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The nonperturbative path integral quantization of the electroweak model is confronted with an apparent
instability when integrating over the Maxwell potential A, due to the fast growth of the box graphs AAAA
and AAAZ for large amplitude variations of A,. Z,, is from the vector part of the weak neutral current. These

graphs are unavoidable because they are conditionally convergent and have to be isolated in the model’s
exact Euclidean one-loop effective action arising from its fermion determinants. A previous QED
calculation of the large amplitude variation of its fermion determinant for a class of random potentials
showed that the AAAA box graph cancels in this limit. Using this result it is shown that within the
electroweak model large amplitude variations of A, for fixed Z, in a superposition of these fields cancel the

AAAA and AAAZ graphs, thereby removing an apparent obstacle to the model’s nonperturbative
quantization. A negative paramagnetic term in the remainder opposes the effective action’s growth for
such variations. Its calculation requires knowledge of the degeneracy of the bound states of a charged
fermion in the four-dimensional magnetic fields generated by the functional measure of A,,.

DOI: 10.1103/PhysRevD.101.033010

I. INTRODUCTION

The renormalizable electroweak model with its 24
adjustable parameters, including three massive Dirac neu-
trinos and their mixing, has so far accounted for a wealth of
experimental data. Every aspect of the model should
therefore be examined, including its nonperturbative sector.
It is the aim of this paper to examine some aspects of this
neglected sector.

Nonperturbative information about any electroweak
process resides in its representation as a functional integral
over the fields contributing to the process. After sponta-
neous symmetry breaking this is a Euclidean path integral
of the form

7= N [ aulAdu@) (v e ] )]

x ] EAZWE ) F 4 7 WE oyt (1)
where i = e, jt, T, U, Uy, Upo , d, €, 5, 1, b. Here A, Z, W=,
H denote the Maxwell field, neutral and charged vector
bosons, and Higgs field, while the y; denote the lepton and
quark fields. The unitary gauge is chosen so that ghost
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fields are not required. F is a polynomial in the gauge and
Higgs fields and the fermion fields specific to the process.
N is a normalization constant defined in Sec. II D. The
functional measures du are Gaussian in the indicated fields
so that the electroweak model’s Lagrangian £ only contains
interacting fields.

As L is quadratic in the quark and lepton fields they can be
integrated out using the rules for integrating a Gaussian
composed of Grassmann four-component spinors [1].
Neglecting mixing for the present this results in the following
factorized determinants from the neutral and charged weak
current for each quark family i = u, d; ¢, s; t, b [2]:

detG™! . detG7!
B3 (1)=5 I3

(4) 3 ()=—%

2
g -
X det |:1 - 7GI3L(i):—%W (1 - y5)Gl3L(i):%W+(1 - ]/5):| y

8
(2)

where
detG,
g C gm;
=det|P+m;—eQif————Z(g\— ¢ S H|-
e{ +m;—eQ;A 2cos9WZ(gV 9A75)+2MW ]

(3)

Integration over the leptons gives the same result
except that Wt <> W~ and 3, (i) — —13; (i) in (2), where
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[ =V, eV, J; V;, 7. Gy, ;) 1s the propagator of fermion 7 in
the presence of the external potentials A, Z,,, and the Higgs
field given by the inverse of the operator in brackets on the
right-hand side of (3) [3]. Here m; and My, are the fermion
and W-boson masses; e is the positron electric charge, and
Q; is the charge of fermion i in units of e; @y is the weak
angle, and g = e/sinfy. The vector and axial-vector
couplings are

giz = 13,.(i) — 2Q;sin*Gy, (4)

gy = 13.(i), (5)

where 13, (i) is the weak isospin of fermion i. We have
adopted the conventions and notation of [4].

Quark mixing does not alter the determinants in (3) that
are the focus of this paper. It does modify the last
determinant in (2) contributed by the charged weak-vector
current as reported in Sec. III C. Although mixing greatly
complicates this determinant, it does not modify the
conclusions of this paper. Based on this result the three
massive Dirac neutrinos’ mixing is neglected here.

The determinants in (2) when written as IT; exp[In det(i)]
generate an effective action through the shift £ —
L+ > ;In det(i) in the remainder of £ in (1) after the
fermion integration. The sum over i includes fermion
generations and color degrees of freedom. Each determinant
must be defined by factoring out its tadpole, self-energy,
triangle, and box graphs. These are assumed to be regular-
ized, renormalized, and made gauge invariant before
inserting them in the above sum. Anomalies are assumed
to be already canceled in the sum over fermion generations.
These steps are discussed in Secs. I A, III A, and IIIC.
Consequently there are no renormalization counterterms in
the one-loop effective action as defined here. Going beyond
one loop requires the introduction of ultraviolet regulators
that are introduced in Sec. Il A and remaining sections.

In [5] it was asked whether the electroweak model can be
nonperturbatively quantized and, in particular, whether any
of the unexpanded functional integrals in (1) over the gauge
and Higgs fields converge [6]. It was decided to approach
these questions by integrating over the Maxwell field first
after integrating over the fermions. This avoids immediate
confrontation with the unmeasured shape of the Higgs
potential. As the gauge field self-interactions in the
interaction Lagrangian in (1) are quadratic in A [7,8],
convergence depends on the large amplitude variations of
the renormalized determinants with A.

The process of defining the determinants introduces the
box graphs AAAA and AAAZ, where Z is from the vector
part of the weak neutral current as described in Sec. IIL.
These graphs confront the electroweak model with a
potential instability when integrating over A. This is an
example of the large field problem of a singular perturba-
tion of a Gaussian functional measure [9], in this case

du(A) in (1). It is known that the AAAA graphs cancel in the
strong field limit of QED’s Euclidean effective action for a
class of random potentials [S]. This is reviewed in Sec. II.
Based on this result it is shown in Sec. III A that the strong
field limit of A, for fixed Z, in a superposition of these
fields cancels the AAAA and AAAZ graphs. Other poten-
tially destabilizing graphs are discussed in Sec. IIIC.
A paramagnetic term in the one-loop effective actions of
QED and the electroweak model opposing their growth for
large amplitude variations of A, is discussed in Secs. I1C
and III B.

Section IV summarizes our results. The Appendix
completes a previous calculation of the strong-field
dependence of the scalar QED determinant [5] that is
required in Sec. II.

