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Theoretical predictions for elastic neutrino-electron scattering have no hadronic or nuclear uncertainties
at leading order making this process an important tool for normalizing neutrino flux. However, the process
is subject to large radiative corrections that differ according to experimental conditions. In this paper, we
collect new and existing results for total and differential cross sections accompanied by radiation of one
photon, ve — ve(y). We perform calculations within the Fermi effective theory and provide analytic
expressions for the electron energy spectrum and for the total electromagnetic energy spectrum as well as
for double- and triple-differential cross sections with respect to electron energy, electron angle, photon
energy, and photon angle. We discuss illustrative applications to accelerator-based neutrino experiments
and provide the most precise up-to-date values of neutrino-electron scattering cross sections. We present an
analysis of theoretical error, which is dominated by the ~0.2%-0.4% uncertainty of the hadronic
correction. We also discuss how searches for new physics can be affected by radiative corrections.
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I. INTRODUCTION

In the Standard Model of particle physics, neutrinos are
massless particles. However, experiments with solar [1-6],
atmospheric [7,8], reactor [9—13], and accelerator [14—-16]
neutrinos’ establish that neutrinos oscillate and have non-
zero mass [17,18], thus providing a convincing example of
physics beyond the Standard Model. Fundamental ques-
tions about this definitive portal to new physics remain
unanswered: What is the origin of neutrino mass? Are
lepton number and CP symmetries violated? Do sterile
neutrinos exist? What is the absolute scale and ordering of
neutrino masses? New experiments aim to address these
questions but rely on a precise description of neutrino
interactions with the ordinary matter (electrons and nuclei)
used to detect them.

Interactions with atomic nuclei compose the bulk of
neutrino scattering events at accelerator neutrino experi-
ments. Although interactions with atomic electrons are
rarer, they are nonetheless valuable. The neutrino-electron
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scattering process plays an important dual role: first, owing
to a clean experimental signature and a small cross-section
uncertainty, the process provides an incisive constraint
on neutrino flux [19,20]; second, the bulk of next-to-
leading order (NLO) radiative corrections can be evaluated
analytically and thus serve as a prototype for the more
complicated cases of neutrino-nucleon and neutrino-
nucleus scattering.

Radiative corrections to elastic neutrino-electron scat-
tering of order a were calculated first in Ref. [21],
where only soft-photon bremsstrahlung was considered.
In Ref. [22], an analytical phase-space integration
technique was developed to include hard-photon brems-
strahlung, and the electron energy spectrum for neutrino-
electron scattering accompanied by one radiated photon
was obtained. The leading-order (LO) cross section in
the low-energy limit of the Weinberg theory [23] was
evaluated in Ref. [24]. References [25,26] presented
the electron energy spectrum in the limit of small elec-
tron mass accounting for corrections of order a and
including other electroweak NLO radiative corrections.
The electromagnetic energy spectrum was considered in
Refs. [27,28]. Reference [29] reproduced results of
Refs. [22,25] by numerically performing the phase-space
integration, and accounted for the electron mass sup-
pressed interference term; Ref. [29] also presented a
numerical evaluation of the electromagnetic energy spec-
trum. The hard-photon correction to the total elastic cross
section was studied in Refs. [30,31]. Different aspects of
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radiative corrections in elastic neutrino-electron scattering
were also discussed in Refs. [27-44]. See Refs. [45,46] for
recent reviews.

In this work, we analytically evaluate relevant dis-
tributions and spectra in elastic (anti)neutrino-electron
scattering starting from four-fermion effective field theory
(EFT). We take neutrino-lepton and neutrino-quark EFT
coefficients from Ref. [47] (with n; = 4 active quarks at
renormalization scale y =2 GeV) and calculate real and
virtual corrections in the MS renormalization scheme
within this theory. Exploiting the technique of Ref. [22],
we evaluate the electron energy spectrum and present this
calculation in a relatively compact form. We generalize this
technique for the evaluation of the electromagnetic energy
spectrum as well as triple- and double-differential cross
sections. We discuss a new treatment of hadronic loop
diagrams; this contribution dominates the error budget for
neutrino-electron scattering and impacts other neutral
current neutrino processes, such as coherent neutrino-
nucleus scattering [48]. As illustrative applications using
accelerator neutrino beams [16,49-51], we consider the
impact of radiative corrections on energy spectra and
compare observables employing electron energy vs total
electromagnetic energy. For possible low-energy applica-
tions, we provide results in analytic form keeping all
charged lepton mass terms. The complete mass dependence
could be useful in the analysis of future reactor and solar
neutrino experiments [52-56]. We also discuss examples
where radiative corrections can impact searches for new
physics, including neutrino charge radius effects.

The paper is organized as follows. Section II considers the
kinematics of neutrino-electron scattering and computes the
tree-level scattering process including electroweak correc-
tions to the low-energy four-fermion interaction. Section III
computes virtual corrections to elastic scattering. Section IV
represents the bulk of the paper and computes QED
corrections involving real radiation. Section V presents
illustrative results for total cross sections and electron energy
vs total electromagnetic energy spectra. Section VI presents
our conclusions and outlook. In the main text of the paper,
we describe the general strategy of the computations and
focus on results in the limit of small electron mass (i.e.,
neutrino beam energy much larger than electron mass).
Appendixes provide general expressions retaining all elec-
tron mass terms. Appendix A summarizes higher-order
perturbative QCD corrections to heavy-quark loops that
are discussed in Sec. IIIB. Appendix L displays flux-
averaged spectra in experimental conditions of DUNE,
MINERvVA, NOvVA, and T2K experiments.

II. NEUTRINO-ELECTRON SCATTERING

We begin in Sec. II A by reviewing the kinematics of
neutrino scattering on atomic electrons. Throughout this
section we consider general charged leptons £, but in the
following sections we specialize to the phenomenologically

v(k) v(K)
t(p) (p')
FIG. 1. Neutrino-electron scattering kinematics.

most relevant case of the electron, £ = e. We introduce
the relevant basis of four-fermion effective operators in
Sec. II B and discuss their coefficients in Sec. II C.

A. Kinematics for neutrino-electron scattering

Consider the scattering of neutrinos on atomic electrons.
We neglect the atomic binding energy and momentum
compared to the energy and momentum transferred in the
scattering process. Consequently, the initial electron is
taken to be at rest in the laboratory frame, where the
kinematics is given by p* = (m,0) (initial electron with
p>=m?), p" = (E,k—k') (final charged lepton with
p'? =m?), k"= (w,k) (initial neutrino), and k* =
(o' k') (final neutrino); see Fig. 1. The neutrino mass
scale is much lower than the electron mass and typical
neutrino beam energy, and we neglect the neutrino mass m,,
throughout. We will let g = p’# — p” denote the momen-
tum transfer to the charged lepton and write m, = m for the
electron mass.

Elastic scattering is described by two independent
kinematical variables. It is convenient to introduce the
invariant momentum transfer,

7 =(p' = p)*. (1)

and the squared energy in the center-of-mass reference
frame,

s=(p+k2 )

Note that production of heavier charged leptons in neu-
trino-electron scattering is possible when the neutrino beam
energy is high enough. Using s = m? + 2mw > m'?> we see
that w > (m2 — m*)/(2m) ~ 10.9 GeV to produce a muon
(m" = m,), while @ > 3089 GeV for the production of
T (m' = m,).

The neutrino scattering angle in the laboratory frame, ©,,
can be expressed in terms of the final neutrino energy «’ as

0w —m(w — ) — 2252
cos0®, = K[|
m m  m*—m?
—n 3
+a) 104 200’ (3)

The final neutrino energy varies between backward and
forward scattering in the range
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me +m2—m’2 <o < +m2—m’2 ()
o <o+ —F—,
m+20 2(m+2w)” T 2m

corresponding to the charged lepton energy range

m/2_m2 . 2(1)2 ml2_m2
—<E <m+

o m+2a)+2(m+2w)'

(5)

The angle between recoil charged lepton direction and the
neutrino beam direction, ®,, is given by

wE —m? — m(w — E') 412512

w|p'| - ©

cos®, =

and scattering is possible only in the forward cone bounded
by @7,

m'? 4?

2 2 2 2
cos @M — \/m/ -m* 2w+ m)* —m’ ' @
The scattering angle expression simplifies for the elastic
process (m' = m) to

m+w [E—m
cos®, = o VETm (8)

when it varies between 0 and 1, i.e., the electron is scattered
always into the forward hemisphere.

B. Effective neutrino-charged lepton operators

Neutrino-electron scattering is described by the
exchange of weak vector bosons W and Z (with masses
My, and M, respectively) in the Standard Model; cf.
Fig. 2 for contributing Feynman diagrams. At energies
below the electroweak scale, the interactions of neutrinos
and charged leptons are determined by an equivalent
effective Lagrangian [57-59]. Neglecting corrections sup-
pressed by 1/M3, the effective Lagrangian consists of
momentum-independent four-fermion operators.

At tree level, the matching onto this effective Lagrangian
L 1s readily obtained,

vy vy J4 y
0 Vp
W
Z W >fwvv\,<
U
fl f’ vy E g

FIG. 2. Leading-order contributions to neutrino-lepton scatter-
ing in the Standard Model. The graph with the exchange of Z
boson contributes to the neutrino and antineutrino scattering.
¢ and ¢’ denote charged leptons of any flavor in this figure.

2 2

g
Lot = =5 (Twi ' Uw-)y =577 U2)'Uz)us (9)
My, Mt “oOM2 H
where Jy-, Ji,. = J;’,C, and J%, are charged and neutral

currents in the Standard Model Lagrangian coupling to W+,
W=, and Z, respectively, and ¢ is the electroweak SU(2),
coupling constant. Focusing on leptonic vs quark operators,
we have

1 _
Jh :EZ Z7"PLug, (10)
4

1 1 -
Ho_ _ 202 HP,
Jg cos Oy Ef K 2—|—sm 0W>fy 54

_ 1
+ sin*@y £yHPRE + 3 ijy'uPLVf:| ; (11)

where P;, = (1 —y5)/2 and Pg = (1 + y5)/2 are projection
operators onto left-handed and right-handed fermions and
Oy denotes the weak mixing angle satisfying My, /M, =
cos Oy. After Fierz rearrangement of the charged current
contribution, the result may be written as

Lot = —ZﬂfY”PLVﬂz/h(CfﬂPL + crPR)¢
o0

- CZEg/y”PLI/fLZy”PLf’, (12)
t#L

. . . N
with coefficients ci‘ ,Cr, and c,

) 1
Clliff = 2\/§GF (Sinzew - E + 5ff/) s

cr = 2V 2Ggsin20y,, ¢ = 2V2Gp, (13)

where we have introduced the Fermi constant Gg =
¢*/(4V/2M3,), and where the Kronecker symbol &,
satisfies 6,0 =1 for £ =¢" and 6, =0 for £ # 7.
Note that coefficients ¢ and cp are the same for all
combinations of lepton flavors, while the coefficient
cf’ “ depends on whether the neutrino and charged lepton
have the same flavor.

Neglecting the neutrino magnetic moment contribution
[60-66], the leading-order cross section of neutrino-lepton
scattering can be expressed, in all possible cases, as
[24,25,29,67-92]

d(’”fﬂ_w/ﬂ 2'\2 7
o = )+ Rl e erl, (14)
daﬂmf’—ﬂkf’ m s .
7ng/ =1 (e ) Tg + cgIL + 1" erlg],  (15)
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TABLE I Effective couplings (in units 10> GeV~2) in the Fermi theory of neutrino-fermion scattering with four quark flavors at the
scale 4 = 2 GeV. The error due to the uncertainty of Standard Model parameters is added in quadrature to a perturbative error of
matching.

Cl]:ff,’ =17 Cl]:/f” % ;é I CR Cﬁ C‘i Cﬁ
2.398 18(33) —0.90084(32) 0.769 11(60) 1.140 65(13) —0.51173(38) —1.41478(12) 0.256 17(20)
p P cvff m

doyy m o= (Lt—=1)=. (22)
—_— =—c, (16) CR 2
da) O 477:
o We discuss the impact of radiative corrections on the
dgi”g —pt m cancellation (22) in Sec. V D.
— =_—cIg, (17)
dw CEL! 4z
C. Effective neutrino-lepton and neutrino-quark
with kinematical factors: interactions beyond leading order
o ) " Higher-order electroweak and QCD contributions modify
_(k-p)(K"-p') m-—m couplings in the effective Lagrangian of Eq. (12). The
L= 2.2 =1+ -1, (18) . . . . .
m-w 2mw evaluation of virtual NLO corrections to elastic neutrino-

k- p"(k - w/z mzz_mz w/2
Iy w 2<1+7>—>_, (19)

m-w ;
/
q_ﬂ(l_ﬁ) (20)
() w

where the limit of elastic process, i.e., m’ = m, is presented
in the last step. The neutrino-energy spectra in Egs. (14)—
(17) are equivalent to the recoil electron energy spectra due
to energy conservation: m +w = E' 4+ '. In particular,
do/dE' = do/dw’. We later apply this observation to
compute differential cross sections with respect to total
electromagnetic energy in the presence of radiative cor-
rections. To study the angular spectrum, the differential
cross section can be obtained by exploiting

4B — dma?(m + w)? cos ©,d cos ©,
 [(m+ w)? - @*cos’®,]?

