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We construct hyperasymptotic expansions for the heavy quark pole mass regulated using the principal
value (PV) prescription. We apply such hyperasymptotic expansions to the B=D meson masses, and Λ̄
computed in the lattice. The issue of the uncertainty of the (top) pole mass is critically reexamined. The
present theoretical uncertainty in the relation between m̄t, the MS top mass, and mt;PV, the top pole mass
regulated using the PV prescription, is numerically assessed to be δmt;PV ¼ 28 MeV for m̄t ¼ 163 GeV.
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I. INTRODUCTION

We construct hyperasymptotic expansions for the heavy
quark pole mass regulated using the principal value (PV)
prescription along the lines of [1]. We generalize the
discussion of that reference by including possible ultra-
violet renormalons. We then apply such expansions to
various observables. The name hyperasymptotic we borrow
from [2]. For a treatise of hyperasymptotic expansions in
the context of ordinary differential equations see [3].
In [1] we studied observables characterized by having a

large scale Q ≫ ΛQCD, and for which the operator product
expansion (OPE) is believed to be a good approximation.
We computed them within an hyperasymptotic expansion.
More specifically, the perturbative part of the OPE was
summed up using the PV prescription: SPV. The difference
between SPV and the full nonperturbative (NP) result is
assumed to exactly scale as the intrinsic NP terms of the
OPE. In general terms:

Observable

�
Q

ΛQCD

�

¼ SPVðαXðQÞÞ þ KðPVÞ
X αγXðQÞΛ

d
X

Qd ð1þOðαXðQÞÞÞ

þO
�
Λd0
X

Qd0

�
; ð1Þ

where the last term refers to genuine higher order terms in
the OPE (d0 > d > 0). Then, since SPV can not be com-
puted exactly, we obtain it approximately along an hyper-
asymptotic expansion (a combination of (truncated)
perturbative sums and of NP corrections). This is possible
if enough terms of the perturbative expansion are known,
and if the divergent structure of the leading renormalons of
the observable is also known. This allows us to have a clear
(parametric) control on the error of the computation. Two
alternative methods were considered in [1] depending on
how the truncation of the leading perturbative sum

STðαÞ ¼
XN
n¼0

pðXÞ
n αnþ1

X ðμÞ ð2Þ

is made:
(1) N and μ ∼Q large but finite:

N ¼ NP ≡ jdj 2π

β0αXðμÞ
ð1 − cαXðμÞÞ; ð3Þ

(2) N → ∞ and μ → ∞ in a correlated way. We con-
sidered two options:

ðAÞ N þ 1¼ NSðαÞ≡ jdj 2π

β0αXðμÞ
;

ðBÞ N ¼ NAðαÞ≡ jdj 2π

β0αXðμÞ
ð1− c0αXðQÞÞ ð4Þ

where c0 > 0 but c is arbitrary otherwise. Note that in case
(1), c can partially simulate changes on the scale or scheme
of αX. d is the dimension associated to a given renormalon.
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Note that in this paper d can be positive (infrared
renormalons) or negative (ultraviolet renormalons), unlike
in [1], where only positive d’s were considered. Note
also that genuine NP corrections are only associated to
positive d’s.
We will not study the modifications the inclusion of

ultraviolet renormalons produce in case (2). In this paper
we are mainly concerned in the scenario where the leading
renormalon is of infrared nature and subleading renorma-
lons can be ultraviolet and/or infrared. This is the case of
the pole mass. In such scenario the precision we can obtain
in case (2) is limited by the approximate knowledge of the
leading infrared renormalon and we cannot add further to
the discussion given in [1]. Different is the case (1), which
we discuss in the next section.
The structure of the paper is as follows. In Sec. II we

review the general case. Compared with [1] we include the
possible effect of ultraviolet renormalons. In Sec. III we
study the pole mass of a heavy quark in the large β0
approximation. We use it as toy-model to test our methods.
We then move to real QCD. In Sec. IV we study the B=D
meson mass and lattice evaluations of Λ̄. Finally, in Sec. V
we do a dedicated study of the top mass.
In general we will avoid to make explicit the scheme (X)

and scale (μ) dependence unless necessary.

II. GENERAL FORMULAS

A. N large and μ ∼ Q ≫ ΛQCD. Eq. (3). Case (1)

This case was already discussed at length in [1]. We now
give the general expression after the inclusion of ultraviolet
renormalons (for a more detailed discussion see [4]). It can
be written in the following way

SPVðQÞ ¼ SP þ
X
fjdjg

Sjdj þ
X
fd>0g

Ωd þ
X
fd<0g

Ωd; ð5Þ

where

SP ≡ XNPðjdminjÞ

n¼0

pnα
nþ1ðμÞ≡ Sjdj¼0; ð6Þ

and (jdj > 0)

Sjdj ≡
XNPðjd0jÞ

n¼NPðjdjÞþ1

ðpn − pðasÞ
n Þαnþ1ðμÞ; ð7Þ

where the asymptotic behavior associated to renormalons

with dimensions ≤ jdj is included in pðasÞ
n , and d0 is the

dimension of the closest renormalon to the origin in the
Borel plane fulfilling that jd0j > jdj.Ωd is a modification of
the definition of terminant given in [5] that is more suitable
to our case. Whereas in [5] (pNα

N× the) terminant refers to
the completion of the superasymptotic approximation to
give the complete result, here Ωd is the completation of the
part of the perturbative series associated to the singularity
located at u≡ β0t

4π ¼ d
2
in the Borel plane using the PV

prescription. For the case of infrared renormalons (d > 0)
the general analytic expression of Ωd can be found in [1].
For a generic ultraviolet renormalon (d < 0) that produces
the asymptotic behavior

pðasÞ
n ¼ ZX

Od

μd

Qd

Γðnþ b0 þ 1Þ
Γðb0 þ 1Þ

�
β0
2πd

�
n
�
1þ c1

b0

nþ b0

þ c2
b02

ðnþ b0Þðnþ b0 − 1Þ þ…

�
; ð8Þ

Ωd<0 reads

Ωd<0 ¼ ΔΩUVðdbÞ þ c1ΔΩUVðdb − 1Þ þ � � � ; ð9Þ

where1 (we define ηc≡−b0þ2πjdjc
β0

−1 where b0 ¼ db − γ)

ΔΩUVðdbÞ ¼ ZX
Od

μd

Qd ð−1ÞNPþ1
1

Γðb0 þ 1Þ
�

β0
2πjdj

�
NPþ1

αNPþ2

Z
∞

0

dx
e−xxNPþ1þb0

1þ xβ0α
2πjdj

¼ ZX
Od

μd

Qd ð−1ÞNPþ1
π

Γðb0 þ 1Þ
�
β0
jdj

�
−b0−1=2

αðμÞ1=2−b0e
−2πjdj
β0αðμÞ

�
1þ αðμÞ

π

β0
12jdj ½−1þ 3η2c�

þ α2ðμÞ
π2

β20
1152jdj2 ½13 − 48ηc − 60η2c þ 48η3c þ 36η4c� þOðα3Þ

�
: ð10Þ

Joining all terms together we have

Ωd<0 ¼
ffiffiffiffiffiffiffiffiffi
αðμÞ

p
KðPÞ

X
Qjdj

μjdj
e

−2πjdj
β0αðμÞ

�
β0αðμÞ
4π

�
−b0

f1þ K̄ðPÞ
X;1αðμÞ þ K̄ðPÞ

X;2α
2ðμÞ þOðα3ðμÞÞg; ð11Þ

1An sketch of how these computations are done is given in the Appendix A.
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where

KðPÞ
X ≡ ZX

Od
ð−1ÞNpþ1

�
β0

π2jdj
�

−1=2 1

Γðb0 þ 1Þ
�

2

jdj
�

−b0

;

ð12Þ

K̄ðPÞ
X;1 ≡

�
2

π

�
1=2

�
c1

β0b0

2
ffiffiffiffiffiffi
2π

p jdj þ
β0

12jdj ffiffiffiffiffiffi
2π

p ð−1þ 3η2cÞ
�
;

ð13Þ

K̄ðPÞ
X;2≡

�
2

π

�
1=2

�
c2

b02β20
4

ffiffiffi
2

p jdj2π3=2þc1
b0β20ð−1þ3ðηcþ1Þ2Þ

24
ffiffiffi
2

p jdj2π3=2

þ β20
1152jdj221=2π3=2 ½13−48ηc−60η2cþ48η3cþ36η4c�

�
:

ð14Þ

Note that in this case μ is in the denominator. If
we set the anomalous dimension to zero (b0 ¼ db),

Ωd<0 ∼
ffiffiffiffiffiffiffiffiffi
αðμÞp Λjdj

QCDQ
jdj

μ2jdj (unlike for infrared renormalons

where Ωd>0 ∼
ffiffiffiffiffiffiffiffiffi
αðμÞp Λd

QCD

Qd ). If one takes μ very large this

term will be quite small. In practice, if we take μ ∼Q, we
may need this term.
SPV will be computed truncating the hyperasymptotic

expansion in a systematic way. This means truncating
Eq. (5) as follows (note that we always define D to be
positive):

SðD;NÞ
PV ðQÞ ¼

X
fjdjg

Sjdj<D þ
X

fjdj≤Dg
Ωd

þ
XNPðDÞþN

n¼NPðDÞþ1

ðpn − pðasÞ
n Þαnþ1ðμÞ: ð15Þ

For each value of the couple (D;N), we can state the

parametric accuracy of SðD;NÞ
PV ðQÞ. For instance for Sð0;NPÞ

the error would be (up to a numerical and a
ffiffiffiffiffiffi
αX

p
factor)

δSð0;NPÞ ∼Oðe−jdminj 2π
β0αX ðQÞÞ: ð16Þ

This is what is commonly named the superasymptotic
approximation. For Sðjdminj;0Þ the parametric form of the
error reads (up to a numerical and a possible α3=2X factor):

δSðjdminj;0Þ ∼Oðe−jdminj 2π
β0αX ðQÞð1þlnðjd=dminjÞÞ; ð17Þ

where d is the location of the next renormalon closest to the
origin. This corresponds to the first term in the hyper-
asymptotic approximation. The expression for the error in

the general case SðD;NÞ
PV ðQÞ reads (N ≠ NP but large)

δSðD;NÞ ∼Oðe−D 2π
β0αX ðQÞð1þlnðjd=DjÞ

αNX Þ; ð18Þ

where d is the location of the next renormalon closest to the
origin after D.

B. mPV, general formulas

For the case of the heavy quark mass, which we discuss
at length in this paper, we have [m̄ ¼ mMSðmMSÞ]

mPVðm̄Þ ¼ mP þ m̄Ωm þ
X2NP

n¼NPþ1

ðrn − rðasÞn Þαnþ1ðμÞ

þ m̄Ω2 þ m̄Ω−2 þOðe−2 2π
β0α

ð1þlnð3=2ÞÞÞ; ð19Þ

where

mP ≡ m̄þ
XNP

n¼0

rnαnþ1ðμÞ; ð20Þ

the coefficients rn for n ≤ 3 were computed in [6–9];

Ωm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
αXðμÞ

p
KðPÞ

X
μ

m̄
e−

2π
β0αX ðμÞ

�
β0αXðμÞ

4π

�
−b
ð1þ K̄ðPÞ

X;1αXðμÞ

þ K̄ðPÞ
X;2α

2
XðμÞþOðα3XðμÞÞÞ; ð21Þ

where now KðPÞ
X and KðPÞ

X;i read

KðPÞ
X ¼ −

ZX
m2

1−bπ

Γð1þ bÞ β
−1=2
0

�
−ηc þ

1

3

�
; ð22Þ

K̄ðPÞ
X;1 ¼

β0=ðπÞ
−ηcþ 1

3

�
−b1b

�
1

2
ηcþ

1

3

�
−

1

12
η3cþ

1

24
ηc−

1

1080

�
;

ð23Þ

K̄ðPÞ
X;2 ¼

β20=π
2

−ηcþ 1
3

�
−w2ðb− 1Þb

�
1

4
ηcþ

5

12

�

þb1b

�
−

1

24
η3c −

1

8
η2c −

5

48
ηc−

23

1080

�

−
1

160
η5c −

1

96
η4cþ

1

144
η3cþ

1

96
η2c −

1

640
ηc−

25

24192

�
;

ð24Þ

where we have applied the general expression obtained in
[1] to this case. In particular (b and sn are defined in [1]),

ηc ¼ −bþ 2πc
β0

− 1; b1 ¼ s1; w2 ¼
�
s21
2
− s2

�
b

b− 1
:

ð25Þ

Finally,
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rðasÞn ðμÞ ¼ ZX
mμð

β0
2π

Þn
X∞
k¼0

ck
Γðnþ 1þ b − kÞ
Γð1þ b − kÞ : ð26Þ

The coefficients ck are pure functions of the β-function
coefficients, as first shown in [10]. They can be found in
[11–13]. At low orders they read (c0 ¼ 1)

c1 ¼ s1; c2 ¼
1

2

b
b − 1

ðs21 − 2s2Þ;

c3 ¼
1

6

b2

ðb − 2Þðb − 1Þ ðs
3
1 − 6s1s2 þ 6s3Þ: ð27Þ

Note that

mðNÞ
OS ¼ m̄þ

XN
n¼0

rnαnþ1ðμÞ: ð28Þ

Therefore, mP is nothing but the pole mass truncated to
order N ¼ NP.
Our knowledge of the other terminants, Ω2 and Ω−2, is

limited. We do not know the renormalization group
structure of Ω−2, except in the large β0. On the other hand,
the renormalization group structure of Ω2 is exactly known
(provided the coefficients of the beta function are known to
all orders). The reason is that it is linked to the kinetic
operator of the HQET Lagrangian, theWilson coefficient of
which is protected by reparametrization invariance [14].
Therefore, it has no anomalous dimension and the Wilson
coefficient is 1 in dimensional regularization to all orders in
perturbation theory. Still, in the large β0 approximation, the
coefficient ZX

2 is equal to zero. If it is different from zero
beyond the large β0 approximations has been a matter of
debate [15]. We will retake this discussion in the following
sections.
We also give the formulas that apply to Eq. (4), i.e., to

case (2): the limit ðN; μÞ → ∞. A general discussion can be
found in [1]. It was argued that the limit (2A) was likely to
be logarithmic divergent (see also [16]), and no formulas
could be found that are valid beyond the large β0 approxi-
mation. Therefore, we will not study this case further. For
the limit (2B) formulas with NP exponential accuracy were
found in [1] generalizing results from [17]. These formulas
were valid beyond the large β0 approximation. For the
specific case of the pole mass they read

mPV ¼ mA þ KðAÞ
X ΛX þOðαΛXÞ; ð29Þ

where

mA ¼ m̄þ lim
μ→∞;2BÞ

XNA

n¼0

rnαnþ1ðμÞ; ð30Þ

and

KðAÞ
X ¼ 2π

β0
ZX
m

�
β0
4π

�
b
Z

∞

−c0;PV
dxe−

2π
β0
x 1

ð−xÞ1þb : ð31Þ

As discussed in [1], there is more than one way to take the
μ → ∞; (2B) limit. One is to take Eq. (67) of [1] for NA
instead of limit (B) of Eq. (4). Both methods are general but
require the knowledge of rn and the beta function coef-
ficients to all orders. This potentially limits their appli-
cability in practice. Another option is to interpret the
μ → ∞ limit as a change of scheme (where μ0 ∼ m̄):

αX0 ðμÞ ¼ αXðμ0Þ
1þ β0

2π αXðμ0Þ lnð μμ0Þ
and

NAðαÞ≡ 2π

β0αX0 ðμÞ ð1 − c0αXðμ0ÞÞ: ð32Þ

This method still requires the knowledge of rn to all orders.
On the other hand, there is no need to know the β-function
to all orders.
Irrespectively of which of the above methods we use to

take the μ → ∞ limit we have

lim
μ→∞;2BÞ

XNA

n¼0

rnαnþ1ðμÞ ¼
Z

4π
β0χ

0

dte−t=αXðμ0ÞB½mPV − m̄�ðtÞ;

ð33Þ
where 2=χ ¼ 1 − c0αðμ0Þ. The right-hand side of Eq. (33)
can not be computed exactly. An approximated determi-
nation can be obtained by approximating the Borel trans-
form to (u≡ β0t

4π )

B½mPV − m̄�ðtÞ ¼
XNmax

n¼0

ðrn − rðasÞn Þ
n!

tn

þ Zmμ

ð1 − 2uÞ1þb ð1þ c1ð1 − 2uÞ þ

þ c2ð1 − 2uÞ2 þ � � �Þ; ð34Þ
where Nmax is the number of perturbative coefficients that
are known.

III. mPVðm̄Þ IN THE LARGE
β0 APPROXIMATION

Here the discussion runs parallel to the discussion for
the static potential in the large β0 approximation made in
Sec. III of [1]. Nevertheless, we do not have the same
analytic control as for the static potential. Note also that
now we have ultraviolet renormalons. Moreover, the pole
mass has the extra complication that it is ultraviolet
divergent and needs renormalization. This makes the
Borel transform more complicated and we do not have
the exact μ factorization one has in the static potential. We
take the Borel transform from [18–20]:

AYALA, LOBREGAT, and PINEDA PHYS. REV. D 101, 034002 (2020)

034002-4



B½mPV−m̄�ðuÞ

¼m̄
CF

4π

��
m̄2

μ2

�
−u
e−cMS

u6ð1−uÞΓðuÞΓð1−2uÞ
Γð3−uÞ −

3

u
þRðuÞ

�
;

ð35Þ

where cMS ¼ −5=3, u ¼ β0
4π t and

RðuÞ ¼
X∞
n¼1

1

ðn!Þ2
dn

dzn
GðzÞ

				
z¼0

un−1 ¼ −
5

2
þ 35

24
uþOðu2Þ;

ð36Þ

GðuÞ ¼ −
1

3
ð3þ 2uÞ Γð4þ 2uÞ

Γð1 − uÞΓ2ð2þ uÞΓð3þ uÞ : ð37Þ

This expression has been derived in the MS scheme.
Whereas the scheme dependence of the first term in
Eq. (35) can be reabsorbed in changes of μ and cMS (it
would then be equivalent to a change of scale), controlling
the scheme dependence of RðuÞ is more complicated. We
will not care much, as RðuÞ has to do with the high energy
behavior, and should only affect mP, the finite sum.
Therefore, when we change from the MS to the lattice
scheme, we will just change cMS → clatt and leave RðuÞ
unchanged. Strictly speaking then, the object we compute
in the lattice scheme is not the pole mass, still it will have
the same infrared behavior. The fact that we will obtain the
same result after subtracting mP from mPV in both cases
will be a nice confirmation that high-energy cancellation
has effectively taken place and what is left is low energy.2

The value of clatt that we use is the same to the one used in
[1]. To determine it we take the nf ¼ 0 number for aWilson

action of d1 ¼ 5.88359 [25] and use clatt ¼ −2ð5
6
þ 2πd1

β0
Þ.

This is enough for our purposes, as we only use this
scheme for checking the consistency between the results
obtained with different schemes. Note that this yields two
values of clatt if we introduce the nf dependence of β0:
clattðnf ¼ 0Þ ¼ −8.38807 and clattðnf ¼ 3Þ ¼ −9.88171.

A. N large and μ ∼ m̄ ≫ ΛQCD. Eq. (3). Case (1)

We now take Eq. (19) in the large β0 approximation and
truncate it at different orders in the hyperasymptotic expan-
sion. We then compare such truncations with the exact
solution. We can study (even if in the large β0 approxima-
tion) up to which values of m̄ the OPE is a good approxi-
mation of mPV. Remarkably enough we can actually check

more than one term of the OPE (hyperasymptotic) expan-
sion. Note that in the large β0 approximation Ω2 ¼ 0,
but not Ω−2, which in the large β0 approximation reads

(ηðβ0Þc ¼ 2πc
β0

− 1)

Ω−2 ¼
ffiffiffiffiffiffiffiffiffi
αðμÞ

p
KðPÞ

X
Λ2
Xm̄

2

μ4
f1þ K̄ðPÞ

X;1αðμÞ þ K̄ðPÞ
X;2α

2ðμÞ

þOðα3ðμÞÞg; ð38Þ

KðPÞ
X ≡ZX

−2ð−1ÞNpþ1

�
β0
2π2

�
−1=2

; ZX
−2 ¼−

CFecX

π
; ð39Þ

K̄ðPÞ
X;1 ≡ β0

24π
ð−1þ 3ηðβ0Þ2c Þ; ð40Þ

K̄ðPÞ
X;2≡ β20

4608π2
½13−48ηðβ0Þc −60ηðβ0Þ2c þ48ηðβ0Þ3c þ36ηðβ0Þ4c �:

ð41Þ

We also explore the scheme dependence by performing
the computation in the lattice and theMS scheme.Wewill do
these analyses for the cases with nf ¼ 0 and nf ¼ 3.
The first in view of comparing with quenched lattice
simulations, the second to simulate a more physical sce-
nario, forwhichwe can draw some conclusions that could be
applied beyond the large-β0 limit. In Figs. 1–3 we plot
mPV − m̄, mPV −mP, mPV −mP − m̄Ωm, mPV −mP−
m̄Ωm −

P2NP
n¼NPþ1ðrn − rðasÞn Þαnþ1, and mPV−mP−m̄Ωm−P2NP

n¼NPþ1ðrn−rðasÞn Þαnþ1−m̄Ω−2 with nf ¼ 0 light flavors.
In the counting of Eq. (15) this corresponds to (0,0), (0; NP),
(1,0), (1; NP), (2,0) precision. We do such computation in
the lattice (Fig. 1) and the MS (Fig. 2) scheme. In Fig. 3 we
compare the results in the lattice and MS scheme. We
observe a very nice convergent pattern in all cases down to
surprisingly small scales. To visualize the dependence on c,
we show the band generated by the smallest positive and
negative possible values of c that yield integer values forNP.
The size of the band generated by the different values of c
(the c dependence) decreases after introducing Ωm to its
associated sum. On the other hand Ω−2 (an ultraviolet
renormalon) gives a very small contribution, in particular
in the lattice scheme. This is consistent with interpreting the
lattice scheme as the MS scheme using a much higher
renormalization scale μ for the scale of the strong coupling.
Let us discuss the results in more detail. We first observe

that the m̄ dependence of mPV is basically eliminated in
mPV −mP, as expected. This happens both in the lattice and
MS scheme. The latter shows a stronger c dependence. This
is to be expected, as in the MS, we truncate at smaller
orders in N. This makes the truncation error bigger. As we
can see in the upper panel of Fig. 3, both schemes yield
consistent predictions for mPV −mP. We can draw some
interesting observations out of this analysis. For mPV −mP

2To make an analogy, the situation is similar to determinations
of the infrared behavior of the energy of an static source in lattice
perturbation theory. In [21–23] two different discretizations were
used for the static quark propagators. This affected the ultraviolet,
but let the infrared behavior unchanged, as it was nicely seen in
those simulations. See also the discussion in [24].
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is better to choose a larger factorization scale, if we have
enough coefficients of the perturbative expansion. This is
particularly so at large distances: We can still get good
results at very large distances in the lattice scheme.
We now turn to mPV −mP − m̄Ωm. Adding the new

correction brings much better agreement with expectations
(which we remind is to get zero). After the introduction of
m̄Ωm, the MS scheme yields more accurate results than the
lattice scheme. This can already be seen in the upper panel
of Fig. 3, and in greater detail in the lower panel of Fig. 3.
mPV −mP − m̄Ωm shows some dependence on m̄, which

is more pronounced in the lattice than in the MS scheme.
As in the large β0 approximation the difference between
both schemes is somewhat equivalent to a change of scale,

these results point to that μ ¼ m̄ in MS scheme is close to
the natural scale and minimize higher order corrections.
Note that the lattice scheme computation is equivalent to

the MS scheme choosing μlatt ¼ μMSe
−clatt

2 e
c
MS
2 . This gives

around a factor 30!. Once
P2NP

n¼NPþ1ðrn − rðasÞn Þαnþ1 is
incorporated in the prediction most of the difference
between schemes disappears. The effect of introducing
Ω−2 is very small, in particular in the lattice scheme. This is
to be expected, since the lattice scheme corresponds to a
larger renormalization scale μ. In any case, the difference
between schemes gets smaller and smaller as we go to
higher orders in the hyperasymptotic expansion, in par-
ticular at short distances. We also want to stress that this
analysis opens the window to apply perturbation theory at
rather large distances. Note that in the upper panel plots in
Figs. 1, 2, and 3, we have gone to very large distances.
As some concluding remarks let us emphasize the

following points. mPV −mP is more or less constant with
relatively large uncertainties. This is to be expected, as the
next correction in magnitude is m̄Ωm which is approx-
imately constant (mildly modulated by

ffiffiffiffiffiffiffiffiffi
αðμÞp

). After
introducing this term the error is much smaller and we
can see more structure. In particular we are sensitive to

FIG. 2. As in Fig. 1 but in the MS scheme. The values of NP for
c positive are, for instance, NP ¼ 6 for 1=m ¼ 0.003, NP ¼ 5
for 1=m ∈ ½0.0045; 0.0105�, NP ¼ 4 for 1=m ∈ ½0.012; 0.03�,
NP ¼ 3 for 1=m ∈ ½0.0315; 0.0825�, NP ¼ 2 for 1=m ∈
½0.084; 0.2235�, NP ¼ 1 for 1=m ∈ ½0.225; 0.6105� and NP ¼ 0
for 1=m ∈ ½0.612; 1.5�.

