size increase
is associated with development of increasingly important
form factors that suppress interactions with large changes
of the invariant mass of fermions.
The fact that the FF Hamiltonian dynamics is invariant

with respect to the Lorentz boosts along one axis, besides six
other Poincaré transformations, allows one to relate the
RGPEP results for the Coulomb- or Yukawa-like systems to
their parton model picture. The results described in this
article suggest that when we imagine partons as constituents,
their size cannot be ignored. If one ignores their size, the
powerlike behavior of perturbative interactions is extended
to the phase-space region where the eigenvalue condition for
bound states imposes decisive departures of the wave
functions from their perturbative estimates that use canonical
interactions. The effective interactions become exponentially
suppressed when the fermions invariant mass changes by
more than the inverse of their Compton wavelength. One
also obtains small effective interaction terms that appear in
addition to the Coulomb and Yukawa potentials and do not
have classical counterparts. The RGPEP enables us to draw
details of all these potentials.
It is not clear what happens in the higher order RGPEP

calculations. Of key interest is the fourth order. This is where
the running of an effective coupling constant shows up in the
bound-state dynamics for the first time. The computation is
certainly doable and the results would be of interest.
The final question we wish to address is whether Soper’s

theory is a valid approximation to the gauge theory with
spontaneously broken global symmetry. We obtain the
former from the latter in the massive limit in which the
classical field h=v is set to zero when v is formally set to
infinity. However, the limit is considered in a classical
Lagrangian. The effective quantum theory derived using
the RGPEP will include corrections that depend on the
momentum range 1=sr of interactions in ratio to v. The
order of limits v → ∞ and sr → 0 may matter. At this
point, the calculations described here are considered
reasonable regarding gauge symmetry because they are
carried out using the massive limit that results in the Soper
theory, which by itself is an example of a theory with a form
of gauge symmetry. The full theory, not using the massive
limit, can also be analyzed using the RGPEP.
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APPENDIX A: NOTATION

Translation invariance on the front implies conservation
of momentum described by the δ-function δ̃c:a, where c
denotes created and a annihilated quanta. We use the
convention

δ̃c:a ¼ 2ð2πÞ3δðPþ
c − Pþ

a Þδ2ðP⊥
c − P⊥

a Þ; ðA1Þ

where Pc and Pa denote the total momenta of particles
created and annihilated, respectively. The corresponding
invariant masses are M2

c ¼ P2
c and M2

a ¼ P2
a with minus

components of individual particles momenta calculated
from their mass shell conditions, p− ¼ ðm2 þ p⊥2Þ=pþ.
Integration over a single particle phase space,

Z
d4p δðp2 −m2Þθðp0Þ ¼

Z
d3p
2Ep

¼
Z

∞

0

dpþ

2pþ

Z
d2p⊥;

ðA2Þ

is denoted by ð2πÞ3 R ½p� and if one has more particles to
integrate over their momenta p1; p2;…pn, the integral is
abbreviated to

Z
½12…n� ¼

Z
½p1�

Z
½p2�…

Z
½pn�: ðA3Þ

When two particles have together momentum P and carry
fractions x and 1 − x of it and some transverse relative
momentum k⊥,

pþ
1 ¼ xPþ; ðA4Þ

pþ
2 ¼ ð1 − xÞPþ; ðA5Þ

p⊥
1 ¼ xP⊥ þ k⊥; ðA6Þ

p⊥
2 ¼ ð1 − xÞP⊥ − k⊥; ðA7Þ

one has

Z
½12� ¼

Z
½P�

Z
½xk�; ðA8Þ

Z
½xk� ¼

Z
1

0

dx
4πxð1 − xÞ

Z
d2k⊥
ð2πÞ2 : ðA9Þ

In terms of the relative three-momentum of two particles of
mass m in their rest frame, k⃗,
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x ¼ ð1þ kz=EkÞ=2; ðA10Þ
dx

xð1 − xÞ ¼
2 dkz
Ek

; ðA11Þ
Z

½xk� ¼
Z

d3k
ð2πÞ3Ek

; ðA12Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k⃗2

p
. The invariant mass of two

particles is

ðp1þp2Þ2¼ðpþ
1 þpþ

2 Þðp−
1 þp−

2 Þ−ðp⊥
1 þp⊥

2 Þ2 ðA13Þ

¼ k⊥2 þm2
1

x
þ k⊥2 þm2

2

1 − x
ðA14Þ

¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
1 þ k⃗2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ k⃗2
q �

