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The nonperturbative path integral quantization of the electroweak model is confronted with an apparent
instability when integrating over the Maxwell potential Aμ due to the fast growth of the box graphs AAAA
and AAAZ for large amplitude variations of Aμ. Zμ is from the vector part of the weak neutral current. These
graphs are unavoidable because they are conditionally convergent and have to be isolated in the model’s
exact Euclidean one-loop effective action arising from its fermion determinants. A previous QED
calculation of the large amplitude variation of its fermion determinant for a class of random potentials
showed that the AAAA box graph cancels in this limit. Using this result it is shown that within the
electroweak model large amplitude variations of Aμ for fixed Zμ in a superposition of these fields cancel the
AAAA and AAAZ graphs, thereby removing an apparent obstacle to the model’s nonperturbative
quantization. A negative paramagnetic term in the remainder opposes the effective action’s growth for
such variations. Its calculation requires knowledge of the degeneracy of the bound states of a charged
fermion in the four-dimensional magnetic fields generated by the functional measure of Aμ.

DOI: 10.1103/PhysRevD.101.033010

I. INTRODUCTION

The renormalizable electroweak model with its 24
adjustable parameters, including three massive Dirac neu-
trinos and their mixing, has so far accounted for a wealth of
experimental data. Every aspect of the model should
therefore be examined, including its nonperturbative sector.
It is the aim of this paper to examine some aspects of this
neglected sector.
Nonperturbative information about any electroweak

process resides in its representation as a functional integral
over the fields contributing to the process. After sponta-
neous symmetry breaking this is a Euclidean path integral
of the form

I ¼ N −1
Z

dμðAÞdμðZÞdμðW�ÞdμðHÞ
Y
i

½dψ i�½dψ†
i �

× e
R

d4xLðA;Z;W�;H;ψ ;ψ†ÞF ðA; Z;W�; H;ψ ;ψ†Þ; ð1Þ

where i ¼ e, μ, τ, νe, νμ, ντ, u, d, c, s, t, b. Here A, Z, W�,
H denote the Maxwell field, neutral and charged vector
bosons, and Higgs field, while the ψ i denote the lepton and
quark fields. The unitary gauge is chosen so that ghost

fields are not required. F is a polynomial in the gauge and
Higgs fields and the fermion fields specific to the process.
N is a normalization constant defined in Sec. III D. The
functional measures dμ are Gaussian in the indicated fields
so that the electroweak model’s LagrangianL only contains
interacting fields.
AsL is quadratic in the quark and lepton fields they can be

integrated out using the rules for integrating a Gaussian
composed of Grassmann four-component spinors [1].
Neglectingmixing for the present this results in the following
factorized determinants from the neutral and charged weak
current for each quark family i ¼ u; d; c; s; t; b [2]:

detG−1
t3LðiÞ¼1

2

detG−1
t3LðiÞ¼−1

2

× det

�
1 −

g2

8
Gt3LðiÞ¼−1

2
W−ð1 − γ5ÞGt3LðiÞ¼1

2
Wþð1 − γ5Þ

�
;

ð2Þ

where

detG−1
t3LðiÞ

¼ det

�
Pþmi−eQi=A−

g
2cosθW

=ZðgiV −giAγ5Þþ
gmi

2MW
H

�
:

ð3Þ

Integration over the leptons gives the same result
except that Wþ ↔ W− and t3LðiÞ → −t3LðiÞ in (2), where
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i ¼ νe; e; νμ; μ; ντ; τ.Gt3LðiÞ is the propagator of fermion i in
the presence of the external potentials Aμ; Zμ, and the Higgs
field given by the inverse of the operator in brackets on the
right-hand side of (3) [3]. Here mi andMW are the fermion
and W-boson masses; e is the positron electric charge, and
Qi is the charge of fermion i in units of e; θW is the weak
angle, and g ¼ e= sin θW . The vector and axial-vector
couplings are

giV ¼ t3LðiÞ − 2Qisin2θW; ð4Þ

giA ¼ t3LðiÞ; ð5Þ

where t3LðiÞ is the weak isospin of fermion i. We have
adopted the conventions and notation of [4].
Quark mixing does not alter the determinants in (3) that

are the focus of this paper. It does modify the last
determinant in (2) contributed by the charged weak-vector
current as reported in Sec. III C. Although mixing greatly
complicates this determinant, it does not modify the
conclusions of this paper. Based on this result the three
massive Dirac neutrinos’ mixing is neglected here.
The determinants in (2) when written asΠi exp½ln detðiÞ�

generate an effective action through the shift L →
LþP

i ln detðiÞ in the remainder of L in (1) after the
fermion integration. The sum over i includes fermion
generations and color degrees of freedom. Each determinant
must be defined by factoring out its tadpole, self-energy,
triangle, and box graphs. These are assumed to be regular-
ized, renormalized, and made gauge invariant before
inserting them in the above sum. Anomalies are assumed
to be already canceled in the sum over fermion generations.
These steps are discussed in Secs. II A, III A, and III C.
Consequently there are no renormalization counterterms in
the one-loop effective action as defined here. Going beyond
one loop requires the introduction of ultraviolet regulators
that are introduced in Sec. II A and remaining sections.
In [5] it was asked whether the electroweak model can be

nonperturbatively quantized and, in particular, whether any
of the unexpanded functional integrals in (1) over the gauge
and Higgs fields converge [6]. It was decided to approach
these questions by integrating over the Maxwell field first
after integrating over the fermions. This avoids immediate
confrontation with the unmeasured shape of the Higgs
potential. As the gauge field self-interactions in the
interaction Lagrangian in (1) are quadratic in A [7,8],
convergence depends on the large amplitude variations of
the renormalized determinants with A.
The process of defining the determinants introduces the

box graphs AAAA and AAAZ, where Z is from the vector
part of the weak neutral current as described in Sec. III.
These graphs confront the electroweak model with a
potential instability when integrating over A. This is an
example of the large field problem of a singular perturba-
tion of a Gaussian functional measure [9], in this case

dμðAÞ in (1). It is known that the AAAA graphs cancel in the
strong field limit of QED’s Euclidean effective action for a
class of random potentials [5]. This is reviewed in Sec. II.
Based on this result it is shown in Sec. III A that the strong
field limit of Aμ for fixed Zμ in a superposition of these
fields cancels the AAAA and AAAZ graphs. Other poten-
tially destabilizing graphs are discussed in Sec. III C.
A paramagnetic term in the one-loop effective actions of
QED and the electroweak model opposing their growth for
large amplitude variations of Aμ is discussed in Secs. II C
and III B.
Section IV summarizes our results. The Appendix

completes a previous calculation of the strong-field
dependence of the scalar QED determinant [5] that is
required in Sec. II.