FIG. 1. Upper panel: We plot mPV − m̄ (black line) and the
differences: (a) mPV −mP (cyan), (b) mPV −mP − m̄Ωm (or-

ange), (c)mPV −mP − m̄Ωm −
P2NP

n¼NPþ1ðrn − rðasÞn Þαnþ1 (green),

and (d) mPV −mP − m̄Ωm −
P2NP

n¼NPþ1ðrn − rðasÞn Þαnþ1 − m̄Ω−2

(blue) in the large β0 approximation using the lattice scheme
with nf ¼ 0 light flavors. For each difference, the bands are
generated by the difference of the prediction produced by the
smallest positive or negative possible values of c that yields
integer values for NP. The (c) and (d) bands are one on top of the
other. Lower panel: As in the upper panel but in a smaller range.
r−10 ≈ 400 MeV. The value of NP depends on the scale 1=m we
use. For instance for c positive,NP ¼ 9 for 1=m∈ ½0.003;0.0045�,
NP ¼ 8 for 1=m ∈ ½0.006; 0.0015�, NP ¼ 7 for 1=m ∈
½0.0165; 0.0435�, NP ¼ 6 for 1=m ∈ ½0.045; 0.01185�, NP ¼ 5
for 1=m ∈ ½0.12; 0.321�, NP ¼ 4 for 1=m ∈ ½0.3225; 0.876� and
NP ¼ 3 for 1=m ∈ ½0.8775; 1.299�.
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P2NP
n¼NPþ1ðrn − rðasÞn Þαnþ1. Here we find (at the level of

precision we have now) a sizable difference between lattice

and MS. This can be expected:
P2NP

n¼NPþ1ðrn − rðasÞn Þαnþ1 is
the object we expect to be more sensitive to the scale.
Another interesting observation is that truncated sums

behave better in the lattice scheme than in the MS scheme.
Nevertheless, this could be misleading. The sums are
truncated at the minimal term. Therefore, one needs more
terms in the lattice scheme. If the number of terms is not an
issue (which could be the case with dedicated numerical
stochastic perturbation theory (NSPT) [26,27] computa-
tions in the lattice scheme) then the lattice scheme looks
better. But as soon as Ωm is introduced in the computation
MS behaves better (at least in the large β0 approximation).
Overall, we observe a very nice convergence pattern up

to (surprisingly) rather large scales in the lattice and MS
scheme. The agreement with the theoretical prediction
(which is zero) is perfect at short distances. The estimated
error is also expected to be small. It will be interesting to
see if this also happens beyond the large β0.
We now turn to the nf ¼ 3 case. To easy the comparison

with [1], we use the same value: ΛMSðnf ¼ 3Þ ¼ 174 MeV
(which yields αðMτÞ ≈ 0.3). The general conclusions do
not change if we fix ΛMS (in the large β0 approximation)

using the world average value of α. We note that ΛQCD for
the physical case (nf ¼ 3) is smaller than for the nf ¼ 0

case (if one sets the physical scale according to
r−10 ≈ 400 MeV). On top of that the running is less
important. All this points to that the convergence should
be even better than in the nf ¼ 0 case (and it was quite
good already there). We show our results in Figs. 4–6
(these are the analogous of Figs. 1–3 but with nf ¼ 3).
These plots confirm our expectations. Down to scales as
low as 667 MeV we see no sign of breakdown of the
OPE. This is so in both the lattice and the MS schemes.
Note that the precision we get is extremely high as we
go to small scales: Using truncation (c): mP þ m̄ΩmþP2NP

n¼NPþ1ðrn − rðasÞn Þαnþ1, one gets mPV in the MS scheme
with a precision below 1 MeV at scales of the order
of the mass of the bottom, and in the lattice scheme
with a precision below 2 MeV. Using truncation (d):

mP þ m̄Ωm þP2NP
n¼NPþ1ðrn − rðasÞn Þαnþ1 þ m̄Ω−2, the pre-

cision does not significantly change, in particular in the
lattice scheme. This reflects that ultraviolet renormalons
play a minor role. The rest of the discussion follows parallel
the one for nf ¼ 0.

FIG. 4. As in Fig. 1 but with nf ¼ 3 light flavors. The value of
NP depends on the scale 1=m we use. For instance for c positive,
NP ¼ 1 for 1=m ¼ 0.005, NP ¼ 10 for 1=m ∈ ½0.01; 0.015�,
NP¼9 for 1=m∈ ½0.02;0.04�, NP¼8 for 1=m ∈ ½0.045; 0.115�,
NP ¼ 7 for 1=m∈ ½0.12;0.315�, NP ¼ 6 for 1=m ∈ ½0.32; 0.865�,
and NP ¼ 5 for 1=m ∈ ½0.87; 1.5�.

FIG. 3. Comparison of lattice and MS scheme results for
nf¼0 obtained in Figs. 1 and 2. Upper panel: We plot mPV −
m̄ and the differences: (a) mPV −mP, and (b) mPV −mP − m̄Ωm

in the lattice and MS scheme with nf ¼ 0 light flavors. Lower
panel: Lower panel Figs. 1 and 2 combined.
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In the above numerics, we have used the exact
expression for Ωm and Ω−2. In full QCD, we will not
know the exact expression. Therefore, it makes sense to
study how well the exact result is reproduced by its
semiclassical expansion. We observed in [1] that Ωm is
very well saturated by the first terms of such expansion.
Truncating the expansion produces differences much
smaller than the typical precision of the different terms
of the hyperasymptotic expansion. For Ω−2, we compare in
Tables I and II the exact result and the truncated semi-
classical expansion for an illustrative set of values. We
observe that the exact result is very well saturated by the
first terms of the expansion computed in Eq. (38).
Truncating the expansion produces differences much
smaller than the typical precision of the different terms
of the hyperasymptotic expansion. As expected nf ¼ 3 is
better than nf ¼ 0. Note that in the large β0 approximation
we exactly have Λ ¼ μe−2π=ðβ0αðμÞÞ.
An alternative, very effective, presentation of the above

results can be done by plotting the relative accuracy of the
prediction at each order in α, and at each order of the
superasymptotic expansion. We note that we have one
observable for each value of m̄. Therefore, for illustration,

we take two extreme cases. We use mPV with m̄ ¼
1.25 GeV and m̄ ¼ 163 GeV. For the theoretical predic-
tion we take the smallest positive value of c corresponding
to lattice or MS scheme.3 We use the exact expressions for
Ωm andΩ−2. Nevertheless, the NNLO truncated expression
for Ωm is precise enough to yield the same result. For Ω−2
we could truncate earlier with no visible effect. We show
the results in Fig. 7. We stress that several terms of the
hyperasymptotic expansion are included. First, we nicely
see that, once reached the minimum,N ∼ NP, both schemes
yield similar precision, but in the lattice scheme (bigger
factorization scale μ) more terms of the perturbative
expansions are needed to reach the same precision. We
can see a gap when Ωm is included, with significant better
precision in the MS scheme. One important lesson one may
extrapolate from this exercise is that, if the number of
perturbative coefficients is fixed, the smaller the renorm-
alization scale μ, the better. One can obtain much better
precision for an equal number of perturbative coefficients.
Another observation is that the minimal term determined
numerically need not to coincide with the minimal term

FIG. 5. As in Fig. 1 but with nf ¼ 3 light flavors and in the MS
scheme. The value of NP depends on the scale 1=m we use.
For instance for c positive, NP ¼ 7 for 1=m ¼ 0.005, NP ¼ 6 for
1=m ¼ 0.01, NP ¼ 5 for 1=m ∈ ½0.015; 0.035�, NP ¼ 4 for
1=m ∈ ½0.04; 0.105�, NP ¼ 3 for 1=m ∈ ½0.11; 0.285�, NP ¼ 2
for 1=m ∈ ½0.29; 0.775�, and NP ¼ 1 for 1=m ∈ ½0.78; 1.5�.

FIG. 6. Comparison of lattice andMS scheme results for nf ¼ 3.
Upper panel: We plotmPV and the differences: (a)mPV −mP, and
(b) mPV −mP − m̄Ωm in the lattice and MS scheme with nf ¼ 3

light flavors. Lower panel: Figs. 4 and 5 combined.

3Taking different values of c do not change the picture. The
new points stand on top of the old ones where they overlap.
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TABLE I. m̄Ω−2 in the large β0 approximation for nf ¼ 0 in r−10 units compared with Eq. (38) truncated at different powers of α.
Upper panel computed in the MS scheme. Lower panel in the lattice scheme. Lattice seems to be better but both schemes yield very good
results.

MS-Scheme (nf ¼ 0)

m̄ in r−10 c m̄ΩExact j ΩLO
ΩExact − 1j × 102 j ΩNLOΩExact − 1j × 103 j ΩNNLOΩExact − 1j × 104

0.6667 0.1786 0.2089 33.8725 147.64 3372.63
0.8333 0.5693 0.0572 8.1940 93.6387 922.993
1 0.8885 0.0362 14.1752 45.6019 16.0275
1.25 1.2791 0.0260 5.7282 13.6703 130.93
1.6667 0.0321 0.0199 12.0969 7.3723 12.2818
2.5 0.7419 0.0094 4.9357 7.7804 6.5465
5 0.2047 0.0042 2.9590 0.5254 4.8485
10 1.4182 0.0018 0.2254 2.2970 2.3334
100 0.1972 0.0001 1.2994 0.1190 0.3921

Lattice-Scheme (nf ¼ 0)

m̄ in r−10 c m̄ΩExact × 109 j ΩLO
ΩExact − 1j × 103 j ΩNLOΩExact − 1j × 104 j ΩNNLOΩExact − 1j × 105

0.6667 0.8101 0.33643 23.0068 12.0234 0.06620
0.8333 1.2008 0.26320 13.94 5.2020 12.6513
1 1.5200 0.21971 11.9588 13.8372 5.6692
1.25 0.1599 0.17233 20.0735 0.3374 6.8322
1.6667 0.6636 0.12061 15.0134 9.1010 3.3885
2.5 1.3734 7.7980 1.2511 7.4891 5.2999
5 0.8362 3.5950 14.9013 4.4610 0.4998
10 0.2990 1.7262 4.2813 2.3906 2.5543
100 0.8287 14.527 9.6569 1.8830 0.05590

TABLE II. m̄Ω−2 in the large β0 approximation for nf ¼ 3 in GeV units compared with Eq. (38) truncated at different powers of α.
Upper panel computed in the MS scheme. Lower panel in the lattice scheme. Lattice seems to be better but both schemes yield very good
results.

MS-Scheme (nf ¼ 3)

m̄ in GeV c m̄ΩExact j ΩLO
ΩExact − 1j × 102 j ΩNLOΩExact − 1j × 103 j ΩNNLOΩExact − 1j × 104

0.6667 0.4916 0.00375 3.6513 8.8280 16.5412
0.8333 0.8113 0.00274 5.0007 2.9016 7.864
1 1.0724 0.00223 1.6450 3.9632 11.1774
1.25 1.3921 0.00183 6.2621 3.6008 0.7661
1.6667 0.3717 0.00119 0.8631 2.7541 4.6880
2.5 0.9525 0.00072 2.2110 0.5893 3.1281
5 0.5130 0.00032 1.7608 1.5455 0.9363
10 0.0735 0.00015 2.8072 0.2396 0.5520
100 0.5069 0.00001 0.9405 0.4412 0.1384

Lattice-Scheme (nf ¼ 3)

m̄ in GeV c m̄ΩExact × 1011 j ΩLO
ΩExact − 1j × 103 j ΩNLOΩExact − 1j × 104 j ΩNNLOΩExact − 1j × 105

0.6667 0.6457 0.13921 14.5539 5.0568 0.1286
0.8333 0.9653 0.10969 9.6413 1.9386 3.4992
1 1.2264 9.1458 6.7772 6.1070 1.8276
1.25 0.1137 7.2422 15.151 0.1208 2.0634
1.6667 0.5258 5.1755 9.9772 4.3766 1.2143
2.5 1.1065 3.3731 1.7019 3.6030 1.9541
5 0.6670 1.5918 10.8713 2.5255 0.06625
10 0.2275 77.282 4.1604 1.2278 1.1874
100 0.6609 674.45 7.7077 1.7587 4.5364
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computed using N ¼ NP (though it should not be much
different). The difference reflects how much the exact
coefficient is saturated by the asymptotic expression.
The effect of Ω−2 is very small compared with the effect
due to Ωm. For the case of the top (m̄ ¼ 163 GeV) we can
still see the sign alternating behavior of the perturbative
series associated to the d ¼ −2 renormalon in the MS
scheme. In the lattice scheme the effect is so small that it
cannot be seen and the precision is set by the next
renormalon located at d ¼ 3. If one makes m̄ small,
m̄ ¼ 1.25 GeV, green and orange points mix in the MS
scheme. This effect is more pronounced in the lattice
scheme, where one can continuously move from the orange
to the green points. The effect of the ultraviolet renormalon
is very small and the precision is set by the u ¼ 3=2
renormalon.