2

: ðA15Þ

We use spinors upσ ¼ Bðp;mÞuσ and vpσ ¼ Bðp;mÞvσ
in which the spinors at rest are related by vσ ¼ Cu�σ
with C ¼ iγ2 and the front boost matrix is Bðp;mÞ ¼

1ffiffiffiffiffiffiffi
pþm

p ½Λþpþ þ Λ−ðmþ p⊥α⊥Þ�, where Λ� ¼ 1
2
ð1� α3Þ.

The spinors at rest are

uσ ¼
ffiffiffiffiffiffiffi
2m

p �
χσ

0

�
; vσ ¼

ffiffiffiffiffiffiffiffiffi
2mf

p �
0

ξ−σ

�
; ðA16Þ

where ξ−σ ¼ −iσ2χσ ¼ σχ−σ, cf. [33,34]. Free bosons of
type A have polarization vectors

εμpσ ¼ ðε−pσ ¼ 2p⊥ε⊥σ =pþ; ε⊥σ Þ ðA17Þ

with ε⊥σ ¼ ð1þ σ; 1 − σÞ=2. Free bosons of type B have
polarization vectors

εp3 ¼
�
ε−p3 ¼

p⊥2 − κ2

κpþ ; εþp3 ¼
pþ

κ
; ε⊥p3 ¼

p⊥
κ

�
ðA18Þ

¼ p
κ
− η

κ

pþ ; ðA19Þ

and ηþ ¼ η⊥ ¼ 0 while η− ¼ 2.

APPENDIX B: DETAILS OF THE INITIAL
HAMILTONIAN

The canonical Hamiltonian terms in Eq. (39) are listed
below using notation explained in Appendix A. The sub-
script 0 associated with canonical creation and annihilation
operators for the bare quanta that are considered pointlike,
or of size sr ¼ t1=4r → 0 as the regularization is being lifted,
is not needed here and it is omitted. The free part of the
Hamiltonian is Hf ¼ Hψ2 þHA2 þHB2 , where

Hψ2 ¼
X2
σ¼1

Z
½p�p

⊥2 þm2

pþ ½b†pσbpσ þ d†pσdpσ�; ðB1Þ

HA2 ¼
X2
σ¼1

Z
½p�p

⊥2 þ κ2

pþ a†pσapσ; ðB2Þ

HB2 ¼
Z

½p�p
⊥2 þ κ2

pþ c†pcp: ðB3Þ

The interaction Hamiltonian HI ¼ H −Hf contains terms
of orders g and g2. The terms order g are

HψAψ ¼ g
X
123

Z
½123�δ̃c:a½ū2=ε�1u3 b†2a†1b3 − v̄3=ε�1v2 d

†
2a

†
1d3

þ ū1=ε3v2 b
†
1d

†
2a3 þ H:c:�; ðB4Þ

HψBψ ¼ −gX
12

Z
½123�δ̃c:a

�
ū2

κγþ

pþ
1

u3b
†
2c

†
1b3

− v̄3
κγþ

pþ
1

v2d
†
2c

†
1d3 þ ū1

κγþ

pþ
3

v2b
†
1d

†
2c3 þ H:c:

�
:

ðB5Þ

There are two terms order g2. The term due to constraint
on ψ− is

HψAAψ ¼ g2

2

X
1234

Z
½1234�δ̃c:afgψAAψ ; ðB6Þ

where, in the universal order b†d†a†adb,

fgψAAψ ¼ ū1=ε�2γ
þ=ε3u4

pþ
3 þ pþ

4

b†1a
†
2a3b4 þ

ū1=ε�2γ
þ=ε3v4

pþ
3 − pþ

4

b†1d
†
4a

†
2a3 þ

ū1=ε�2γ
þ=ε�3u4

pþ
4 − pþ

3

b†1a
†
2a

†
3b4 þ

ū1=ε2γþ=ε3u4
pþ
3 þ pþ

4

b†1a2a3b4

þ ū1=ε2γþ=ε3v4
pþ
3 − pþ

4

b†1d
†
4a2a3 þ

ū1=ε2γþ=ε�3u4
pþ
4 − pþ

3

b†1a
†
3a2b4 −

ū1=ε2γþ=ε�3v4
pþ
3 þ pþ

4

b†1d
†
4a

†
3a2 þ

v̄1=ε�2γ
þ=ε3u4

pþ
3 þ pþ

4

a†2a3d1b4

þ v̄1=ε�2γ
þ=ε3v4

pþ
4 − pþ

3

d†4a
†
2a3d1 þ

v̄1=ε�2γ
þ=ε�3u4

pþ
4 − pþ

3

a†2a
†
3d1b4 þ

v̄1=ε�2γ
þ=ε�3v4

pþ
3 þ pþ

4

d†4a
†
2a

†
3d1 þ

v̄1=ε2γþ=ε3v4
pþ
4 − pþ

3

d†4a2a3d1

þ v̄1=ε2γþ=ε�3u4
pþ
4 − pþ

3

a†3a2d1b4 þ
v̄1=ε2γþ=ε�3v4
pþ
3 þ pþ

4

d†4a
†
3a2d1: ðB7Þ
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The term due to constraint on A− is

HðψψÞ2 ¼
g2

2

X
1234

Z
½1234�δ̃c:afgðψψÞ2 ; ðB8Þ

where fgðψψÞ2 reads

fgðψψÞ2 ¼ −
ū1γþu2 ū3γþu4
ðpþ

3 − pþ
4 Þ2

b†1b
†
3b2b4 þ

ū1γþu2 ū3γþv4
ðpþ

3 þ pþ
4 Þ2

b†1b
†
3d

†
4b2 −

ū1γþu2 v̄3γþu4
ðpþ

3 þ pþ
4 Þ2

b†1d3b2b4 −
ū1γþu2 v̄3γþv4
ðpþ

3 − pþ
4 Þ2

b†1d
†
4d3b2

−
ū1γþv2 ū3γþu4
ðpþ

3 − pþ
4 Þ2

b†1b
†
3d

†
2b4 þ

ū1γþv2 v̄3γþu4
ðpþ

3 þ pþ
4 Þ2

b†1d
†
2d3b4 −

ū1γþv2 v̄3γþv4
ðpþ

3 − pþ
4 Þ2

b†1d
†
2d

†
4d3 þ

v̄1γþu2 ū3γþu4
ðpþ

3 − pþ
4 Þ2

b†3d1b2b4

þ v̄1γþu2 ū3γþv4
ðpþ

3 þ pþ
4 Þ2

b†3d
†
4d1b2 þ

v̄1γþu2 v̄3γþv4
ðpþ

3 − pþ
4 Þ2

d†4d1d3b2 −
v̄1γþv2 ū3γþu4
ðpþ

3 − pþ
4 Þ2

b†3d
†
2d1b4 þ

v̄1γþv2 ū3γþv4
ðpþ

3 þ pþ
4 Þ2

b†3d
†
2d

†
4d1

−
v̄1γþv2 v̄3γþu4
ðpþ

3 þ pþ
4 Þ2

d†2d1d3b4 −
v̄1γþv2 v̄3γþv4
ðpþ

3 − pþ
4 Þ2

d†2d
†
4d1d3: ðB9Þ

1. Regularization

Both Hamiltonian terms HψAAψ and HðψψÞ2 contain a product of four bare Fock operators corresponding to two factors
h12 and h34 and inverse of i∂þ or ði∂þÞ2,

h12
1

ði∂þÞn h34 ðB10Þ

with n ¼ 1 or n ¼ 2. In agreement with their origin in constraints, the operators h12 and h34 are regulated as the operators
order g are through the RGPEP vertex form factors with the size parameter sr ¼ t1=4r , see Eqs. (60) and (61) and comments
below them.
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