(21)

We observe that the contribution from the interference term
Ik is suppressed by the charged lepton mass. The neutrino
and antineutrino scattering are related by the substitution
I < Ig (k < k') or equivalently c]” “ & cp

Note that v, — v, and U, — U,f cross sections
involving one flavor seem to be not positive definite for
energies comparable with the charged lepton mass due to

the helicity-flip interference term ¢}’ fcR. However, the
cross section is always positive in the physical region of
scattering mw/(m + 2w) < @' < w and can vanish only in
the case of forward recoil electrons with maximum energy
E'=m+2w?/(m + 2w) [93-96] in the scattering of an
electron antineutrino of energy @:

charged lepton scattering also involves interaction with
quarks and gluons; see Secs. III B and III C. The relevant
neutral current part of the effective neutrino-quark
Lagrangian is

L = _Zﬁf}'”PLqu_yy(ClciPL + ckPr)q.  (23)
‘q

with (neutrino flavor independent) left- and right-handed
couplings ¢f and cf, respectively. At tree level,

of =2V2Gg(T} — Q,sin’0y), ch = —2v2GpQ,sin’dy,
(24)

where Tg denotes the quark isospin (+1/2 for g = u,c,
—1/2for g = d, s) and Q, its electric charge in units of the
positron charge (+2/3 for ¢ = u,c, —1/3 for g =d, s).
For numerical analysis, we employ low-energy effective
couplings from Ref. [47]. For definiteness, we take inputs
in four-flavor QCD (n; =4) at renormalization scale

=2 GeV in the MS scheme and do not distinguish
between couplings to u (d) and c (s) queurks.2

The effective Lagrangians of Eqgs. (12) and (23), and the
corresponding charged current quark operators [47], deter-
mine neutrino scattering rates at GeV energy scales, up to
corrections suppressed by powers of electroweak scale
particle masses. Electroweak scale physics is encoded in

’In Ref. [47], one-loop matching to the Standard Model is
performed at the electroweak scale accounting for the leading
QCD corrections with one exchanged gluon inside quark loops
and neglecting masses of all fermions except the top quark
compared to the electroweak scale. The matching is accompanied
by renormalization group evolution to GeV scales to resum large
electroweak logarithms in the effective couplings. The relation of
the couplings in Table I to various definitions of Gy and sin® @y, is
discussed in Ref. [47].
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FIG. 3. Virtual corrections to elastic neutrino-electron scatter-
ing in the Standard Model corresponding to the vertex correction
in effective theory.

the values of the operator coefficients, summarized in
Table I. Real photon radiation and virtual corrections
involving the photon and other light particles must still
be calculated within the effective theory.

III. VIRTUAL QED CORRECTIONS

In this section, we present virtual corrections, consider-
ing QED vertex corrections involving virtual photons in
Sec. III A and closed fermion loop contributions from
leptons and heavy quarks in Sec. III B. We estimate the
correction coming from light-quark loops in Sec. III C.

|

FIG. 4. QED vertex correction to elastic neutrino-electron
scattering in effective theory.

A. QED vertex correction

We consider one-loop virtual corrections in elastic
(anti)neutrino-electron scattering v e — vpe (Upe — Uge).
Within the Standard Model, the vertex correction is
given by the diagrams in Fig. 3, while only the single
diagram in Fig. 4 contributes in the effective theory. The
usual field renormalization factors must be applied to
external legs.

First, we evaluate the one-loop vertex correction to the
matrix element of left-handed (L) and right-handed (R)
charged lepton currents J;® = é(p’ )7,PLre(p) from
Eq. (12). We perform the integration in d = 4 — 2¢ dimen-
sions of spacetime to regularize the ultraviolet divergence,

L,L

SILR — _ez/ idL e(p" )y (¢ — L+ m)y,PLr(F— L +m)y’e(p)
H = ) (L )

Qm)® (L2 =2)((p-L)?

(90 f»—gyﬂz) (25)

where ¥ = k,y* for any four-vector k, &, is the photon gauge parameter, and a is an arbitrary constant associated with the
photon mass regulator. The small photon mass A is introduced to regulate infrared (IR) divergences. The corresponding field

renormalization factor of external charged leptons is

aé «a U 22 u? aé, Inaé
Z,=1-—2_"|(In 21 4 | Lo ler) 26
‘ 4r e 47:( m? P T2 7t ) 47 47! 57)( 2T 1 —ag, (26)
Neglecting Lorentz structures whose contractions with L i6,,9" 30
the neutrino current vanish at m, = 0, the resulting cor- o = Ee(p I\ 7urs + 2m e(p). (30)

rection can be expressed as®

(Zp = DI + o0 = (fJLR+fzJ ). (29)

in terms of form factors f; and f,, and the additional
currents j; and jR:

*Note that the vertex correction can be expressed as a
modification of vector and axial currents:

e(p)rue(p) = e(p')rue(p) +%e( )(fm, +fz ”q )e(p),
(27)

e'(p’)y,,yse(p)*E(P’)yﬂyse(p)Jr%(fn f2)é(p)rurse(p).
(28)

L) elp). 6D

Here o, [y,,, 7o)

Us1ng Eqs (25) and (26), the UV finite and gauge-
independent virtual correction is given in Eq. (29) by one-
loop QED form factors [97,98]:

1) =——(ﬁ—51 1”)

2p p

34p, 1+p 1 _1+p L+p
+ﬂ[—8 ln—l—ﬁ glnl_ﬁln<2 g ﬂ

1 p—1+p p+1—-p
‘ﬁ(L‘z % )_]’ .
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1
£p) = 5 (33)

which are expressed in terms of the recoil electron velocity
f and the parameter p:

mz / m

The vertex correction (29) to the unpolarized cross
section can be expressed as a sum of factorizable and
nonfactorizable terms:

Vpe—ugpe voe—uge vye—vge
ot = L5, dot ST 4 da STl (35)
T LNF

The factorizable correction is given by

51} = 2f 1 (36)
The nonfactorizable term do’,’\"*“ is obtained by modi-
fying kinematical factors I; in Eqgs. (14) and (15) as [; —
I; + 2 f,6"1; where

wl

1
6”1]_ — 5UIR — EII}i - E, (37)

/
VI = 2(1L g - %) ~ 1L, (38)

The resulting vertex correction to the unpolarized cross
section of Eq. (35) is in agreement with Refs. [29,37]. In
the limit of a massless electron, the Pauli form factor
vanishes, f»(f) — 0, and the correction becomes exactly
factorizable.

B. Closed fermion loops: Leptons and heavy quarks

In addition to the corrections involving virtual photons in
Sec. III A, we must account for the corrections with a
closed fermion loop of Fig. 5. These corrections correspond
to the diagram of penguin type and the effects of y-Z
mixing in the Standard Model; cf. Fig. 6. They represent the
EFT determination of the kinematical dependence of
electroweak corrections; cf. Refs. [25,27].

Vy Vy

FIG. 5. Long-range dynamics in elastic neutrino-electron scat-
tering in the effective theory. Loops with all interacting fields in
the theory are summed up.

FIG. 6. Standard Model diagrams giving rise to long-range
dynamics in EFT: y-Z mixing and penguin-type diagram.

In this section, we consider the loop contribution from an
arbitrary fermion with mass m, and charge Q (in units of
the positive positron charge) and effective left- and right-
handed couplings cL and cR, respectively, as in Egs. (12)
and (23). Note that the coupling c{ for charged leptons
(f = ©) depends on the neutrino flavor. This perturbative
treatment applies to loops involving charged leptons or
heavy quarks (my > Aqgcp). Light quarks require a non-
perturbative treatment, as discussed in Sec. III C below.
Starting from the n, =4 flavor theory discussed in
Sec. II C, we treat the charm quark as heavy and the up,
down, and strange quarks as light.

The correction can be expressed as a modification
of electron left- and right-handed currents, cL_RJ,I;'R -

CL,RJﬂ + LRSJLR

—9
SR = Qrete(p)rie(p) qz’

/ id?L Tr[y? (L + my)y,PLr(L — 4 + my)]
Qa)* (L =mp)(L-q)*=m3)
(39)

and does not depend on the photon gauge. Corrections to

either left- or right-handed currents are vectorlike and may
be written

L _ s1R

ol; =6,

- Qf%n(qa mp) Ik +IR). (40)

At renormalization scale u in the MS scheme, the form

factor IT is
1 W 5 1 F
(g% m,) = -In"— S (142,
(g7 my) 3nm§+9+32+3 2
m2
4m2. 1—%—1
x1/1=—LIn , (41)
q 4m?
1—q2f+1

and corresponds to vacuum polarization in QED [99-103].
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The resulting “dynamical” correction to the unpolarized
cross section, doy(; ™", can be expressed in the following
form:

a
vee—vpe Z : 2 ~Vpe—Upe vee—vpe
deyn = ; an(q s mf)dadynf + dG .

dyn,uds
fH#uds
(42)
The contribution from three light flavors dog, it is

discussed below in Sec. III C. The reduced cross section
Gy, ¢ is obtained by replacing vee couplings in

Egs. (14) and (15) as

(i) = et (ef + k), (43)
(CR)2 - CR(C{ + CfR)’ (44)

o 1, . .
G 3 (" + er) (el + ch). (45)

The sum in Eq. (42) extends over all charged leptons
(e, u, 7) and heavy quarks (c) in the theory (a factor N, = 3
is obtained in the sum over colors for heavy quarks). We
also include QCD corrections due to exchanged gluons
inside the quark loop; see Refs. [104—107] and Appendix A
for exact expressions.

The momentum transfer in elastic neutrino-electron
scattering is suppressed by the electron mass,

0<-¢* <2mw. (46)

For neutrino beam energies smaller than 10 GeV, this
implies |¢?| <0.01 GeV2. Consequently, the contribution
of loops with heavy quarks can be well approximated
substituting I1(¢?, m;) — I1(0, my).

C. Light-quark contribution

At small g%, QCD perturbation theory cannot be applied
to evaluate the light-quark contribution in Fig. 5. We
instead evaluate this contribution by relating it to measured
experimental quantities.

For GeV energy neutrino beams, momenta in the range
(46) are small compared to hadronic mass scales, and we
thus evaluate the relevant hadronic tensor at ¢> = 0.
Neglecting NLO electroweak corrections to the quark
coefficients of Eq. (23), the light-quark contribution in
Eq. (42) may be written as

doteevee —

o = (0) — 2sin20y, 113, (0))d&"cc e, (47)

dyn,uds

SIS
=
=

. ~Ufe_)l/fe . . .
The reduced cross section dodynﬁu 4. 1s obtained replacing

vee couplings in Egs. (14) and (15) as

(Ciﬂ/ﬂ)z - 2\/§GFC£‘){/, CI% d 2\/§GFCR,
" g > V2Gp(c + cR). (48)

The quantity IT,
function,

, is defined by the vacuum correlation

(¢"¢" — ¢*¢*)1L,,(q%)

:4i7r2/ddxei‘f"‘<0|T{J’;(X)J?(O)}|O>’ (49)

where Jj, =5 ¢ Qqqr'q is the quark electromagnetic
current. Similarly, I3, is given by

(¢"q" — ¢* 9", (q?)

—41'7:2/ddxei"'x<0|T{J’§(X)J’;(O)}|O>» (50)

where J5 =) 4 T?I(jy"q is (the third component of) the

quark isospin current. The current-current correlation
®)
ij
flavors, in the MS scheme.

Unlike the light-quark contribution to the photon propa-
gator, involving only f[yy, the correction to neutral current
neutrino-electron scattering involves also fl3y and cannot
be directly related to the total hadron production cross

section in eTe™ collisions. However, an approximate rela-
tion between f[ﬁ) and f[g?,) holds in the limit of SU(3),

flavor symmetry for three light quarks [108,109]. In
general, the flavor sums read

functions I1}>/(0) are evaluated at ¢> =0 for nyp=3

R 4 1 1 4
H}([;) — ZQinHlJ _ §l-[uu —|—§Hdd +§Hss _ §Hud
i.j

4 2
— —T1#s _Hds’ 51

3 12 1 1
Hgy) — ZT?Q]HU — E gl-qu + §I-Idd + gl-Iss _ Hud
ij

—II“—+§IP“). (52)

SU(3); symmetry implies I1** = I1% = TI** and 1"/ =
I = I1%, and consequently, the simple relation [108]
f[g*;)(O) zfl,(,?,)(o) This allows us to express the entire
light-quark contribution to the unpolarized cross section

do’4<7"¢ in terms of the single observable 11)(0).

For numerical evaluation, we use the dispersive analysis
of e* e~ cross-section data and measurements of hadronic ¢
decays combined with a perturbative treatment of the high-

energy contribution in Refs. [110-112],
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11, (0)], s gev = 3.597(21). (53)

To estimate uncertainty due to the SU(3), symmetry
approximation, we may consider an alternative SU(2),

ansatz that sets IT"* = 1%, T1* = 0 and neglects discon-
nected, Okubo, Zweig and lizuka (OZI)-suppressed terms
T4 = [1* = I1%* = 0. The flavor sums (51) and (52) then

yield flg?) = 9IAL(,;) /10, only a 10% correction to the
SU(3); symmetry limit. In the final error budget, we
consider a more conservative 20% uncertainty on this
relation,

11 (0) = (1 +£0.2)11%(0). (54)

3r
Renormalization scale dependence of the light-quark con-
tribution (47) is perturbatively calculable. For y # 2 GeV,
the additional correction corresponds with 3TI(0,m, =
2 GeV) of Eq. (41) for each quark (accounting for
N, = 3 quark colors).