II. REVIEW OF THE STRONG FIELD
BEHAVIOR OF QED’S EFFECTIVE ACTION

A. Preliminaries

Any one of QED’s determinants contributed by a quark
or charged lepton is obtained by setting g = 0 in (2) and (3)
and subtracting In det(? + m;) in (3) to give the formal
expression In det(1 — eQ;SA) normalized to 0 at e = 0.
S = (P + m;)~! is the free propagator for the fermion i.
The process of defining this determinant begins by noting
that the allowed potentials must support the gauge-fixed
Gaussian measure du(A) in (1) on S'(R*), the space of
tempered distributions. These distributional, random poten-
tials are smoothed by convoluting them with functions f,
belonging to S(R*), the space of functions of rapid
decrease:

AMx) = / dyfalr = )A,0). (6)

Then A} € C* and hence is infinitely differentiable. As
discussed in [2,5] this smoothing process also introduces a
gauge invariance preserving ultraviolet cutoff required to
regulate QED. Thus, from the covariance of the measure
dﬂ<A)’ fd,u(A)A”(x)AD(y) :D/w(x_y)9 where D/w<x - y)
is the free photon propagator in a fixed gauge, we obtain

[ A A20) = D=0 ()
The regularizing propagator D,’},,(x —y) has the Fourier
transform D, (k)| (k)|* with f, € CT, the space of C®
functions with compact support such as (k) =1, k2 < A?
and fn(k) =0, k2 > nA% n> 1 [2,5]. It should be clear
that the random potentials A, are part of the functional
measure perturbing du(A) and that they are measurable
as (7) illustrates. The A{} will now replace A, everywhere in
the functional integrals over A, except the measure du(A).
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In the following the superscript A will be omitted with the
understanding that A, is now a C* potential. Only when it
encounters the measure does A reappear.

The regularization and renormalization of det(1—eQ;SA)
results in the renormalized determinant det,, [10-12],
otherwise known as the Euclidean vacuum persistence
amplitude,

In detren(1 - eQiSA)
1 1
= EHAA + ZHAAAA +1n dets(1 — eQ;SA), (8)

where

4
In dets = Tr {ln(l —eQ;SA) + Z

n=1

€3] )

The Il44 and Il4444 terms contain the renormalized
photon self-energy graph and the gauge invariant yy-
scattering graphs, corresponding formally to Tr(eQ;SA)?
and Tr(eQ,;SA)*, respectively. These are calculated from an
expansion to O(eQ;)* of the proper time representation of
In det(1 — eQ;A) that includes a second-order on-shell
charge renormalization subtraction [13]. More information
on this is given by (29) and (30) below. This expansion also
sets the tadpole and triangle graphs in I1, and 1,44 equal to
zero as required by C-invariance. The four subtractions in
brackets in (9) remove all terms through O(eQ;)* from
dets. The gauge invariance of dets requires that it depends
only on F,,.

The representation (9) of In dets is defined only if the
non-Hermitian operator SA is a compact operator belong-
ingtoZ,, r > 4. The trace ideal Z, (1 < r < o0) is defined

|

for those compact operators T with Tr(77T)"/? < co. This
means that the eigenstates of 7 are complete and square
integrable and that its complex eigenvalues are discrete,
have finite multiplicity, and satisfy >_, |4,|” < co. General
properties of Z, spaces and the properties of determinants
of operators belonging to these spaces may be found in
[14—17]. By a theorem of Seiler and Simon [10-12,14,18]
SAE€Z,, r>4 provided m; #0 and A, €n,.4 L"(R*),
thereby validating (9) for this class of potentials. This
restriction means that A, (x) falls off at least as fast as 1/ x|
for [x| = oo [19], that it has no poles or branch points for
finite x such as |x — xo| ™, # > 0, and that A,,(x) is finite at
x = 0. From here on we will denote an eigenvalue of SA
by 1/e,.

Since SA€Z,, r>4, > ,(1/le,|)*€ < o0, € >0, so
that dets is an entire function of eQ; [14—17] of order 4
[20]. That is, dets is analytic in eQ; in the entire complex
e-plane with |dets| < A exp(K|eQ,|**¢) for positive con-
stants A and K. Since dets = 1 for eQ; = 0, dets > 0O for
real values of e since the zeros of dets lie off the real e-axis
when m; # 0. Because dets is an entire function of eQ; of
order 4, In dets can impact on the 14444 term in (8) for
large amplitude variations of A,. We will return to this
below.

B. Means of calculation

To appreciate the full significance of (8) more informa-
tion on the strong field behavior of dets is required. Such
information is obtained from the following representation
of det,., [5] derived from Schwinger’s proper time repre-
sentation of det.., [13]:

o dt 20?2||F|)? 1 1
In det,, = QA — |:Tr(e—Pzt _ e—(P—eQ;A)zt) _ %} e 4 Eln det; (1 + A}‘/ZEeQiaFALﬂ)
© 1 1
)2 [ drem™ F|? =S Tr(eP=<QA1F A F™) | 10
He@ [arem | - e WD) (10

The first term in (10) is twice the proper time definition
of the scalar QED determinant with an on-shell charge
renormalization subtraction, where ||F|* = [ d4xF S

In the second term Ay = [(P — eQ;A)? + m?]~! is the
propagator of a charged scalar particle in the external
potential A, and o6, = [y,.7,]/(2i). The Euclidean
y-matrices are anti-Hermitian. The Hermitian operator

1
T = A}/zzeQioFAj/z (11)
belongs to the trace ideal Z5 if ', €N,~, L"(R*) [5]. There-

fore, its eigenstates are complete and square-integrable.
Its eigenvalues {4,} , are real, discrete with finite

|
multiplicity, occur in pairs 4,,—4,, and satisfy
3% |4,]> <oo. Then the second term in (10) can be
expressed as

1
In det3;(1 +7) =1n det[(l +T)exp (—T +§T2>}

1
:Tr[ln(l +7) —T—l—Tz]

2

=) + 43, (12)

I
[]s

[In(1
1

3
I

where the sum is over positive eigenvalues. Since In dets is
real and finite, 4, < 1 for all n and hence
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1
In det <1 + Aj,/zzeQiaFAjf) <0,  (13)

since In(1 —x?) +x?> <0 for 0 < x < 1. The strong-field
dependence of the eigenvalues will be examined in the next
section.

