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Sequential hyperon decays in the reaction e*e~ — X'X°
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We report on a study of the sequential hyperon decay X — Ay; A — pz~ and its corresponding
antihyperon decay. We derive a multidimensional and model-independent formalism for the case when the
hyperons are produced in the reaction e*e™ — ZZ". Cross-section distributions are calculated using the
folding technique. We also study sequential decays of single-tagged hyperons.
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I. INTRODUCTION

The BESIII experiment [ 1] has created new opportunities
for research into hyperon physics, based on e™e™ annihi-
lation into hyperon-antihyperon pairs. Such possibilities
are interesting, and for several reasons:

(1) They offer the currently only feasible way for

investigating the electromagnetic structure of hyper-
ons [2].

(ii) By measuring in the vicinity of vector-charmonium
states, one gains information on the strong baryon-
antibaryon decay processes of charmonia.

(iii) They offer a model-independent method for meas-
uring weak-decay-asymmetry parameters, which
can probe CP symmetry [3].

The basic reaction, ete™ — YV, is graphed in Fig. 1. In
the continuum region, i.e., in energy regions that do not
overlap with energies of vector charmonia like J /y, y' and
w(2S), the production process is dominated by one-photon
exchange, ete™ — y* — YY. The reaction amplitude is
then governed by the electromagnetic form factors Gy and
G- In the vicinity of vector resonances, the electromag-
netic form factors are replaced by hadronic form factors G
and GY;. However, the shapes of the differential-cross-
section distributions are the same in the two cases: all
physics of the production mechanism is contained within
the form factors, or equivalently, the strength of form
factors, D, (s); the ratio of form-factor magnitudes, 7, (s);
and the relative phase of form factors, A®,,(s).

Analyses of joint-decay distributions of hyperons, such

as A(— pn~)A(— prn"), enables us to determine the
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weak-interaction-decay parameters, affy. For a complete
determination we need to know the bayon-final-state
polarizations.

The theoretical description of the annihilation reaction of
Fig. 1 is described in Ref. [4], and the corresponding
annihilation reaction mediated by J/y in Ref. [5]. Accurate
experimental results for the form-factor parameters 7,, and
A®,, and the weak-interaction parameters a,(az) for the
latter annihilation process are all reported in Ref. [3]. A
precise knowledge of the asymmetry parameters a, (a5 ) is
needed for studies of spin polarization in Q~, ==, and A}
decays, and for tests of the Standard Model.

The graph of Fig. 1 can be generalized in the sense that it
can include hyperons that decay sequentially. It can also
include cases where the produced hyperon is of a different
kind than the produced antihyperon, i.e., ete™ = Y,Y,.

In this paper we shall consider annihilation into X°%°
pairs, in a way similar to that of Ref. [6]. The X decays
electromagnetically, X° — Ay, and subsequently the
Lambda hyperon decays weakly, A — pz~. The interest
of such a study is many-fold:

(i) The form factors provide information about the pro-

duction process. So far, literature has focused on
electromagnetic form factors whose interpretation is

e (k1) A(p1)
2

et (kz) A(p2)

FIG. 1. Graph describing the electromagnetic annihilation

reaction ete” — AA. The same reaction can also proceed
hadronicly via vector charmonium states such as J/y, v/, or
w(2S), replacing the photon.
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straightforward [2,7]. However, recent experimental
advances call for an interpretation also of the
hadronic form factors. In particular, it would be
interesting to compare the decay of J/y into various
hyperon-antihyperon pairs with the corresponding
decays of other vector charmonia.

(i) The BESIII Collaboration plans to perform a first
measurement of the branching fraction of the X°
Dalitz decay X° — Ay*, y* — eTe™ using the large
data sample available for the e*e™ — J/y — Z0%0
process. Then, the most important background will
come from ete” = J/y = 2050 (0 = Ay;
A — prn~ 4+ c.c), where one of the photons under-
goes external conversion into an e*e™ pair. This is
because the branching ratio of the X — Ay, accord-
ing to QED, is 3 orders of magnitude larger than that
of the Dalitz decay. In order to properly account for
the background, precise knowledge of the joint
angular distribution is required.

(iii) It can provide an independent measurement of the
Lambda asymmetry parameters o, and og.

(iv) It can provide a first test of strong CP symmetry in
the =° — Ay decay [8].