II. REVIEW OF THE STRONG FIELD
BEHAVIOR OF QED’S EFFECTIVE ACTION

A. Preliminaries

Any one of QED’s determinants contributed by a quark
or charged lepton is obtained by setting g ¼ 0 in (2) and (3)
and subtracting ln detðPþmiÞ in (3) to give the formal
expression ln detð1 − eQiS=AÞ normalized to 0 at e ¼ 0.
S ¼ ðPþmiÞ−1 is the free propagator for the fermion i.
The process of defining this determinant begins by noting
that the allowed potentials must support the gauge-fixed
Gaussian measure dμðAÞ in (1) on S0ðR4Þ, the space of
tempered distributions. These distributional, random poten-
tials are smoothed by convoluting them with functions fΛ
belonging to SðR4Þ, the space of functions of rapid
decrease:

AΛ
μ ðxÞ ¼

Z
d4yfΛðx − yÞAμðyÞ: ð6Þ

Then AΛ
μ ∈ C∞ and hence is infinitely differentiable. As

discussed in [2,5] this smoothing process also introduces a
gauge invariance preserving ultraviolet cutoff required to
regulate QED. Thus, from the covariance of the measure
dμðAÞ, R dμðAÞAμðxÞAνðyÞ¼Dμνðx−yÞ, where Dμνðx − yÞ
is the free photon propagator in a fixed gauge, we obtain

Z
dμðAÞAΛ

μ ðxÞAΛ
ν ðyÞ ¼ DΛ

μνðx − yÞ: ð7Þ

The regularizing propagator DΛ
μνðx − yÞ has the Fourier

transform D̂μνðkÞjf̂ΛðkÞj2 with f̂Λ ∈ C∞
0 , the space of C

∞

functions with compact support such as f̂ΛðkÞ¼1, k2 ≤ Λ2

and f̂ΛðkÞ ¼ 0, k2 ≥ nΛ2, n > 1 [2,5]. It should be clear
that the random potentials Aμ are part of the functional
measure perturbing dμðAÞ and that they are measurable
as (7) illustrates. The AΛ

μ will now replace Aμ everywhere in
the functional integrals over Aμ except the measure dμðAÞ.
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In the following the superscript Λ will be omitted with the
understanding that Aμ is now a C∞ potential. Only when it
encounters the measure does Λ reappear.
The regularization and renormalization of detð1−eQiS=AÞ

results in the renormalized determinant detren [10–12],
otherwise known as the Euclidean vacuum persistence
amplitude,

ln detrenð1 − eQiS=AÞ

¼ 1

2
ΠAA þ

1

4
ΠAAAA þ ln det5ð1 − eQiS=AÞ; ð8Þ

where

ln det5 ¼ Tr

�
lnð1 − eQiS=AÞ þ

X4
n¼1

ðeQiS=AÞn
n

�
: ð9Þ

The ΠAA and ΠAAAA terms contain the renormalized
photon self-energy graph and the gauge invariant γγ-
scattering graphs, corresponding formally to TrðeQiS=AÞ2
and TrðeQiS=AÞ4, respectively. These are calculated from an
expansion to OðeQiÞ4 of the proper time representation of
ln detð1 − eQi=AÞ that includes a second-order on-shell
charge renormalization subtraction [13]. More information
on this is given by (29) and (30) below. This expansion also
sets the tadpole and triangle graphs inΠA andΠAAA equal to
zero as required by C-invariance. The four subtractions in
brackets in (9) remove all terms through OðeQiÞ4 from
det5. The gauge invariance of det5 requires that it depends
only on Fμν.
The representation (9) of ln det5 is defined only if the

non-Hermitian operator S=A is a compact operator belong-
ing to I r, r > 4. The trace ideal Ir (1 ≤ r < ∞) is defined

for those compact operators T with TrðT†TÞr=2 < ∞. This
means that the eigenstates of T are complete and square
integrable and that its complex eigenvalues are discrete,
have finite multiplicity, and satisfy

P
n jλnjr < ∞. General

properties of Ir spaces and the properties of determinants
of operators belonging to these spaces may be found in
[14–17]. By a theorem of Seiler and Simon [10–12,14,18]
S=A ∈ I r, r > 4 provided mi ≠ 0 and Aμ ∈∩r>4 LrðR4Þ,
thereby validating (9) for this class of potentials. This
restriction means that AμðxÞ falls off at least as fast as 1=jxj
for jxj → ∞ [19], that it has no poles or branch points for
finite x such as jx − x0j−β, β > 0, and that AμðxÞ is finite at
x ¼ 0. From here on we will denote an eigenvalue of S=A
by 1=en.
Since S=A ∈ I r, r > 4,

P
nð1=jenjÞ4þϵ < ∞, ϵ > 0, so

that det5 is an entire function of eQi [14–17] of order 4
[20]. That is, det5 is analytic in eQi in the entire complex
e-plane with jdet5j < A expðKjeQij4þϵÞ for positive con-
stants A and K. Since det5 ¼ 1 for eQi ¼ 0, det5 > 0 for
real values of e since the zeros of det5 lie off the real e-axis
when mi ≠ 0. Because det5 is an entire function of eQi of
order 4, ln det5 can impact on the ΠAAAA term in (8) for
large amplitude variations of Aμ. We will return to this
below.

B. Means of calculation

To appreciate the full significance of (8) more informa-
tion on the strong field behavior of det5 is required. Such
information is obtained from the following representation
of detren [5] derived from Schwinger’s proper time repre-
sentation of detren [13]:

ln detren ¼ 2

Z
∞

0

dt
t

�
Trðe−P2t − e−ðP−eQiAÞ2tÞ − e2Q2

i kFk2
192π2

�
e−tm

2
i þ 1

2
ln det3

�
1þ Δ1=2

A
1

2
eQiσFΔ

1=2
A

�

þ ðeQiÞ2
Z

∞

0

dt e−tm
2
i

�
1

32π2t
kFk2 − 1

2
Trðe−ðP−eQiAÞ2tFμνΔAFμνÞ

�
: ð10Þ

The first term in (10) is twice the proper time definition
of the scalar QED determinant with an on-shell charge
renormalization subtraction, where kFk2 ¼ R

d4xFμνFμν.
In the second term ΔA ¼ ½ðP − eQiAÞ2 þm2

i �−1 is the
propagator of a charged scalar particle in the external
potential Aμ and σμν ¼ ½γμ; γν�=ð2iÞ. The Euclidean
γ-matrices are anti-Hermitian. The Hermitian operator

T ¼ Δ1=2
A

1

2
eQiσFΔ

1=2
A ð11Þ

belongs to the trace idealI3 ifFμν ∈∩r>2 LrðR4Þ [5]. There-
fore, its eigenstates are complete and square-integrable.
Its eigenvalues fλng∞n¼1 are real, discrete with finite

multiplicity, occur in pairs λn;−λn, and satisfyP∞
n¼1 jλnj3<∞. Then the second term in (10) can be

expressed as

ln det3ð1þ TÞ ¼ ln det

�
ð1þ TÞ exp

�
−T þ 1

2
T2

��

¼ Tr

�
lnð1þ TÞ − T þ 1

2
T2

�

¼
X∞
n¼1

½lnð1 − λ2nÞ þ λ2n�; ð12Þ

where the sum is over positive eigenvalues. Since ln det3 is
real and finite, λn < 1 for all n and hence
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ln det3