The last term in (10) is connected with charge renorm-
alization and is positive due to QED’s lack of asymptotic
freedom. Specifically, the third term’s contribution to
the strong-field asymptotic behavior of In det,, is
lleQ;F||?/(327%) x In(|eQ;|F/m?), while the first term
reduces this by a factor of 2/3, resulting in an overall
growth of (4 [eQ;F|[2/4) x In(|eQ;|F /m?), where §; =
1/(127?%) is the coefficient of the one-loop QED beta
function [5]. This result coincides with the analysis in [21]
for the case of constant F.

Each term of the right-hand side of (10) is separately
gauge invariant and ultraviolet finite. The advantage of this
representation is that In det,, is divided into three tractable
terms each of which can be estimated in the strong-field
limit. In particular, the separation of the paramagnetic spin
term, represented by dets, from the rest of the spinor QED
determinant is achieved here. As will be seen in Sec. III,
Eq. (10) is immediately extendable to include the weak
neutral vector current.

C. Results

Let F fix the amplitude of F',, in which case F has the
dimension of L~2. Since eQ; always multiplies F,,, the
natural strong-field scaling parameter is |eQ;|F. Then for
the smoothed potentials introduced above and for each

charged fermion [5]

Qi F o0 |eQi|F
indete, (021 -5 ) (245 ) ok

1

(14)

N in (14) is contributed by the spin-dependent term dets
in (10). It is the number of eigenstates of 7" in (11) having
an eigenvalue 1 /' 1 as |eQ;|F — oo. In the absence of
such eigenstates the remainder R satisfies

R
lim
[eQ;|F—oc0 (eQif)z In(|eQ;|F)

~0. (15)

The result (14) summarizes the results (6.44)—(6.46) in
[5]. We note that the inequality in those results has been
replaced here with equality since the strong-field depend-
ence of the scalar QED determinant required to obtain these
results has been sharpened in the Appendix of this paper.
The first term in (6.45) and (6.46) should be multiplied by
1/2. The result (14) agrees with the asymptotic behavior of
the one-loop Heisenberg-Euler effective Lagrangian for
the case of a constant magnetic field for which N =0

after introducing a volume cutoff. See [22] and references
therein.

The N-dependent term in (14) is relevant to the func-
tional integrability of QED. Inspection of (12) shows
that an eigenvalue |4 1 as |eQ;|F — oo will cause
In det; to assume a large negative value that is enhanced if
the degeneracy N of the associated eigenstates is large.
Understanding this stabilizing result will decide in Sec. III
whether it extends to the entire electroweak model. Hence,
a review of its derivation in [5] is warranted here.

The eigenvalue A and its associated eigenstates are
obtained by transforming the eigenvalue equation T|1) =
A|4) into the equivalent equation

eQ;

(P—eQ;A)* + 1

oF Yin = _mzzl///l,nv (16)

where v, € L?(R*) and n is the set of quantum numbers
specifying the state. The state y; , will in general have both
positive and negative chirality components. At this stage 4
is just one of a discrete set of eigenvalues {4 }{>, of T that
result in a bound state with energy —m? for a fixed value
eQ;. Bound states are possible when m; # 0, 0 < || < 1,
when 4 > 0(< 0) and eQ;(4, ,n) < 0(>0) due to
the formation of sufficiently broad and deep potential wells.
Assume eQ; > 0, and that 0 < 4 < 1 following Sec. II B.
Suppose the potential in (16) also supports a zero mode
Wy, that satisfies

Qz

(P —eQ;A)? +—"6F |wy, = 0. (17)

The square-integrable state y, has definite chirality.
Equation (17) requires (0,n|cF|0,n) < 0. The state
,n) denotes a zero mode state with quantum numbers
n and not a state with A =0. Referring to (16),
(A, n|oF|A,n) < 0. From (16) and (17) there follows

A _|6Qi‘f
1—4 2m?

1

(0, n|oF|A, n)
F(0,n[,n) |

If all of the angular-momentum-like quantum numbers n
are the same and |4,n) has mixed chirality, then |0, n)
projects out one of the chirality components from |4, n),
and we expect (0, n|4, n) # 0. Based on our limited knowl-
edge of four-dimensional Abelian zero modes [23] they
have a distinctive structure, and so the nonvanishing of
(0, n|4, n) distinguishes |1, n) and its eigenvalue A from all
the other eigenstates of 7. A necessary condition on F,,, to

define det; is F,, €N,-, L"(R*) [5]. Therefore, F,, is a
bounded function and

(18)

F
‘(O,no |4, n) <K (19)

F(0,n|4,n)
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where K is bounded for large . Equations (18) and (19)
imply 4 1 as |eQ;|F — oo. The operator transforming
A,n) into the negative eigenvalue state | — A, n) is con-
structed in Appendix D of [5]. Since the sum in (12) is over
12, the negative eigenvalues are included in going from line
2 to line 3 in (12). Insertion of (18) and (19) in (12) then
gives the N-dependent term in (14). An analytic calculation
of the eigenvalue A for a family of zero-mode supporting
potentials is given in Sec. V and Appendix E of [5].

The foregoing leads to the general statement: If the
potential A, also supports a zero mode state |0, ) and one
of the positive eigenvalue states |4, n) of T has the same
quantum numbers n as |0, n) and (0,n]|4,n) #0, then 4 7 1
as |eQ;|F — oo. An operator can be constructed that maps
A,n) to the orthogonal state | — 4, n).

N in this case is the number of states |4, n) and is also
equal to the number of zero modes |0, n) as these two sets
of states are in one-to-one correspondence. This line of
reasoning makes it clear that the mass singularity contrib-
uted by In det; to In det,, cannot be removed. This is
unlike the mass singularity associated with the first term in
(14) that can be removed by renormalizing off-shell.

If the zero mode supporting potential A, falls off as 1/|x|
for |x| - oo and all of the zero modes have the same
chirality, then their number, VV, is given by the absolute value
of the chiral anomaly, (eQ;)?| [ d*xe s F*F*|/(32x%)
[24,25], and R in (14) satisfies (15) [26]. In this case F, is
not square integrable, requiring a volume cutoff in ||F|| in
(14) that is discussed in Sec. Il D. The presence of ||F]||
in (14) is from a charge renormalization subtraction [5] and
is independent of dets which has no divergence for the class
of fields under consideration here.

If the zero modes do not have the same chirality, then the
Atiyah-Singer index theorem generalized to noncompact
Euclidean spacetime [24,25] no longer gives their total
number, and no bound can be placed on R. At present there
is no evidence that a zero-mode supporting potential in
four-dimensional QED can have zero modes with different
chirality. In the single known case of such a potential with a
1/|x| falloff all of its zero modes are found to have the same
chirality [23].