Our calculation is performed in steps. First, we review
some important facts; the spin structure of the e"e™ —
»0%0 annihilation reaction [4]; the classical afy description
of hyperon decays [9]; the description of the electromag-
netic X — Ay decay, both for real and virtual photons
[6,10]. The virtual photons decay into Dalitz lepton pairs.
An important element of our calculation is the factorization
of the squared amplitudes into a spin-independent frac-
tional decay rate and a spin-density distribution.

Following these reviews we demonstrate how the folding
method of Ref. [11] is adapted to sequential decays. Both
simple and double decay chains are treated. Finally, we join
production and decay steps to give the cross-section
distributions.

The information we are hoping to gain resides in the
angular distributions, and we are therefore not overly
concerned with absolute normalizations, although they
may be obtained without too much effort.

II. BARYON FORM FACTORS

The diagram in Fig. 1 describes the annihilation reaction
e (k)e"(ky) = Y(p,)Y(p,) and involves two vertex func-
tions: one of them leptonic, the other one baryonic. The
strength of the lepton-vertex function is determined by the
electric charge e, but two form factors G, (s) and Gg(s) are
needed for describing the baryonic vertex function. Here,
s = (p; + p»)?* with p; and p, as defined in Fig. 1.

The strength of the baryon form factors is measured by
the function D(s),

D(s) = s|Gy|?* + 4M?|Gg|?, (2.1)

with the M-variable representing the hyperon mass. The
ratio of form factors is measured by 7(s),

_ S|GM|2 - 4M2|GE|2
5|Gy ]+ AMP G

n(s) (2.2)

with 7(s) satisfying —1 < 7(s) < 1. The relative phase of
form factors is measured by A®(s),

Ge
Gu

G .
JE £iA®(s)

G . (2.3)

In Ref. [5] annihilation in the region of the J/y and
w(2S) masses is considered. The photon propagator of
Fig. 1 is then replaced by the appropriate vector-meson
propagator.

III. CROSS SECTION FOR e~e* — Y(s1)Y(s;)

Our first task is to review the calculation of the cross-
section distribution for e™e~ annihilation into baryon-
antibaryon pairs, with baryon-four-vector polarizations s,
and s, [4,5]. From the squared matrix element of this
process, |M|?, we remove a factor e?/s?, which is the
square of the propagator, and get

4
1l e;

do = ¢
T

|Mred<sl’ S2)|2dLiPS(k1 + k2§P1,P2>’ (3-1)

with s = (p; + p»)?, and dLips denotes the phase-space
element of Ref. [12], as described in Appendix A. For a
baryon of momentum p the four-vector spin s is related to
the three-vector spin n, the spin in the rest system, by

n A
sp.m) =3 (Pl ED) + (Oomy).  (32)
Longitudinal and transverse directions of vectors are
relative to the p direction.
In the global c.m. system kinematics simplifies. There,

three-momenta p and k are defined such that

P =-P»=P. (3.3)

k, = -k, =Kk, (3.4)
and with scattering angle 6 defined by

cos® =p - k. (3.5)

Furthermore, according to Appendix B, in the global c.m.
system the phase-space element reads

dLips(k; + ky; p1, p2) = dQ, (3.6)

_P_
327%k

with p = |p| and k = |Kk]|.

033002-2



SEQUENTIAL HYPERON DECAYS IN THE REACTION ...

PHYS. REV. D 101, 033002 (2020)

The matrix element in Eq. (3.1) can be written as a sum
of terms that depends on the baryon and antibaryon spin
directions in their respective rest systems, n; and n,,
(Myglee™ = ¥(s))¥(s,))> = sD()S(ny.ma).  (3.7)
with the strength function D(s) defined in Eq. (2.1). We
call a function such as S(n;,n,) a spin density. In the

present case, the spin density is a sum of seven mutually
orthogonal contributions [4],

S(ny,n,) =R+SN-n; +SN-n, + 7 n; -pn, - p

+Tzl'lu_'n2J_+T3nu_'lzn2J_'l;

+ Ty -pny; -k +ny-pny k), (3.8)
where N is the normal to the scattering plane,
N pxk (3.9)
B VAR ’

The six structure functions R, S, and 7 of Eq. (3.8)
depend on the scattering angle 0, the ratio function 7(s),
and the phase function A®(s). Their detailed expressions
are given in Appendix C.