�
1þ Δ1=2

A
1

2
eQiσFΔ

1=2
A

�
≤ 0; ð13Þ

since lnð1 − x2Þ þ x2 ≤ 0 for 0 ≤ x ≤ 1. The strong-field
dependence of the eigenvalues will be examined in the next
section.
The last term in (10) is connected with charge renorm-

alization and is positive due to QED’s lack of asymptotic
freedom. Specifically, the third term’s contribution to
the strong-field asymptotic behavior of ln detren is
keQiFk2=ð32π2Þ × lnðjeQijF=m2

i Þ, while the first term
reduces this by a factor of 2=3, resulting in an overall
growth of ðβ1keQiFk2=4Þ × lnðjeQijF=m2

i Þ, where β1 ¼
1=ð12π2Þ is the coefficient of the one-loop QED beta
function [5]. This result coincides with the analysis in [21]
for the case of constant F.
Each term of the right-hand side of (10) is separately

gauge invariant and ultraviolet finite. The advantage of this
representation is that ln detren is divided into three tractable
terms each of which can be estimated in the strong-field
limit. In particular, the separation of the paramagnetic spin
term, represented by det3, from the rest of the spinor QED
determinant is achieved here. As will be seen in Sec. III,
Eq. (10) is immediately extendable to include the weak
neutral vector current.

C. Results

Let F fix the amplitude of Fμν in which case F has the
dimension of L−2. Since eQi always multiplies Fμν, the
natural strong-field scaling parameter is jeQijF . Then for
the smoothed potentials introduced above and for each
charged fermion [5]

ln detren ¼jeQijF→∞
�

1

48π2
ðeQiÞ2kFk2−

N
2

�
ln

�jeQijF
m2

i

�
þR:

ð14Þ

N in (14) is contributed by the spin-dependent term det3
in (10). It is the number of eigenstates of T in (11) having
an eigenvalue λ ↗ 1 as jeQijF → ∞. In the absence of
such eigenstates the remainder R satisfies

lim
jeQijF→∞

R
ðeQiF Þ2 lnðjeQijF Þ ¼ 0: ð15Þ

The result (14) summarizes the results (6.44)–(6.46) in
[5]. We note that the inequality in those results has been
replaced here with equality since the strong-field depend-
ence of the scalar QED determinant required to obtain these
results has been sharpened in the Appendix of this paper.
The first term in (6.45) and (6.46) should be multiplied by
1=2. The result (14) agrees with the asymptotic behavior of
the one-loop Heisenberg-Euler effective Lagrangian for
the case of a constant magnetic field for which N ¼ 0

after introducing a volume cutoff. See [22] and references
therein.
The N-dependent term in (14) is relevant to the func-

tional integrability of QED. Inspection of (12) shows
that an eigenvalue jλj ↗ 1 as jeQijF → ∞ will cause
ln det3 to assume a large negative value that is enhanced if
the degeneracy N of the associated eigenstates is large.
Understanding this stabilizing result will decide in Sec. III
whether it extends to the entire electroweak model. Hence,
a review of its derivation in [5] is warranted here.
The eigenvalue λ and its associated eigenstates are

obtained by transforming the eigenvalue equation Tjλi ¼
λjλi into the equivalent equation

�
ðP − eQiAÞ2 þ

eQi

2λ
σF

�
ψλ;n ¼ −m2

iψλ;n; ð16Þ

where ψλ;n ∈ L2ðR4Þ and n is the set of quantum numbers
specifying the state. The state ψλ;n will in general have both
positive and negative chirality components. At this stage λ
is just one of a discrete set of eigenvalues fλkg∞k¼1 of T that
result in a bound state with energy −m2

i for a fixed value
eQi. Bound states are possible when mi ≠ 0, 0 < jλj < 1,
when λ > 0ð< 0Þ and eQihλ; njσFjλ; ni < 0ð> 0Þ due to
the formation of sufficiently broad and deep potential wells.
Assume eQi > 0, and that 0 < λ < 1 following Sec. II B.
Suppose the potential in (16) also supports a zero mode
ψ0;n that satisfies

�
ðP − eQiAÞ2 þ

eQi

2
σF

�
ψ0;n ¼ 0: ð17Þ

The square-integrable state ψ0;n has definite chirality.
Equation (17) requires h0; njσFj0; ni < 0. The state
j0; ni denotes a zero mode state with quantum numbers
n and not a state with λ ¼ 0. Referring to (16),
hλ; njσFjλ; ni < 0. From (16) and (17) there follows

λ

1 − λ
¼ jeQijF

2m2
i

���� h0; njσFjλ; niF h0; njλ; ni
����: ð18Þ

If all of the angular-momentum-like quantum numbers n
are the same and jλ; ni has mixed chirality, then j0; ni
projects out one of the chirality components from jλ; ni,
and we expect h0; njλ; ni ≠ 0. Based on our limited knowl-
edge of four-dimensional Abelian zero modes [23] they
have a distinctive structure, and so the nonvanishing of
h0; njλ; ni distinguishes jλ; ni and its eigenvalue λ from all
the other eigenstates of T. A necessary condition on Fμν to
define det3 is Fμν ∈∩r>2 LrðR4Þ [5]. Therefore, Fμν is a
bounded function and

���� h0; njσFjλ; niF h0; njλ; ni
���� ≤ K; ð19Þ
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where K is bounded for large F . Equations (18) and (19)
imply λ ↗ 1 as jeQijF → ∞. The operator transforming
jλ; ni into the negative eigenvalue state j − λ; ni is con-
structed in Appendix D of [5]. Since the sum in (12) is over
λ2, the negative eigenvalues are included in going from line
2 to line 3 in (12). Insertion of (18) and (19) in (12) then
gives the N-dependent term in (14). An analytic calculation
of the eigenvalue λ for a family of zero-mode supporting
potentials is given in Sec. V and Appendix E of [5].
The foregoing leads to the general statement: If the

potential Aμ also supports a zero mode state j0; ni and one
of the positive eigenvalue states jλ; ni of T has the same
quantum numbers n as j0; ni and h0;njλ;ni≠0, then λ ↗ 1
as jeQijF → ∞. An operator can be constructed that maps
jλ; ni to the orthogonal state j − λ; ni.
N in this case is the number of states jλ; ni and is also

equal to the number of zero modes j0; ni as these two sets
of states are in one-to-one correspondence. This line of
reasoning makes it clear that the mass singularity contrib-
uted by ln det3 to ln detren cannot be removed. This is
unlike the mass singularity associated with the first term in
(14) that can be removed by renormalizing off-shell.
If the zero mode supporting potential Aμ falls off as 1=jxj

for jxj → ∞ and all of the zero modes have the same
chirality, then their number,N, is given by the absolute value
of the chiral anomaly, ðeQiÞ2j

R
d4xϵμναβFαβFμνj=ð32π2Þ

[24,25], and R in (14) satisfies (15) [26]. In this case Fμν is
not square integrable, requiring a volume cutoff in kFk in
(14) that is discussed in Sec. III D. The presence of kFk
in (14) is from a charge renormalization subtraction [5] and
is independent of det5 which has no divergence for the class
of fields under consideration here.
If the zero modes do not have the same chirality, then the

Atiyah-Singer index theorem generalized to noncompact
Euclidean spacetime [24,25] no longer gives their total
number, and no bound can be placed on R. At present there
is no evidence that a zero-mode supporting potential in
four-dimensional QED can have zero modes with different
chirality. In the single known case of such a potential with a
1=jxj falloff all of its zero modes are found to have the same
chirality [23].
We have considered the states jλ; ni obtained from (16)

that have eigenvalue jλj ↗ 1 as jeQijF → ∞ when the
potential also supports a zeromode. Thiswas done because it
allowed us to count the states jλ; ni under the limitations
discussed above. We see no reason why other admissible
potentials cannot also produce eigenstates jλ; ni from (16)
such that jλj ↗ 1 as jeQijF → ∞. This opens the possibility
of a much larger class of admissible potentials supporting
dμðAÞ that can result in an increasing Fμν-dependent
degeneracy parameter N in (14). These potentials may be
more likely to support dμðAÞ than the highly restricted zero-
mode supporting potentials, and, if so, will have a direct
bearing on the convergence of theMaxwell integration in (1)
when g ¼ 0. This possibility was not noticed in [5].