The replacement I1(¢?) — I1(0) introduces an error of
relative order mw/m?’ < 1073 for o < GeV, where we use
m, =770 MeV as a typical hadronic scale. This regime
includes neutrinos of energy up to the TeV range pro-
duced at modern high-energy accelerators, and the uncer-
tainty is contained in the error budgets (53) and (54).
At much higher neutrino energies where g> corrections
are appreciable but still in the nonperturbative domain,
the same SU(3), approximation [at momentum transfer

g*> # 0 in Eq. (54)] can be used to describe the light-quark
contribution.”

IV. REAL PHOTON EMISSION

Let us consider one-photon bremsstrahlung. Section IV
A provides basic expressions for this process. We then
study relevant differential observables accounting for both
soft and hard photons. We start with the electron energy,
electron angle, and photon energy triple-differential cross
section in Sec. IV B. Integrating over one energy variable,
we obtain double-differential distributions in Secs. IV C
and IV D. The double-differential cross section with respect
to two energy variables is described in Sec. IVE. We
provide the distribution with respect to the photon energy
and photon angle in Sec. IV F. Integrating it over the photon
angle, we provide the photon energy spectrum in Sec. IV G.
Finally, we discuss the real soft-photon correction to elastic
neutrino-electron scattering and present electron and
electromagnetic energy spectra in Secs. IVH and IV,
respectively. We also provide the absolute scattering cross
section in Sec. IV J. Throughout this section, we present all
expressions in the limit of small electron mass and provide
expressions for general mass in the Appendix. For the

*See Ref. [113] for a discussion of fI},y(qz) - 1:[”,(0).

€ e
e €

FIG. 7. One-photon bremsstrahlung in elastic neutrino-electron
scattering.

energy spectra in Secs. [V H and IV I, we provide a general
discussion of momentum regions at arbitrary mass, but
present the massless limit and relegate details to the
Appendix.

A. Radiation of one photon
The one-photon bremsstrahlung amplitude T!7 (cf.
Fig. 7) contains terms corresponding to radiation from
the initial electron T,” and from the final electron T}y,

TV =T/ + T/, (55)

The amplitude T} " is obtained from the tree-level amplitude
with the substitution

)/ ky +m
e(p) = eg,———5——=7"e(p). (56)
"=k —m?
where k, is a photon momentum and ¢ is the photon
polarization vector. The amplitude T}y is obtained from the
tree-level amplitude with the substitution

2(0!) ~ exielp Ptk tm (57)

p/ + ky)2 _ m/2 :

Evaluating the spin-averaged squared matrix element,
> epin [T'7[?, we obtain for the bremsstrahlung cross sec-
tions:

e—vpe a mw eN2y T e 7
dofs ™" = 5 (el VI 4 cjlr + ¢ “crIg).  (58)
dofs ™" = ZE2 (et Pl + Rl + e erl]. (59)

where terms I; contain the phase-space integration

_ R, Bk, K Bp'
= [ St k+p—k -k —p)=rt ,
’ / w22’ kTP =k ")k, 2al 28

(60)

and kinematical factors R; are expressed in terms of particle
momenta as
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R o— 1 [ o p rmzwu(k-p’)(k"p’)_(k-p)(k"p) (k-p)(K-p') (k-p)(K-p)
oM k) (P k) (k, - p") (k, - p) (k, - p") (k, - p)
(K- p') (k- k,) m*  (p-p)\  (k-p)K-k,) m?  (p-p)
) <1+wfpfwh-ﬂ9*' k- <1‘wfpv+wfp9’ ©D
R — 1 [ P p” rmzwu(k‘p’)(k"p’)_(k-p)(k"p) (k- p)(k-p') (K-p)(k-p')
K lp-k) (k) (k, - p") (k, - p) (k, - p") (k, - p)
(k-p")(K -k,) m*  (p-p)\  (K-p)k-k,) m?*  (p-p)
TP (1+wfpfwm-ﬂ0*‘ &, - ) <l‘wfpv+wfp0’ ©2)
C_ap PP 2k k(K k)
R = khpwn @ﬂ@J 0P &) ©3)

Kinematical factors IL,IR,I{g are given in terms of momentum invariants in Eqs. (18)—(20) and are evaluated in the
kinematics of 2 — 3 scattering. Neutrino and antineutrino scattering are related by the substitution R}, <> Ry (equivalently,
k <> k'). The IR-divergent parts of Ry and Ry correspond to integrals R and R in Ref. [25], respectively.

B. Triple-differential distribution

We evaluate the bremsstrahlung cross section using the integration technique of Ref. [22] and provide expressions for the
triple-differential cross section with respect to electron angle, electron energy, and photon energy keeping all electron mass
terms in Appendix B. In the limit of small electron mass,” the result can be approximated by the following substitutions in
Egs. (58) and (59),°

5 (w _a)/)(E/2(2_2)2 +a)2) _E/(E/4(2 _2)2 +E/2w2(32 _5) —|—E’a)3(1 _ Z) +a)4)
Losn | 20w (0-0)(2-2) 20— E)
N E?0/(2EP(1-2)(2-2) + EPw(13 +22(22 = 7)) + 2E'0* (42 — 7) + 3?)

20— E)?
E2o?(E°(1-2)(2-2) + E20(8 + 2(42 - 11)) + E'0*(Z2 + 2 - 4) + 0')] (64)
2w —E) ’
B E/21_22+w/2 o—a E
i — 2179 | | D (65)
w>m 2 o —(w—@)2-2)| w-E
- E?2-%2)(z-1)+F(30 - (w+ &)%) —wd E(w-E(3-%)
Ik ; _ — ; D, (66)
>m |a)—(a)—a))(2—z)| o-FE
with the phase-space factor 1 —cosf, = m (1-2). (68)
0]
_ ”_2 dzdE'dk, (67) Note the difference between the electron scattering angle in
ok, the elastic process [®, of Eq. (6)] and in the scattering
process with radiation (6,). At m — 0, the physical region
where @' = w —k, — E' and the variable Z <1 is intro-  of kinematical variables is given by
duced to emphasize the forward direction of the relativistic o
electron: 0<FE <w, 2—55251, OSkySa)—E’.
3 . - (69)
In the following, we denote the limit of small electron mass
compared to all other relevant energy scales as @ > m. . . :
Note that suppressed terms in the lepton mass expansion of I, In the vicinity of the elastic peak,
and Ty contribute to the cross section at the same order as I%. For a ,
consistent power counting, one has either to neglect the inter- 57 =1- - (70)
ference term completely or to expand I} and Iy further. ' w—-ao’
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the cross section of Egs. (64)-(66) diverges. The small
mass approximation in Egs. (64)—(66) is valid only away
from this region:

m k2 o

—Z|>— .
|Z | E/(E/+k)a)—w/

(71)

For a correct description in the elastic peak region, and to
obtain distributions (such as energy spectra) that involve
integration through this region, expressions with an elec-
tron mass of Appendix B must be used.

|

2

E+w(l-z)

C. Double-differential distribution in electron
energy and electron angle

Integrating the triple-differential distribution over the
photon energy k,, we obtain the double-differential cross
section with respect to the recoil electron energy and
electron angle. We provide the double-differential distri-
bution in electron energy and electron angle keeping all
electron mass terms in Appendix C. In the limit of small
electron mass, the cross section is 6glven by the following
substitutions in Egs. (58) and (59):

! 2 !
L — Z)Z <a + b 1n2E, ein=— T d, 111”21((];‘;Z _“2,)> C‘jzf];, (72)
with the coefficients «;, b;, ¢;, and d;,
~ o*(E'(2(3-2(7-22)2) + 16) —o(8 — 2(8 — (7 — 32)z)))
= 40— EY(w0z-E)
N EPw(E*(4-2)+ Fw(2-(9-27)2) —?*(4-2)(5-2(z+3)))
Mo —EP(wz—E) ’
~ —0®(1—2)2(8 = z(16 — (15— 42)2)) — E'w’(8 — 2(35 — z(42° — 142% + z + 36))) — 4E"0*
e 4E + (1 =2)(0z - F)
N E*0*(6+ (2—52)z) +3ERw*(6 — (2—2)(8 — 2)z) — E?w*z(24 — z(66 — (46 — 92)z))
4(E' +w(1 -2))(0z—F)
EPw(4 - 3z)
CAHE 4wl -2)3 oz —E’)’
L Ele@-(2-29-E2)
R (E'+w(l—2)(wz—E')’
(@ EN(E'+o(l-2)) +e)
L PR :
be — (w—E)((w—E)?+ a*(1-2)?)
R =~ PR :
b 20— EYE + (0z=E)?)
R =M E’(a)z _ E/) ’
_(@-E)(E' +o(l1 -2))* + )
s E +w(l-z) '
_(@0-E)(0-E)+a*(1-2)*)  Eo(w-E)(-20°(1-2) - E(wz- E))
R = E+ao(l-2) (E'+ (1 -2))} ’
oL mZ(a) —E')(wz—-2F)
R E+w(l-z)
N Elw @*(2E*(3-2) —4Fw — 0?2 - 2(6 — (4 — 2)2)))
dy, = (w—E)(E —|—a)(1—z))—2(w_E,)2 2E = 0l (F + ol —2)) .
go— (E-op oz E)P((0z=E) +20%(1-2)2-2)
R E ra(i- )" AE + (1 - 2) |
L (wz —2E')?
dg = mm (73)
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The variable z < 1 is introduced to emphasize the forward
direction of the relativistic electron,

l—coseezg(l—z). (74)

At m — 0, the physical region of kinematical variables is
given by

E/

m<E <, —<z<1 (75)

N 2 b
i— 2 |(a : 1
o & (“!+|w—<w—w'><2—z>”’ "

with the coefficients a;, b;, c;, d;, and e;,

1-2
2-%

+ (di+

D. Double-differential distribution in electromagnetic
energy and electron angle

To obtain the distribution with respect to the electromag-
netic energy and electron angle, we use the neutrino energy o’
instead of k, in the triple-differential cross section, change
the integration order, and integrate first over the electron
energy. The final neutrino energy determines the total electro-
magnetic energy Epyvi: Epy = E' +k, = m + o — o' and
can be used to obtain Egy distributions since dEgy; = —dw'.

In the limit of small electron mass, the neutrino energy
and electron angle distribution is given by the following
substitutions in Egs. (58) and (59):

SN )mlﬁ_f')dmw’, (76)

2@ (1 = 2) — @*@' (1 = 42) = Yww'?(5 - 27) — 0'3(23 — 18%))w

ay, =

4’ '
C(1-2?(-0(9-42) +20'(2-2))w
e 4227 |
L 3-z
ag =5 mo.
b, = é—l‘w(a) — o) (—0(5-2%7)+20'(2-7))
(-2
bR (2_2)2 bL’
@5 (5-28)0) = 20/(5- (4-2)2)
R = 202-3) nae.
 w(@*(1-32) + 200’7 + 00?31 — (37 - 102)Z) + 0 (18 — (26 — 92)7))  w*(w —)*(1 —2)?
L =-— 202 N 203 ’
o _o(0’(1-2) +0”)
R 20 ’
cg=(2- Z)%ma),
i = (w—a)(@*(1 -%)? -’ (1 - (3-22)7) + a)zgou(2 -(1-2)3%) w3 -32)+0*(2-3))
20/ '
R () I
R 20 ’
o =0)0=3 +w(3-2)
o= =5 (=)0 P22 + o)
er = —w'dy,
ek =m(@?(2-(2-32)7) =200’ (3 - (3-32)%) + 0'?(5 - (4 - 2)3)). (77)
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This approximation is valid only away from the elastic peak [cf. Eq. (70)] when

/

-7 > ) 78
-2 (78)

At m — 0, the physical region is given by

0<o <o, 1-—<z<1. (79)

I|e

We discuss the double-differential distribution in electromagnetic energy and electron angle keeping all electron mass
terms in Appendix D.

E. Double-differential distribution in photon energy and electron energy

To obtain the distribution with respect to photon energy and electron energy, we can change the integration order and
integrate the triple-differential cross section first over the electron scattering angle. In the limit of small electron mass, the
leading terms of the photon energy and electron energy distribution are given by the following substitutions in Eqs. (58) and

6
(59)”:

- —29E”? + 8E'k, (2 —3) + k(% —6) 1 E?\  2FE
IL_)( V(w > ) 7((02 )+_<1 +T> In EM>Dy, (80)
w>m 12E¢\ 2 Egm mk,
. —29E" + 8E'k, (% —3) + k2(2—6) 1 E?\  2FE 2
o (I TR0 1 (), e, -
w>m 12E EM 2 E EM m k7 @
) EP(45m 1) Ek (2 -3)(2=3)+3K  (EEp K\ 2FE /
Ik_)< ( @ ) 7(2(1) )(w ) Y _ < E/M 27 >1I1 EM> m gpy’ (82)
@>m 2Eem %0} Eiym mk, ) Epy @
valid in the physical region, 0 < E' + k, < w, with the phase-space factor D,,
dk, dE'
p =22 (83)
v k, ®

We discuss the double-differential distribution in photon energy and electron energy keeping all electron mass terms in
Appendix E.

