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We provide a generic framework to obtain stable dark matter along with naturally small Dirac neutrino
masses generated at the loop level. This is achieved through the spontaneous breaking of the global Uð1ÞB−L
symmetry already present in the standard model. The Uð1ÞB−L symmetry is broken down to a residual even
Zn (n ≥ 4) subgroup. The residualZn symmetry simultaneously guarantees dark matter stability and protects
the Dirac nature of neutrinos. TheUð1ÞB−L symmetry in our setup is anomaly free and can also be gauged in a
straightforward way. Finally, we present an explicit example using our framework to show the idea in action.
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At present, a plethora of cosmic observations all indicate
that the bulk of matter in the Universe is in the form of dark
matter, a hitherto unknown form of matter which interacts
gravitationally, but has little or no electromagnetic inter-
action [1]. Similarly, the observation of neutrino oscilla-
tions has conclusively proven the existence of mass for at
least two active neutrinos [2–5]. These observations are two
of the most serious shortcomings of the standard model
(SM), since in the SM there is no viable candidate for dark
matter and neutrinos are predicted to be massless. Thus,
they both inarguably point to the presence of new physics
beyond the SM and they are topics of active theoretical and
experimental research.
To explain dark matter, the particle content of the SM

needs to be extended. Furthermore, to account for dark
matter stability new explicit [6,7] or accidental symmetries
[8] beyond those of the SM are also invoked. On the other
hand, the understanding of the tiny, yet nonzero masses of
neutrinos also requires extending the SM in one way or
another [9,10]. However, the type of SM extensions

required to explain the neutrino masses depend crucially
on the Dirac/Majorana nature of neutrinos. This still
remains an open question despite a tremendous amount
of experimental effort [11–14].
There are several ongoing and planned experiments

searching for neutrinoless double-beta decay [12,13], which
if observed, owing to the black box theorem [15], would
imply that neutrinos are Majorana particles. Furthermore,
inference about the nature of neutrinos can also be derived if
lepton-number-violating decays are observed at colliders
[16] or in the conversion of μ− → eþ in muonic atoms [14].
In the absence of any experimental or observational signa-
ture, the nature of neutrinos remains an open question.
From a theoretical point of view, the issue of the Dirac/

Majorana nature of neutrinos is intimately connected with
the Uð1ÞB−L symmetry of the SM and its possible breaking
pattern [17]. If the Uð1ÞB−L symmetry is conserved in
nature, then the neutrinos will be Dirac fermions. However,
if it is broken to a residual Zm subgroup with m ∈ Zþ and
m ≥ 2 (with Zþ being the set of all positive integers), then
the Dirac/Majorana nature will depend on the residual Zm
symmetry provided that the SM lepton doublets Li ¼
ðνLi

; lLi
ÞT do not transform trivially under it. Thus, we have

Uð1ÞB−L → Zm ≡Z2nþ1 with n ∈ Zþ

⇒ neutrinos are Dirac particles;

Uð1ÞB−L → Zm ≡Z2n with n ∈ Zþ

⇒ neutrinos can be Dirac or Majorana:

ð1Þ
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If the Uð1ÞB−L is broken to a Z2n subgroup, then one can
make a further classification depending on how the Li
transform:

Li

�≁ωn under Z2n ⇒ Dirac neutrinos;

∼ωn under Z2n ⇒ Majorana neutrinos;
ð2Þ

where ω2n ¼ 1. Thus, from a symmetry point of view there
are more options that lead to Dirac neutrinos than Majorana.
Moreover, in some recent works it has been argued that in a
full theory with the weak gravity conjecture neutrinos are
expected to be Dirac fermions [18]. Owing to the above
arguments, in the past few years Dirac neutrinos have gained
a significant amount of attention, leading to the development
of several elegant mass mechanisms to generate naturally
small Dirac neutrino masses [19–28].
Coming back to dark matter, there are particularly attrac-

tive scenarios that connect dark matter to neutrino physics
in an intimate manner. The scotogenic model is one such
model where the “dark sector” participates in the loop
responsible for neutrino mass generation [7]. Recently, a
relation between the Dirac nature of neutrinos and dark
matter stability has also been established [29]. Furthermore,
it has been shown that this relation is independent of
the neutrino mass generation mechanism [10]. It utilizes
the SM lepton number Uð1ÞL symmetry,1 or its appropriate
Zn subgroup, to forbid Majorana mass terms of neutrinos as
well as to stabilize dark matter [29]. In this approach, the
Dirac nature of neutrinos and the stability of dark matter are
intimately connected, having their origins in the same lepton
number symmetry.
In this paper we aim to combine and generalize these two

approaches and develop a general formalism where the
following conditions are satisfied:

(I) Neutrinos are Dirac in nature.
(II) Naturally small neutrino masses are generated

through finite loops, forbidding the tree-level neu-
trino Yukawa couplings.

(III) The dark sector participates in the loop. The lightest
particle being stable is a good dark matter candidate.

Usually one needs at least three different symmetries
besides those within the standard model to achieve this
[22]. However, we show that all of these requirements can
be satisfied without adding any extra explicit or accidental
symmetries. In our formalism we employ an anomaly-free
chiral realization of the Uð1ÞB−L spontaneously broken to a
residual Zn symmetry and show that just the Uð1ÞB−L
already present in the SM is sufficient.
Before going into the details of the formalism, let us

briefly discuss the possibility of chiral solutions toUð1ÞB−L
anomaly cancellation conditions. It is well known that the
accidental Uð1ÞB and Uð1ÞL symmetries of the SM are
anomalous, but the Uð1ÞB−L combination can be made
anomaly free by adding three right-handed neutrinos νRi

with ð−1;−1;−1Þ vector charges underUð1ÞB−L. However,
chiral solutions to Uð1ÞB−L anomaly cancellation condi-
tions are also possible. The particularly attractive feature of
chiral solutions is that by using them one can automatically
satisfy conditions I and II (as shown in Refs. [19,20])
using the chiral solution νRi

∼ ð−4;−4; 5Þ under Uð1ÞB−L
symmetry.
Our general strategy is to use the chiral anomaly-free

solutions ofUð1ÞB−L symmetry to generate loop masses for
Dirac neutrinos and also have a stable dark matter particle
mediating the aforementioned loop. Then, after symmetry
breaking, once all of the scalars get a vacuum expectation
value (VEV), the Uð1ÞB−L symmetry will be broken down
to one of its Zn subgroups, such that the dark matter
stability and Dirac nature of neutrinos remain protected.
This scheme is shown diagrammatically in Fig. 1.
In Fig. 1 the SM singlet fermions NLi; NRi, as well as the

right-handed neutrinos νR have nontrivial chiral charges
under Uð1ÞB−L symmetry.2 In order to generate the masses
of these chiral fermions we have also added SM singlet
scalars χi which also carry Uð1ÞB−L charges. To complete
the neutrino mass generation loop, additional scalars φ; ηi

(a) (b)

FIG. 1. General charge assignment for any topology and its spontaneous symmetry-breaking pattern.

1One can equivalently use the anomaly-freeUð1ÞB−L symmetry.

2It is not necessary that all fermions NLi; NRi be chiral under
Uð1ÞB−L symmetry.
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are required. After spontaneous symmetry breaking (SSB)
of the Uð1ÞB−L symmetry, all of the scalars χi will acquire
VEVs that break the Uð1ÞB−L → Zn residual symmetry.
The fermions NLi; NRi get masses through the VEVs of
the scalars χi, while the neutrinos acquire a naturally small
n-loop mass, as shown in Fig. 1.
In order to satisfy all of the requirements listed above,

several conditions must be applied. First of all, the model
should be anomaly free:
(1) The chiral charges of the fermions must be taken in

such a way that the anomalies are canceled.
In order to obtain nonzero but naturally small Dirac
neutrino masses we impose the following conditions:
(2) The tree-level Yukawa coupling L̄ H̃ νR should be

forbidden. This implies that apart from the SM
lepton doublets Li no other fermion can have
Uð1ÞB−L charge of �1. Furthermore, to ensure that
the desired loop diagram gives the dominant con-
tribution to the neutrino masses, all lower loop
diagrams should also be forbidden by an appropriate
choice of the charges of the fields.