We have considered the states |1, n) obtained from (16)
that have eigenvalue |A| /' 1 as |eQ;|F — oo when the
potential also supports a zero mode. This was done because it
allowed us to count the states |4, n) under the limitations
discussed above. We see no reason why other admissible
potentials cannot also produce eigenstates |4, n) from (16)
suchthat|1| /" 1as|eQ;|F — oo. This opens the possibility
of a much larger class of admissible potentials supporting
du(A) that can result in an increasing F, -dependent
degeneracy parameter N in (14). These potentials may be
more likely to support du(A) than the highly restricted zero-
mode supporting potentials, and, if so, will have a direct
bearing on the convergence of the Maxwell integration in (1)
when g = 0. This possibility was not noticed in [5].

In fact, In det; in (10) and (12) may be the controlling
term in In det., for large variations of F,, for reasons
discussed at the end of Sec. III B that are also applicable
to QED.

D. dets and HAAAA

Assume that the zero modes, if any, supported by an
admissible potential have the same chirality. Then the
results (14) and (15) apply. Since the 14444 term in (8)
is of O(eQ,F)* then dets always cancels I14444 in the
limit |eQ;|F — oo to give the result in (14).

Considering the complexity of I14444 When reduced to
its gauge invariant form [27,28] it is remarkable that the
eigenvalues {1/e,}% | of SA arrange themselves in dets to
cancel it in the strong-field limit, especially since

Hppna # _%Z(]/en)4' (20)

n

To cancel 14444 and satisfy (14) dets must assume its
allowed exponential growth, A exp(K|eQ;|*F*), on the real
e-axis.

We have no information on the relative sign of I14444
and In dets for a particular background field. In the
preceding paragraph it is assumed that IT4444 < 0. If
Myuua > 0, then In dets must vary as —(eQ;F)* on the
real e-axis for large field fluctuations. Our analysis cannot
distinguish between these cases, but it does rule out [T, 444
and In dets having the same sign when |eQ;|F — .
In [23] it was found that the large mass expansion of
I4444 can change sign with different fields F,, .

To go a step further and declare dets an entire function of
order 4 and finite type would require that In | dets | grows no
faster than |e[*(Q;F)* along all rays in the complex e-plane.
Ruling out growth such as |e[*(Q,F)* x In%(|eQ;|F),
a > 0, along some rays requires sufficient symmetry in
the distribution of the eigenvalues of SA [20]. Euclidean C-
invariance [29] and the reality of dets for real e require these
to occur in quartets +e,,, e, or as complex conjugate pairs.
This may or may not be sufficient for dets to be of finite type.

Since dets is an entire function of eQ; of order 4, then
by (8) so is det,,. Result (14) shows that det,,—the
Euclidean vacuum persistence amplitude—does not
assume its maximal growth on the real e-axis. This
confirms a long-standing conjecture of Balian, Itzykson,
Parisi, and Zuber [30].

III. EXTENSION OF SECTION II’'S RESULTS
TO THE ELECTROWEAK MODEL

A. Cancellation of Il,,,, and Il 4,

The relevance of the preceding results to the electroweak
model becomes evident on referring to the determinants
in (2) and (3) and noting the superposition
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9v9
A
e0i ”+2cos9W s

This suggests that the potential V, defined by

eV, = eQ, <A” i I z,,) (21)

2Q; cos Oy sin Oy,

In det( —eQ,V +m, +29Ag ZMW

9a9
=In det(l1 —eQ;S In det{ 1+ S
n e( te y)—l_ n e< + V<20039W

where In(P + m;) is subtracted so that the right-hand side
of (22) vanishes when e, g = 0. Sy is the propagator of a
charged fermion in the external potential V:

Sy =(P—eQ;y +m;)”"!

We will return to the last determinant in (22) in Sec. III C
below [31].

Our interest here is In det(1 — eQ;SY). It can be con-
nected to the results for Indet,, (1 — eQ;SA) with the shift
|

(23)

o dt

In det,.,(1 —eQ;SY) = 2/ " [Tr(ef’zf - e—(P—eQ[V)Zt) -
0

1 1
—+ Eln det3( + A1/2

V2ﬂ1/

oo ) 1
dt e
* A ¢ [32;:%

1
—ETr<e (P=eQiV) (eQ F + 9v9

The propagator A, has been replaced with the scalar

propagator in the background potentials A, Z,:

Ay =[(P—eQ;V)* +m?|7\. (25)

The first term in (24) is the scalar QED determinant in
(10) shifted to give the renormalized one-loop effective
action of a charged particle propagating in the neutral
vector potential V. The trace term is positive by Kato’s
inequality [32—35], which means that on average the energy
levels of a scalar particle minimally coupled to a neutral
vector potential increase. The remaining renormalization
subtraction causes the first term to turn negative for
leQ;|F — co. When combined with the leading positive
renormalization subtraction in the third term in (24), the

(comm

eQiF/w +

will be useful to study the interference of A, with Z, and
the cancellation of the potentially destabilizing box graph
AAAZ for large amplitude variations of A,. The relation
g=e/sinfy was used in (21). Consider the formal
operations on (3),

) —In det(P —eQ;Y +m;)+1n det(P — eQ,;V + m;) —In det(P + m;)

)

(22)

|
eQ;A, — eQ;V, following (21). It is assumed that Z, has
been smoothed and made C* by the same procedure
as in Sec. ITA and that Z, en,., L"(R?*) as does A,.
The smoothing function f; for Z should have A # A to
keep the regularizations relating to A and Z separate. The
Seiler-Simon theorem in Sec. II B now applies to SY so that
this operator belongs to Z,., r > 4. Then representation (10)
for In det, (1 — eQ;A) extends to the electroweak model
on replacing eQ;A, with eQ;V

9v9
2cosOy

eQiFyb +

2 2
—1
1927 }e "
gi/g 1/2
VT 7 ) A

+ZCOS«9W ) v )
9v9 :
2 cos Oy

99
Z A e VI ) )|
wJa(eer 555 7))]
[

result is a fast growing contribution to In det., as seen
in (32) below.
In the second term the Hermitian operator

H

24
2 cos By (24)

1 i
T, =AY =6 > O (eQ,-F”” + ﬂzw) AV (26)

2 cos Oy

belongs to the trace ideal Z3 if F,,.Z,, €N,., L"(R*)
following a straightforward generalization of the result in
Appendix A of [5] by replacing A, with V,, and F,, with
V,. All of the properties of In det;(1 +7) and the
eigenvalues of 7T in (12) carry over unchanged when T
is replaced with T'y,. Therefore, the second term in (24) is
negative and can significantly reduce the growth of
In det,, if one of the eigenvalues of Ty, approaches unity
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for large amplitude variations of A,,. This will be dealt with
in Sec. II B below.