B. ðN;μÞ → ∞. Eq. (4). Case (2)

We take Eq. (29) in the large β0 limit by setting b ¼ 0. As
before, we have no analytic expressions to compare with
(unlike the case of the static potential). Therefore, we
directly focus on taking the limit (2B) and numerically
check its convergence and how it compares withmethod (1).
Method (2B) has the pleasant feature that the generated

OðΛQCDÞ correction complies with the OPE. It also yields
results that do not depend on N (and μ) anymore. Still, it
has some errors and does not reach the precision of method
(1). There is a residual scheme dependence associated to
uncomputed terms ofOðαΛQCDÞ. Part of it can be estimated
by the residual dependence in c0. In order to estimate it, we
compute mA for different values of c0. On the one hand c0
cannot be very large, as c0αðm̄Þ should be relatively close to
zero. On the other hand we cannot make c0αðm̄Þ to get
arbitrary close to zero, as the OðΛQCDÞ correction diverges
logarithmically in c0. We also note that there is a value of

c0 ¼ c0min that makes that KðAÞ
X ¼ 0 so that the OðΛQCDÞ

correction vanishes. Therefore, we compute mA for differ-
ent values of c0. For illustration we show some results in

Fig. 8. We draw lines formPV −mA − KðAÞ
X ΛX at c0 ¼ 1 and

c0 ¼ cmin generating a band. We also explore the depend-
ence on the scheme by comparing the results in the lattice
and MS scheme. We stress again that, in the large β0
approximation, lattice and MS schemes basically corre-
spond to a redefinition of μ, but quite large indeed. On the
other hand the final result is μ independent. Nevertheless,
the way the μ → ∞ limit is taken is fixed by NA, as defined
in Eq. (4), which is dependent on μ. This explains why
different results are obtained.
In Fig. 8, we also compare with results obtained using

method (1), more specifically we compare with
mPV −mP − m̄Ωm, as they both have analogous power
accuracy (though method (1) is parametrically more pre-
cise). For Ωm we take the exact expression but using its
approximated expression does not change the discussion,
as the difference is very small. What we see is that the MS
scheme yields more precise predictions than the lattice
scheme, and that method (1) yields considerable better
results than method (2B).
Another issue specific of method (2B) is to determine

how large we need to take N (and consequently μ) of the
truncated sum such that it approximates well mA. For
illustrative purposes we show the convergence in Fig. 9 for
nf ¼ 3 in the lattice and MS scheme. We find that we have
to go to relatively large values of μ (and N) to get it precise.
This can be a problem if one wants to go beyond the large
β0. This problem would be less severe if one can use the
asymptotic expression for the coefficients beyond certain n.
Nicely enough, we find that the use of asymptotic expres-
sion for the coefficients for n > N� (∼3 in the MS and ∼8
in the lattice scheme) is very efficient and basically yields
the same results as the exact result. Finally, we also remind

FIG. 7. jmPV −mHyperasymptotic
PV j for m̄ ¼ 163 GeV (upper panel)

and m̄ ¼ 1.25 GeV (lower panel). Blue points are jmPV −mN j.
Orange points are jmPV−mP−m̄Ωm−

P
N
n¼NPþ1ðrn−rðasÞn Þαnþ1j

with c ¼ 1.21=1.39 and c ¼ 1.36=0.11 (the smallest positive
values that yield integer NP) in the MS and lattice
scheme respectively for m̄ ¼ 163=1.25 GeV. Green points

are jmPV −mP − m̄Ωm −
P2NP

n¼NPþ1ðrn − rðasÞn Þαnþ1 − m̄Ω−2 −P
N
n¼2NPþ1ðrn − rðasÞn Þαnþ1j, where in the last sum the two first

renormalons are subtracted. Change of color correspond to the
inclusion of Ωm and Ω−2. Full points have been computed in
the MS scheme and empty points in the lattice scheme. We
work with nf ¼ 3.
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that to approximate well mA by the truncated sum is more
costly for small values of c0.

IV. Λ̄PV FROM LATTICE AND B PHYSICS

We now abandon the large-β0 approximation. Our aim is
to determine Λ̄PV. We will determine it first in gluedy-
namics (nf ¼ 0) in Sec. IV B. To study the scheme
dependence of the result it will be useful to estimate the
higher order coefficients of the β function in the Wilson
action lattice scheme. We do so in the next section.

A. β-function coefficients in the Wilson
action lattice scheme

In [22,23] it was shown that renormalon dominance
allowed to give an accurate value for βlatt3 assuming that c3
[see Eq. (44)] is already saturated by the renormalon in the
MS scheme. We can estimate higher order terms of the β
function in the lattice scheme (using the Wilson action) by
also assuming that for n > 3 the coefficients cn in the MS
scheme are saturated by the renormalon. We show such

estimates in Table III. These coefficients of the β function
improve the agreement with the phenomenological para-
metrization of αlattð1=aÞ obtained in [28] in the range β ∈
ð6; 6.8Þ (see Fig. 10). It is also worth mentioning that we
observe a geometrical growth of the coefficients of the β
function. Elucubrative, this would indicate that the beta
function in this scheme has a finite radius of convergence,
and one can take the ansatz

βlattðαÞ¼ν
d
dν

α

≃−2α
�X3
n¼0

βn

�
α

4π

�
nþ1

−1.4×108
�
α

4π

�
5 1

1−102 α
4π

�
;

ð42Þ

which would have a pole at around β ¼ 6=g2 ≃ 3.8.

B. Λ̄PV from lattice

We determine Λ̄PV in gluedynamics (nf ¼ 0) from the
energy of a meson made of a static quark and a light valence
quark:

FIG. 8. Upper panel: We plot (a) mPV −mA − KðAÞ
X ΛX for

nf ¼ 0 in the lattice and MS scheme. For each case, we generate
bands by computing mA with c0 ¼ 1 and c0 ¼ c0min ¼ 0.652. We
also compare with (b) mPV −mP − m̄Ωm obtained with method
(1) with the bands generated for Fig. 3. Lower panel: As the upper
panel with nf ¼ 3, c0min ¼ 0.534 and taking the bands obtained
with method (1) for Fig. 6 for (b) mPV −mP − m̄Ωm.

FIG. 9. Upper panel: We plot mPV −mA − KðAÞ
X ΛX for nf ¼ 3

in the lattice scheme with c ¼ 1 versus the truncated sums

mPV −
PNA

n¼0 rnα
nþ1ðμÞ − KðAÞ

X ΛX , where μ is fixed using NA

defined in Eq. (4). Lower panel: As in the upper panel but in the
MS scheme.
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EMCðaÞ ¼ δmPV
latt þ Λ̄PV þOðaΛ2

QCDÞ: ð43Þ

δmPV
latt has the following asymptotic series in powers of

α ¼ αlattð1=aÞ:

δmPV
latt ∼

X∞
n¼0

1

a
cnαnþ1; ð44Þ

where rðasÞn ðνÞ
ν ¼ cðasÞn , since mPV and δmPV

latt have the same
leading infared renormalon (located at d ¼ 1). The coef-
ficients cn are known from n ¼ 0 ÷ 19 in the lattice scheme
for a Wilson action [21–23]. We then adapt Eq. (19) to
δmPV

latt to determine Λ̄PV:

Λ̄PVðnf ¼ 0Þ ¼ EMCðaÞ − δmP
latt −

1

a
Ωm

−
XN0¼2NP

NPþ1

1

a
½cn − cðasÞn �αnþ1 þOðaΛ2

QCDÞ;

ð45Þ

where δmP
latt ¼

PNP
n¼0

1
a cnα

nþ1. In the counting of Eq. (15)
this corresponds to (1,NP) precision. The expression we use
for Ωm is Eq. (21) truncated toOðα3Þ here and in the rest of
the paper. The error committed by this truncation is smaller
than the error associated to Zm. Therefore, we will neglect it
in the following. The renormalon behavior associated to
subleading renormalons of EMCðaÞ is not well known,

except that the next singularity in the Borel plane is
expected to be at juj ¼ 1 (d ¼ 2). Therefore, we stop
the second perturbative expansion at N0 ¼ 2NP such that
the reminder should be of OðaΛ2

QCDÞ. For the coefficients
cðasÞn we use Zlatt

m ðnf¼0Þ¼17.9ð1.0Þ [23]. We also truncate
the 1=n expansion in Eq. (26) to Oð1=n3Þ. This means
using the estimates for β3 and β4 listed in Table III. We take
EMCðaÞ from [30–32]. These points expand over the
following energy range: 1=a ∼ 2.93r−10 ÷ 9.74r−10 . We
show our results in Fig. 11. They follow the same logic
than Figs. 1–6 in Sec. III. We observe that the subtraction of
the perturbative expansion accounts for most of the 1=a
dependence. Still we have enough precision to be sensitive
to OðaΛ2

QCDÞ effects. A strict fit setting the OðaΛ2
QCDÞ

correction to zero gives a large χ2red ∼ 6–7. The inclusion of
a pure Ka term to Eq. (45) gives a good fit.4 The statistical
error is small and the χ2red ¼ 1.17=1.06 (for the smallest jcj
with positive/negative c value) is good. Overall, we obtain
(using the smallest c positive, which means NP ¼ 7 except
for β ¼ 5.7 where we have NP ¼ 6)

Λ̄PV ¼ 1.42r−10 ðstat:Þ−0.01þ0.04ðcÞþ0.05
−0.05ðZmÞþ0.16

−0.16 : ð46Þ

This number is not very different from the number obtained
in [29] using a superasymptotic approximation truncated at
the minimal term determined numerically (typically this
always gives slightly better results than truncating at the
minimal term predicted by theory).
Let us now discuss the error budget in Eq. (46). The first

error is the statistical error of the fit. The remaining errors
are different ways to estimate the error produced by the
approximate knowledge of the hyperasymptotic expansion.
One possibility is to take the modulus of the difference
with the evaluation using the c negative with the smallest
possible modulus. This is the second error we quote in
Eq. (46). The last error we include is due to the variation
of Zlatt

m ðnf ¼ 0Þ ¼ 17.9ð1.0Þ [23] (correlated with the

TABLE III. Estimates of the coefficients of the beta function for the bare coupling in the lattice scheme using
renormalon dominance and ZMS

m ¼ 0.62 [23]. The error quoted in the table gives the difference with the values of the

beta coefficients obtained if one uses instead ZMS
m ¼ 0.6 [13] (which yields more negative values), and it is only

meant to illustrate the typical spread of values of the beta coefficients if one uses different values of ZMS
m .

β3 β4 β5 β6

−1.16ð3Þ × 106 −1.35ð10Þ × 108 −1.44ð28Þ × 1010 −1.41ð60Þ × 1012

FIG. 10. Same caption as in Fig. 1 of [29] including more terms
in the perturbative expansion using the β-function coefficients
listed in Table III.