F. Double-differential distribution in photon energy and photon angle

Besides the electron angle, the photon scattering angle 6, can be measured in principle. We consider the distribution with
respect to the photon energy and the photon angle in the following. We present the double-differential distribution in photon
energy and photon angle keeping all electron mass terms in Appendix F.

In the limit of small electron mass, the cross section is given by the following substitutions in Egs. (58) and (59)%

2
ii—)ﬂ— (Cli + bi ln

(84)

w>m @°

m/2 )dky dz
w—k,(2-12)) 2k, (2 -2)*

with coefficients

ap =—-k(1-2)(2-2° + Ew(2-32)(2 - 2)* + 4k,0’2(2 — 2) = 20 (1 + 2),

kg (=2k,(1-2)2-(2-2)2)2-2) —0(2- (24 (7 - 62)2)2))

B 6

w?(k, (2 —2)(10 = (24 — (9 +42)2)2) — w(12 — (30 — (15 4 22)2)2))
32-2)° ’

ar

_|_
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Lom(kG(3-20)(1-2)(2-2)° - kw(6-2)Z(2-2) + 0’ (6 - 2)2)
R 2-2 ’
by = —w(k2(2 - 2)? = 2k,0(2 — 2) + 2a?),
(1-7)?
br = a-
b — 2m(k(1 —Z)(2—§)i;kya)(2—z') —|—w2)’ (85)

where the variable Z <1 is introduced to emphasize the
forward direction of the photon,

1 —cosé, Eg(l —-2).

(86)

The photon angle with respect to the neutrino beam
direction is bounded as

k
cos6, > 1 —Z(l —y>,
®

14

(87)

while the physical region for the photon energy is
0<k fw.

G. Photon energy spectrum

Integrating the double-differential distribution in photon
and electron energies over the electron energy, or the
double-differential distribution in the photon energy and
|

|
photon scattering angle over the angle, we obtain the
photon energy spectrum. We present the photon energy
spectrum keeping all electron mass terms in Appendix G.
The leading terms in the electron mass expansion are given
by the following substitutions in Eqs. (58) and (59):

IL—’—QL( > (88)
w>m @
k

R—>>> —gk(l) (89)
w>m ) (1)}

= n°m k

k— ——gk( -~ )dk 90
o k() (90)

with functions gy (x), gr(x), and gk(x) derived first in the
present paper’,

(1 —x)(x* —20x - 53) 1 2 +x-2 2w(1-x) 2w .
gL(x) = T7x 3 +3 In x 7 In - +1In - Inx + G Lijx, (91)
(1 —x)(37x* +223x + 73) 1 9+5x (1=x)(x*+4x+1). 2w(1-x)
—_ (- I I
9r (%) 36x w2 ) 3x S
20 n’ .
+ (In—Inx 4+ ——Liyx | (1 + x), (92)
m 6
Loy (I=x)(11=13x) 1-2x _(1—x)2 20w(1 —x)
gr(x) = i + > Inx In - (93)

The integral of the photon energy spectrum obtained
from Egs. (88)—(90) is infrared divergent if extended to
arbitrary small photon energy. The total NLO cross section
is obtained by implementing an infrared regulator and
including the (separately infrared divergent) virtual cor-
rection from Sec. III.

H. Electron energy spectrum

All of our following calculations for neutrino and
antineutrino scattering contain the same IR contribution

|
arising from the soft-photon phase space, when the elastic
process (without radiation) and scattering with bremsstrah-
lung are experimentally indistinguishable. The soft-photon
contribution has to be accounted for in differential cross
sections with respect to one kinematical variable (except for
the photon energy spectrum of Sec. IV G, where one simply
evaluates the spectrum above a chosen minimum photon
energy). The amplitude ngft for the radiation of one soft
photon with energy k, <&, where ¢ < m,w denotes a

cutoff regulator, can be expressed in factorizable form as
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o _ |EP) (e p)
soft (ky : p/) (ky ' p)
where T corresponds to the amplitude without radiation.

The corresponding contribution do”’; "’ to the brems-
strahlung spectrum is given by

eT, (94)

vee—vpey
dasoft

_5 do v,»e—»vfe’ 95
%6.d0s 95)
with the soft correction factor &, [21,25,29,37],

1 1-— 2 2 1
5, = (Li, ﬁ”__ﬂ_lﬂl_

p 1+p5 6 s 2 1-p A

+ p p(1+p)
+2ﬂ1 1_ﬁ<1+ln4—ﬁ2>+1. (96)

The velocity 8 of Eq. (34) (and p = /1 — %),

m2

p=1\1- 7 (97)
now describes either electron or electromagnetic energy
spectra and E stands for the corresponding energy, i.e.,
E = E' or E = Ep,;. Note the exact cancellation of the IR
divergence in the sum of the vertex correction and the soft-
photon emission; i.e., §; + 8, does not depend on the
fictitious photon mass A [114-117]. The correction of
Eq. (96) comes entirely from the first (factorizable) terms
in Egs. (61)—(63) and still contains an unphysical depend-
ence on the photon energy cutoff e.

For further evaluation of the electron angle distributions,
we introduce the four-vector [ [22],

-

l=k+p-p =(of) (98)

with the laboratory frame values,
ly=m+w-F, (99)

12 = |f|* = &* + BPE? — 20pE cos6,. (100)

Besides the soft-photon correction, the first factorizable
terms in Egs. (61)—(63) contribute from the region k, > . It
is convenient to split this contribution into two parts. There
are no restrictions on the phase-space integration in region
L 2 =10— f*>2e(ly+ f). In region I: > < 2¢(ly + f),
which includes the region of scattering with elastic kin-
ematics, the phase space of the final photon is bounded by

(101)

where 7 is the angle between ]_" and l_<' The bremsstrahlung
contribution from region I, doj” el “_ cancels the Ine

divergence of the soft-photon correction. It may be written
as the sum of factorizable and nonfactorizable corrections,

davfe—»ufey
I

6Id To 7 +doy 7. (102)
The factorizable correction §; is obtained from the first,
factorizable, terms in Eqgs. (61)—(63), evaluating kinemati-
cal factors I, I, Illi in the kinematics of the elastic 2 — 2
process,

1
(ﬁ——l +ﬂ> U ) TS
ﬂ p)  pm(1+cosdy)
where the angle J, is given by
0)2 _ ﬁ2E/2 _ 12
cos§y = BET, (104)

The nonfactorizable part dojyp * is discussed below.

The bremsstrahlung contribution from region II can be
expressed in factorizable form

dai’l"e_w"ey ——5Hd ”‘"e_w“e, (105)
where
1//1 p(1 4 coséy) 1-p . 1-p
Su=-((=+1 I ~L
" ﬁ((zﬂ ZV R R R

. cosdy—1 . [cosdy—11+p\ x?
D i U - ittt UL ol
1zcos50+1+ 12<cos50+11—ﬂ + 6
1 — fcosé,
p

+In ~1. (106)

Consequently, the complete electron energy spectrum is
given by
dots ™7 + dofig™
= 1426+, + 8+ o) dotis ™

Vee—lgpe Vepe—Ugpe Vpe—lype
+do.f 3 +d6f 3 +d / ey

dyn ( 1 07)

and does not depend on the unphysical parameters € and A.
We remark that although individual corrections contain
double logarithms, i.e.,

1
8, ~ =g (1=4),

p—1

1
~  —_—— 2 —_
8, =g (1= ).
(108)

the complete cross-section correction is free from such
Sudakov double logarithms [118,119]. In Appendix H,
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e—vpey

we obtain the remaining nonfactorizable piece doys
from the region of hard photons (k, > &), which contains
dojiir " as well as the contribution beyond the first
factorizable terms in Egs. (61)—(63), integrating the elec-
tron angle and electron energy distribution over the variable
f (equivalent to the electron scattering angle 6,), and
retaining all electron mass terms.

The resulting correction to the electron energy spectrum
reproduces the result of Ref. [25] in the limit m — O,
E' /@ = const. Besides the closed fermion loop contribu-
tion of Secs. III B and IIC, it is represented by the
following substitutions in Egs. (58) and (59):

» 2 E
" (-) dE, (109)
w>=>m ) w

— i (1 - El) 2f+ (%/) dE', (110)

(111)

with functions f_(x), f (x) [25], and f7 (x) derived first in
the present paper,

fo(x) = —gln%u—l— (lnl\;)_cx—l—g—l-%) lnz—w—% (le(x) —%2> +§_111_2x_;l_;
—%mzl x—<z+ﬁ) In(1 —x) + xInx, (112)
(1= x)2f . (x) = —2(1 —x)21n%w+ ("‘ (1 =»2m —x)) ln%—ﬂlnl;xln(l _x)
+ ((1 —x)x—%) (Liz(x) —an%lnx—%z) + (x2 +92_c_§> Inx
—31;249)6(1—)6)+1;x(5x—;> In(1 - x), (113)
—xf1(x) =24+2Inx+ <x—lnx—;) lnz%+ <;x+;—xln2’j)f> ln1 ;x+%xln2(1 —Xx)
+(x— 1)<Li2(x)—7;2+i>. (114)

We observe that in exactly forward kinematics at electron
threshold, when E’ = m, the energy spectrum is given by
the nonfactorizable contribution from the electromagnetic
vertex and closed fermion loops,

vee—vgey Vee—uge Vpe—uge Vpe—uge
dor +doyio E_),_WndUNLO —do

Vee—lgpe Vee—lgpe
+do) T + dod;n -

with f,(0) = 1/2 in Egs. (35), (37), (38) and I1(0, m ),
f[ﬁ,) (0), ﬁg*;) (0) of Egs. (42), (47). This equation provides a
universal limit for electron energy and electromagnetic
energy spectra.

The electron energy spectrum has the following
logarithmically divergent behavior near its end point

/ , 20> .
E<Ey=m+ 5.

(115)

dofig ™" +dofig™ a2 () 1, 1+p\, E-F
ol s B\" 20 1=p m

(116)
as determined by infrared logarithms in Egs. (36) and (96).

I. Electromagnetic energy spectrum

We evaluate the bremsstrahlung cross section with
respect to the sum of electron and photon energies con-
sidering the final neutrino energy spectrum instead of the
electron energy spectrum [22]; see Sec. IV D for explan-
ations. For the neutrino scattering angle distributions, we
introduce the four-vector 7,

I=k+p=K =), (117)

with the laboratory frame values,
ly = Epy. (118)
fr= |]:"|2 = w? + o'* = 200’ cos b, (119)

Note the difference between the neutrino scattering angle in
the elastic process [®, of Eq. (3)] and in the scattering with
radiation (6,).

Below the end point of maximal electron energy,

/ 20”
Epm < EO =m+ m-+2w’

we can use the same integration
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technique as in Ref. [22]. Above the end point, the photon
energy is bounded from below k, > Egy — Ej, and there is
no corresponding elastic process as well as no contribution
from the soft region. We consider these two regions
separately in the following.

1. Below electron end point: Exy < Ejy=m+

m+2m

The contribution from the soft-photon region k, < ¢ is
given by Egs. (95) and (96). We split the integration region
with k, > ¢ for factorizable terms in Egs. (61)—(63) into
two regions similar to Sec. IV H. In region I: I —m? =
12— f* —m? > 2¢(ly + f), there are no restrictions on the
phase space. In region II: 1> — m? < 2¢(I, + f), the phase
space of the final neutrino is restricted to

~>1 7 P — m?
cosy_} 0 e ,

where 7 is the angle between f and 1;. The correction factor
from region I, 6y [cf. Eq. (105)], is given by

1 1 l—l-ﬁ 1+p
5““/3@ 1—ﬂ> =5

Here f is expressed in terms of electromagnetic energy as in
Eq. (97). As for the electron energy spectrum, the brems-
strahlung contribution from region I may be written as the
sum of factorizable and nonfactorizable corrections; cf.
Eq. (102). The factorizable correction &; is obtained from
the first factorizable terms in Eqs. (61)—(63), evaluating
kinematical factors I , I, Ik in the kinematics of the elastic

2 — 2 process,
<ﬁ__1 ﬂ) me
B p) m

In Appendix I we evaluate the remaining nonfactorizable
piece doyy " of the electromagnetic energy spectrum
below the electron end point, performing straightforward
integrations and keeping all electron mass terms. It
accounts for the region of hard photons (k, > ¢) and
contains doyp " as well as the contribution beyond
the first factorizable terms in Egs. (61)—(63).

The resulting correction to the electromagnetic energy
spectrum reproduces the result of Refs. [27,28] in the limit
m — 0, Egy/w = const. Besides the closed fermion loop
contribution of Secs. III B and III C, it is represented by the
following substitutions in Egs. (58) and (59):

(120)

(121)

(122)

3 E

IL_)ﬂfL< EM)dEEMs (123)
w>m @ In)

N 2 E E

i —>”—(1 EM) fR< EM)dEEM, (124)
w>m @

IR_) —”_ﬂEﬂfR <EEM>dEEM’ (125)
w

o>m WO @

with functions f7 (x), fr(x) [27,28], and fk(x) derived first
in the present work”,

3x2 —30x +23 21 20x 7*

—_—— 126
fuln = 220D 2200 )
—4x2—16x+23 2. 2wx n?