In fact, ln det3 in (10) and (12) may be the controlling
term in ln detren for large variations of Fμν for reasons
discussed at the end of Sec. III B that are also applicable
to QED.

D. det5 and ΠAAAA

Assume that the zero modes, if any, supported by an
admissible potential have the same chirality. Then the
results (14) and (15) apply. Since the ΠAAAA term in (8)
is of OðeQiF Þ4, then det5 always cancels ΠAAAA in the
limit jeQijF → ∞ to give the result in (14).
Considering the complexity of ΠAAAA when reduced to

its gauge invariant form [27,28] it is remarkable that the
eigenvalues f1=eng∞n¼1 of S=A arrange themselves in det5 to
cancel it in the strong-field limit, especially since

ΠAAAA ≠ −
1

4

X
n

ð1=enÞ4: ð20Þ

To cancel ΠAAAA and satisfy (14) det5 must assume its
allowed exponential growth, A expðKjeQij4F 4Þ, on the real
e-axis.
We have no information on the relative sign of ΠAAAA

and ln det5 for a particular background field. In the
preceding paragraph it is assumed that ΠAAAA < 0. If
ΠAAAA > 0, then ln det5 must vary as −ðeQiF Þ4 on the
real e-axis for large field fluctuations. Our analysis cannot
distinguish between these cases, but it does rule out ΠAAAA
and ln det5 having the same sign when jeQijF → ∞.
In [23] it was found that the large mass expansion of
ΠAAAA can change sign with different fields Fμν.
To go a step further and declare det5 an entire function of

order 4 and finite type would require that ln j det5 j grows no
faster than jej4ðQiF Þ4 along all rays in the complex e-plane.
Ruling out growth such as jej4ðQiF Þ4 × lnαðjeQijF Þ,
α > 0, along some rays requires sufficient symmetry in
the distribution of the eigenvalues of S=A [20]. Euclidean C-
invariance [29] and the reality of det5 for real e require these
to occur in quartets�en;�ēn or as complex conjugate pairs.
Thismay ormay not be sufficient for det5 to be of finite type.
Since det5 is an entire function of eQi of order 4, then

by (8) so is detren. Result (14) shows that detren—the
Euclidean vacuum persistence amplitude—does not
assume its maximal growth on the real e-axis. This
confirms a long-standing conjecture of Balian, Itzykson,
Parisi, and Zuber [30].

III. EXTENSION OF SECTION II’S RESULTS
TO THE ELECTROWEAK MODEL

A. Cancellation of ΠAAAA and ΠAAAZ

The relevance of the preceding results to the electroweak
model becomes evident on referring to the determinants
in (2) and (3) and noting the superposition
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eQiAμ þ
giVg

2 cos θW
Zμ:

This suggests that the potential Vμ defined by

eQiVμ ¼ eQi

�
Aμ þ

giV
2Qi cos θW sin θW

Zμ

�
ð21Þ

will be useful to study the interference of Aμ with Zμ and
the cancellation of the potentially destabilizing box graph
AAAZ for large amplitude variations of Aμ. The relation
g ¼ e= sin θW was used in (21). Consider the formal
operations on (3),

ln det

�
P− eQi=V þmi þ

giAg
2 cosθW

=Zγ5 þ
gmi

2MW
H

�
− ln detðP− eQi=V þmiÞ þ ln detðP− eQi=V þmiÞ− ln detðPþmiÞ

¼ ln detð1− eQiS=VÞ þ ln det

�
1þ SV

�
giAg

2 cosθW
=Zγ5 þ

gmi

2MW
H

��
; ð22Þ

where lnðPþmiÞ is subtracted so that the right-hand side
of (22) vanishes when e; g ¼ 0. SV is the propagator of a
charged fermion in the external potential V:

SV ¼ ðP − eQi=V þmiÞ−1: ð23Þ
Wewill return to the last determinant in (22) in Sec. III C

below [31].
Our interest here is ln detð1 − eQiS=VÞ. It can be con-

nected to the results for ln detrenð1 − eQiS=AÞ with the shift

eQiAμ → eQiVμ following (21). It is assumed that Zμ has
been smoothed and made C∞ by the same procedure
as in Sec. II A and that Zμ ∈∩r>4 LrðR4Þ as does Aμ.
The smoothing function fΛ̃ for Z should have Λ̃ ≠ Λ to
keep the regularizations relating to A and Z separate. The
Seiler-Simon theorem in Sec. II B now applies to S=V so that
this operator belongs to Ir, r > 4. Then representation (10)
for ln detrenð1 − eQi=AÞ extends to the electroweak model
on replacing eQiAμ with eQiVμ:

ln detrenð1 − eQiS=VÞ ¼ 2

Z
∞

0

dt
t

�
TrðeP2t − e−ðP−eQiVÞ2tÞ − 1

192π2

����eQiFμν þ
giVg

2 cos θW
Zμν

����
2
�
e−tm

2
i

þ 1

2
ln det3

�
1þ Δ1=2

V
1

2
σμν

�
eQiFμν þ giVg

2 cos θW
Zμν

�
Δ1=2

V

�

þ
Z

∞

0

dt e−tm
2
i

�
1

32π2t

����eQiFμν þ
giVg

2 cos θW
Zμν

����
2

−
1

2
Tr

�
e−ðP−eQiVÞ2t

�
eQiFμν þ

giVg
2 cos θW

Zμν

�
ΔV

�
eQiFμν þ giVg

2 cos θW
Zμν

���
: ð24Þ

The propagator ΔA has been replaced with the scalar
propagator in the background potentials Aμ; Zμ:

ΔV ¼ ½ðP − eQiVÞ2 þm2
i �−1: ð25Þ

The first term in (24) is the scalar QED determinant in
(10) shifted to give the renormalized one-loop effective
action of a charged particle propagating in the neutral
vector potential Vμ. The trace term is positive by Kato’s
inequality [32–35], which means that on average the energy
levels of a scalar particle minimally coupled to a neutral
vector potential increase. The remaining renormalization
subtraction causes the first term to turn negative for
jeQijF → ∞. When combined with the leading positive
renormalization subtraction in the third term in (24), the

result is a fast growing contribution to ln detren as seen
in (32) below.
In the second term the Hermitian operator