For our purpose here we also introduce the alternative
representation of In det,, following (8) and (9):

1 1
In det,e, (1 —eQ;SY) = EHVV + ZHVVVV

+1In dets(1 — eQ;SY),  (27)

4

In dets = Tr {ln(l —eQ;SY) + Z(eQiSV)”] . (28)

n=1

The sum of the vector fields’ self-energy graphs Il
formally corresponding to Tr(eQ;SY)? is calculated by
expanding (24) to O(e?, ¢, eg):

1 [ &%
My =— [ ——
W 42 / (27)*

xAldzz(l—z)lnC(lLW)a (29)

m;

2

a9 4
= Z,(k)

F ok
eQifu( )+2cost9w

where F, Z denote Fourier transforms. By inspection of
(29) the transverse part of the photon self-energy X7 (k?)
and the photon-Z mixing term X'?(k?) from a charged
fermion loop are normalized to vanish at k> = 0. The ZZ
term in (29) is the transverse part of the neutral vector
current contribution to the one-particle irreducible Z self-
energy X% (k*) from a charged fermion loop. The built-in
renormalization subtractions in (24) cause this contribution
to vanish at k> = 0. When this contribution is combined
with the remaining terms in £? and continued to the
Minkowski metric, a finite mass renormalization counter-
term SM2% can be chosen so that ReX?(k?> = M%) =0,
where M, is the pole mass.

The yy-scattering graph in (8) is calculated from the

vacuum polarization tensor G5, Where

Mypan = _(eQi)4/d4x1d4x2d4x3d4x4Gﬂl/aﬂ(xl’x2’x3vx4)

X A (x1) A¥ (x2) A% (x3) AP (x4). (30)

G

wwap 18 formally equal to

Trly,S(xo = x1)7,8(x3 = x2)yaS (x4 = x3)758(x) = x4)]

and satisfies 0G5/ 0x, = 0, etc. As noted above, reduc-
tion of this trace to G, is tedious but not necessary for
our purpose here; all that is required is that this has
somehow been done to give the unique result (30). Then
the shift eQA, — eQ;A, + g\,9Z,/(2cosOy) can be
made in (30) to give the expression for ITyyyy in (27):

Myyyy = Hypaan + Hlgpaz + Hlpazz
+ 2Mpzaz + Mpzzz + Uzzz7. (31)

The weight factors in (31) indicate that the 16 terms in
ITyyyy have been grouped together when possible using the
symmetry properties of G,,,4. It only remains to show that
the potentially destabilizing growth of In det,, in (27) as
leQ;|F — oo due to MMyu4 and Iy, does not occur.

This is straightforward. Refer to the strong field growth
of In det,, in (14). All that is required is the shift
eQF,, » eQ:F,, + ¢,9Z,,/(2cosOy). In the absence
of zero modes the right-hand side of (27) behaves for
large amplitude variations of A,, and hence F,,, for fixed
Z, as

2

leQi|F =0 1 g9
In det., ““="°_—_|leQ.F
fl CC%en 1872 | “QiFw T 3050, 2
x In <%) +R. (32)
m;

The remainder R continues to satisfy (15). It is evident
from (32) that the O(eQ;F)* and O(eQ,F)? box graphs
IMy444 and I, 4 4, are canceled by dets in (27) in this limit.

The asymptotic behavior seen in the N-independent term
in (14) for large |eQ;|F was derived in Secs. IV and VI of
[5]. The calculation of the asymptotic behavior in (32)
follows precisely the analysis in [5] by replacing eQ;A, in
(10) with the superposition in eQ;V,, resulting in (24). The
scaling parameter |eQ;|F used in [5] is now replaced with
the scaling parameter |eQ;|F + |g},|gZ/ cos Oy, where Z
is the amplitude of Z,, giving it the dimension of L™2.
Letting this scaling parameter become large, whether due to
the growth of A, or Z,,, results in a modified version of (32)
with the logarithm replaced with

2
m;

ln<|€Qi|~7:+|9§/|QZ/COS‘9W>‘

For large amplitude variations of A, this reduces to (32),
with the remainder R receiving a contribution of

o (-2 I2)

F cos Oy

so that R continues to satisfy (15).

B. Zero modes

The purpose of this section is to state at least one of the
cases for which In det; in (24) can assume a large
negative value.

Following (16) the operator 7'y in (26) on which In dets
depends has nonvanishing eigenvalues {4;}¢>, obtained
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from Ty|4;) = A¢|4) by transforming this into the equiv-
alent equation

eQ;
2& l///lk.n =

(P—eQiV)Z —m%ll/,lk,n’ (33)

where V, is given by 21) and y,, , € L*(R*). We continue
to use the same notation as in Sec. II C. Equation (33) is
simply the quantum mechanical problem of finding the
values of 4 that result in a bound state of the Hamiltonian on
the left-hand side with energy —m?. It makes no reference
to V, being a superposition of A, and Z,. It is assumed
that eQ; > 0 and that 0 < 1, <1 which requires that
(g, 1|6, V*¥| A, n) < 0. Recall that the eigenvalues occur
in pairs that satisfy the bound |4;| < 1. The analysis in [5]
leading to this result extends to the electroweak model since
it only requires that V, is a neutral vector field. The state
|4k, n) will generally have mixed chirality. Proceeding as in
Sec. I1 C suppose that the potential A, in (21) also supports a
zero mode |0, /) with definite chirality that satisfies (17) and
hence has (0, /|, F*|0,[) < 0. The state |0, ) denotes a
zero mode state with quantum numbers / and not a state with
Ar = 0. Then from (33),

eQ;

(0. 24,

(P—eQ;V)*+ VA Ay, n) = —m; (0,

n).
(34)

We have remarked that the zero mode states y , (x) have
a distinctive structure, and so we expect that (0, /|4, n) # 0
only for a particular 4;, say 4, and only if the states’
quantum numbers / = n. Suppose this to be the case.