- g M SN TY |

fel¥) =— T3, T (127
_ x*4+3x-3 3 2wx a*

_——In———. 128

In exactly forward kinematics at electromagnetic energy
threshold when FEgy; = m, the electromagnetic energy
spectrum coincides with the electron energy spectrum;
see Eq. (115).

Jzust below electron end point (Epy < Ej = m +
% ~ w), the electromagnetic energy spectrum, besides
the closed fermion loop contribution, is given by the
following substitutions in the nonfactorizable correction®:

~ JTZ 4(1)2 7T2 1 dEEM

ILw_)>>m - ? (1n mz + ? + 6) @ ’ (129)
~ 71'2 dEEM

—_— — , 130
Ra)>>m 24 ( )
2 2 2

- e m 4w~ 2r B dEgym
k— (31 T 1) . (131)

Equations (129) and (130) are in agreement with the similar
limit taken from the result of Refs. [27,28].

20’

2. Above electron end point: Exy > Ey=m + 22

Above the electron end point energy, the corresponding
elastic process is kinematically forbidden. For @ > m, this
region is relatively small but finite,

, 1 m m
B b0 S i ms <%
20

(132)
Since the photon energy is bounded from below in this
region, k, > Egy — Ej), the calculation does not require IR
regularization. We present the electromagnetic energy
spectrum above the electron end point keeping all electron
mass terms in Appendix J.

The electromagnetic energy spectrum has the following
logarithmically divergent behavior just above the electron

end point Egy > Ejy = m + m+22w'

d Vpe—vpey 2 1 E _E/
o1 2_<ﬁ__1 1+§>ln EM =0 (33

dayfe—wfe ~ ﬂ
LO
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J. Absolute cross section

The resulting total cross-section correction, besides
closed fermion loop contributions, in the ultrarelativistic
limit is given by the following substitutions in Egs. (58) and
(59) for I , I [25], and Tﬁ derived first in the present paper6:

n? 5 2w
= 5 20\

7z2m

24 @

E T

2w
(15 2 —361n—> (136)

— —
w>m

Factors I; and Iy of Egs. (134) and (135) can be obtained
integrating Eqgs. (126) and (127) or Egs. (112) and (113)
over the energy variable. To evaluate the factor Ik, one has
to regulate the logarithmic mass singularity properly or take
the limit from the general expression of Appendix K. Note
the absence of double logarithms in the resulting cross-
section correction in Egs. (126)—(128) and (134)—(136),
although individual corrections contain them; cf. Eq. (108).
Note also that the total elastic cross section at leading order
is given by the following substitutions in Eqgs. (14)
and (15):

vpe -vye(y)

10*2 o/w, cm? GeV'!

9.30

Ve€ —Vee(Y)

o
N}
Q

10*2 6/w, cm? GeV'!
Ne)
o
(=]

e
=
»n

1 2 3 4 5 6 7

w, GeV

FIG. 8.
v,.e = U,e(X,) as a function of (anti)neutrino beam energy .

m
do'ls— — —.
/ PR 2

w>m
(137)

Results for the absolute cross section including the electron
mass dependence are presented in Appendix K.

/da)’IL—m), /da)’IR—> 9,
w>m w>m 3

V. ILLUSTRATIVE RESULTS

Our results may be used to compute absolute and
differential cross sections for neutrino-electron scattering
over a broad range of energies and experimental setups. We
focus on the application to flux normalization at accel-
erator-based neutrino experiments in Secs. VA through V
C and discuss radiative corrections in the context of new
physics searches in Sec. V D.

A. Total cross section: Energy dependence
and error analysis

The total cross sections for v,e,v.e,0,e, and D,e
scattering are shown in Fig. 8. For @ > m, cross sections
grow approximately linearly with neutrino beam energy. As
a benchmark point, we determine at ® = 1 GeV
e=et) (@) = 1 GeV)
= [1.5707 x 107* c¢m?]

X [1 4 0.0037y5g £ 0.00075y £ 0.00007,c ). (138)

1.36

Vi€ -Ve(y)

—_
[9%)
(9}

10*2 6/w, cm? GeV'!
.
>~

Ju—
w
w

3.95

Ve —Vee(Y)

et

0

S
1

10*2 6/w, cm? GeV'!
(98]
o
<

w, GeV

Total cross section in the (anti)neutrino-electron scattering processes v,e — v,e(X,), v.e = v.e(X,), /,e = 0,e(X,), and
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The cross section is evaluated using four-flavor QCD,
with running QED and QCD couplings a(u) and a,(u)
evaluated using two and five loop running, respectively,
with (2 GeV) = 1/133.309 and « (2 GeV) = 0.3068.
The uncertainties in Eq. (138) are from the following: (i)
the hadronic parameter flg) (0)/ ﬁﬁ) (0) in Eq. (54) and
from flﬁ) (0) in Eq. (53)’; (ii) from uncertainties in the
four-fermion operator coefficients ¢}’ ﬂ, cg in Table I; and
(iii) from higher-order perturbative corrections, estimated
by varying renormalization scale y3/2 < p* < 2u3, where
Ho =2 GeV. For simplicity, we evaluate the light-quark
contribution of Eq. (47) neglecting NLO electroweak
corrections and renormalization group corrections to the
four-fermion operator coefficients, taking for definiteness
Gp = 1.166378 7 x 107 GeV~? and sin? @y, = 0.23112
in Egs. (47) and (48); it is straightforward to include
these corrections, whose impact is given by the few
permille shift in the coefficients [47], times the ~1%
fractional contribution of light quarks to the cross
section. The charm-quark contribution in Eq. (42) is
evaluated including the O(a;) and O(a?) corrections
from Appendix A and using the MS mass 72.(2GeV) =
1.096 GeV [corresponding to i (mi.) = 1.28(2) GeV
[120] ]. The fractional uncertainty coming from the charm
quark mass error is ~1-2 x 107 and is not displayed in
Eq. (138), nor is the uncertainty of a similar magnitude
coming from higher orders in Gy expansion. The e-, u-,
and z-lepton contributions in Eq. (42) are evaluated using
lepton pole masses and the complete kinematic depend-
ence of I1(¢% m,) in Eq. (41).}

For @ > m, the relative cross-section error is approx-
imately constant, independent of neutrino energy. Relative
uncertainties on total cross sections from different sources
are summarized in Table II. The dominant uncertainty from
the light-quark contribution in differential and absolute
cross sections can be expressed as’

s(%e Y
ag ) 1

X

Gem @ (3)

\/577,'77«' 144

CifeIL + CRIR +

(0)
o’ + cr L

L1 (140)

"The error of 1} (0) in Eq. (53) contributes 40.00006.

TABLE II. Relative errors of the total neutrino-electron scatter-
ing cross section.

Light-quark Effective Higher

correction couplings orders
vee = ve(X,) 0.37% 0.068% <0.008%
e = .e(X,) 0.31% 0.112% <0.005%
vee > v.e(X,) 0.26% 0.028% <0.007%
v.e — D.e(X,) 0.36% 0.044% <0.007%

o Grmw a 3 2wcy’ ¢
doty e R o) (L

(1 m? R mw(cy’* + cg)
(m+2w)*) 3 (m+2w)* )’

(141)

with the relative uncertainty n = (ﬁ?y) (0)/ f[;?,) (0)-1.0) ~
0.2 and the substitution ¢j’* <> ¢y in the case of antineu-
trino scattering.

To illustrate the impact of radiative corrections on the
total cross section, Eq. (138) may be compared to the
leading-order result of our calculation at scale y = 2 GeV
and v = 1 GeV:

ol (@ =1GeV) = 15971 x 107*? ecm?.  (142)
Radiative corrections change the total cross section by

1.7%. We turn now to a discussion of the energy depend-
ence of the radiative corrections.

B. Electron and total electromagnetic energy spectra

Figures 9 and 10 display the typical size of the radiative
corrections to energy spectra with respect to the final
electron energy (E = E') and with respect to the total
electromagnetic energy (i.e., the electron energy plus
photon energy, E = E' +k,). We consider muon type
neutrinos and antineutrinos, the primary component in
the accelerator neutrino beam. In these figures, we show
the quantity & representing the radiative correction normal-
ized to the leading-order elastic cross section:

$One can safely evaluate a z-lepton contribution considering T1(0, m,) since |¢2| < m2.

%It can be seen [cf. Eq. (140)] that the muon antineutrino-electron scattering cross section is free from hadronic uncertainty, and also
effective coupling uncertainty induced by cg, at the particular recoil antineutrino energy @:

\/(ci”e + cr)?m? 4+ 8¢ (¢ + cr)mw — 16¢;* cpaw® — (¢} + cg)m

—CR

w = e
1 "
L

“Ro. (139)

w>m yﬂ
= C
L
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\ Ve —>vyue(y)

\\
¢0=1GV === EM 0=1GeVY
————— e.w=10GeV mzams EM,0=10GeV §
T [ T [ T [ T [ T A
0 02 04 0.6 0.8 1.0

E/o

FIG. 9. Radiative corrections to the neutrino-electron scattering
process v,e — v,e(X,) for two neutrino beam energies o = 1,
10 GeV. The quantity ¢ is defined in Eq. (143) and strongly
depends on the MS scale y. Three curves for y = )/ V2, 5= Ho,
and p = /2u, with yy =2 GeV are presented. The solid and
dash-dotted curves correspond with electron spectrum, i.e.,
E = E', dashed curves with electromagnetic spectrum, i.e.,
E=FE+ k,. Uncertainties are not shown on this plot with a
scale-dependent quantity. Lower curves correspond to a larger
value of u.

dgreeveer _'_day/e—w/e — dgteevee
_ LO NLO LO
6= d Vye—Uge : (143)
LO

The correction to the electromagnetic energy spectrum is
relatively flat over a wide energy, whereas the correction to
the electron energy spectrum is logarithmically divergent
below the electron end point; cf. Eq. (116). The logarithmic
divergence of the electromagnetic energy spectrum above
the electron end point [cf. Eq. (133)] is not seen in Fig. 9
due to the small size of the region in Sec. IV 12 compared
to the scale of the figure. Both corrections start from the
limit of Eq. (115) at E = m. Note that the correction &
depends on the renormalization scale y since the numerator
does not contain the leading-order elastic process, rather
just the virtual correction to it, leaving the scale dependence
of the closed fermion loops (Secs. III B and III C) without
cancellations. The large renormalization scale dependence
in Figs. 9 and 10 illustrates the cancellations occurring
between LO and NLO in arriving at the total cross section
in Eq. (138). Other uncertainties are not shown in the
figure.

C. Electron angular spectrum

In this section, we consider the angular smearing of
differential cross sections. It can be presented as a function
of the variable X,

E
X:2m<1 ——>,
W

(144)

Vue aVue(y)

N — i =
—————— - —
___________ ----:;%5

-5 A
ew=1GeV mmm EM,0=1GeV
————— e, 0=10GeV m=mms EM,w=10GeV
-—
0 02 0.4 0.6 0.8 1.0

Elw

FIG. 10. Same as Fig. 9 for antineutrino-electron scattering
process 7,e — D,e(X,). Uncertainties are not shown on this plot
with a scale-dependent quantity. Lower curves correspond to a
large value of u for E/w <0.07-0.1 and to a smaller value

of u above.

which becomes X ~ E'62 for (anti)neutrinos of high energy
in the case of the electron energy spectrum. We present the
resulting NLO spectrum in Figs. 11 and 12 for two (anti)
neutrino beam energies: @ = 1 GeV and 10 GeV. Although
the electromagnetic and electron energy spectra integrate to
the same total cross section, shape effects induced by
radiative corrections can potentially impact the calibration
of neutrino flux. For example, experimental cuts requiring
a minimum observed energy will result in different num-
bers of accepted events depending on which distribution
(electromagnetic or electron energy) is chosen. In a practical
analysis, neither the electron spectrum nor the electromag-
netic spectrum will perfectly represent the experimental

2.5
e, w=1GeV ——— EM,w=1GeV
] - e,m=10GeV  -——-- EM, o =10 GeV
%
O 2.0
o
g
Q
2] i
o
E
o 1.5
=
b Ve -ve(y)
w7
0 0.2 0.4 0.6 0.8 1.0
10° X, GeV
FIG. 11. Energy spectrum in the neutrino-electron scattering

v,e — v,e(y), plotted as a function of X = 2m(1 — E/w) for
two neutrino beam energies @ = 1, 10 GeV. The solid and
dash-dotted curves correspond with the electron spectrum, i.e.,
E = FE, dashed curves with the electromagnetic spectrum, i.e.,

E=FE +k,
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2.5
e, w=1GeV ——— EM,w=1GeV
4 — == e,w=10GeV  -——-- EM, o = 10 GeV
2 2.0
&}
o
g A
o
I
D154
o)
o
g A
=
1.0 Vi€ —Ve(y)
T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1.0
103 X, GeV
FIG. 12. Same as Fig. 11 for antineutrino-electron scattering

process D,e = ,e(X,).

conditions, and the more general distributions presented
elsewhere in this paper can be used.