4Unlike for the pole mass, it is not clear what is the operator of
the OPE that would produce the NP correction and the associated
u ¼ 1 renormalon. Therefore, if for the pole mass we can be
certain that the NP correction has the form Ka, without any
anomalous dimensions nor any nontrivial lnðaÞ dependence, we
can not exclude the possibility that thisOðaÞ correction may have
a non trivial anomalous dimension and/or lnðaÞ dependence.
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error of cn). The error it produces in Ωm is small.
Comparatively, most of the error associated to Zm comes

from the differences in
PN0¼2NP

NPþ1
1
a ½cn − cðasÞn �αnþ1 evalu-

ated at different Zm. Whereas
PN0¼2NP

NPþ1
1
a ½cn − cðasÞn �αnþ1 is

quite small for the central value of Zm, it significantly
changes after variation of Zm. This variation is only
partially compensated by the variation of the coefficients
cn, which have smaller errors, producing a significant

change in
PN0¼2NP

NPþ1
1
a ½cn − cðasÞn �αnþ1. We have also deter-

mined the central value in Eq. (46) not including the
Oð1=n3Þ corrections in the asymptotic expressions for

cð as Þn . The difference we obtain is −0.08. This is signifi-
cant, showing that the 1=n corrections are sizable in the
lattice scheme. On the other hand, the difference is well
inside the error associated to Zm. Actually, the difference
with evaluations including the Oð1=n4Þ corrections in the

asymptotic expressions for cð as Þn is -0.03. This shows a
convergent pattern, which we illustrate in Table IV. Overall,
the largest source of uncertainty comes from the incomplete

knowledge of
PN0¼2NP

NPþ1
1
a ½cn − cðasÞn �αnþ1, which is closely

linked to the incomplete knowledge of Zm. This discussion
points to that more accurate determinations of Zm can be
possible and, then, that the error of Λ̄PV associated to Zm
could be made smaller. We believe these issues deserve
further study that we leave for future work.
One error that we do not include here is the error

associated to α. From the lattice point of view, we are
talking of the relation between αð1=aÞ and r0. We use the
phenomenological formula deduced in [28]. The error of
this formula is claimed to be around 0.5–1% in the
range β ∈ ð5.7; 6.92Þ [having a look to Fig. 10 a more
conservative range could be (6,6.8)].

1. Scheme dependence

It is interesting to consider the scheme dependence of
Eq. (46). In [29] relative large differences were found for
fits to Λ̄ after (approximated) scheme conversion to the MS
scheme. The real problem is not transforming the coef-
ficients cn from the lattice to the MS scheme, but trans-
forming αlatt to αMS with enough precision (in a way we
need the relation between αlatt and αMS with NP, exponen-
tial, accuracy). This needs the coefficients of the β function
in the lattice scheme to high orders. We show estimates in
Table III. The inclusion of these coefficients of the β
function makes that the determinations of Λ̄PV in the MS
and lattice scheme approach each other as we include more
terms in the perturbative expansion of the relation between
αMS and αlatt. We show the comparison in Table IV.

FIG. 11. Upper panel: EMC is the Monte Carlo lattice data
[30–32]. The continuous lines are drawn to guide the eye. The
other lines correspond to Eq. (45) truncated at different orders
in the hyperasymptotic expansion. (a) EMCðaÞ − δmPð1=aÞ,
(b) EMCðaÞ − δmPð1=aÞ − 1

aΩm, (c) EMCðaÞ − δmPð1=aÞ −
1
aΩm −

PN0¼2NP
NPþ1

1
a ½cn − cðasÞn �αnþ1 (in this last case we include

the error of the lattice points in the middle of the band), (d) is the
fit of the right-hand side of Eq. (45) to Λ̄PVðnf ¼ 0Þ − Ka. For
each difference and for the final fit, the bands are generated by the
difference of the prediction produced by the smallest positive or
negative possible values of c that yield integer values for NP.
Lower panel: As in the upper panel but in a smaller range.
r−10 ≈ 400 MeV.

TABLE IV. Determinations of Λ̄PV in the lattice and MS scheme from fits of Λ̄PV − Ka to the right-hand side of Eq. (45). The first

three numbers show the impact in the fit of including the Oð1=nmÞ corrections for m ¼ 2, 3, 4 in the asymptotic expressions for cðasÞn in
the lattice scheme (in the MS this effect is negligible). The other numbers are the fit of Λ̄PV in the MS scheme, using αMS ¼
αlattð1þ

PNtr
n¼0 dnα

n
lattÞ truncated at Ntr ¼ 4, 5, 6, 7.

latt Oð 1n2Þ Oð 1n3Þ Oð 1n4Þ MS Ntr ¼ 7 Ntr ¼ 6 Ntr ¼ 5 Ntr ¼ 4

Λ̄PV 1.33 1.42 1.45 Λ̄PV 1.48 1.52 1.59 1.68
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C. Λ̄PV
pot from lattice

As an extra check of the method, we now consider the
ground state energy of two static sources in the funda-
mental representation at a fixed distance r0 computed in the
lattice: EΣþ

g
ðr0; aÞ. This object has the same renormalon as

twice the pole mass. Following [33] we define the quantity

Λ̄potðaÞ≡
EΣþ

g
ðr0; aÞ
2

þ Δ; ð47Þ

whereΔ is just a constant to fix the normalization at r ¼ r0.
For Λ̄potðaÞ we perform an OPE assuming r0 ≫ a, and
compute it using the PV prescription. We then have

Λ̄PV
pot ≡

EΣþ
g
ðr0;aÞ
2

þ Δ − δmP
latt −

1

a
Ωm

−
XN0¼2NP

n¼NPþ1

1

a
½cn − cðasÞn �αnþ1 þOðaΛ2

QCDÞ: ð48Þ

We show the results in Fig. 12. The lattice data is taken
from [34,35], as analyzed in [33]. A nicely flat curve
appears. This object does not show OðaΛ2

QCDÞ artifacts.
This is consistent with the discussion in [28], though there
the discussion was only made for energy differences. This
has the potentially important consequence that potentials
computed with different β’s can be related with perturba-
tion theory with good accuracy. There is no need to subtract
independent constants for each β≡ 6=g2.

D. Λ̄PV from B meson mass

We now move to the physical case with nf ¼ 3 light
quarks. Using HQETwe approximate the B=Dmeson mass
by (we use spin averaged masses)

mBðDÞ ¼ mPV þ Λ̄PV þO
�

1

mPV

�
: ð49Þ

It is not the aim of this paper to determine m̄b (nor m̄c). We
are rather interested to know the error associated to
determinations of mPV if m̄ is known, and vice versa.
We will then later use this analysis for the top quark mass
determination. For this purpose we use its hyperasymptotic
approximation

mPVðm̄b=cÞ ¼ mPðm̄b=cÞ þ m̄b=cΩm

þ
XN0¼2NP

n¼NPþ1

½rn − rðasÞn �αnþ1 þ � � � : ð50Þ

To make the error analysis we use the bottom case, and take
m̄b ¼ 4.186 GeV from [36]. We obtain (we have added a
−2 MeV to the relation between the MS bottom mass and
the pole mass due to the charm quark [13])

mb;PV ¼ 4836ðμÞþ8
−17ðZmÞ−11þ12ðαÞþ8

−9 MeV: ð51Þ

For the variation of μ we take the range μ ∈ ðm̄b=2; 2m̄bÞ.
For Zm we take ZMS

m ðnf¼3Þ¼0.5626ð260Þ from [13]. For

the variation of α we take Λðnf¼3Þ
MS

¼ 332� 17 MeV from
[37]. The central value has been obtained with NP¼3
(c ¼ 0.3611). Therefore, the last term of Eq. (50) is set
to zero, as we do not have more terms of the perturba-
tive expansion. In the counting of Eq. (15) the precision
is then (1,0). Within the hyperasymptotic counting thePN0¼2NP

n¼NPþ1½rn − rðasÞn �αnþ1 term should roughly scale as
(assuming the next renormalon is located at juj ¼ 1)

∼e−
2π

β0αX ðμÞð1þlnð2ÞÞ: ð52Þ

FIG. 12. Upper panel: Λ̄potðaÞ is the Monte Carlo lattice data
[34,35], as analyzed in [33]. The continuous lines are drawn to
guide the eye. The other lines correspond to Eq. (48) truncated at
different orders in the hyperasymptotic expansion: (a) Λ̄potðaÞ−
δmPð1=aÞ, (b) Λ̄potðaÞ − δmPð1=aÞ − 1

aΩm, (c) Λ̄potðaÞ−
δmPð1=aÞ − 1

aΩm −
PN0¼2NP

NPþ1
1
a ½cn − cðasÞn �αnþ1 (in this last case

we include the error of the lattice points in the middle of the
band). For each difference the bands are generated by the
difference of the prediction produced by the smallest positive
or negative possible values of c that yield integer values for NP.
Lower panel: As in the upper panel but in a smaller range.
r−10 ≈ 400 MeV.
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This is the expected scaling if μ ∼ m̄. Nevertheless, the
dependence on μ will be quite different depending on
whether the next renormalon is ultraviolet (∼μ−2) or
infrared (∼μ2). Actually, the magnitude is also expected
to be different, being more important for an eventual
infrared renormalon. As the situation is somewhat uncertain
we do not dwell further in this issue. To roughly estimate
the size of subleading terms we could compute with
NP ¼ 2 (c ¼ 1.7935). In the counting of Eq. (15) the
precision is then ð1; Nmax − NPÞ. The difference is below

1 MeV (after including ½r3 − rð as Þ3 �α4, otherwise the differ-
ence is 7.5 MeV). Even computing with NP ¼ 1, which
formally allows us to reach the next renormalon located at
2NP ¼ 2 [i.e., (1,NP) precision in the counting of Eq. (15)],
the difference is ∼7 MeV. Alternatively, the remaining μ
scale dependence of mPðm̄b=cÞ − m̄b=cΩm also gives a

measure of the uncomputed
PN0¼2NP

NPþ1 ½rn − rðasÞn �αnþ1 term,
as such scale dependence should cancel in the total sum.
We will then take it as the associated error. This is the first
error quoted in Eq. (54). Actually, the error associated to
Zm is also a measure of the lack of knowledge of higher
order terms in perturbation theory. Therefore, there is some
degree of double counting by considering these two errors
separately.
It is interesting to analyze the error of the superasymp-

totic approximation of mPV (only computing mP). If we
vary μ in the range μ ∈ ðm̄b=2; 2m̄bÞ, we obtain (NP ¼ 3,
c ¼ 0.3611)

mb;P ¼ 5077ðμÞþ134
−242 MeV: ð53Þ

Nicely enough, it agrees with Eq. (51) within one
sigma. This is also so if we take NP ¼ 2 (c ¼ 1.7935):
mb;P ¼ 4922þ107

−167 MeV. We find that the scale dependence
of the superasymptotic approximation is large. Therefore
the inclusion of m̄Ωm is crucial to make the result much
more scale independent. On the other hand note that there is
no error associated to Zm at this order (which is, in any
case, comparatively small).
Using Eq. (51) and Eq. (49) we can determine Λ̄PV. We

work at leading order in 1=m. We obtain

Λ̄PV ¼ 477ðμÞ−8þ17ðZmÞþ11
−12ðαÞ−8þ9ðOð1=mÞÞþ46

−46 MeV; ð54Þ

where we have included an extra error source compared
with Eq. (51). This extra error is associated to the Oð1=mÞ
corrections. The existence or not of genuine NP 1=m
corrections may introduce a significant error. In case they
exist, if we take the hyperfine energy splitting as a measure
of 1=m corrections, we find shifts from the central values of
order ∼46 MeV and ∼140 MeV for B and D mesons,
respectively. As Eq. (54) has been obtained from the B
meson spin-average mass we conservatively estimate
the error associated to genuine NP 1=m corrections

to be of order ∼46 MeV, as it is the most we can do
from phenomenology and perturbation theory. Let us
recall however that recent lattice simulations point to
much smaller genuine NP 1=m corrections for the spin-
independent average [38].
Earlier direct determinations of Λ̄PV ormPV can be found

in [39,40]. The formulas are equivalent to those used here
to one order less (using NP ¼ Nmax ¼ 2). They also
include less terms in the sum in Eq. (26). More recently,
a determination of Λ̄ has been obtained in [38] using lattice
data. In this case the formulas are equivalent to those used
here since NP ¼ 3 (see Eq. (57) of Ref. [1]) except for
the fact that the scale μ was always fixed equal to the
heavy quark mass and that the mass was obtained in
the MRS scheme [41]. In this reference is also given the
relation between the PV and the MRS mass. Using it we

obtain (where we combine quadratically the error of ZMS
m

and ΛMS)

Λ̄PV − Λ̄MRS ¼ cosðπbÞ 4πΓð−bÞ
21þbβ0

ZX
mΛX

				
nf¼3

¼ −120ð8Þ MeV: ð55Þ

The prediction of [38] translates then to Λ̄PV ¼ 435ð31Þ,
where we only include the error quoted in [38]. In
particular, we do not include the error in Eq. (55). Note
that Eq. (55) scales likeOðΛQCDÞ, whereas m̄Ωm scales like
Oð ffiffiffi

α
p

ΛQCDÞ. There is a 40 MeV difference with the
number given in Eq. (54). 10 MeV can be understood
because the value of m̄b used in [38] is around 10 MeV
bigger. Another 10 MeV can be understood by the
inclusion of 1=m nonperturbative effects. The remaining
20 MeV difference are more difficult to identify, though
they are well inside uncertainties. Leaving aside the differ-
ent α’s used, another source of difference is the value of Zm.
The value used in [38] comes from [42] (where the effect of
scale variation was not included in the error analysis). This
determination used a sum rule that is free of the leading
pole mass renormalon. The possibility of using sum rules to
determine the normalization of renormalons was first
considered in [43]. For the determination of Zm, sum rules
were first used in [12]. Later sum rule analyses can be
found in [44]. Alternatively one can use the ratio of the
exact and asymptotic expression of the coefficients rn to
determine Zm as in [13,21–23,45]. For an extra discussion
on this issue see [46]. Finally, it is worth mentioning that
Zm can be determined either from the static potential or
from the pole mass (and its relatives). The only value of Zm
that uses the static potential is from [13]. A preference for
determinations of Zm from the static potential can be
theoretically motivated, as they are less affected by sub-
leading renormalons. There are no ultraviolet renormalons
and the next infrared renormalon is located at u ¼ 3=2.
On the other hand, the pole mass is expected to have
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renormalons at juj ¼ 1. Only in the event that there is no
u ¼ 1 renormalon and the effect of the u ¼ −1 renormalon
is subleading both determinations would be on equal
footing on theoretical grounds. In any case, irrespectively
of this discussion, consistent numbers are obtained between
different analyses.