TV ¼ Δ1=2
V

1

2
σμν

�
eQiFμν þ giVg

2 cos θW
Zμν

�
Δ1=2

V ð26Þ

belongs to the trace ideal I3 if Fμν; Zμν ∈∩r>2 LrðR4Þ
following a straightforward generalization of the result in
Appendix A of [5] by replacing Aμ with Vμ and Fμν with
Vμν. All of the properties of ln det3ð1þ TÞ and the
eigenvalues of T in (12) carry over unchanged when T
is replaced with TV . Therefore, the second term in (24) is
negative and can significantly reduce the growth of
ln detren if one of the eigenvalues of TV approaches unity
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for large amplitude variations of Aμ. This will be dealt with
in Sec. II B below.
For our purpose here we also introduce the alternative

representation of ln detren following (8) and (9):

ln detrenð1 − eQiS=VÞ ¼
1

2
ΠVV þ 1

4
ΠVVVV

þ ln det5ð1 − eQiS=VÞ; ð27Þ

ln det5 ¼ Tr

�
lnð1 − eQiS=VÞ þ

X4
n¼1

ðeQiS=VÞn
�
: ð28Þ

The sum of the vector fields’ self-energy graphs ΠVV

formally corresponding to TrðeQiS=VÞ2 is calculated by
expanding (24) to Oðe2; g2; egÞ:

ΠVV ¼ 1

4π2

Z
d4k
ð2πÞ4

����eQiF̂μνðkÞ þ
giVg

2 cos θW
ẐμνðkÞ

����
2

×
Z

1

0

dz zð1 − zÞ ln
�
zð1 − zÞk2 þm2

i

m2
i

�
; ð29Þ

where F̂, Ẑ denote Fourier transforms. By inspection of
(29) the transverse part of the photon self-energy Σγðk2Þ
and the photon-Z mixing term ΣγZðk2Þ from a charged
fermion loop are normalized to vanish at k2 ¼ 0. The ZZ
term in (29) is the transverse part of the neutral vector
current contribution to the one-particle irreducible Z self-
energy ΣZðk2Þ from a charged fermion loop. The built-in
renormalization subtractions in (24) cause this contribution
to vanish at k2 ¼ 0. When this contribution is combined
with the remaining terms in ΣZ and continued to the
Minkowski metric, a finite mass renormalization counter-
term δM2

Z can be chosen so that ReΣZðk2 ¼ M2
ZÞ ¼ 0,

where MZ is the pole mass.
The γγ-scattering graph in (8) is calculated from the

vacuum polarization tensor Gμναβ, where

ΠAAAA ¼−ðeQiÞ4
Z

d4x1d4x2d4x3d4x4Gμναβðx1; x2;x3; x4Þ

×Aμðx1ÞAνðx2ÞAαðx3ÞAβðx4Þ: ð30Þ

Gμναβ is formally equal to

Tr½γμSðx2 − x1ÞγνSðx3 − x2ÞγαSðx4 − x3ÞγβSðx1 − x4Þ�

and satisfies ∂Gμναβ=∂x1μ ¼ 0, etc. As noted above, reduc-
tion of this trace to Gμναβ is tedious but not necessary for
our purpose here; all that is required is that this has
somehow been done to give the unique result (30). Then
the shift eQiAμ → eQiAμ þ giVgZμ=ð2 cos θWÞ can be
made in (30) to give the expression for ΠVVVV in (27):

ΠVVVV ¼ ΠAAAA þ 4ΠAAAZ þ 4ΠAAZZ

þ 2ΠAZAZ þ 4ΠAZZZ þ ΠZZZZ: ð31Þ

The weight factors in (31) indicate that the 16 terms in
ΠVVVV have been grouped together when possible using the
symmetry properties of Gμναβ. It only remains to show that
the potentially destabilizing growth of ln detren in (27) as
jeQijF → ∞ due to ΠAAAA and ΠAAAZ does not occur.
This is straightforward. Refer to the strong field growth

of ln detren in (14). All that is required is the shift
eQiFμν → eQiFμν þ giVgZμν=ð2 cos θWÞ. In the absence
of zero modes the right-hand side of (27) behaves for
large amplitude variations of Aμ, and hence Fμν, for fixed
Zμ as

ln detren ¼jeQijF→∞ 1

48π2

����eQiFμν þ
giVg

2 cos θW
Zμν

����
2

× ln

�jeQijF
m2

i

�
þ R: ð32Þ

The remainder R continues to satisfy (15). It is evident
from (32) that the OðeQiF Þ4 and OðeQiF Þ3 box graphs
ΠAAAA and ΠAAAZ are canceled by det5 in (27) in this limit.
The asymptotic behavior seen in the N-independent term

in (14) for large jeQijF was derived in Secs. IV and VI of
[5]. The calculation of the asymptotic behavior in (32)
follows precisely the analysis in [5] by replacing eQiAμ in
(10) with the superposition in eQiVμ, resulting in (24). The
scaling parameter jeQijF used in [5] is now replaced with
the scaling parameter jeQijF þ jgiV jgZ= cos θW, where Z
is the amplitude of Zμ, giving it the dimension of L−2.
Letting this scaling parameter become large, whether due to
the growth of Aμ or Zμ, results in a modified version of (32)
with the logarithm replaced with

ln

�jeQijF þ jgiV jgZ= cos θW
m2

i

�
:

For large amplitude variations of Aμ this reduces to (32),
with the remainder R receiving a contribution of

O

�jeQigiV jgkFμνk2Z
F cos θW

�

so that R continues to satisfy (15).

B. Zero modes

The purpose of this section is to state at least one of the
cases for which ln det3 in (24) can assume a large
negative value.
Following (16) the operator TV in (26) on which ln det3

depends has nonvanishing eigenvalues fλkg∞k¼1 obtained
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from TV jλki ¼ λkjλki by transforming this into the equiv-
alent equation

�
ðP − eQiVÞ2 þ

eQi

2λk
σμνVμν

�
ψλk;n ¼ −m2

iψλk;n; ð33Þ

where Vμ is given by (21) and ψλk;n ∈ L2ðR4Þ. We continue
to use the same notation as in Sec. II C. Equation (33) is
simply the quantum mechanical problem of finding the
values of λk that result in a bound state of theHamiltonian on
the left-hand side with energy −m2

i . It makes no reference
to Vμ being a superposition of Aμ and Zμ. It is assumed
that eQi > 0 and that 0 < λk < 1 which requires that
hλk; njσμνVμνjλk; ni < 0. Recall that the eigenvalues occur
in pairs that satisfy the bound jλkj < 1. The analysis in [5]
leading to this result extends to the electroweak model since
it only requires that Vμ is a neutral vector field. The state
jλk; ni will generally have mixed chirality. Proceeding as in
Sec. II C suppose that the potentialAμ in (21) also supports a
zero mode j0; liwith definite chirality that satisfies (17) and
hence has h0; ljσμνFμνj0; li < 0. The state j0; li denotes a
zero mode statewith quantum numbers l and not a statewith
λk ¼ 0. Then from (33),

h0; ljðP − eQiVÞ2 þ
eQi

2λk
σμνVμνjλk; ni ¼ −m2

i h0; ljλk; ni:

ð34Þ

We have remarked that the zero mode states ψ0;nðxÞ have
a distinctive structure, and so we expect that h0; ljλk; ni ≠ 0
only for a particular λk, say λ, and only if the states’
quantum numbers l ¼ n. Suppose this to be the case.
Form the inner product (17) with jλ; ni and subtract the

complex conjugate of (34) from it to obtain

�
1−λ

λ

�
jeQij

����hλ;njσμνF
μνj0;ni

hλ;nj0;ni
����

≤ 4jcj
����hλ;njZðP−eQiAÞj0;ni

hλ;nj0;ni
����

þ2

����hλ;njic∂μZμþc2Z2þ c
2λσμνZ

μνþm2
i j0;ni

hλ;nj0;ni
����; ð35Þ

where c ¼ giVg=ð2 cos θWÞ. The upper bound in (35) is
gauge invariant in Aμ by inspection. Note that

jhλ;njZðP−eQiAÞj0;nij
≤ ðhλ;njZ2jλ;niÞ1=2jh0;njðP−eQiAÞ2j0;nij1=2

≤ ðhλ;njZ2jλ;niÞ1=2
����h0;nj−1

2
eQiσμνFμνj0;ni

����
1=2

; ð36Þ

where we used the Schwarz inequality and (17). Then (35)
can be rewritten as

�
1 − λ

λ

�
jeQijFK1 ≤ ðjeQijF Þ1=2K2 þ K3; ð37Þ

where we define

K1 ¼
���� hλ; njσμνF

μν=F j0; ni
hλ; nj0; ni

����; ð38Þ

K2 ¼
4jcjðhλ; njZ2jλ; niÞ1=2jh0; njσμνFμν=ð2F Þj0; nij1=2

jhλ; nj0; nij ;

ð39Þ

and K3 is the second term on the right-hand side of (35).
The constants K1; K2; K3 are bounded for large F and have
dimension L0; L−1; L−2, respectively.
To solve for λ let λ ¼ 1 − δ to obtain

δ ≤
K2=K1

ðjeQijF Þ1=2 þ
K3=K1 − ðK2=K1Þ2

jeQijF
þOð1=ðjeQijF Þ3=2Þ ð40Þ

and

lnð1 − λ2Þ ≤ − ln

��
K1

2K2

× ðjeQijF Þ1=2
��

þOð1=ðjeQijF Þ1=2Þ: ð41Þ

From (12) on substituting T with TV ,

lndet3ð1þTVÞ¼
X∞
k¼1

½lnð1−λ2kÞþλ2k�

≤−
N
2

�
ln

�jeQijF
M2

i

�
−2þOð1=ðjeQijF Þ1=2

�

þ
X
λk≠λ

½lnð1−λ2kÞþλ2k�; ð42Þ

where we defineMi ¼ 2K2=K1, givingMi dimension L−1.
N is the degeneracy of the zero-mode states j0; ni. Following
Sec. II C, N ¼ ðeQiÞ2j

R
d4xϵμναβFαβFμνj=ð32π2Þ when all

of the zero mode states have the same chirality. Referring
to (24), the result (42) multiplied by 1=2 modifies the
result (32) to

ln detren ≤
jeQijF→∞ ðeQiÞ2

48π2
kFμνk2 ln

�jeQijF
m2

i

�

−
N
4
ln

�jeQijF
M2

i

�

þ 1

2

X
λk≠λ

½lnð1 − λ2kÞ þ λ2k� þ R: ð43Þ
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R continues to satisfy (15) when all of the zero mode
states have the same chirality; otherwise we cannot place a
bound on R.
The sum of the remaining eigenvalues in (43) is con-

vergent and negative. It is possibly the most critical con-
tribution to ln detren. Even if a potential does not support
a zero mode—thereby removing the N-dependent term
in (43)—we know of no a priori reason why the eigenvalues
satisfying jλkðF → ∞Þj < 1 should sum to a bounded
function of F . It should be kept in mind that the eigenvalue
problem in (33) is equivalent to finding the bound states of a
charged fermion in a random four-dimensional magnetic
field. There is apparently no limit to the complexity of
magnetic fields generated by the Maxwell measure dμðAÞ
for fixed Zμ. Although the degeneracy associated with each
of the eigenvalues fλkg∞k¼1 may be a slowly varying function
of F , their sum may compete with the leading term in (43)
whose sign is determined by QED’s lack of asymptotic
freedom.

C. Remaining determinants

We return to the second determinant in (22) depending on
the axial vector current and the Higgs field. Making
mathematical sense of this determinant is a large problem
that will have to be dealt with in a subsequent paper. In order
to renormalize it 2 tadpole, 7 two-point, 16 triangle, and 31
box graphs have to be factored out. Of the 16 triangle graphs
4 are anomaly bearing and cancel when summed over
generations of fermions. Seven of the triangle graphs vanish
by Euclidean C-invariance. The 5 remaining graphs are
Higgs field dependent. The 6 anomaly-bearing box graphs
also vanish by C-invariance, including the potentially
destabilizing graph AAAZγ5; the nonanomalous Higgs
graph AAAH likewise vanishes by C-invariance. These
calculations have been completed with the assumption that
H has also been smoothed as in Sec. II Awith an ultraviolet
cutoff parameter different from Λ and Λ̃ used for A and Z,
respectively.
It remains to place a bound on the absolutely convergent

remainder of the second determinant as jeQijF → ∞. The
leading term is the pentagon graph

Π5¼ðeQiÞ4Tr
�
S=VS=VS=VS=VSV

�
ggiA

2cosθW
=Zγ5þ

gmi

2MW
H

��
;

ð44Þ

where SV is from (23). This graph is absolutely convergent
since SV’s short-distance behavior is less singular than in
the free field case for the class of potentials considered
here. This conclusion is reached by approximating the local
field lines by a constant field and noting the enhanced
propagation of SVðx0; x″Þ parallel to the field lines, resulting
in a short-distance behavior of 1=ðx0 − x″Þ2k. It was found
in [2] that when SA ¼ ðp − eQi=AþmiÞ−1 occurs in an

absolutely convergent fermion loop SA’s effective falloff for
large variations of Aμ induced by the scaling Aμ → LAμ is
Oð1=L2Þ when L → ∞ for Aμ ∈∩r>4 LrðR4Þ. The analysis
leading to this result relied on (8) and (14) with R satisfying
(15). The one-to one correspondence between (8), (27)
and (14), (32) with R also satisfying (15) allows the
same conclusion to be drawn about SV . A large variation
of Vμ can be induced by a large variation of Aμ so that
Vμ → LðAμ þ giVZμ=ð2LQi cos θW sin θWÞ−1Þ≡ LṼμ.
Then SV → SLṼ ¼ ðP − eQiL=̃V þmiÞ−1 and