Results comparing E’ and Epy; distributions after aver-
aging over typical experimental flux profiles are collected
in Appendix L.

D. New physics considerations

In this section, we consider the impact of radiative
corrections on the dynamical zero (22) and isolate the
dependence of the neutrino-electron scattering cross sec-
tion on effective neutrino charge radii. Both effects are
present in the Standard Model but may also be used to
search for or constrain new physics.

Recall that an amplitude cancellation causes the tree
level electron energy spectrum to vanish at the end point of
the maximal electron energy, Ej, = m + m%‘;’;@, when elec-
tron antineutrinos of a particular energy @ scatter on
electrons; cf. Eq. (22). This feature could have implications
for novel neutrino oscillation experiments (see, e.g.,
Refs. [94,95]), and it is thus interesting to determine the
impact of radiative corrections on the cancellation. To
investigate this question, it is convenient to represent the
cross section near the end point as the factorized product of
soft and hard functions [121], do ~ SH. The soft function
accounts for infrared divergences and real photon emission.
Using the explicit forms for virtual corrections from
Sec. III, the hard function through first order in «a takes

the form
H (gl) (g_lm@).

For w/@ — 1 = O(a), the cross section including radiative
corrections is suppressed by O(a?). The electromagnetic
energy spectrum is equal to the electron energy spectrum at
tree level and vanishes at the same kinematic point.
However, radiative corrections now receive a contribution

(145)

from “hard” real photon emission, and the electromagnetic
spectrum in the vicinity of w =@ and Egy = Ej, is
nonvanishing at first order in a. For general w # @, the
electromagnetic energy spectrum vanishes at the end point
Egv = m + w and is discontinuous at Egyy = Ej; atw = @
the discontinuity is replaced by a kink.

Neutrino charge radii [122—-125] may be systematically
defined and computed with low-energy effective field
theory [47], where new physics contributions are repre-
sented as'’

61/[/6_51/(6_6252
Cl, = O0Cpr = — r,/f.

: (146)

The impact on neutrino-electron scattering is given by

vee

do*eeree ma Uoe " +cr

) R R |

(147)
moa 20c7’¢ m3 c
Sobre—vee — S 2 L 1 - “R
’ 3 v <m+2w+ < (m—|—2a))3> 3
(el + cq)

_ (m+2w)2 >, (148)

with the substitution ¢;’“ <> cy in the case of antineutrino
scattering.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have presented analytical results for
elastic (anti)neutrino-electron scattering starting from four-
fermion effective field theory. Total cross sections, the
electron and electromagnetic energy spectra, as well as
double- and triple-differential cross sections were presented
in a relatively compact form. Our results can be applied to
improve constraints of neutrino flux measurements via
elastic neutrino-electron scattering. All expressions were
obtained for finite electron mass and can also be used in
low-energy applications such as oscillation measurements
with solar and reactor (anti)neutrinos.

Next-to-leading order corrections with bremsstrahlung
of one photon are typically of order few percent and depend
on the experimental setup. For instance, as discussed in
Sec. VC, electron and electromagnetic energy spectra
differ significantly. Although these two spectra integrate
to the same total cross section, kinematical cuts can alter

Y terms of weak scale matching coefficients, this corre-
sponds to a contribution to the neutrino-photon coupling in
Ref. [47], 6¢“" = (¢?/6)ér2,. The “charge radius” as a low-
energy observable quantity is unambiguously defined in terms of
four-Fermi coefficients in Ref. [47]. For a diagrammatic formu-
lation of neutrino charge radii in the Standard Model see
Ref. [126] and references therein.
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inferred flux constraints if radiative corrections are not
matched correctly to experimental conditions. Future pre-
cise measurements of the electron angular spectrum in
neutrino-electron scattering can provide energy-dependent
neutrino flux constraints. Our results provide a complete
description of the kinematic dependence of radiative
corrections needed to control uncertainties in neutrino
energy reconstruction. We have discussed the impact of
radiative corrections on cross sections and energy distri-
butions in searches for physics beyond the Standard Model
in Sec. VD.

We provided a complete error budget for neutrino-
electron scattering observables. The light-quark contribu-
tion to the radiative correction is the dominant source of
uncertainty. We have expressed this contribution in terms
of well-defined Standard Model observables, independent
of “constituent quark” models used in previous treatments,
and determined the relevant hadronic parameter, denoted

ﬁ(337) (0), using SU(3), symmetry to relate it to the exper-

imentally constrained parameter ﬁﬁ? (0). To further pin
down the uncertainty of this light-quark contribution, one
can evaluate a closed fermion loop contribution within the
dispersion relation approach decomposing e*e™ cross-
section data and measurements of hadronic 7 decays into
flavor components [108,109,112,127—-129] or perform a
calculation in lattice QCD [130,131].

We note that due to the restrictive kinematics of neutrino-
electron scattering (|g*| < 2maw for the elastic process) the
light-quark contribution enters as a single constant, repre-
senting the ¢> — 0 limit of the relevant hadronic tensor.
This single constant will also impact (and may be con-
strained by) other low ¢? processes such as coherent
neutrino-nucleus scattering.

Besides its phenomenological relevance, the neutrino-
electron scattering process provides an analytically calculable
prototype for the more complicated case of neutrino-nucleus
scattering [132]. In general, radiative corrections can be
decomposed (“factorized”) into soft and hard functions using
effective field theory [121]."" The soft functions depend on
experimental configuration but are independent of hadronic
physics and describe universal large logarithms that are

|

(Lip(r*) — Lip(r*)) In r+> +t

present in general kinematics. The hard functions are inde-
pendent of experimental configuration and describe hadronic
physics. In neutrino-electron scattering the analogous hard
functions are perturbatively calculable, whereas in neutrino-
nucleus scattering they must be parametrized and experimen-
tally constrained.
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APPENDIX A: QCD CORRECTION TO QED
VACUUM POLARIZATION

For quark loop contributions in Sec. III B, we include
the leading QCD correction due to one exchanged gluon
inside the quark loop. This correction modifies the form
factor IT in Eq. (41) as IT — IT + TP with TICP from
Refs. [104-107]"*:

p? 55, 4m; 2
meee = > <ln——4C(3) += +—2fvl <4q—2>>
TN My q my
(A1)

where a; is a strong coupling constant, {(s) denotes the
Riemann zeta functions, and the function V(r) is given by
(for spacelike momentum transfer, r < 0)

64(1

13 ¢03)

> (L12 2) — Liy(r*) —|—ln_r3+_r)2r1n r+> - 2<r+;> lnr+)
< > <2L13 —Lis(r) —l—% r3)
1
T 4r

" An application of this formalism to the discussion of the dynamical zero in 7,e scattering was described in Sec. (V D).

"Note that the color factor applies as N, (IT 4 [12CP).
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with notations r,. = /1 — r &+ r. As discussed at the end of
Sec. III B, the relevant limit for neutrino-electron scattering
is g> — —0, corresponding with

2
a u 15

eep| , =—|In—5+—|.
g0 3z mjzf 4

For practical evaluation of a c-quark contribution, we

take the well-convergent expression in terms of MS quark
mass 7, from Refs. [110,138-140],

1. 1 « u> 13
H=-In"—+=2(-In&=+-—=
3“m3+3n( RN

(A3)

2 (655 3847 5 u* 11 2
(S Mt
3z° \ 144 864 6 mi 8 me

361 1w 1 u?
kL ML Yo
+”f<1296 B ) )

where ny = 4 denotes the number of active quarks. The

correction of order o2 in Eq. (A4) does not change our

results within significant digits.

(A4)

APPENDIX B: TRIPLE-DIFFERENTIAL
DISTRIBUTION

We evaluate the bremsstrahlung cross section following
Ref. [22]. For the electron angle distributions, we introduce
the four-vector /,

-

l=k+p—p'=f) (B1)

with the laboratory frame values,
lhy=m+w—-FE, (B2)
2 =|f]* = @*+ PE? = 20pE cos6,.  (B3)

Note the difference between the electron scattering angle in
the elastic process [@®, of Eq. (6)] and in the scattering with
radiation (4,).

The triple-differential cross section with respect to the
electron angle, electron energy, and photon energy is given
by the following substitutions in Eqgs. (58) and (59):

IL_)

. <12f2((m +pk, )P = 2pm’k,)  mof*((m + pk,) (p(PP = 2mly) = 2m?) + 2pm?)

4/d pVd
. (pm(k; —m?) = p(m + k,) (P = 2mly + m?) + (2m + 3k,)m*)o  (m + k)0’
8p2mk7f2 32p2mkyf4
(L= p)mlm + k)PP = 4k ly + 42) (ol + @) + (1 = pm(m + @) = (1 + p)ma?)
16p2k],mf4
_ (1> = 2mw)? N k, (> = m(m + 2w)) _ pl* —=2m(2pw + (2 + p)m)? + 8m*w(ply + 2m)
8k, 2 8pm
- p2kym:/?2f46 k=l 4k%)> D,. (B4)
d 64k, mf
i ( *((pky +m) (I = 2mly)* + 4m* (pk, (I — k,)* = m(2ly = k,)) + m(ly — k,)*))
R 4\/3
pm® f* Pk, (P =2mlp)* _szym4f4(lo —k,)’e (2l —m)P
2V/d 8k, 8m 32 4
1

+ Ek},m(2lo — k}, — m) — mlo(lo — m))Dm, (BS)
R m(m((1 = p)(Am? I — 2m(ly + m)I?) — pl*) + 4k,p(—f* — m* + mTl")lz)
R 8pk, f?

_Pm(p* (P +m? = 2mk,) (P —m?) + 4pk,m® + (2= p)’m*)  p(1 = p)k,m°f'o

2p\/g d3/2
+p2k}%m5f40 m3(l(% + fz + (2,0 - l)mIO) Dm» (B6)
d3/2 zﬂf
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with the kinematical notations

=p(w® — f2 = E? +m?)(I* - 2k,1y) + 4k,mf?, (B7)
o2
d = PPm?Pe?(I> + 4k2 — 4k, 1y)sin’6, + T (B8)
where the phase-space factor D,, is given by
7’ dk, dE’
Dy = ssdf (9)

The physical region of variables corresponding to the
radiation of hard photons with energy k, > ¢ (¢ < m, w),
is the following (see Sec. IV H for a description of hard-
and soft-photon regions):

o —|p'l| < f <ly—2e, (B11)
logfskysl";f. (B12)

We keep the exact dependence on the unphysical
parameter & which is important in the evaluation of the
electron energy spectrum in Sec. IV H. Our integration
region in Egs. (B10)—(B12) corresponds to region I in
Sec. IV H.

APPENDIX C: DOUBLE-DIFFERENTIAL
DISTRIBUTION IN ELECTRON ENERGY AND
ELECTRON ANGLE

Integrating Eqs. (B4)—~(B6) over the photon energy k,,
we obtain the double-differential cross section with respect

2 2
m -+ 2¢ <E <m+ M’ (B10)  to the recoil electron energy and angle. The result is given
m—2e m+2(w—¢) by the following substitutions in Eqs. (58) and (59):
|
- a'm 1+p lo+f ly—pf cosé— /g R A
I; b;1 i1 d;1 dfdFE '——— ——In—— |I,—5-dE’, (Cl
R A CRUT e SR S T e ) LR (ke ) L ST
with g = (f cos & — Bly)? + p>f2 sin 6 and the angle 5 between vectors [ and J',
0)2 _ ﬁ2E/2 _ f2
CoSo = W . (C2)

Kinematical factors I , Iy, Ik in Eq. (C1) correspond to the 2 — 2 process.

The coefficients in integrals I; are given by

fRw—m) PeossGP—L - Ely—2mo) _ (1+ BPeos?6)f(ly + 2m)
ap = -
b 2m? pm? 4p*m?
PP (1 = 3cos?8)(ly — 4m)  (f = Plycos8) (PP —m(3ly — m + 3E"))
8p’m’f 2pm? '
_ P _of
Y apmd pm?
SPP(1=3c0s?8) (1> — 4lgm)  P(P=25s) wo(m+ o)
= 123 - . 2
16p~f~m 8m m
_ peos§(IP (I = Alym — mE' + m?) + 4m’wly)
4pfm? ’
L pF(P =R 4 s(s =) fpo
b 8,/gm* 2/gm’
! —[}’fcos& m
3PSO ) (2 =12 m?) B2 4 303)
ar = 3 +
2¢°m Zm‘ 2gm

L f2p(Beos 8(f2 + 2ly(w — 6E")) + f(2m — 31y))

4gm?