The cross-section distribution for polarized final-state
hyperons becomes

do _p aZD(s)

dQ k452

S(ny,ny), (3.10)

where a, is the fine-structure constant. Summing over
baryon and antibaryon final-state polarizations gives as a
result

do o, _. paiD(s)
d—g(e*e -y _)YY):E 2 R.

(3.11)

Summing only over the antibaryon polarizations gives

do  paiD(s)

dQ k252

(R +SN-n)). (3.12)

This result tells us that the baryon is polarized and that its
polarization is directed along the normal to the scattering

plane, p x k, and that the value of the polarization is

S V1 —n*cos@sinf

Py(0
() R 1 + ncos?0

sin(A®).  (3.13)

From Eq. (3.8) we conclude that there is a corresponding
result for the antibaryon, but it should then be remembered
that p is the momentum of the baryon, but —p that of the
antibaryon.

Baryon and antibaryon polarizations in e*e™ annihila-
tion were first discussed by Dubnickova et al. [13], but with

results slightly different from ours, and later by Czyz et al.
[14]. For details see Ref. [4].

IV. WEAK BARYON DECAYS

Weak decays of spin one-half baryons, such as
A — pr~, involve two amplitudes, one S-wave and one
P-wave amplitude, and the decay distribution is commonly
parametrized by three parameters, denoted affy, and which
fulfill a relation

A+ P+ =1 (4.1)
Details of this description can be found in Refs. [15]
or [4,9].

Since we shall encounter several weak baryon decays of
the same structure as the A — pz~ decay, we shall use a
generic notation, ¢ — dr, for those decays.

The matrix element describing the decay of a polarized ¢
baryon into a polarized d baryon is

M(c — dr) = u(pa. sq)(A + Bys)u(pe.sc).  (4.2)
with p and s with appropriate indices denoting momenta

and spin four-vectors of the baryons. The square of this
matrix element we factorize, writing

[Me ~ dm) = Tr[3(1+ 7sa) (ha + ma)(A + Brs)

X (et m)3 (14 7o) (A" = Brs)

= R(c = dn)G(n.,ny), (4.3)
where n, and n, are the spin vectors of baryons ¢ and d in
their rest frames, Eq. (3.2). The R-factor is a spin
independent factor, defined by

R(c - drn) =2mJ(c » dr)/®(c — dr),
= [AP((me +mg)* — m3)

1B (m, = mg)? = m2), (4.4)
where ®(¢ — dr) = ®(m.;my, m,) is the phase-space
volume of Appendix B. We refer to R(c — dr) as the
fractional decay rate, since it is a decay rate per unit
phase space. Further inspection of Eq. (4.3) tells us that
I'(c — dnr) is defined as an average over the spins of both
initial- and final-state baryon.

The spin-density-distribution function, G(n.,n,) of
Eq. (4.3), is a Lorentz scalar, which we choose to evaluate
in the rest system of the mother baryon, c,

G(C,d) =1+ a.n. - ld -+ a.ng, - ld -+ n.- Lc(nd,ld),
(4.5)
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with

L.(ngly) =yng+[(1 =y )ng - 1]l; + feng x 1,
(4.6)

The vector 1; is a unit vector in the direction of motion
of the daughter baryon, d, in the rest system of mother
baryon c. The indices on the affy parameters remind us they
characterize baryon c. A spin density is normalized if the
spin-independent term is unity.

We observe an important symmetry,

n.-L.(ng1;) =ng- L.(n. -1). (4.7)

Since the spin of baryon d is usually not measured, the
interesting spin-density is obtained by taking the average
over the spin directions n,

Wc(nc; ld) = <Gc(c7 d)>nd

=U,+n,-V,, (4.8)

with

U.=1, V. =a.l,. (4.9)
For an initial state polarization P, we put n. = P, and get
an angular distribution known from the weak hyperon
decay A — pz~ [4,9].

The matrix element describing the decay of a polarized ¢
(anti)baryon into a polarized d (anti)baryon is similar to

that of Eq. (4.2),

M(e = dr) = 0(pe, se) (A" + Bys)v(pg. s3).  (4.10)

The relation between the parameters A, B and A’, B’ is
clarified in Refs. [16,17].