E. ðN;μÞ → ∞. Eq. (4). Case (2B)

All previous determinations of Λ̄PV have been obtained
using limit (1). For completeness we have also explored
how limit (2B) performs for Λ̄PV, even though it is, in
principle, less precise. We have considered the different
methods to take the limit (2B) discussed at the end of
Sec. II B, and compared with the numbers obtained above.
We first consider the evaluation ofmPV using the right-hand
side of Eq. (33) with Eq. (34). The central value is
determined using c0min ¼ 1.076, which is the value that

makes KðAÞ
MS

¼ 0, and μ0 ¼ m̄b ¼ 4.186 MeV. We obtain

Λ̄PV ¼ 453 MeV. The difference with Eq. (54) is 24 MeV,
which is quite reasonable. We can also explore the μ
dependence. Taking the variation μ0 ∈ ðm̄b=2; 2m̄bÞ, we
obtain Λ̄PV¼453−36þ55ðμÞMeV. Comparatively with Eq. (54)
the μ scale dependence is much larger. We next consider the
limit as taken in Eq. (32). This requires the knowledge of
the coefficients rn to all orders. For n > 3 we take the
asymptotic expression. On the other hand the running of the
beta function is only needed to one loop. This allows us to
go to orders as high as NA ¼ 3000 (though it already
converges at smaller values of NA). Remarkably enough,
we obtain the same result than before: 453 MeV. There is a
residual dependence on c0. For illustration, if we take
instead c0 ¼ 2, we obtain Λ̄PV ¼ 438 MeV (the result
using the right hand side of Eq. (33) with Eq. (34) yields
the same number), and the scale dependence is larger:
Λ̄PV ¼ 438−55þ99ðμÞ. The value of c0 we have used to make
the analysis can be an issue. As discussed in [1,17], taking
χ − 2 very small deteriorates the convergence and larger
values of NA are needed. This problem aminorates by
taking larger values of c0. Since for the limit as taken in
Eq. (32) we can go to very large NA this is not a problem.
We have also performed a similar analysis with nf ¼ 0 and
r0 units, relevant for the analyses performed in Sec. IV B.
The discussion follows parallel to the one we just had with
the difference that we now know 20 coefficients of the
perturbative expansion. The value we obtain: Λ̄PV¼1.37r−10
(using a quadratic fit) is indeed quite close to the value
obtained in Sec. IV B, though less precise.
We have more problems with the other ways to take the

μ → ∞ limit discussed at the end of Sec. II B. The direct
use of NA in Eq. (4) or of NA in Eq. (67) in [1] requires,
besides the coefficients rn to all orders, the β-function
coefficients to all orders as well. We do not have them.
Instead we use truncated version of the β function. This
makes the numerical calculation much more challenging,

since the running in μ is more complicated. Therefore,
we had problems to go to very large NA. For NA ≥ 200 we
find instabilities is some cases. As mentioned before, the
value of c0 we use to make the analysis can be an issue.
Taking χ − 2 very small deteriorates the convergence. This
problem aminorates by taking larger values of c0. In the
lattice scheme determination of quenched Λ̄PV we indeed
observe convergence to the value obtained before using
c0 ¼ 2. Using c0min ¼ 1.076 the convergence is less good.
Determinations in the MS scheme do not show conver-
gence if we stop at NA ≤ 200, though with an slight better
behavior using c0 ¼ 2 rather than c0min. Overall, as the
precision we get with method (2B) is worse than with
method (1), we will not study this limit in more detail.

V. TOP MASS

A. About the pole mass ambiguity

The top quark mass is one of the key parameters of the
standard model. A lot of experimental work has been
devoted to its determination (see for instance [47–49]).
Whereas this is a matter of debate, it is typically assumed
that the masses obtained from experiment correspond to the
pole mass. Thus, there has been an ongoing discussion on
the intrinsic uncertainty of these determinations (see for
instance [45,50], and [51] for a more recent discussion). We
believe that, without further qualifications, the question is
ill posed, or may lead to confusion. It is well known that the
pole mass is well defined (infrared finite and gauge
independent) at finite (albeit arbitrary) order in perturbation
theory [52]. It is also well known that such series is
divergent.5 Therefore, no numerical value can be assigned
to the infinite sum of the perturbative series of the pole
mass. Truncated sums are well defined but depend on the
order of truncation (a detailed discussion relevant for the
analysis made in the present paper can be found in [1]).
These truncated sums can be related with observables or
with intermediate definitions of the heavy quark mass, like
the PV mass (which regulates via Borel resummation the
infinite sum), in a well-defined way.
In this context, the shortest answer to the above posed

question is that the ambiguity (of a well-defined mass) is
zero. As a matter of principle, mPV (or mP) can be defined
with arbitrary accuracy (this also applies to any threshold
mass), if one computes high enough orders of the pertur-
bative series, and if m̄ is given. One can discuss (actually
one can compute) the scheme/scale dependence (if they
have) of them. In this respect, there is no much conceptual
difference with respect to asking about the scheme/scale
dependence of minimal subtraction schemes for the heavy
quark masses.

5Actually this is only proven in the large β0 approximation
[19,20], and it is also supported by numerical analyses [21–23],
but there is no analytic proof.
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A quite a different question is to determine the typical
difference (that not ambiguity) between (reasonable) differ-
ent definitions of the pole mass. The short answer to this
question is that the differences are (at most) of order ΛQCD
for (reasonable) different definitions of the pole mass. We
emphasize that one can not be more precise unless stating
the specific definition used for the pole mass. For instance,
the difference betweenmPV andmP is ofOð ffiffiffi

α
p

ΛQCDÞ with
a known prefactor. Truncating the perturbative series at
order N near N� are also legitimate definitions of the pole
mass. The typical difference between truncating at different
N is of order ΛQCD: see for instance Eq. (62) of [22]. One
could even use MB as a definition for the pole mass. Its
difference with mPV is of order ΛQCD. If one defines an
imaginary mass by doing the Borel integral just above the
positive real axis, the difference with mPV is of OðiΛQCDÞ.
The authors of [45] choose to divide this number by π and
take the modulus as their definition of the ambiguity. These
examples illustrate that, even if the ambiguity is of
OðΛQCDÞ, the coefficient multiplying ΛQCD is arbitrary.
Overall, it should be clear that no much more can be said,
and we are indeed against of dwelling too much on this
issue. Instead, we strongly advocate to avoid generic
discussions about the pole mass, which is not well defined
beyond perturbation theory, and restrict the discussion to
the precision and errors of specific, NP well-defined, heavy
quark masses the perturbative expansion of which can be
related with the perturbative expansion of the pole mass.
Once working with NP well-defined heavy quark masses

like mt;PV or mt;P, we can address the more relevant
question of determining the precision with which m̄t can
be determined if mt;PV or mt;P is known (and vice versa, if
m̄t is known what is the uncertainty ofmPV) with nowadays
knowledge of the perturbative expansion. In other words,
with which precision the theoretical expression is known.
For reference we will take the value m̄t ¼ 163 GeV in the
following. We will see in the next section that indeed the
precision is quite good and that the error is significantly
smaller than typical numbers assigned for the ambiguity of
the pole mass. We will not dwell in this paper on the
precision with which mt;PV or mt;P can be determined from
experiment as such discussion is observable dependent.

B. Decoupling and running

We now turn to an issue specific to the top quark (as
compared with the bottom and charm quark). The top quark
mass is much larger than ΛQCD. The latter is the scale that
characterizes renormalon associated effects and it is the
precision we want to achieve. This obviously generates
ratios of quite disparate scales. In the context of threshold
masses with an explicit infrared cutoff νf, this calls for
resummation of the large logarithms: ln νf=mt. This is
possible, and first done in [33] in the RS scheme (see
also [46] for an extra discussion on this issue). Here, we

approach the problem in a different way. We want to work
with expansions for the perturbative series of the pole mass
truncated at the minimal term: mP, and to improve upon it
using hyperasymptotic expansions. Nevertheless, at the
scale of the top mass, we do not have enough terms to reach
the asymptotic behavior of the perturbative expansion. We
use instead that the top quark pole mass and the pole mass
of a fictitious top quark with mass m0

t share the same
leading infrared renormalon. Therefore, the leading infra-
red renormalon cancels in the difference. We can then
decrease the top mass in a renormalon free way until we
reach a top mass low enough that we can use the hyper-
asymptotic expansion. Such renormalon free running is
determined by the following function (not compulsory to
take μ ¼ m̄ but it simplifies the computation)

F ðm̄; nfÞ≡ d
dm̄

ðmPVðm̄Þ − m̄Þ

≃
d
dm̄

X
n¼0

r
ðnfÞ
n ðm̄; μ ¼ m̄Þαnþ1

ðnfÞðm̄Þ

≡XNþ1

n¼1

fnðm̄Þ
�
αðnfÞðm̄Þ

π

�n

: ð56Þ

This formula is correct up to N ∼ 2NP, since m̄Ωm and rðasÞn

are independent of m̄ [see Eq. (19)], so that their derivative

with respect to m̄ vanishes. The coefficients r
ðnfÞ
n are

evaluated for nf massless particles. In the context of the
MSR threshold mass the running is implemented in a similar
way (see, for instance, [44]). Equation (56) makes explicit
that such running is just a natural consequence of the relation
between observables and their OPEs (for illustration, it
follows from the fact that MB −MD, the B minus D meson
mass difference is free of the leading infrared renormalon),
and not linked to an specific threshold mass definition.
There is still another issue specific to the top quark: there

are two heavy quarks (the bottom and charm), with masses
much larger than ΛQCD, that generate extra corrections to
the pole-MS mass relation due to the finite mass of the
bottom and charm quark. Therefore, we have for m̄ ∼ m̄t

mPVðm̄Þ ¼ m̄þ
XNmax

n¼0

r
ðnfÞ
n ðm̄; μ ¼ m̄Þαnþ1

ðnfÞðm̄Þ þ δm
ðnfÞ
b ðm̄Þ

þ δm
ðnfÞ
c ðm̄Þ þ δm

ðnfÞ
bc ðm̄Þ; ð57Þ

where it is implicit thatNmax (the number of known terms of
the perturbative expansion) is not large enough to see
the decoupling of the bottom nor charm and certainly
Nmax < NP. nf stands for the number of active flavors. At

the topmass scalewe take nf ¼ 5. TheOðα2Þ term of δm
ðnfÞ
Q

was computed in [53] and the Oðα3Þ term in [54]. Note as
well that at Oðα3Þ there is a new contribution including a
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vacuum polarization of the bottom and charm at the same

time. We name it δm
ðnfÞ
bc and it has been computed in [50].