Π5→ðeQiLÞ4Tr
�
S=̃VS=̃VS=̃VS=̃VSLṼ

�
ggiV

2cosθW
=Zγ5þ

gmi

2MW
H

��

¼OðL2Þ ð45Þ

for fixed Zμ and H following the above result for SA. Then
Π5 grows at most quadratically for large variations of Aμ.
There are still some technical difficulties that have to be
resolved in order to bound all of the second determinant’s
remainder.
The last determinants to consider are those contributed

by the hadronic and leptonic sectors of the charged weak-
vector current. The hadronic determinant contributed by
quark i, without mixing, corresponds to the W-dependent
determinant in (2). The leptonic determinant is obtained
from this by the exchangesWþ↔W− and t3LðiÞ→−t3LðiÞ.
To illustrate the effect of mixing it suffices to consider the
two generations u; d and c; s. Let it be decided to integrate
over the u and c quarks first followed by integration over d
and s quarks. The result is the product of determinants

det

�
1−

g2

8
GdW−ð1−γ5ÞðjVudj2GuþjVcdj2GcÞWþð1−γ5Þ

�

×det

�
1−

g2

8
GsW−ð1−γ5ÞðjVusj2GuþjVcsj2GcÞWþð1−γ5Þ

−
g4

64
GsOuGdðOujVusj2jVudj2þOcV�

usVudV�
cdVcsÞ

−
g4

64
GsOcGdðOcjVcsj2jVcdj2þOuV�

csVcdV�
udVusÞ

�
; ð46Þ

where

Oi ¼ W−ð1 − γ5ÞGiWþð1 − γ5Þ; ð47Þ

Gi¼
�
Pþmi−eQi=A−

g
2cosθW

=ZðgiV−giAγ5Þþ
gmi

2MW
H

�
−1
;

ð48Þ

giV; g
i
A are given by (4), (5), and Vij are the Cabibbo-

Kobayashi-Maskawa matrix elements [4]. Including the t
and b quarks results in strings of up to eight propagators.
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As we are interested in the growth of these determinants
for large amplitude variations of Aμ, it is advantageous to
factor out Aμ from the propagator Gi through the operator
identities

Gi¼SA−SA

�
−

g
2cosθW

ðgiV−giAγ5Þ=Zþ
gmi

2MW
H

�
Gi; ð49Þ

SA ¼ Sþ SeQi=ASA: ð50Þ

Comparing (46) with the unmixed quark determinant in (2)
it is seen that mixing only adds more propagators which
tend to suppress the growth of the added terms. This
follows from (49) and (50) and the falloff of SA for large
amplitude variations of A. So we believe it is safe to neglect
quark and neutrino mixing for the purpose of this paper.
Instead we focus on the unmixed hadronic determinant

ln det

�
1 −

g2

8
Gt3LðiÞ¼−1

2
W−ð1 − γ5ÞGt3LðiÞ¼1

2
Wþð1 − γ5Þ

�
;

ð51Þ

and its leptonic sister determinant.
Terms of Oðg2; g3; g4; eg2; eg3; g2e2Þ have to be factored

out of (51). This is done by iterating (50) twice and
substituting the result in (49) which in turn is inserted in
(51) and the leptonic determinant, followed by a loop
expansion. These terms have to be renormalized and the
chiral anomalies canceled by summing over generations.
The example of the triangle graphWþW−γ is given in [5]. It
is assumed that the W� fields have been smoothed
following Sec. II Awith an ultraviolet cutoff different from
that of A; Z, and H. The remaining loop graphs are
absolutely convergent, and all contain SA. The leading
remaining graphs have the general form

Tr½S=AS=AS=ASW−ð1 − γ5ÞSAWþð1 − γ5Þ�

plus permutations of S and SA. If A is scaled by L, the
effective falloff of SA is Oð1=L2Þ for L → ∞ [2], and so
these graphs are OðLÞ. Of course, the entire remainder has
to be shown to beOðL2Þ or less for the Maxwell integration
in (1) to have a chance of converging.

D. Volume cutoff

The constant N in (1) is obtained by setting I ¼ F ¼ 1
so that

1

N

Z
dμðAÞdμðZÞdμðW�ÞdμðHÞ

×exp

�X
i

ln detðiÞþ
Z

d4xLintðA;Z;W�;HÞ
�
¼1: ð52Þ

The first term in the effective action in the exponential is the
sum of the two determinants on the right-hand side of (22),
the hadronic determinant in (51), and its leptonic counter-
part. These are assumed to be renormalized and freed
of anomalies as outlined in Secs. III A–III C above. The
second term, Lint, consists of the gauge boson and Higgs
self-couplings [7]. Then N is seen to be a normalization
constant that makes dμðAÞdμðZÞ � � � exp½·� a probability
measure. The integral in (52) generates the vacuum self-
energy and should cancel in the calculation of a physical
process I in (1).
Even if all of the functional integrals in (52) converge the

translation invariance of the vacuum self-energy introduces
a volume divergence causing N ¼ ∞. Unless this diver-
gence is controlled, one is dealing with senseless functional
integrals that are not subject to mathematical analysis. The
scope of this paper only requires that we deal with the
Maxwell integration. The effective action is gauge invariant
and is dependent on Fμν only. A gauge invariance pre-
serving volume cutoff can be introduced in principle by
replacing Fμν everywhere with gFμν, where g is a space
cutoff such as g ∈ C∞

0 . Implementing this requires knowl-
edge of the explicitly gauge invariant form of the Maxwell
sector of the one-loop effective action. At present this is
limited to its strong field limit and its large fermion mass
expansion.
For the results reported here to be relevant a typical

distributional, random connection Aμ should have μðAÞ-
measure 1. It has been assumed that Aμ falls off at least as
fast as 1=jxj as jxj → ∞ following [19]. To the author’s
knowledge there are no results for a typical A’s large-
distance behavior. It is known that a typical φðxÞ supporting
the four-dimensional Gaussian measure dμðφÞ of a free,
massive, spin-0 boson has growth jxj2ðln jxjÞβ, β > 1=2
[36,37]. If a typical Aμ does not fall off as assumed here, the
presence of a smoothly decaying volume cutoff such as g
would allow the continued applicability of the theorems
used to obtain the above results. Accordingly, they will
remain intact when the volume cutoff is fully implemented.
The above remarks on the falloff of Aμ and those in

footnote [19] also apply to Zμ as this is essential to the
analysis of Secs. III A–III C.

IV. CONCLUSION

It has been shown that the box graphs AAAA and AAAZ
do not obstruct the nonperturbative path integral quantiza-
tion of the electroweak model. This is subject to the
provision that the fermion degrees of freedom are first
integrated out to obtain an effective action followed by the
functional integral over the Maxwell field. These box
graphs are present in the effective action and cannot be
avoided. There are other potentially destabilizing terms in
the effective action contributed by the axial vector current,
the charged vector current, and the Higgs field. Based on a
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previous result for the falloff of SA ¼ ðP − eQi=AþmiÞ−1
when the random potential’s amplitude is large [2], we
expect these terms to be subleading compared to the strong-
field behavior of the QED effective action. In this sense we
can say QED decouples from the rest of the electroweak
model in this limit.
Evidence has been given that zero mode bearing poten-

tials supporting the functional measure dμðAÞ, if any, are
highly relevant to the convergence of the Maxwell field
integration in (1). The weight assigned to these potentials
by dμðAÞ has been an open question for at least 40 years.
And so it remains.
The paramagnetic term, ln det3, in the Maxwell sector of

the one-loop effective action may be critical to the con-
vergence of the functional integral over A, whether or not
zero bearing potentials are supported by dμðAÞ. Deciding
the issue depends on finding the degeneracy factors in
ln det3’s eigenvalue expansion in (12) and (43) and their
dependence on the large amplitude limit of the random
magnetic fields generated by dμðAÞ for fixed Zμ.