Form the inner product (17) with |4, n) and subtract the
complex conjugate of (34) from it to obtain

<1 A) (4, ,1)

(4,n|0,n)
S4|c|'

Z(P-eQ;A)|0,n)
)
(A,nlicd,Z" + *Z* +506,,Z" +m?|0,n)
(4,n|0,n)

+2’ . (35)

where ¢ = g},g/(2cos0y). The upper bound in (35) is
gauge invariant in A, by inspection. Note that

[(4.n|Z(P—eQ;A)[0.n)|

<((A,n|Z%]2,n))' ({0, n| (P~ eQ;A)?|0,n)|'/?
1/2

), (36)

1
<((A.n]Z%.n))"/2|(0.n]| _EeQiGﬂuF

where we used the Schwarz inequality and (17). Then (35)
can be rewritten as

1-2
(T>|6’Qi]:K1 < (|eQi|F)'*K, + K5, (37)
where we define

"/ F10,n)
)

_ 4e|({4. n|Z2|2.n))' (0. no,,, F**/ (2)|0, n)|'/2
[{4,7(0, )] ’
(39)

K1:

e | -

(A, n

and K5 is the second term on the right-hand side of (35).
The constants K, K,, K3 are bounded for large F and have
dimension L°, L~!, L72, respectively.

To solve for A let A =1 —§ to obtain

5< K,/K, K3/K, — (K,/K,)?
= (leQ;|F)/? leQ;|.F
+0(1/(leQi| F)¥?) (40)

and

in(1 - 2) < -in| (32 x (@i )|

2

O(1/(|eQi|F)'?). (41)

From (12) on substituting 7 with Ty,

[In(1-43)+43]
=D _lin(

(s8]
ln det3 1 + TV
k=1

<3 [1 <|€§|f> 240(1/(|eQ;|F)\/?
+3 [In(1-43)+43), (42)
T

where we define M; = 2K, /K, giving M; dimension L~".
N is the degeneracy of the zero-mode states |0, ). Following
Sec. IIC, N = (€Q,)?| [ d*xe,,q3F* F**|/(327*) when all
of the zero mode states have the same chirality. Referring
to (24), the result (42) multiplied by 1/2 modifies the
result (32) to

leQi| F—oo )2 ;
indetyy < G2 1257
m

= 48722 ,.
_N (leQilF
4 M?
+= Zln -R2)+ 23]+ (43)
/1‘;&,1
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R continues to satisfy (15) when all of the zero mode
states have the same chirality; otherwise we cannot place a
bound on R.

The sum of the remaining eigenvalues in (43) is con-
vergent and negative. It is possibly the most critical con-
tribution to In det,,. Even if a potential does not support
a zero mode—thereby removing the N-dependent term
in (43)—we know of no a priori reason why the eigenvalues
satisfying |4;(F — o0)| < 1 should sum to a bounded
function of F. It should be kept in mind that the eigenvalue
problem in (33) is equivalent to finding the bound states of a
charged fermion in a random four-dimensional magnetic
field. There is apparently no limit to the complexity of
magnetic fields generated by the Maxwell measure du(A)
for fixed Z,,. Although the degeneracy associated with each
of the eigenvalues {4, }$> , may be a slowly varying function
of F, their sum may compete with the leading term in (43)
whose sign is determined by QED’s lack of asymptotic
freedom.

C. Remaining determinants

We return to the second determinant in (22) depending on
the axial vector current and the Higgs field. Making
mathematical sense of this determinant is a large problem
that will have to be dealt with in a subsequent paper. In order
to renormalize it 2 tadpole, 7 two-point, 16 triangle, and 31
box graphs have to be factored out. Of the 16 triangle graphs
4 are anomaly bearing and cancel when summed over
generations of fermions. Seven of the triangle graphs vanish
by Euclidean C-invariance. The 5 remaining graphs are
Higgs field dependent. The 6 anomaly-bearing box graphs
also vanish by C-invariance, including the potentially
destabilizing graph AAAZys; the nonanomalous Higgs
graph AAAH likewise vanishes by C-invariance. These
calculations have been completed with the assumption that
H has also been smoothed as in Sec. II A with an ultraviolet
cutoff parameter different from A and A used for A and Z,
respectively.

It remains to place a bound on the absolutely convergent
remainder of the second determinant as |eQ;|F — oo. The
leading term is the pentagon graph

Il = (eQ;)*Tr [SVSVSVSVSV <2Ciif‘9w 215ty H)] ,

(44)

where Sy is from (23). This graph is absolutely convergent
since Sy ’s short-distance behavior is less singular than in
the free field case for the class of potentials considered
here. This conclusion is reached by approximating the local
field lines by a constant field and noting the enhanced
propagation of Sy, (x, x') parallel to the field lines, resulting
in a short-distance behavior of 1/(x" — x)ﬁ It was found

in [2] that when S, = (p— eQ;A + m;)~' occurs in an

absolutely convergent fermion loop S, s effective falloff for
large variations of A, induced by the scaling A, — LA, is
O(1/L*) when L — oo for A, €n,., L"(R*). The analysis
leading to this result relied on (8) and (14) with R satisfying
(15). The one-to one correspondence between (8), (27)
and (14), (32) with R also satisfying (15) allows the
same conclusion to be drawn about Sy. A large variation
of V, can be induced by a large variation of A, so that
V,— L(A,+ ¢,Z,/(2LQ; cos Oy sinOy)~ ) = LV,
Then Sy — S,y = (P—eQ,LY +m;)"" and

i v ererene (99 gmi
HS_)(teL) Tr {SVSVSVSVSLV <2COS9WZJ/5+2MWH):|

—0(L?) (45)

for fixed Z, and H following the above result for S,. Then
[15 grows at most quadratically for large variations of A,,.
There are still some technical difficulties that have to be
resolved in order to bound all of the second determinant’s
remainder.