As we decrease the value of m̄t the bottom and charm
quark will decouple. This decoupling will be absorbed in

δm
ðnfÞ
b=c=bc, which are polynomials in powers of αðnfÞ. In

general this is not just changing nf in the original
expressions from nf ¼ 5 to nf ¼ 4 or 3. The explicit
expressions can be found in the Appendix B.

The renormalon is associated to scales smaller than
the bottom and charm quark masses. Therefore, such
scales should be decoupled before we talk about the
hyperasymptotic expansion. As we have mentioned
above we do such decoupling by varying the mass
of the top till reaching a fictitious top with a mass
small enough such that, first the bottom, and later the
charm, decouple. Overall, our final formula is the
following:

mPVðm̄tÞ ¼ m̄t þ
Z

m̄t

μb

dm̄
�
F ðm̄; 5Þ þ d

dm̄
ðδmð5Þ

b ðm̄Þ þ δmð5Þ
c ðm̄Þ þ δmð5Þ

ðbcÞðm̄ÞÞ
�

þ
Z

μb

μc

dm̄
�
F ðm̄; 4Þ þ d

dm̄
ðδmð4Þ

b ðm̄Þ þ δmð4Þ
c ðm̄Þ þ δmð4Þ

ðbcÞðm̄ÞÞ
�
þmPVðμcÞ − μc: ð58Þ

We emphasize that F ðm̄; nfÞ is expanded in powers of α
before integration. We take μb small enough such that the
bottom decouples and μc small enough such that the bottom
and charm decouple, and also such that we reach the
asymptotic limit of the pole-MS mass perturbative expan-
sion with the existing known coefficients. Therefore,

mPVðμcÞ ¼ mPðμcÞ þ μcΩm þ δmð3Þ
b ðμcÞ þ δmð3Þ

c ðμcÞ

þ δmð3Þ
ðbcÞðμcÞ þO

�
μce

− 2π
β0αðμcÞð1þlnð2ÞÞ

�
: ð59Þ

The Oðμce−
2π

β0αðμcÞð1þlnð2ÞÞÞ term stands for subleading cor-
rections in the hyperasymptotic expansions, which are not
known.
Let us now discuss in more detail the dependence on the

bottom and charm quark, in particular the effects associated
to the fact that they have masses much bigger than ΛQCD
(for the analysis we take m̄b ¼ 4.186 GeV and m̄c ¼
1.223 GeV [36] but the sensitivity to the specific values
we use is very tiny). As already discussed in [19], the
natural scale of a n-loop integral is not m̄t but m̄te−n. For
the case of the bottom versus charm quark it was observed
in [13]6 that the charm quark effectively decouples at order
α2=α3 for the case of the charm quark effects in the bottom
pole mass-MS mass relation. If we lower the mass of the
top we can also observe at which scales it is more
convenient to decouple the bottom and charm quark in
the top pole mass-MS mass relation. This can be illustrated
in Fig. 13, where we plot the corrections associated to the
bottom and charm with and without decoupling in terms of
the fictitious top mass (assuming a single heavy quark).
Obviously for very large top masses it is not convenient to
do the decoupling. Nevertheless, as we decrease the mass

of the top it becomes much more effective to decouple, first
the bottom, and afterwards the charm quark. Once this is
done the corrections due to the bottom and charm masses to
Eq. (59) are very small. Comparatively to other errors, the

FIG. 13. Upper panel: Plot of the correction to the PV mass of a
top mass with varying m̄t mass due to a heavy quark with MS
mass equal to 4.185 GeV (bottom) with and without decoupling
(assuming a single heavy quark). Lower panel: As in the upper
panel with a heavy quark with MS equal to 1.223 GeV (charm).
We use Eqs. (B7) and (B10).

6In that reference MeV should read GeV instead from Eq. (8)
to Eq. (12).
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uncertainty associated to the Oðα4Þ corrections is negli-
gible. Also the correction associated to the bottom and
charm quark masses to Eq. (58) is, comparatively to the
total running, very small. From this analysis we will take as
central values μb ¼ 20 GeV and μc ¼ 5 GeV. For these
values we obtain

Z
m̄t

μb

dm̄
d
dm̄

ðδmð5Þ
b ðm̄Þ þ δmð5Þ

c ðm̄Þ þ δmð5Þ
ðbcÞðm̄ÞÞ

þ
Z

μb

μc

dm̄
d
dm̄

ðδmð4Þ
b ðm̄Þ þ δmð4Þ

c ðm̄Þ þ δmð4Þ
ðbcÞðm̄ÞÞ

þ δmð3Þ
b ðμcÞ þ δmð3Þ

c ðμcÞ þ δmð3Þ
ðbcÞðμcÞ

¼ −2.5jOðα2Þ þ 0.8jOðα3Þ ¼ −1.7 MeV: ð60Þ

The specific value depends on μb and μc but the good
convergence and smallness of this correction holds true for
other values of μb and μc. The implementation of the
decoupling of the bottom and charm in [50] produces a
much larger correction. An even larger effect is observed in
the implementation performed in [45], where the perturba-
tive expansion is always performed at the scale of the top
mass (using renormalon based estimates for the higher
order coefficients), decoupling the bottom, and later the
charm, depending on the order of perturbation theory.
Therefore, we take our numbers as optima, and the error
negligible compared with other uncertainties.
We next explore the convergence pattern of the

perturbative expansion. We first consider the perturbative
expansion associated to F . We find

Z
m̄t

μb

dm̄F ðm̄; 5Þ þ
Z

μb

μc

dm̄F ðm̄; 4Þ

¼ 8445þ 837þ 53 − 43 ¼ 9291ð22Þ MeV: ð61Þ

We observe a convergent pattern. For the last two terms the
convergence deteriorates. On the other hand the perturba-
tive expansion becomes sign alternating. This may indicate
sensitivity to the u ¼ −1 renormalon. We discuss this
further in the next section. For sign-alternating asymptotic
perturbative expansion the left-over is ∼ − 1=2× (the last
computed term) (see [5]).7 Therefore, we take it as the error
of the truncation of the perturbative expansion, which is the
error we quote in Eq. (61). We also explore the dependence
of Eq. (58) on μb and μc. The dependence is very small, as
we can see in Fig. 14. For μc the variation is negligible, and
for μb one gets variations of ∼5 MeV for a central value of
μb or around 20 GeV. Therefore, we will neglect it for the
total error budget.
The other source of error is associated to the approximate

determination of Eq. (59) [except for the δmq terms, which

have already been taken into account in Eq. (60)]. The error
analysis is equal to the one in Eq. (54) adapted by changing
m̄b ¼ 4.186 GeV → μc ¼ 5 GeV [the error associated to α
is only computed for the full Eq. (58)]

ðmPðμcÞ þ μcΩmÞjμc¼5 GeV ¼ 5744ðμÞþ7
−15ðZmÞþ9

−9 MeV:

ð62Þ

Finally, we also include the error associated to α.
Combining all errors we obtain

mt;PVð163 MeVÞ
¼ 173033ðh:o:Þþ22

−22ðμÞþ7
−15ðZmÞþ9

−9ðαÞþ119
−123 MeV: ð63Þ

By far the largest uncertainty is associated to α. For the
purely theoretical error budget, the error is associated to
higher order corrections in perturbation theory. They show
up in different ways. One is the approximate knowledge of
Zm, which shows up in Ωm. The other is the error in μ,

which is a measure of the Oðe− 2π
β0αX ðμÞð1þlnð2ÞÞÞ corrections to

Eq. (59). h.o. stands for the error associated to higher order
terms in perturbation theory of Eq. (61). All these errors

FIG. 14. Plots of Eq. (58) in terms of μb (upper panel) and μc
(lower panel) truncating the perturbative expansion of F ðm̄; nfÞ
at different orders in α in Eq. (61). In the upper figure we set
μc ¼ 5 GeV. In the lower figure we set μb ¼ 20 GeV.

7We emphasize that these arguments do not apply to IR
renormalons (and in particular to the u ¼ 1=2 renormalon).
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would profit from higher order perturbative computations.
We have also explored other sources of uncertainty, and
find them to be comparatively very small: the error (and the
effect) associated to the finite mass of the bottom and charm
quark is found to be very small, and similarly for variations
in the values of μb and μc.
It is also useful to make the error estimate of the ratio of

the PV and MS top mass. We obtain (m̄t ¼ 163 GeV)

�
mt;PV

m̄t
− 1

�
× 105 ¼ 6155ðh:o:Þþ13

−13ðμÞþ4
−9ðZmÞþ6

−6ðαÞþ73
−75 :

ð64Þ

Note that there is no ambiguity error associated to this
number. Except for α all errors are associated to the lack of
knowledge of higher order terms of the perturbative
expansion. In comparison with [45] we find that our result
is less sensitive to Zm and to its associated error.

C. juj= 1 renormalons

The perturbative expansion of F ðm̄; nfÞ is free of the
u ¼ 1=2 renormalon. Therefore, it is the ideal object on
which to study the subleading renormalons of the pole
mass. In principle, these are located at u ¼ 1 and u ¼ −1.
The existence of an infrared renormalon at u ¼ 1 has been a
matter of debate [15]. The existence of an ultraviolet
renormalon at u ¼ −1 can be established in the large β0
approximation [19,20] but not beyond. With respect to this
discussion some interesting observations can be drawn out
of our analysis. The coefficients fn show an interesting
dependence in nf (with changes of sign of different powers
of nf). In Table V we give the numbers of fn for different
values of nf and also in the large β0 approximation. We
observe that for nf ¼ 3 the Oðα4Þ flips sign. For nf ¼ 6,
the Oðα3Þ and Oðα4Þ flip sign. The situation is somewhat
puzzling. Let us first note that the sign of the coefficients
would be interchanged compared with the large β0 pre-
dictions (for nf ¼ 3). This could still be understood from a
u ¼ −1 renormalon if ZX

−2 flips sign from the large β0
prediction to real QCD. This would indicate a large
dependence of ZX

−2 on nf compared with what has been

seen for ZX
m, where the large β0 approximation gave the

right sign and order of magnitude. For nf → ∞, the results
agree with QED expectations (β0 becomes negative and the
perturbative series is nonsign-alternating). For nf ¼ 6 we
observe that the last two terms are negative. One may then
wonder if what we are seeing for nf ¼ 6 (and maybe also
for nf ¼ 3) is that the u ¼ −1 renormalon becomes
effectively infrared. Obviously, we need higher order
coefficients fn to clarify this issue.8

It is usual lore that infrared renormalons dominate over
ultraviolet ones (this is somewhat based on large β0 analyses
where ultraviolet renormalons are typically suppressed by
the factor∼ed

cX
2 whereas infrared renormalons are enhanced

by the factor ∼e−d
cX
2 ). If we take this seriously, and also the

numbers we obtain for fn as an indication of the existence of
the u ¼ −1 renormalon, this may indicate that the u ¼ 1
renormalon is indeed zero. In this respect, it is worth
mentioning the analysis of [38] where the NP correction
associated to the u ¼ 1 renormalon was found to be zero
within errors. This is consistent with this discussion.
On the theoretical side it is also interesting to see where

the u ¼ 1 renormalon would show up in a perturbative
computation of the heavy quarkonium mass. For the
purposes of this discussion, the heavy quarkonium mass
would read

Mnl ¼ 2mQ þ


p2

mQ

�
nl
þ hV0inl þ



V1

mQ

�
nl
þO

�
1

m2
Q

�
;

ð65Þ

where V0 is the static potential, and V1 is the 1=mQ

potential. OPE analyses in the static limit show that V0

does not have renormalon at u ¼ 1. The virial theorem:

h p2

mQ
inl ¼ hrV 0

0inl, also guaranties that the kinetic term does

not have such u ¼ 1 renormalon. Therefore, any possible
u ¼ 1 infrared renormalon of the pole mass should cancel
with the analogous infrared renormalon of the V1=mQ

TABLE V. The coefficients fn of F ðm̄; nfÞ. Note that f4ðnf ¼ 0Þ has a 9% error from the determination in [9]. The nf ¼ 1020 case is
used as a test for comparison with the large β0. The last three (four) rows are the coefficients fn in the large β0 approximation.