The square of the antibaryon matrix element of
Eq. (4.10) is factorized exactly as the baryon-matrix
element of Eq. (4.3),

IM(¢ = dn)]?> = R(¢ = dn)G(na,ng),  (4.11)

where n; and nj are the spin vectors of baryons ¢ and d in
their rest systems.

The functions R(¢ — dr) and G(ng,ny) are tied to
hyperons ¢ and d in exactly the same way as those tied to
hyperons ¢ and d, Egs. (4.4) and (4.5), or to be specific,

(4.12)
For CP conserving interactions the asymmetry param-

eters of the hyperon pair ¢, d are related to those of
antihyperon pair ¢, d by [16,17]
Be = =Pz Ve =

a. = —ag, Yz (4.13)

V. ELECTROMAGNETIC HYPERON DECAYS:
REAL PHOTONS

Electromagnetic transitions such as X% — Ay and 2° —
Y% are readily investigated in e*e” annihilation. The
electromagnetic X° — A transition is caused by the four-
vector current [12]

b Fi(k2) ke Tk
m,+my| " md—mvy” #

+ Fz(kz)io,wk”} ,

J,(c—=d)=
(5.1)

with k = p. — p,. This transition current is gauge invari-
ant, inasmuch as k - J = 0. In fact, the F;(k*) and F,(k?)
contributions are each, by themselves, gauge invariant. For
real photons k* = 0andthe F | contribution vanishes, since
F, itself vanishes, F(0) = 0. Thus, for this case it is
sufficient to consider the F, term. We denote by .4,

Hea = eFZ(O)/(mC + md)’ (52)
the strength of the M1 magnetic transition. As a conse-
quence, the expression for the matrix element for any
electromagnetic X% — Ay like decay, becomes

My(c - d]/) = Hcdﬁd(pd’ sd)(aﬂye;(_iku))uc(pc’ sc)
= peatta(Pas Sa) (¢ K)uc(pesse)s (5.3)

where s. and s; are the spin four-vectors of the two
baryons.

It is convenient to write the square of this matrix element
on the form

My (e = dn)P = w2, Te |5 (1 -+ 7sa) (s + ma)d

X (o me) 3 (14 rsdo )
= Y (R)ey (K)e3 (1) (5.4)

with H}" (k) referred to as the hadron tensor. We have also
made use of the simplifying identity
elic, k' = —¢k, (5.5)

valid for real photons.
Summation over the two photon-spin directions entails
replacing e, (k)e; (k) by —g,,. This leads to

> IM,(c = dy)]> = R(c - dy)G,(n..n,).  (5.6)

and again n, and n, are the spin vectors of baryons ¢ and d
in their rest systems. Photon polarizations are summed
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over. There are also electromagnetic transitions between
charged baryons, but in this section we limit ourselves to
electromagnetic transitions between neutral baryons.

The factorization of Eq. (5.6) is chosen so that the
fractional decay rate R(c¢ — dy) is the unpolarized part of
Eq. (5.6) and its G,(n.,n,) factor the normalized spin-
density-distribution function. Here, unpolarized means
averaged over the spin directions of both initial and final
baryons.

The fractional decay rate, R(c — dy) of Eq. (5.7), has the
same structure as the corresponding one for weak baryon
decays, Eq. (4.4),

R(c = dy) =2m.JT(c » dy)/®P(c — dy),

= M%d(m% - mi)zv

(5.7)
where ®(c — dy) = ®(m.;my,m,) is the phase-space
volume.

The electromagnetic decay width is

1
(e = dy) = 5—peqo’, (5.8)

where w is the photon energy. Remember, that this width is
obtained after averaging over both initial and final baryon
spin states.

The spin-density-distribution function of Eq. (5.6)
involves an implicit summation over photon polarizations.
For such a case

G,(n,,n;) =1-n.-L1, -n, (5.9)
where 1, is a unit vector in the direction of motion of the
photon, and 1; = —1, a unit vector in the direction of
motion of baryon d, both in the rest system of baryon c.

We notice that when both hadron spins are parallel or
antiparallel to the photon momentum, then the decay
probability vanishes, a property of angular-momentum
conservation. We also notice that expression (5.9) cannot
be written in the afy representation of Egs. (4.5) and (4.6).

When the spin of the final-state baryon d is not
measured, the relevant spin density is obtained by forming
the average over the spin directions ny,

Wy(nc; ld) = <Gy(c’ d)>nd
—U,+n,-V,, (5.10)

with

(5.11)

Thus, the decay-distribution function is independent of the
initial-state baryon spin vector n,.