_Lof
pm’’

_rf
R 4pm3

9
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P2 =4m(ly =) oIy —m)

8m* m*

CR = —

_ BFP(Q2lop = m(=2p> + p + 1)) (Bly = fc0s8) = 3pl®)  p*flo(f(f = Plocosd) +35°1%)

dg

462 m? 7 m
_pf(P(P = 4lom +2m*) + 8lym* (0 = 2E")) N 34203 3 12sin?S5(1% + 4E' (g — Bf cos 5))
8/gm* 169°2m? '
VY g
al — Pf(Bly — f cosb) _ﬁcosé’
g P
bL = _ﬁ
R 2pm>’
L Plocoss I —m(m+ E')
R 20f 2m? '
o PI(m 2B m =) pAf(f = Plycos )
R 2m2\/§ 293/2
APPENDIX D: DOUBLE-DIFFERENTIAL . . mo /
II: <o Lo, D8
DISTRIBUTION IN ELECTROMAGNETIC RO e =Y Y (D8)
ENERGY AND ELECTRON ANGLE
/
To obtain neutrino energy (equivalently, electromagnetic m+o A/ S -<cos, <1, (D9)
energy) and electron angle distribution, Egs. (B4)—(B6) can w Zm+o-w
be integrated over the electron energy, exploiting the 5 y
energy conservation: k, = m + @ — ' — E'. The integra- E(0)<E <m (m+w)” + (02005 0. (D10)

tion measure of Eq. (B9) is replaced as

2 1 2 a2
D, = m’jwz dfi]?(f - mfwzdcoseei‘:ﬂE;E .
(D1)
The physical integration region is contained in
0<o <o, (D2)
0 <cosf, <1, (D3)
m<E <m (m + )?* + w’cos®d, (D4)

(m + )? — w*cos?d,’

which is actually larger than the physical region. The
extraneous regions I and II are above the electron end point

(Epm > E) = m +-22) and below it (Egy < Ej) = m +

m+2m
20

m+2w)'

ma

ionl: 0< & < ,
region fw S e

(D5)

2/ (m—ao)(w=-ao)(m+o-ao)

<cosf, <1, (D6)

E (o) <E <E, (o), (D7)

(m+ w)? — w*cos?d,
Here E', («') stand for two solutions (E, > E_) of

cosd,

CE(m+w-20)-m?+mQw - o)+ 20 (0 - o)
a)"E’z—mz ’
(DI11)

The presentation here in terms of a larger region (D2)—
(D4) and subtractions (D5)—-(D10) is designed as a simple
description of the actual physical region. In practice, one
may perform the integration over this larger region and use
subtractions above the electron end point Egy > Ej =

2w2 . . . .
m+ =5-; or one may break up the integration region

(D2)—(D4) and integrate once only over the physical region.

APPENDIX E: DOUBLE-DIFFERENTIAL
DISTRIBUTION IN PHOTON ENERGY
AND ELECTRON ENERGY

To obtain the distribution with respect to the photon
energy and electron energy, Egs. (B4)-(B6) can be inte-
grated first over the variable f after the change of the
integration order. The kinematical region of electron energy
is bounded as
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22
m<E <m+ @

. El
m+2w (E1)

The physical region of f for different values of k, is then
given by

l_ =)
Oskysw, lo =2k, < f <lp; (E2)
ly = lo—|P']] lo+|o—1p'| o
0 kst o= Pl <f <y
(E3)
I+ lw—1|p'
MS/@SZO, —lo+2k, < f<ly. (E4)

2

APPENDIX F: DOUBLE-DIFFERENTIAL
DISTRIBUTION IN PHOTON ENERGY AND
PHOTON ANGLE

We evaluate the bremsstrahlung cross section with
respect to the photon energy and photon angle considering
the final photon energy spectrum instead of the electron

|

spectrum [22]; see Sec. IVD for explanations. For the
photon scattering angle (with respect to the neutrino beam
direction) distributions, we introduce the four-vector /,

[=k+p=k, = (] (F1)

with the laboratory frame values,
lh=m+w-k, (F2)
72 = |2 = @ + k2 — 2wk, cos 6, (F3)

where 0, denotes the photon scattering angle.

The photon energy spectrum accounting for electron
mass terms is given by the following substitutions in
Egs. (58) and (59):

2

—
N
/T~
2
i}
|
3
\_I>>
_|_
S
5
i}

2mw

with s = m? + 2mw and coefficients a; and b; in Eq. (F4):

(PP = m?)2(2P(k,Io + m(2ly — m)) + m(=25 (20 + m) + [ym(6w + m) — 3m*w))

ap, =

4k§i2mw
_ 4ma®(m(2k, —  +m) + P) — w(o — k,)(31* = 612 lym — m* (2l — 5m))
k2P
202 (P = Pm(5ly = 3m) + m?(2ly = 3m)(lp —2m)) (P = m*)*P(k, + m)
kfiz 4k%m2a) ’
ag/(P=m?)  m(P —s)(—4k; (11w + 17m) — 4k} (350" 4 103m?) — 3k,m* (12w + 29m))
1= Iy = m)? 121250

2m?s (k7 (3440* + 1116mw + 537Tm*) + m(312w° + 501mw?* + 342m*w + 72m?))

3w(P?

= m?)(f? = (ly = m)?)

4m*s?(6k2m(27w* 4+ 93mw + 46m?) + k,s(51w* + 154mew + 108m?) — 3smw?)

3w (> —m

AP =$)(f? = (lg —m)?)

m3 (I — 5)(4k2(640* + 197Tmw + 96m?) + k,m(29500” + 3376mw + 1191m?))

3o (B

= m?)(f? = (Iy — m)?)

m?(I* = 5)(—4k2w + k,(2680* 4 794mw + 384m?) + 2m?* (7185w + 327m))

6lw(f* — (I —m)?)
2m?s(kim(590w* 4 2106me? + 2144m*w + 617m*) + 92k, ma* — 25*w?)

3k, (P -

) (72 =y = m))

m?(I* = 5)(20%k, (1620 + 579m) — m(16w* — 18me? — 105m?*w — 64m?))

6k, P (f* — (Ip — m)?)
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4m3 (P — 5)(193k20° — m(40* + 2mw — 3m*)(0* + mow + m*))  11(2 — m?)

3k, Ca (P — m?)(f? = (I — m)?) 60t
m (I — 5)(184w* + 740mw? + 1344m>w?® + 116Tm3w + 405m*)  106m> (P — s)
- 3B —m2) (2 = (I = m)?) T3P
N (P —m?) (k2 + lll_c},m + @* +6m*)  (k,+m)(* = m?)(f* = (Iy — m)*)*
3k, o 12k2m*o(I - s)?
8k,m?s*(48k,s + w*(27k, — m)) 1 m (P =5)

C3Bw(P—m?) (B =522 - (ly—m)?) 6k 12k2Fw
Pm(8k2 + 14k Iy — 9k,m — 2lym)  m*s*(2k, — m)*(2ly — m)

i = 2K 42Pw(P —s)

N m3 (8k3 (2w 4 5m) — 8k (6(w + m)* + m(w + 2m)) + 4k,(8(w + m)* — 3sw))

4kfpa)
N m?(—4k} + 2k2(8w — Tm) — k,(280* + 34mw + 15m?) + m(3(w + m)? — »?))
2k§w
m3(8k7(16k,w + 13k,m + m*) — s(2k, — m)? + 2k,m(4k, — m)?)
4i2w(P - s)
~ I*(4k, — m) _m?s(2s +3m?)
4k§a) 4k§pw '
by = —(P —m?)? — 4m’w(w + 2m),
by _ 16k,m* (o + m)((w + 2m)? + 4mw) N P(k, (@ 4 2m) + m?)
2= (ly—m)? o(P? = 5)? k,w
N m(2kX(w + m) + 2w + 3m)(k, (o + 4m) + m?))
k,w
B 8m?(Iy((w + 2m)* + m(w — m)) = 2(w + m)*(w + 4m))
o(l> —5) '
b= — P (m*(=12k,0 + 20w (w + m) —|—_Zm2) —2Pm(ly + @) + (1> = 5)?)
k(1> = s)
B 2Pm*(2k2m (2w + 3m) + k,m(Tm?* + 10me + 120?) — 4s((w + m)? + o?))
k(> = s)
m?(4k;m* (8w + 5m) — 8k, ms((w + m)* + m*) + s*((2w + m)* + 2m?))
k(P —s) ’

APPENDIX G: PHOTON ENERGY SPECTRUM

The photon energy spectrum accounting for electron mass terms is given by the following substitutions in Egs. (58) and (59):

. 2 k 21, - 2k 21, -
T2 a4+ bin2 4 ;=" _ gm0 ="
" w 20+ m m
l_0+01 P—mz l_ l_ —_
+di Y 90| Lip- _V 2 ~ Liy- °+‘_”(° m) dk,. (G1)
ol,o=% lo+02\/(lo—m)2—2mky lo+02\/(lo—m)2—2mky
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with coefficients a;, b;, c¢;, and d; in Eq. (G1):

(0= k,)(2k; — k2m + 6k,m* — 20*(53k, + 2m) — w(8k, — m)(5k, + 3m) — 3m?)

ay, =

24k2 ’
ar m’ N m?(=36k2 — 10k,m + m?) B m(kim + (k, — %) (4k; — 2k;m — m?))
w—k, 2422w + m)>? 96k (2w + m) 2413 (2w — 2k, + m)
N mw w*(73k, 4+ 2m)  m(656w + 897m) 37k, 892w + 1184m
122w — 2k, + m)? 36k; 144k, 36 144 ’
A m*o(w - k,)(20 + 3m) _m(w - k,)(26k? — k,(220 — 13m) + 3m?)
R 8k2(2w + m) 8k? ’
@’ (3k, 20 + m) 4 20(w + m))
L k, (2w + m) '
b dma*(w + m) 6w* w*(3k + 140?) 140
RT3k, 20 +m)  Qo+m)? 3kQ2w+m) 3k,
w(8k,m + 3k, (k, + ) — 2(w* — m?))
k, ’
L ma(k,(20 + m)(2w + 3m) - 20° + 3m?w + m?)
R k, 2w + m)? ’
_ m*(40* = 3m?)  8kjw + 2k;(4w* — m*) — 16k,0* (@ + m) — m*
T T6k, (20 + m) 16K2 ’
m*(36w” + 30mw + Tm?) . 3m* 3m3 * N 1) n 15m
Cp = — — — — [
R 24k, (2w + m)? 8w +m)? 2Qw+m) "\ 20+m 2 4
@ =k m(720% +204mo + 123m?)  m*  13m?
14
- 3
M To 48k, e g T eled3m).
oL Mok, (@ +m)Q2w +m) - o8’ +12mo +3m?))  m(2k, — m)(8k,(k, + m) + 3m?) ’
R 2k, (20 + m)? 16k2
dL = —CUZ,
k(20 + 3m) + 2k, (@ + 2m)? + 2m*(w + m)
== 2k ’
14
L m?(3k, + m)
W=

APPENDIX H: ELECTRON ENERGY SPECTRUM

The nonfactorizable contribution to the electron energy spectrum doyy *“" from Eq. (107) is given by the following
substitutions in Egs. (58) and (59):

2 20 21y 1— 1+/3
I - =(z+yln & +x;In = +r;iln )dE’
w3< —1+:25(1+2) 121t 7 1+ﬁ( o)
7 +p 1+p 20 (14+2)p x
+= (q,n1 ﬂ+v,( b 12( +m)+ b ——"— 1+ﬁ 6) (H1)

Exact expressions for coefficients z;, y;, x;, r;, ¢q;, and v; in Eq. (H1) are given by
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2 2
vL=%<m7+2ma)+a)2), vR:%<l%+'Bp_;pm2>, v{gzim(Zlo—m),
o — 20 10 <1 +345 4pt - 11,32+7>w2Jr G_ﬂ4—ﬂ2+2>mw
15m> 3m 3p3 3p* 3 o
N (—7ﬂ4 + 1452 =22 N 1564 — 2564% + 22) 5
15p* 15p° '
B3(351ym* — 1083m + 213 — 30m?)
R 15m° ’
B 3lym* = 3l5m — 215 + 3m*»
R 3m ’
1
YL = 560(60 —m),
—0* = 2(5 - Hmer + %}wmzwz + wmaw +%m4
IR = (m+2w)? ’
2
vk = mE' <1 - (mEJ/r(in)r zw’)m>

(248 p 144B\ L [ p=p 1( I >>
rL_( 3 (1+ﬂ>2+61+ﬂ>w+<p(1+ﬂ)+2 e )

+ (-

176> +36p+22)p 1457 +43p +44\
30(1 + B)° 60(1 + f)? ) ’

(1+8)?% 61+p 3p(1+p) 6 (1+p)?