(3) The operator leading to neutrino mass generation,
i.e., L̄Hcχ1…χiνR, should be invariant under the
SM gauge symmetries as well as under Uð1ÞB−L.
Following the charge convention of Fig. 1, the
charges of the VEV-carrying scalars χi should be
such that

P
i ζi ¼ −1 − l.

(4) All of the fermions and scalars running in the
neutrino mass loop must be massive. Since the
fermions will be in general chiral, this mass can
only be generated via the coupling with a VEV-
carrying scalar. For example, in the diagram in Fig. 1
we should have −xi þ x0i þ ζi ¼ 0.

(5) To protect the Diracness of neutrinos, all of the
Majorana mass terms for the neutrino fields at all
loops must be forbidden in accordance with Eq. (2).

Additionally, for dark matter stability we impose the
following conditions:
(6) After SSB, the Uð1ÞB−L symmetry is broken down

to a Zn subgroup. Only even Zn subgroups with
n > 2 can protect dark matter stability. The odd Zn
subgroups invariably lead to dark matter decay.3 The
symmetry-breaking pattern can be extracted as
follows. First, all of the Uð1Þ charges must be
rescaled in such a way that all of the charges are

integers and the least common multiple (lcm) of all
of the rescaled charges is 1. Defining n as the least
common multiple of the charges of the scalars χi, it
is easy to see that the Uð1Þ will break to a residual
Zn. This n must be taken to be even, as explained
before, i.e., n≡ lcmðζiÞ ∈ 2Z.

(7) Dark sector particles should neither mix with nor
decay to SM particles or to VEV-carrying scalars.

(8) There are two viable dark matter scenarios depend-
ing on the transformation of the standard model
fermions under the residual symmetry.
(i) When all SM fields transform as even powers of

ω, where ωn ¼ 1, under the residual Zn, the
lightest particle transforming as an odd power
will be automatically stable, irrespective of its
fermionic or scalar nature. We will show an
explicit example of this simple yet powerful
idea later.

(ii) In the case in which all SM fermions transform
as odd powers of the residual subgroup, it can
be shown that all of the odd scalars and the even
fermions will be stable due to a combination of
the residual Zn and Lorentz symmetry.

Given the long list of requirements, most of the possible
solutions that lead to anomaly cancellation fail to satisfy
some or most of them. Still, we have found some simple
one-loop and several two-loop solutions that can satisfy all
of the conditions listed above.
In this paper, we demonstrate the idea for a simple

solution in which theUð1ÞB−L symmetry is broken down to
a residual Z6 symmetry. However, in general, many other
examples with different residual even Zn symmetries can
be found by applying the given framework.
Realistic example.—Let us consider an extension of the

SM by adding an extra Higgs singlet χ with a Uð1ÞB−L
charge of 3, along with an scalar doublet η, a singlet ξ, and
two vector-like fermions NLl

and NRl
, with l ¼ 1, 2, all

carrying nontrivial Uð1ÞB−L charges as shown in Table I
and depicted in Fig. 2(a).
The neutrino interactions are described by the following

Lagrangian:

TABLE I. Charge assignment for all of the fields. Z6 is the
residual symmetry in this example, with ω6 ¼ 1.

Fields SUð2ÞL ⊗ Uð1ÞY Uð1ÞB−L Z6

Fermions Li (2;−1=2) −1 ω4

νRi
(1; 0) ð−4;−4; 5Þ (ω4;ω4;ω4Þ

NLl
(1; 0) −1=2 ω5

NRl
(1; 0) −1=2 ω5

Scalars H (2; 1=2) 0 1
χ (1; 0) 3 1
η (2; 1=2) 1=2 ω
ξ (1; 0) 7=2 ω

3For odd Zn subgroups, there will always be an effective dark
matter decay operator allowed by the residual odd Zn symmetry.
Even then, it is possible that such an operator cannot be closed
within a particular model, thus pinpointing the existence of an
accidental symmetry that stabilizes dark matter. Another pos-
sibility is that the dark matter candidate decays at a sufficiently
slow rate. Thus, for residual odd Zn symmetries, one can still
have either a stable dark matter stabilized by an accidental
symmetry or a phenomenologically viable decaying dark matter.
In this paper, we will not explore such possibilities.
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Lν ¼ yilL̄iη̃NRl
þ y0liN̄Ll