The antiparticle matrix element corresponding to the
particle matrix element of Eq. (5.3) is simply

M, (€ = dy) = peabs(pes so) (¢ K)va(pa. sz)-  (5.12)
We assume the parameter u is the same for particle
transitions ¢ — d as for antiparticle transitions ¢ — d.

The normalized spin density corresponding to the anti-
particle-matrix element of Eq. (5.12) is the same as that
corresponding to the particle matrix element of Eq. (5.3), as
given in Eq. (5.9), provided we replace the particle spin
vectors n, and n, by the antiparticle spin vectors n; and n.

The possibility to search for P-violating admixtures in
the electromagnetic decay £ — Ay was advocated by Nair
et al. [8]. Such contributions are created by making the
substitution

¢k — (1= brs)d' k. (5.13)

in the decay amplitude of Eq. (5.3). This substitution is

gauge invariant and changes the normalized spin density
(5.9) into

Gy(nmnd) =1l-n. lyl;/ "Ny +pc[nc : ly —ng- l;']?
(5.14)

with asymmetry parameter

29(b)

= 5.15
1+ |p? (5.13)

Pe
Similarly, the decay width of Eq. (5.8) is changed into

1
I(c = dy) = — (1 + |b]*)p?,0°.

- (5.16)

Parity violating admixtures in the antiparticle decay
30 — Ay can also be simulated by the substitution of
Eq. (5.13). Replacing the parameter b by b, the spin density
for the antiparticle decay becomes

Gy(“&“&) =1-nz-1L1,-ng - pee - l, —ng- ly]7

where

(5.18)

The P-violating interference term now enters with the
opposite sign. If CP is conserved then b = —b. For a full
discussion of P and CP conservation in this context we
refer to Ref. [8].
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VI. ELECTROMAGNETIC HYPERON DECAYS:
VIRTUAL PHOTONS

The leptonic decay X% — Aete™ is a small fraction of
the electromagnetic decay X° — Ay [18,19]. The lepton
pair of the leptonic decay is interpreted as the decay product
of a virtual, massive photon. This pair is often referred to as
a Dalitz lepton pair.

The form factors F (k?) and F,(k?) have been calculated
in chiral perturbation theory [20,21]. The form factor
F(k*) remains small for virtual photons and it is therefore
reasonable to neglect its contribution.

The steps to follow in order to find the cross-section
distribution for virtual photons are well known. The square
of the reduced matrix element is written as

M, (c = dete)|* =—HYL (6.1)

uv

=
RN

where H%" is the hadron tensor and L,, the lepton tensor.
The hadron tensor can be extracted from Eq. (5.4),

v _ 1 T
HY (¢ - dete™) = uZ/Tr 5(1 +vs8a)(Pg + my)ok,

X (Vc + mc)%(l + VSXC)GMIQ .
(6.2)

We need the square of M, for fixed baryon spins but
summed over lepton spins. The summation over lepton
spins leads to a lepton tensor,

Ly (ki ko) = e o(ky)y,u(ky )a(ky )y, v(ky)

Ispin

1
= 462 |:kﬂk1/ - kl;tkll/ - k2”k2U - ngjkz )

(6.3)

where k; and k, are the lepton momenta, and k = k; + k,
the four momentum of the virtual photon.

Next, we integrate over the lepton momenta. For this
purpose we rewrite the phase-space element as

dLips(p.; pa. k1, k)

1
= —dm2dLips(p,; pa. k)dLips(k; ky. k3).

o (6.4)

with k* = m? and dLips(k; k;. k,) the phase-space element
for the lepton pair, as in Appendix B.

The integration over the lepton phase space affects only
the lepton tensor. Thus, we note that

1 m2 1 4m?
<k1ukly> = |:3 <1 - kz) k/tkv _Ekz (1 - kz)g/w:| <1>’

(6.5)

and similarly for (k,,k,,), with brackets denoting integra-
tion over lepton phase space, dLips(k;k,k,), and (1)
denoting the phase-space volume itself. The term pro-
portional to k,k, in Eq. (6.5) vanishes due to gauge
invariance. As a consequence, we get as average of the
lepton tensor,

<L/uz> = L(kz)(_g;w)’ (66)

LK) = a,k[1 - 4;’;5 {1 —% <1 - 4}(—";2)} . (67)

The lepton tensor L,, of Eq. (6.6) comes with a factor
(=9,)- Contracting it with the hadron tensor H,,, (¢ — dg),
with ¢ representing the virtual photon, is equivalent to
summing over photon polarizations. We write

M, (c = dg)|* = —Hj(c — dyg),

=R(c = dg9)G(n.,ng). (6.8)
The factorization is chosen so that R(c — dg) is spin
independent, and so that the spin-independent term of
G(n.,ny) is unity.