F ðm̄; nfÞ f1 f2 f3 f4 f5

nf ¼ 0 4=3 6.11 25.52 18.46
nf ¼ 3 4=3 4.32 12.76 −63.37
nf ¼ 6 4=3 2.53 −0.74 −105.70
(Large β0=exact) nf ¼ 1020 4=3 −5.97 × 1019 −4.15 × 1038 −2.54 × 1058 −5.09 × 1077

(Large β0) nf ¼ 0 4=3 9.85 −11.31 114.33 −377.22
(Large β0) nf ¼ 3 4=3 8.06 −7.57 62.62 −169.04
(Large β0) nf ¼ 6 4=3 6.27 −4.58 29.46 −61.86

8The coefficients of the perturbative expansion of the pole mass
itself are also a polynomial in powers of nf . The sign dependence
of the different powers of nf has been studied in [55,56].
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potential. The fact that the latter can be written in a closed
way in terms of Wilson loops [57] may open a venue on
which to study this issue in further detail. This is postponed
to future work.

VI. CONCLUSIONS

In this paper we have constructed hyperasymptotic
expansions for the heavy quark pole mass (and for
associated quantities) regulated using the PV prescription
along the lines of [1]. We generalize the discussion of that
reference by including possible ultraviolet renormalons.
Such organization of the computation allows us to have a
parametric control of the error committed when truncating
the hyperasymptotic expansion.
In Sec. III the hyperasymptotic expansion of the pole

mass of a heavy quark in the large β0 is computed. We use it
as a toy-model observable to test our methods. It works as
expected. We can see the u ¼ 1=2 infrared renormalon and
the u ¼ −1 ultraviolet renormalon. The next infrared
renormalon is located at u ¼ 3=2. Compared with the
static potential case studied in [1] in the large β0 approxi-
mation, infrared renormalons are located at the same
points in the Borel plane. On the other hand, the pole
mass has ultraviolet renormalons, whereas the static poten-
tial does not. In practice the main difference comes from the
relevance of the u ¼ −1 renormalon. In general, because
of the u ¼ −1 renormalon, it is necessary to stop the second
perturbative expansion [see Eq. (19)] at N ∼ 2 × 2π

β0α
,

otherwise the perturbative series would start to diverge,
as we can observe in Fig. 7 in the MS scheme.
Nevertheless, the importance of this renormalon heavily
depends on the factorization scale μ one uses. If one takes μ
high enough, one could indeed do perturbation theory until
N ∼ 3 × 2π

β0α
, where the u ¼ 3=2 renormalon shows up. We

can see the irrelevance of the u ¼ −1 renormalon in the
lattice scheme, which is equivalent to the MS schemewith a
much larger μ, in Fig. 7. One should keep in mind, though,
that one needs perturbation theory to a much higher order in
the lattice scheme to reach the same precision than in the
MS scheme. We expect this qualitative behavior of ultra-
violet renormalons to also hold true beyond the large β0
approximation.
We next move to real QCD. We have performed

determinations of Λ̄PV using quenched lattice QCD. For
these observables perturbative expansions to high orders
are available [21–23]. This allows us to test the method and
go beyond the superasymptotic and the leading term in the
hyperasymptotic approximation. We observe OðaΛ2

QCDÞ
corrections for the B meson mass in the static approxima-
tion, but not for an analogous observable from the static
potential. Nevertheless, we do not have enough precision to
quantitatively study these effects. The limiting factor is the
error of the normalization of the leading renormalon, and,
related, the lack of knowledge of the higher order beta

function coefficients. The latter affects the Oð1=nÞ correc-
tions to the asymptotic formula of the perturbative series
coefficients. These effects are sizable in the lattice scheme.
On the other hand they are quite small in the MS scheme.
On top of that the higher order coefficients of the
perturbative expansion of δmlatt are not known with
enough precision to disentangle the subleading renormalon
(their error is strongly correlated with the error of Zm). All
these considerations forbid quantitative analyses beyond
the leading term in the hyperasymptotic approximation.
Further investigations are needed to improve on these
issues, particularly on the error of Zm, which also affects
the discussion below.
We also determine Λ̄PV from the physical B meson mass

assuming that the MS heavy quark mass is known. The
result can be found in Eq. (54). In this analysis, we
determine the error associated to the incomplete knowledge
of the perturbative expansion in determinations of the
heavy quark mass. We translate this result to the case of
the top mass, which we study in detail in Sec. V. In this
section the issue of the uncertainty of the (top) pole mass is
critically reexamined. In particular, the bottom and charm
quark finite mass effects are carefully incorporated. In our
implementation we find these to be very small. We find the
present uncertainty in the relation between m̄t and mPV to
be (for m̄t ¼ 163 GeV)

mt;PVð163 MeVÞ ¼ 173033ðthÞþ25
−28ðαÞþ119

−123 MeV; ð66Þ
�
mt;PV

m̄t
− 1

�
× 105 ¼ 6155ðthÞþ15

−17ðαÞþ73
−75 ; ð67Þ

where we have combined the theoretical errors quoted in
Eqs. (63) and (64) in quadrature. There is no ambiguity
associated to the renormalon in this number. The precision is
systematically improvable themore terms of the perturbative
expansion get to be known in the future. Interestingly
enough, it seems we have found some evidence for the
existence of the next renormalon at u ¼ −1 but not of a
possible renormalon at u ¼ 1. We believe this makes very
timely a quantitative determination of the renormalization
group structure of the u ¼ −1 renormalon, which to our
knowledge is lacking. We leave this for future work.
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APPENDIX A: EVALUATION OF Ωd

We here briefly sketch how we compute the integrals
that appear in Ωd. For d < 0 we use the recursion
formulas developed in [5] (see for instance Eq. (46) of
Chapter XXI). For d > 0, we can use also such formulas
(see for instance Eq. (47) of Chapter XXI). In this case, we
can also alternatively perform the integration in the
following way. For simplicity, we take the case b ¼ 0
and d ¼ 1, as the method is similar for the more general
case.

I ¼
Z

∞

0;PV
due−

4π
β0α

u ð2uÞNþ1

1 − 2u

¼ −
1

2
e−

2π
β0α

Z
∞

−1
2
;PV

dy
y
e−

4π
β0α

yeð
2π
β0α

ð1−cαÞþ1Þ lnð1þ2yÞ; ðA1Þ

where in the second equality we set N ¼ NP according to
Eq. (3). We also do the change of variables (where
K ¼ c − β0

2π )

y ¼ x
2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kα

p
ffiffiffiffiffiffiffiffi
β0α

π

r
: ðA2Þ

We can then expand the exponent in powers of α
and x:

I ¼ −
1

2
e−

2π
β0α

Z
∞

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

β0α
ð1−KαÞp

;PV

dx
x

× e−x
2

e−
4π
β0α

Kx
2

ffiffiffiffi
β0α
π

p
1ffiffiffiffiffiffi

1−Kα
p þ2

3
x3

ffiffiffiffi
β0α
π

p
1ffiffiffiffiffiffi

1−Kα
p þ���: ðA3Þ

The inferior limit of the integral is then extended to −∞.
We then have

I ≃ −
1

2
e−

2π
β0α

Z
∞

−∞;PV

dx
x
e−x

2

e−
4π
β0α

Kx
2

ffiffiffiffi
β0α
π

p
1ffiffiffiffiffiffi

1−Kα
p þ2

3
x3

ffiffiffiffi
β0α
π

p
1ffiffiffiffiffiffi

1−Kα
p þ���

≃ e−
2π
β0α

1

6

ffiffiffiffiffiffiffiffi
β0α

p �
−1þ 6π

β0
K

�
þ � � � : ðA4Þ

Irrespectively of considering d > 0 or d > 0, it is not
clear to us what is the asymptotic structure of this
expansion. This is something that we are investigating.
In any case, at present, we have not seen evidence of
asymptotic behavior of this expansion for all cases we have
considered. This does not preclude however that if we go to
higher orders we will find an asymptotic behavior for this
perturbative expansion.

APPENDIX B: BOTTOM AND CHARM FINITE
MASS CONTRIBUTIONS TO mt;PV

We define

δmð1Þ
q ≡ m̄

3

��
1 −

m̄q

m̄

��
1 −

m̄3
q

m̄3

��
Li2

�
m̄q

m̄

�
−
1

2
ln2

�
m̄q

m̄

�
þ ln

�
1 −

m̄q

m̄

�
ln

�
m̄q

m̄

�
−
π2

3

�

þ
�
1þ m̄q

m̄

��
1þ m̄3

q

m̄3

��
Li2

�
−
m̄q

m̄

�
−
1

2
ln2

�
m̄q

m̄

�
þ ln

�
1þ m̄q

m̄

�
ln

�
m̄q

m̄

�
þ π2

6

�

−
m̄2

q

m̄2

�
ln

�
m̄q

m̄

�
þ 3

2

�
þ ln2

�
m̄q

m̄

�
þ π2

6

�
ðB1Þ

(note that this coefficient is nf-independent),

δm
ð2;nfÞ
q ¼ m̄

64

�
h

�
m̄q

m̄

�
þ w

�
1;
m̄q

m̄

�
þ nfp

�
m̄q

m̄

��
; ðB2Þ

where nf ¼ 5 for q ¼ b and nf ¼ 4 for q ¼ c, and we use the representation for the functions hðxÞ, wðx; yÞ and pðxÞ given
in Ref. [50], and

δmð2Þ
bc ¼ m̄

64
w

�
m̄b

m̄
;
m̄c

m̄

�
: ðB3Þ

We then have

δmð5Þ
b=c ¼ δmð1Þ

b=c

α2ð5Þðm̄Þ
π2

þ δmð2;5=4Þ
b=c

α3ð5Þðm̄Þ
π3

ðB4Þ
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δmð5Þ
bc ¼ δmð2Þ

bc

α3ð5Þðm̄Þ
π3

ðB5Þ

δmð4Þ
b ¼ ½δmð1Þ

b þ δmð1Þ
b;dec�

α2ð4Þðm̄Þ
π2

þ ½δmð2;5Þ
b þ δmð2Þ

b;dec�
α3ð4Þðm̄Þ

π3
ðB6Þ

δmð4Þ
c ¼ δmð1Þ

c

α2ð4Þðm̄Þ
π2

þ δmð2;4Þ
c

α3ð4Þðm̄Þ
π3

ðB7Þ

δmð4Þ
bc ¼ ½δmð2Þ

bc þ δmð2Þ
bc;dec�

α3ð4Þðm̄Þ
π3

ðB8Þ

δmð3Þ
b ¼ ½δmð1Þ

b þ δmð1Þ
b;dec�

α2ð3Þðm̄Þ
π2

þ ½δmð2;5Þ
b þ δmð2Þ

b;dec�
α3ð3Þðm̄Þ

π3
ðB9Þ

δmð3Þ
c ¼ ½δmð1Þ

c þ δmð1Þ
c;dec�

α2ð3Þðm̄Þ
π2

þ ½δmð2;4Þ
c þ δmð2Þ

c;dec�
α3ð3Þðm̄Þ

π3
ðB10Þ

δmð3Þ
bc ¼ ½δmð2Þ

bc þ δmð2Þ
bc;dec þ δmð2Þ

cb;dec�
α3ð3Þðm̄Þ

π3
; ðB11Þ

where δmðiÞ
ðq;decÞ are generated by the decoupling and read

δmð1Þ
ðq;decÞ ¼ −

2

9
m̄

�
71

32
þ ln

�
m̄2

q

m̄2

�
þ π2

4

�
; ðB12Þ

δm
ð2;nfÞ
ðq;decÞ ¼ m̄

��
2353

11664
þ 7

27
ζð3Þ þ 13π2

162
−
�
π2

54
þ 71

432

�
ln

�
m̄2

m̄2
q

��
nf þ

8Li4ð12Þ
27

−
751

216
ζð3Þ þ 61π4

1944
−
113π2

72
−
29869

2916
þ ln4ð2Þ

81
þ 2

81
π2 ln2ð2Þ − 11

81
π2 lnð2Þ

þ
�
1225

288
−

1

18
ζð3Þ þ π2

9
þ 1

27
π2 lnð2Þ

�
ln

�
m̄2

m̄2
q

�
þ 1

27
ln2

�
m̄2

m̄2
q

��
þ 1

3
ln

�
m̄2

m̄2
q

�
δmð1Þ

q : ðB13Þ

Note that δmð2Þ
ðb;decÞ ¼ δmð2;5Þ

ðb;decÞ and δmð2Þ
ðc;decÞ ¼ δmð2;4Þ

ðb;decÞ. This last expression indeed corresponds to Eq. (17) of [13]
changing m̄b by m̄.
Finally, we also have

δmð2Þ
bc;dec ¼

1

3
ln

�
m̄2

m̄2
b

�
δmð1Þ

c ; ðB14Þ

δmð2Þ
cb;dec ¼

1

3
ln

�
m̄2

m̄2
c

�
½δmð1Þ

b þ δmð1Þ
b;dec�: ðB15Þ
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