APPENDIX: STRONG-FIELD GROWTH OF THE
SCALAR FIELD DETERMINANT

The estimate of the growth of the scalar QED renor-
malized determinant, ln detSQED, for large amplitude var-
iations of F was completed in [5] up to a remainder R
defined below. Here we wish to verify that R is subdomi-
nant. From (3.3) in [5]

lndetSQED¼
Z

∞

0

dt
t

�
Trðe−P2t−e−ðP−eAÞ2tÞ−e2kF2k

192π2

�
e−tm

2

¼
Z

1=eF

0

dt
t

�
Trðe−P2t−e−ðP−eAÞ2tÞ−e2kF2k

192π2

�
e−tm

2

ðA1Þ

−
e2kF2k
192π2

Z
∞

1=eF

dt
t
e−tm

2 þ R; ðA2Þ

where
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≥ 0; ðA4Þ

following Kato’s inquality in the form [33–35]

Trðe−P2t − e−ðP−eAÞ2tÞ ≥ 0: ðA5Þ

Without explicitly calculating R we obtained

ln detSQED ≥ −
e2kF2k
192π2

ln ðeF=m2Þ þOðeF Þ2; ðA6Þ

where the inequality sign follows from (A2) and (A4). We
will now estimate R in order to turn (A6) into an equality.
Consider
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with Rðe ¼ 0Þ ¼ 0. The first term in (A7) can be estimated
by making a heat kernel expansion. Define

e
∂R1

∂e ¼ Trðe−P2=eF − e−ðP−eAÞ2=eF Þe−m2=eF ðA8Þ

∼eF→∞XN
n¼0

anðeFÞð1=eF Þn þ aMðeFÞð1=eF ÞM; ðA9Þ

where aM is the first nonzero coefficient after aN, assuming
that the expansion is an asymptotic series [38]. The first few
terms of the series are [5]
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þOð1=ðeF Þ3Þ; ðA10Þ

where F̃μν ¼ ϵμναβFαβ=2.
The expansion in (A9) assumes that F is infinitely

differentiable, which it is since it is calculated from the
smooth potentials A introduced in Sec. II A. The validity of
(A9) also requires that all of the trace terms over Fμν

and its derivatives converge, which they do if we assume
Fμν∈ ∩r¼2 LrðR4Þ. We have previously assumed r > 2;
this will be discussed at the end of this Appendix.
Since ½1=ðeF Þ� ¼ L2, the maximum power of F in

aM is M þ 2 so that the truncation error in (A9) never
exceeds ðeF Þ2.
Rewrite the expansion coefficients in terms of the dimen-

sionless scaled field fμν defined by FμνðxÞ ¼ FfμνðxÞ. The
scale factor F ≡maxx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FμνðxÞFμνðxÞp ¼ maxxjFμνðxÞj.

Introduce the amplitude L of Aμ by L ¼ maxxjAμðxÞj so
that AμðxÞ ¼ LaμðxÞ, where aμ is dimensionless and
jaμðxÞj ≤ 1. Then F ¼ Lmaxxj∂μaνðxÞ − ∂νaμðxÞj and
hence jfμνðxÞj ≤ 1. Terms in the series containing gradients
∇2n will scale as ∇2n=ðeF Þn when factoring out eF , and
thereforewill be subdominant as e → ∞. Hence, the series in
(A9) has the form
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The only certain statement we can make about this series is
that for any N < ∞

R1 ∼eF→∞OðeF Þ2: ðA12Þ

Consider the second term in (A7). Define
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The Wiener path integral representation of the integral
kernel is [39]
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where the free Wiener measure in four dimensions gives the
probability density of finding a particle at y at time t if it
started at x at t ¼ 0,
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We take it as a reasonable assumption that the right-hand
side of (A16) vanishes as e → ∞ due to the rapidly
oscillating exponential of A, and hence

∂
∂eTrðe

−ðP−eAÞ2tÞ ∼eF→∞
0: ðA17Þ

Since R2 is gauge invariant e always appears in the
combination eFμν.
Temporarily rescaling R in (A3) by letting tm2 ¼ u we

see that the lower limit transforms to m2=eF , indicating
that lettingm → 0 is consistent with eF → ∞. As there are
no zero modes in scalar QED and the on-shell charge
renormalization of detSQED has already been made in (A6),

them ¼ 0 limit can be taken in (A13). This requires that the
right-hand side of (A17) behaves as

∂
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Z
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for some c;∝> 0. The integrand, g, must result in a
convergent integral and have dimension L−4. These require-
ments restrict g to be a linear function of the variables
½ðeFÞn�μν∇2l½ðeFÞm�μνtp with

nþmþ l − p ¼ 2; l ≥ 1 when m ≥ 1 ðA19Þ

for l; m; n ∈ Zþ, p ≥ 0. On replacing F with Ff, g has the
scaling property

gð½ðeFÞn�μν∇2l½ðeFÞm�μνtpÞ
¼ ðeF Þ2gððfnÞμν∇2lðfmÞμνðeF tÞp=ðeF ÞpÞ: ðA20Þ

Substituting (A18) and (A20) in (A13) gives
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The differentiation can be done by inspection. Substituting
z ¼ eF t and integrating gives

R2 ∼eF→∞OðeF Þ2; ðA22Þ

or less if the gradient terms in (A21) dominate g. Combining
(A7), (A8), (A13) and the results (A12) and (A22) gives

R ∼eF→∞OðeF Þ2; ðA23Þ

with R > 0. This result is almost certainly correct. For
if it increased asOðeF Þβ, β > 2, then scalar QED’s effective

action would decrease as SSQED ¼ − ln detSQED ∼eF→∞

−OðeF Þβ. We have no evidence for this. There are no
ðeF Þ2½lnðeF=m2Þ�k, k > 0, terms inR for the reasons stated
under (A17).
When (A23) is combined with (A2) and (A6), where R is

neglected, we can rewrite (A6) as

ln detSQED ∼eF→∞ −
e2kF2k
192π2

lnðeF=m2Þ þOðeF Þ2: ðA24Þ

This result assumes that the distributional, random con-
nection A has been smoothed as in II A and that these
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smoothed potentials A ∈∩r>4 LrðR4Þ. It has also been
assumed throughout this paper that F ∈∩r>2 LrðR4Þ.
The term kFk2 in (A24) is from charge renormalization
and is divergent under this assumption. It must be replaced
with kgFk, where g is the volume cutoff introduced in

Sec. III D. Since det5 is related to detSQED through (8) and
(10) and is finite without a volume cutoff, we conjecture
that any residual terms containing kFk in the remainder R
cancel as they do in the remainder in (4.6) in [5]. In this
case the assumption r > 2 is possible.
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