The functions R and G are easily calculated. Neglecting
terms unimportant for the X° — Ay transition, we get for
the fractional decay rate of Eq. (6.8),

R(c = dg) =2mJT(c = dg)/®(c — dg),

= 2l(m = mg = w3 (m, + mg2. (6.9)
where ®(c — dg) = ®(m.;my,m,) is the phase-space
volume. For m, =0 we recover R(c — dy) for real
photons, Eq. (5.7).

Again neglecting terms unimportant for the £ — Ay
transition, the properly normalized spin density reads

Gm.ny)=1-n.-LL -n, (6.10)
Thus, it is in this approximation also equal to the normal-
ized spin density for real photons, Eq. (5.9). The exact
expressions for R and G are given in Appendix D.

Next, we combine the matrix elements for the transitions
¢ — dg and g — eTe™, g representing a virtual photon of
mass 1.

Since the lepton tensor of Eq. (6.7) lacks spin depend-
ence, so that G(g — eTe™) = 1, we have the spin-density
relation

G(c > dete”) =G(c - dg)G(g - ete™), (6.11)
and a corresponding R-factor relation
R(c »> dete™) =R(c - dg)R(g —> eTe™).  (6.12)
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The function R(g — eTe™) collects the remains, the
lepton tensor of Eq. (6.7) multiplied by the propagator 1/k*
of Eq. (6.1),

A2l 1/, 4m?
R(gee*e‘):% 1- Ze[l—<l— me>]

(6.13)

This expression comes with the phase-space element

dLips = idm%dLips(pc; Pa- k), (6.14)
where k is the four-momentum of the virtual photon and
k* = m?. Remember that m? > 4m? so there is no singu-
larity in R(g — ete™).

Deviations from the Dalitz-distribution function of
Eq. (6.13) signals the importance of electromagnetic form
factors in the virtual photon exchange.

VII. FOLDING

Our general aim is to calculate the cross-section dis-
tributions for e*e~ annihilation into X°Z° pairs that sub-
sequently decay, as X - A — p or £ - A — p, and as
illustrated in Fig. 2. The first step in this endeavour is to
perform the folding of a product of spin densities, a
technique especially adapted to spin one-half baryons.

A folding procedure implies forming an average over
intermediate-spin directions n according to the prescription

(n-kn-1), =k-L

(7.1)

For more details see Ref. [11].

FIG. 2. Graph describing the reaction ete™ — 2920, and the
subsequent decays, X° — Ay; A —» pr~ and 20 — Ay; A — prt.
The reaction graphed can, in addition to photons, be mediated by
vector charmonia, such as J/y, ' and w(2S). Solid lines refer to
baryons, dashed to mesons, and wavy to photons.

In the present case there are five spin densities; the
annihilation spin density S(ng,ns) of Eq. (3.8); the spin
densities of the electromagnetic and weak decays,
Egs. (5.9) and (4.5),

G(ZU - A]/) =1- ny - lle/ My, (72)
G(A— pr)=1+4+ayn,-1,+ayn, -1,
—|—nA 'LA(np,lp), (73)

with L y(n,,1,) defined in Eq. (4.6); and the antihyperon
versions of the last two spin densities. Remember that the
symbol 1 represents a unit vector.

The spin density for the 2 — p transition is obtained by
folding a product of spin densities. Averaging over the
Lambda and final-state proton spins, according to the
folding prescription Eq. (7.1), gives us

GZ - p) = (G(Z* - Ay)G(A - pr7))

n,.n,

=1l-ayng- L1 -1, (7.4)
We notice that this spin density does not depend on the
asymmetry parameters f, and y,, a consequence of the
average over the final-state-proton-spin directions.

To the baryon decay chain X° — A — p there is a
corresponding antibaryon decay chain £ - A — p, and
a corresponding transition-spin density.