The last determinants to consider are those contributed
by the hadronic and leptonic sectors of the charged weak-
vector current. The hadronic determinant contributed by
quark 7, without mixing, corresponds to the W-dependent
determinant in (2). The leptonic determinant is obtained
from this by the exchanges W <> W~ and t3; (i) — —13; (i).
To illustrate the effect of mixing it suffices to consider the
two generations u, d and c, s. Let it be decided to integrate
over the u and ¢ quarks first followed by integration over d
and s quarks. The result is the product of determinants

2
g _
det| 1= G W~ (1= (V.G + Ve PG (113
2
et 1= G (1= (Vo Gy VPG (113

4
g * *
_aGSOqu(Ou‘VusP“/ud'z+ Ocvusvudvcdvcs)

4
_%GSOCGd(Oc“/cs'z'Vcd'z + Ou stvcdvj,:dvus)i| P (46)

where

0, =W=(1-y5)GWH(1—ys), (47)

Gi:<P+mi_eQiA_i

Z( i i )+ agm; H -l

gy, g\ are given by (4), (5), and V,; are the Cabibbo-
Kobayashi-Maskawa matrix elements [4]. Including the ¢
and b quarks results in strings of up to eight propagators.
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As we are interested in the growth of these determinants
for large amplitude variations of A, it is advantageous to
factor out A, from the propagator G; through the operator
identities

gm;
2My,

G=84—8a|— (9y—girs)Z+ H|G;, (49)

2cosOy
Sa =S+ SeQ;AS,. (50)

Comparing (46) with the unmixed quark determinant in (2)
it is seen that mixing only adds more propagators which
tend to suppress the growth of the added terms. This
follows from (49) and (50) and the falloff of S, for large
amplitude variations of A. So we believe it is safe to neglect
quark and neutrino mixing for the purpose of this paper.
Instead we focus on the unmixed hadronic determinant

2

g _
In det |1-"5G,, ) W-(1-y5)G WH(1—ys)],

==3 ’31‘(1‘):%

(51)

and its leptonic sister determinant.

Terms of O(g?, ¢°, ¢*, eg?, eg’, g*€?) have to be factored
out of (51). This is done by iterating (50) twice and
substituting the result in (49) which in turn is inserted in
(51) and the leptonic determinant, followed by a loop
expansion. These terms have to be renormalized and the
chiral anomalies canceled by summing over generations.
The example of the triangle graph W™ W~y is given in [5]. It
is assumed that the W* fields have been smoothed
following Sec. II A with an ultraviolet cutoff different from
that of A,Z, and H. The remaining loop graphs are
absolutely convergent, and all contain S,. The leading
remaining graphs have the general form

Tr[SASASASW™ (1 = y5)S,W (1 = 75)]

plus permutations of § and S,. If A is scaled by L, the
effective falloff of S, is O(1/L?) for L — oo [2], and so
these graphs are O(L). Of course, the entire remainder has
to be shown to be O(L?) or less for the Maxwell integration
in (1) to have a chance of converging.

D. Volume cutoff

The constant A/ in (1) is obtained by setting Z = F = 1
so that

7 | A @ v )

xexp{Zlndet(i)—|—/d4x£im(A,Z,Wi,H) =1. (52)

The first term in the effective action in the exponential is the
sum of the two determinants on the right-hand side of (22),
the hadronic determinant in (51), and its leptonic counter-
part. These are assumed to be renormalized and freed
of anomalies as outlined in Secs. Il A-III C above. The
second term, L;,;, consists of the gauge boson and Higgs
self-couplings [7]. Then N is seen to be a normalization
constant that makes du(A)du(Z)---exp[-] a probability
measure. The integral in (52) generates the vacuum self-
energy and should cancel in the calculation of a physical
process Z in (1).

Even if all of the functional integrals in (52) converge the
translation invariance of the vacuum self-energy introduces
a volume divergence causing N = oo. Unless this diver-
gence is controlled, one is dealing with senseless functional
integrals that are not subject to mathematical analysis. The
scope of this paper only requires that we deal with the
Maxwell integration. The effective action is gauge invariant
and is dependent on F,, only. A gauge invariance pre-
serving volume cutoff can be introduced in principle by
replacing F,, everywhere with gF,,, where g is a space
cutoff such as g € C§°. Implementing this requires knowl-
edge of the explicitly gauge invariant form of the Maxwell
sector of the one-loop effective action. At present this is
limited to its strong field limit and its large fermion mass
expansion.

For the results reported here to be relevant a typical
distributional, random connection A, should have u(A)-
measure 1. It has been assumed that A, falls off at least as
fast as 1/|x| as |x| = oo following [19]. To the author’s
knowledge there are no results for a typical A’s large-
distance behavior. It is known that a typical ¢(x) supporting
the four-dimensional Gaussian measure du(¢p) of a free,
massive, spin-0 boson has growth |x|*(In|x|)?, > 1/2
[36,37]. If a typical A, does not fall off as assumed here, the
presence of a smoothly decaying volume cutoff such as ¢
would allow the continued applicability of the theorems
used to obtain the above results. Accordingly, they will
remain intact when the volume cutoff is fully implemented.

The above remarks on the falloff of A, and those in
footnote [19] also apply to Z, as this is essential to the
analysis of Secs. III A-III C.

IV. CONCLUSION

It has been shown that the box graphs AAAA and AAAZ
do not obstruct the nonperturbative path integral quantiza-
tion of the electroweak model. This is subject to the
provision that the fermion degrees of freedom are first
integrated out to obtain an effective action followed by the
functional integral over the Maxwell field. These box
graphs are present in the effective action and cannot be
avoided. There are other potentially destabilizing terms in
the effective action contributed by the axial vector current,
the charged vector current, and the Higgs field. Based on a
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previous result for the falloff of Sy = (P — eQ;A + m;)™!
when the random potential’s amplitude is large [2], we
expect these terms to be subleading compared to the strong-
field behavior of the QED effective action. In this sense we
can say QED decouples from the rest of the electroweak
model in this limit.

Evidence has been given that zero mode bearing poten-
tials supporting the functional measure du(A), if any, are
highly relevant to the convergence of the Maxwell field
integration in (1). The weight assigned to these potentials
by du(A) has been an open question for at least 40 years.
And so it remains.

The paramagnetic term, In det;, in the Maxwell sector of
the one-loop effective action may be critical to the con-
vergence of the functional integral over A, whether or not
zero bearing potentials are supported by du(A). Deciding
the issue depends on finding the degeneracy factors in
In det;’s eigenvalue expansion in (12) and (43) and their
dependence on the large amplitude limit of the random
magnetic fields generated by du(A) for fixed Z,.