νRi
ξþMlmN̄Rl

NLm
þ H:c:; ð3Þ

where η̃ ¼ iτ2η�, with the indices i ¼ 1, 2, 3 and
l; m ¼ 1; 2. The relevant part of the scalar potential for
generating the Dirac neutrino mass is given by

V ⊃ m2
ηη

†ηþm2
ξξ

†ξþ ðλDH†ηχξ� þ H:c:Þ; ð4Þ

where λD is a dimensionless quartic coupling.
After spontaneous symmetry breaking of Uð1ÞB−L, the

scalar χ gets a VEV hχi ¼ u, giving mass to two neutrinos
through the loop depicted in Fig. 2. Note that only νR1

and
νR2

can participate in this mass generation due to the chiral
charges ð−4;−4; 5Þ, i.e., y0l3 ¼ 0 in Eq. (3). The third right-
handed neutrino νR3

remains massless and decouples from
the rest of the model, although it is trivial to extend this
simple model to generate its mass.
The neutral component of the gauge doublet η and the

singlet ξ are rotated into the mass eigenbasis with eigen-
valuesm2

i in the basis of (ξ; η
0). The neutrino mass matrix is

then given in terms of the one-loop Passarino-Veltman
function B0 [30] by

ðMνÞαβ ∼
1

16π2
λDvu

m2
ξ −m2

η
yαky0kβMk

X2
i¼1

ð−1ÞiB0ð0; m2
i ;M

2
kÞ;

ð5Þ

where Mk (k ¼ 1, 2) are the masses of the Dirac fermions
Nk and hHi ¼ v is the SM VEV.
As a benchmark point, we can take the internal fermion

to be heavier than the scalars running in the loop, one of
which will be the dark matter candidate. Then, Eq. (5) can
be approximated by

mν ∼
1

16π2
vu
M

yy0λD: ð6Þ

For comparison, we can take the Yukawa couplings to be of
order 10−2 and the quartic coupling λD ∼ 10−4, like in the
original scotogenic model [7]. We can also take neutrino

masses to be of order 0.1 eVand u ∼ v. With these choices,
we can find the mass scale of the neutral fermions,

M ∼
1

16π2
vu
mν

yy0λD ∼ 104 GeV: ð7Þ

Compared with the type-I seesaw scale M ≈ y2 v2
mν

∼
1010 GeV we can see a 5 order of magnitude suppression
coming from the loop and the possibility of a broader
parameter space.
It is worth mentioning that since the Uð1ÞB−L is anomaly

free, it can be gauged. Then, the physical Nambu-
Goldstone boson associated to the dynamical generation
of the Dirac neutrino mass [31] is absent.
Regarding dark matter stability in this particular model,

we can see that the lightest particle inside the loop is stable.
This is true for both the fermionic and scalar dark matter
candidates. As can be seen in Fig. 2(b), all of the internal
loop particles are odd under the remnant Z6, while all of
the SM particles are even. Therefore, any combination of
SM fields will be even under the residual subgroup,
forbidding all effective operators leading to dark matter
decay as shown graphically in Fig. 3.

FIG. 2. Charge assignment for the example model and its spontaneous symmetry-breaking pattern.

FIG. 3. The decay of dark matter (odd under Z6) to SM
particles (all even under Z6) is forbidden by the residual Z6

symmetry. This argument can be generalized to any even Zn
symmetry.
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To summarize, we have shown that by using theUð1ÞB−L
symmetry already present in the standard model, it is
possible to address the dark matter stability and relate it to
the smallness of Dirac neutrino masses. We have described
a general framework in which these features are realized
by exploiting the anomaly-free chiral solutions of a global
Uð1ÞB−L. This framework can be utilized in a wide variety
of scenarios. We have presented a particular simple
realization of this idea where neutrino masses are generated
at the one-loop level and the Uð1ÞB−L symmetry is broken
spontaneously to a residual Z6 symmetry. The framework
can also be used in models with higher-order loops as well
as in cases where Uð1ÞB−L symmetry is broken to other
even Zn subgroups. Since the Uð1ÞB−L is anomaly free, it
can be gauged in a straightforward way, giving a richer
phenomenology from the dark matter and collider point
of view.
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