(248 1448\ , (FP-56+1 172 +86-2\
R = — 3 -+ = mw
+

(—23ﬂ3 + 145> + 41 -2 —28pp? +43p* + 2) 5

30p(1 + B2 3002(1 + §)

27 —4B—T\ m> 1-2
k= (14+5ﬂ+2 =4 > n +(1+_ﬂ)mw,
p

1+p 1+ p

W +—mw-+——m

i P 1+ﬂ> 2 :B 1_,0 2

2p 28

1+p5\ , 1 2-p ,
i) (2

N <4ﬁ3+ﬁ2—4ﬂ+2+—ﬂ3+2ﬂ2+ﬂ—1>m27

4pp* 2pp(1 + )
1= B)* = 2pma + (1 +5)m? 1, —
% = (1=p)o p;“" G L el + pmE.,
0t 4 2 mw® + 27 mPa? + Fmiw + 0m*

ZL - m2 ’

- 22" @ + 28 mat + 28 mre® + 28 mPe? + Zgmto + Jjm’

R m?(m + 2w) '

L 2l +9m p 20}

RTTG T 8)

s 11 p o 250*—49 | 1 8>

T 5148 T 6003 p) 152

s 3—B 3+2p o I8 —23 156 46 —23
L7300 30(1+4)° F T 30(1+p)p 3007
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Zw —

=208 + 517 + 38— 105 554 + 54 — 828 — 105

L 60p° 60p*(1 + p) ’

» 8§ 18-8 s 13 —2p—133 14342 34— 133
R TS, TSI R T 30148 30,2 ’
. 3398 — 805> — 3538+ 851 —T604 — 8254 + 7786 + 851
R 60p° 60p%(1 + p) ’

o B((433—458)p +44) — 439 B(A(9B(33 + 3) — 730) —29) + 439

R ™ 30p° - 30, :
9 27042 - 269 3095 — 83962 +538

60p° 120p

where [y =m+w—E' and o =, Our result agrees
numerically with Refs. [29,38]. Integrated over the electron
energy, it agrees with the total cross section of Appendix K.

APPENDIX I: ELECTROMAGNETIC ENERGY
SPECTRUM BELOW ELECTRON END POINT

For the remaining nonfactorizable contribution to the
. vye—vgey - -
electromagnetic energy spectrum doyr , it is conven-

ient to express the result as
a
vee—vgey Vee—vge vee—uvgey
doyg _;éydaLfO ot (doe ), (1)
where in the first term the cross section of the elastic

process is expressed as a function of the final state neutrino
energy, and

1. 1-8 P12 1—p
o,=—In———(1+In——— | —1-21
' 2ﬂn1+ﬂ( TN p)" "
1/ . =p 1. 1-8 . »p n°
— (L, 4oL ~L ).
ﬂ( R TN L R I A Sy R
(12)

As for the electron energy spectrum, individual corrections
contain double logarithms,

1
~ @ —_—— 2 —_
O~ —z (1= B).

1
L, ~ —=In?(1 - p),
6bﬂ—>1 8n( ﬁ) 4

1
[ A—— 2 —_—
6~ ~ (1= p). (13)

but the complete electromagnetic energy spectrum is free
from Sudakov double logarithms [118]. The residual non-
factorizable piece of the bremsstrahlung contribution,
(doyg ""“") is given by the following substitutions in
Egs. (58) and (59):

2
’L‘ —)”—3<ai+biln
[

1+p 2-p /
1 —ﬂ +Cilnm>dw s (14)

where coefficients a;, b;, and c; can be expressed in terms
of the initial and final neutrino energies, w and o/,
respectively, in the following form:

fL(®) = 7 @? + foma + Om?,
fr(®) = fL(-@) = [ @ = fPme’ + fOm?,

with dimensionless coefficients,

o 3P+ Tp+8
¢ = -

3p3 3p?
2 4 2
o 2(ﬁp3+ 4) N 178 +82paﬂ 55’
o 112—-15p* =854 31p* + 1184% — 449
“ - 150° + 60,* ’
bwz:(ﬂ—3)(2ﬂ—l)p p+14
6(1-p)°p 6(1-p)
yo _ (B=4P=2)p , 55-p(17p+30) 1
2(1-p)p 16(1 - p)? B’
B0 — p(B(B+1)(23 —2p) — 45)
30(1 - p)p
—315% — 885> + 894 + 180
120(1 - B)*p ’
2 P12 421)  2(3p* 4 847 - 15)
322 -3) 3B +2r-3)
L 2344347 73 2% + 1342 473
T 4 (P +3) 4 —8F + 12
o 857 —163 15p* — 166> + 163
CET R 305° '

The interference part of the energy spectrum is

determined by
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_——2__4'4)‘021]111
1+ 2w 1 1 7T 1+p/(1 7 1
bt = (— 27~ R I T T 2IL,
R <2ﬂ m 3ET30-p e, 3F e 6))U R
2w’ pH=542+2 2(1+4p?)
clli_ <_ m2 + 3/)72p2 + 3ﬂ2p )wzllﬁ’

where Ik is given by Eq. (20).
Our result agrees with the numerical evaluation in Ref. [29].

APPENDIX J: ELECTROMAGNETIC ENERGY SPECTRUM ABOVE ELECTRON END POINT

The electromagnetic energy spectrum above the electron end point can be conveniently expressed as a sum of the
factorizable and nonfactorizable corrections,

dobee—veer — géydaifé—wﬂ + (do.vfe—wfey)/. (Jl)
T

The factorizable part is given by

1/ 2 7,1 2w\, 1 301 2-
5= (=Z Tl o (1 22\ LA 3 22 oy, P
B\ 3 "8 1-p m) 1-8 2 1-p 1-p 1+p
+ln2—p<1+%’)ln<1+ﬂ 1+ﬁ—p<1+%’)>_ AT [ 2=p( )
p(1+2) “\1=f-1+p+p(1+2)) 72 1+p 7 1+p

m m

2- 142 2-p(142 P 2—p(1+22) 200 =
L1 2Tl Lizp( +7) L, p(1+22) 1,272 2 p(1+3%) 200 +m(2w w) ’
1+p 1-p 1-p 1-p 1—-p —-m
(J2)
where the elastic cross section doj’s~“*“ is expressed in terms of @'. The nonfactorizable part is given by the following
substitutions in Eqs. (58) and (59):
R 2—p(l+2 2 2-p(l+22
I,-—»%(a,-—l—b,»lnM—i-ciln <1+_a)> —&—dilnM)da}’, (J3)
@ p m 2—p
with coefficients a;, b;, ¢;, and d;,
- w(?ﬁﬁ"j%’f) - nf’;:}, —15m* 4+ 4(109m? + 78mw + 20°)w'? — 2(m — 20)(11m? + 40*) o)
ayp, = 3
120m
08w —Tm — 4a')
5m? '
200 @
_ —_ -2 2’
LT 5w 3m
b+ m?> 9mo 1lw?
C - P 9
k 60 8 3
m* (6w + 60w’ —50%) + m(w — @' )(0? + Too' + 13w'?) + 30 (0 — o' )?
dp = 5
3m
. 2m° = 135m*w — 16(w — @')* (@? + 300’ + 60'?)

120m3 ’
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ag = ap(w < —a'),

br = by (w < @) + b (0 < =) + ¢ (0 < —0) —dy (0 < —) + 20,
'3 20"

3m 15m

4w ((w — @' —3m)* — 13m?)

ak =
R 3m(2EEM—m) ’
3
bk = 2(;”—ma)’—w2+a)a)’>,
2 2
ck :%—%+m(3w @)+ 20(0 — o),

2 a)/z
dh =i+ o (38 ).

where Egyy = m + @ — o', and as explained in Sec. I B do/dE’ = do/dw’. Our result agrees with a numerical evaluation of
Ref. [29]. The total cross section from both regions of Secs. IVI1 and IV 12 is in agreement with Ref. [31]. Correcting
obvious typos, the function IR and only the function I; of Eq. (J3) with the interchange I; <> Iy are in agreement with
Ref. [31]. For all other kinematical factors of Secs. IVI1 and IV 12, we find nontrivial discrepancies with Ref. [31].

APPENDIX K: ABSOLUTE CROSS SECTION

The total cross-section correction including both real and virtual contributions, besides the closed fermion loop correction
of Secs. III B and III C, is given by the following substitutions in Eqs. (58) and (59) [31]:

I (1 —r) r 3R 10 r 19(1 = R)
= RL,+ "R+ 4(1 = R)Inr— (P2 -2+ InR—-+———2 K1
ﬂ—>(+)2+ 5 n’R + 4( YInr— [ r? st5 T3 JmR—S+—5—. (K1)
I R 1 7r3 8R* R* 16R 17
3172 Tr R_3+35R+§ . 11R3+13R2+73R+£ (K2)
33 18 6 3 6 8 12 36 72’
Iy
B > —4PLy — (-4 + 2r + R = R)L, — 2(2+ 5r)In?R + (4r + 3R> = 7R) Inr
T
5 13 , 15
+7(=2r +r—R)InR - Sr+ R+ R, (K3)
with additional definitions,
Li,(1 —1/R?) = Li,(1 — R? 1 1
L, = b(1-1/ )2 i )+91<L12<1+E>—L12(1+R))+L12<——>+21nR1nr (K4)
Lis(1 — 1/R?) + Lis(1 — R? 1 1
Ly = is(1 -1/ ); i ( )+2<Li2(—R)+§Li2(R2)>1nR L12<——>lnR In*R1nr
_ Liy(R?) 1 1+R
*4 —Li3(—R) — L13< R>+1n[(1—Rz)(1+R)}ln2R—7r21n2\/_ ¢(3)
1 1
m
S K6
m+20) : 2w (K6)
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Note also that the total elastic cross section at leading order is given by the following substitutions in Egs. (14) and (15),

/d(u’IL - w(l = R),

/ do'Iy -

(1 —R?)

RZ
3 /da)’Ilﬁ—>—w—.

} (K7)

The “dynamical” correction of Secs. III B and III C to the total unpolarized cross section, 6% **“, can be expressed in

the following form:

Vpe—lpe

u u
oo ==Y e 4 <ﬁ§?(0) ~ 2sin0y M1 (0) + 2L R) mc)> B,

I

dyn

_ = K8
2 \/EGF dyn,g ( )

The reduced cross section due to the lepton #’ loop contribution &7/ is obtained by replacements of Egs. (43)—(45) and

the following substitutions in Eqgs. (14) and (15),

Gdyn.f’

o(l =R) u? R +1 2
Qﬂ/da)/H(QZ’mﬂ)ILa—3lnm§/ , R?lan—l—lez—g s (Kg)
1-R)  w> mRR} [3m*+ 15mw + 250 R, +1
| o mptg -2 R l ~R2 ) I}
Qf/ o'Tl(g*, mg)Ig — 9 nm? 24,2 302 1 an—l
®R3 54+ R? R, +1 R, +1 mR3RY
1 L) ((R? = 12In2 2 4R, In =L !
+8r2<+ 6r >((’ I =y AR ) T
®R? [(6m? + 39mw + 53w? R4 m? — 10mew — 18w? (K10)
1873 20> ! w? ’
R u*  wR? R, +1 R, +1
] da'Ti(g2 mo )k — 2 O (3(R2 = 1222 4 4(R2 — 3)R, In~!
Qf/w (q mf)R_>3r nm§,+24r (l )an_1+ (l >lan—1
R2 (112
+% <3 - 2OR12>, (K11)

with the vanishing in the limit R; — oo terms, beyond the
first u-dependent contributions, where

Mol (K12)

R, =
! m* R

144

The reduced cross section arising from the quark loop

. . ~Vge—lge - . . .
contributions Odyng 18 obtained replacing v, e couplings

in Egs. (14) and (15) as

/dw’(ci’ﬂ)zlL - 2V2Gpc!" w(1 = R),
w(l —R?)

3 b
wR?

r

/da)’czRIR — 2v2Gcy

/da)’ci‘”ﬂcRI{g - —\/EGF(C{M)’ + cr) (K13)

APPENDIX L: AVERAGED OVER FLUX
NEUTRINO CROSS SECTIONS

In the following, we average the energy spectrum with
anticipated flux profiles of the DUNE Near Detector

25
== e ——— EMy,
20 — == eV ——- EM,vy
T> : e, Ve o BM, Vg
3 1\ = == eve o= - EM,v,
& 1.5+ e —— EM
Q
I
=
> 1.0
=
g DUNE
2
0.5
0 :‘:.._.I ‘*—‘ —————————
1 2 3 4 5 6 7 8 9 10
E, GeV
FIG. 13. Electron (e) and electromagnetic (EM) energy spectra in

elastic neutrino-electron scattering for the neutrino beam mode of
DUNE experiments. The electron energy spectrum is above at low
energy. Electron and muon (anti)neutrino contributions are shown.
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(553 ]
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2
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e R B e e e e e e
1 2 3 4 5 6 7 8 9 10
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FIG. 14. Same as Fig. 13 for the antineutrino beam mode.
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FIG. 15. Same as Fig. 13 for the MINERVA experiment.
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FIG. 16. Same as Fig. 14 for the MINERVA experiment.

2.5 T %W T EMw
. | ——= eV, — == EM,¥,
% 204 . e, XC EM’ Xe
G A et EM, Y
g N —— EM
15 e
[ i
o
% 1.0
o
L -

0.5

0 :—1

FIG. 17. Same as Fig. 13 for the NOvA experiment.
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FIG. 18. Same as Fig. 14 for the NOvA experiment.
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FIG. 19. Same as Fig. 13 for the T2K experiment.
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FIG. 20. Same as Fig. 14 for the T2K experiment.

[141,142] at Fermilab. In Figs. 13 and 14, we show the
resulting electron and electromagnetic energy spectra for
neutrino and antineutrino beam modes.

The corresponding figures for MINERVA [19,20,143—
145], NOvA [146], and T2K [147,148] experiments are
shown in Figs. 15-20. The difference between the electron
and electromagnetic energy spectra slightly washes out
after averaging over the typical neutrino flux. It is larger at
low energies, where it can reach an effect of the relative
order 1%—3%, and smaller at higher energies reflecting the
dependence in Fig. 11.
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