APPENDIX: STRONG-FIELD GROWTH OF THE
SCALAR FIELD DETERMINANT

The estimate of the growth of the scalar QED renor-
malized determinant, In detgggp, for large amplitude var-
iations of F was completed in [S] up to a remainder R
defined below. Here we wish to verify that R is subdomi-
nant. From (3.3) in [5]

oot 2 F2
In detSQED :/ 7 |:Tr(e_P2f _ e—(P—eA)Zt) _ € || ||j| e_th
0

19272
1/eF dt 2 2 2P| 2
— ZATr(e Pt = —(P—eA)?1\_ —tm
A t [ rle ¢ ) 19222 |
(A1)
2||F?| [ dt
Bl Ll 2” & g=m* | R, (A2)
1927 1/eF 1t
where
o dt >
R :/ —Tr(e P e—(P—eA)zt)e—tmz (A3)
1/er T
>0, (A4)
following Kato’s inquality in the form [33-35]
Tr(e Pt — e=(P=eA)’t) > 0, (A5)
Without explicitly calculating R we obtained
_ EZHFZH 2 2
In detSQED Z 192 5 In (ef/m ) + 0(6?) s (A6)
JT

where the inequality sign follows from (A2) and (A4). We
will now estimate R in order to turn (A6) into an equality.
Consider

8R/8e _ e—lTr(e—Pz/e}' _ e—(P—eA)z/e]:)e—mz/e]:

with R(e = 0) = 0. The first term in (A7) can be estimated
by making a heat kernel expansion. Define

OR, _

e 5 Tr(e—Pz/e]-' _ e—(P—eA)Z/e]-')e—mz/e}'
e

(A8)

TI2N" a,(eF)(1/eF)" + ay(eF)(1/eF)™,  (A9)
n=0

where a, is the first nonzero coefficient after ay, assuming
that the expansion is an asymptotic series [38]. The first few
terms of the series are [5]

1 " e? e? )
—— | d*x{ —=F, F* +—F, V*F"/(eF)

1672 12°# 120 #
2

e—FD

1680 *#

()2 - 7<F,,yFﬂ”>21/<ef>2}

+ VAFH (e F)?

* 1440

+0(1/(eF)?), (A10)
where F,, = €,,,5F% /2.

The expansion in (A9) assumes that F is infinitely
differentiable, which it is since it is calculated from the
smooth potentials A introduced in Sec. Il A. The validity of
(A9) also requires that all of the trace terms over F,,
and its derivatives converge, which they do if we assume
F,,€ N, L"(R*). We have previously assumed r > 2;
this will be discussed at the end of this Appendix.

Since [1/(eF)] = L?, the maximum power of F in
ay 18 M + 2 so that the truncation error in (A9) never
exceeds (eF)%.

Rewrite the expansion coefficients in terms of the dimen-
sionless scaled field f,, defined by F,,(x) = Ff,,(x). The
scale factor F =max,/F,, (x)F"(x) = max,|F, (x)|
Introduce the amplitude L of A, by L = max,|A,(x)| so
that A,(x) = La,(x), where a, is dimensionless and
la,(x)| <1. Then F = Lmax,|d,a,(x)-0,a,(x)| and
hence |f,,(x)| < 1. Terms in the series containing gradients
V2% will scale as V?"/(eF)" when factoring out eF, and
therefore will be subdominant as e — oo. Hence, the series in
(A9) has the form
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aRl eF—o0

G (X el T
n=0
T aylf. v2mf/<ef>m>). (Al1)

The only certain statement we can make about this series is
that for any N < o0

eF—o0

R, <T0(eF)%. (A12)
Consider the second term in (A7). Define
8R2 ot 8 2 2
e _T —(P—eA)’t\ ,—tm . Al3
9= o e a)

The Wiener path integral representation of the integral
kernel is [39]

M) ) di ().
(A14)
where the free Wiener measure in four dimensions gives the

probability density of finding a particle at y at time ¢ if it
started at x at t = 0,

[ dtisa(@) =)
= (4mt)~2e~ /4, (A15)
Then
ETI‘( —(P- eA) )
——i / d*x / f w)dwe € $A@ g, (). (Al6)

We take it as a reasonable assumption that the right-hand
side of (A16) vanishes as e — co due to the rapidly
oscillating exponential of A, and hence

9 Tr(e (P—eA)zt)e}-:‘”O'

o (A17)

Since R, is gauge invariant e always appears in the
combination eF,,.

Temporarily rescaling R in (A3) by letting tm?> = u we
see that the lower limit transforms to m?/eF, indicating
that letting m — 0 is consistent with e/’ — 0. As there are
no zero modes in scalar QED and the on-shell charge
renormalization of detgggp has already been made in (A6),

the m = O limit can be taken in (A13). This requires that the
right-hand side of (A17) behaves as

%Tr( (P—eA)2t)e.'F~—>OOe—c(e]:t ge/d4xg(eF t) (A18)

for some c¢,x> 0. The integrand, g, must result in a
convergent integral and have dimension L~*. These require-
ments restrict g to be a linear function of the variables
[(eF)"]WVZI[(eF)’”]””t” with

n+m+Il-p=2; 1>1 whenm>1 (A19)

forl,m,n € Z*, p > 0. On replacing F with F f, g has the
scaling property

9([(eF)"),, V¥ [(eF) ] 1)

— (VMW T P F O (). (A20)
Substituting (A18) and (A20) in (A13) gives
Pare [
De 1eF t
<o € [ Engtrorperin ey
(A21)

The differentiation can be done by inspection. Substituting
z = eFt and integrating gives

R,TZX0(eF)2, (A22)

or less if the gradient terms in (A21) dominate g. Combining
(A7), (A8), (A13) and the results (A12) and (A22) gives

RTZ®0(eF)?, (A23)
with R > 0. This result is almost certainly correct. For

ifit increased as O(eF)P, B > 2, then scalar QED’s effective

. F
action would decrease as Ssopp = —In detSQEDe ~%

—O(eF)’. We have no evidence for this. There are no
(eF)?[In(eF /m?)]¥, k > 0, terms in R for the reasons stated
under (A17).

When (A23) is combined with (A2) and (A6), where R is
neglected, we can rewrite (A6) as

L
19272

e.7:—>oo

In detsgpp” ~ In(eF/m?) + O(eF)?. (A24)

This result assumes that the distributional, random con-
nection A has been smoothed as in I A and that these

033010-12
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smoothed potentials A €n,., L"(R*). It has also been
assumed throughout this paper that F €n,., L"(R%).
The term ||F||?> in (A24) is from charge renormalization
and is divergent under this assumption. It must be replaced
with ||gF||, where g is the volume cutoff introduced in

Sec. III D. Since dets is related to detgogp through (8) and
(10) and is finite without a volume cutoff, we conjecture
that any residual terms containing || F|| in the remainder R
cancel as they do in the remainder in (4.6) in [5]. In this
case the assumption r > 2 is possible.
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