To go from the baryon to the antibaryon case, we simply
replace the baryon variables by their antibaryon counter-
parts, ny — ns, a, — aj, etc.

The inclusion of parity violation in the £ — Ay decay is
straightforward. We simply replace G(Z° — Ay) of
Eq. (7.2) by

G(EO d A]/) =1 — Ny - lyly i LU\ +pz[n2 . ]}' — Ny ]}']
(7.5)

of Eq. (5.14), and get

G(Z* = p) = (G(X - Ay)G(A = pa7 ))n,m

My
= (1 _pEaAly : lp) — Ny - ly(aAly : lp _pE)'

(7.6)

From this expression the angular distribution in the
decay of a X0 of polarization Py is obtained by the
substitution ny — Ps. The angular distribution in the decay
of an unpolarized X° hyperon becomes (1 — psaul, -1,).
Hence, as a consequence of parity violation the cross-
section distribution acquires a small angular depen-
dent term.
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VIII. SINGLE CHAIN DECAYS

Single-chain decays of X hyperons can be studied in the
eTe™ annihilation into X°Z° pairs, provided the X0 is
somehow identified, e.g., as a missing hyperon [6]. The
spin-density state of the X° will then be obtained from
Eq. (3.8) as

(S(ng,ng)),. =R+ SN - ny. (8.1)
A 2 hyperon in a state of polarization Py, subject to the

condition |Pg| < 1, is characterized by a normalized spin-
density function,

Sz(nz) =14+ PZ ‘Ny. (82)
Therefore, by Eq. (8.1), it follows that
Py = SN/R. (8.3)

If a X hyperon of polarization Py undergoes an
electromagnetic decay, ¥ - Ay, we can determine the
spin-density distribution of the A hyperon by folding the
initial state X spin density of Eq. (8.2) with the X° decay
distribution of Eq. (5.9), to get

Wamp;la) = (Sx(ng)G,(ng,my))y,,

— ] —PE'lAlA'nA, (84)
with 1y = -1, and a A polarization
PA - _PZ'lAlA' (85)

Consequently, the A polarization is directed along the A
momentum 1,, a fact which is independent of the initial >0
hyperon spin.

Let us now consider also the weak decay of the
A-hyperon, A — pz~, which is described by the spin
density G5(ny,n,) of Eq. (4.5). Since the spin of the
final-state proton is usually not measured, we form the
average over the proton-spin directions. Then, the spin-
density-distribution function of Eq. (8.4) is expanded to

Wp(lA7 lp) = <SZ(nZ)G}’(nZ’ nA)Gp(nA’ np)>nz,n,\.np

=1- aAPE . lAlA . lp’

= l + aAPA . lp‘ (86)

The decay chain X° — Ay — pz~ makes part of our
annihilation process and it is therefore of interest to
investigate what additional information may be obtained
by measuring the spin of the final-state proton. Thus,
instead of the spin density of Eq. (7.6) we investigate the
spin density

G(Z' = p) = (G(X* > A7)G(A = pr7)),,.  (8.7)
Invoking the vector-function identity of Eq. (4.6) we get

G- p)=1+an,-1,—ng-Llayl, -1,

+n,-La(l, -1,)]. (8.8)

Finally, the spin-density-distribution function for the
final state proton is obtained as

S(np) = <S(nZ)S(n2’ np)>n,\,nz

—U,+V,n, (8.9)
UP =1 —aAl)z‘lyly‘lp, (810)
V, =apl, =Py LLy(L.—1).  (8.11)

This result describes a proton polarization whichis V, /U ,.
It is explicitly dependent on a,, but there is a hidden
dependence on f, and y, in the vector function L ,.

IX. PRODUCTION AND DECAY OF X% PAIRS

Now, we come to the main task of our investigation:
production and decay of X°X° pairs. The starting point is
the reaction ete™ — X020, the spin-density distribution of
which was calculated in Sec. IIl. We name it S(ny, ns ). The
explicit expression is given by Eq. (3.8), with n;, n,
replaced by ng, ns.

The spin-density distribution Wy (ng,n,) for the decay
chain £° — Ay; A — pz~ is given in Eq. (8.8). We write

Wz(nz,n[,) = UZ + ny - V):, (91)
U2:1+(1Anp'lp (92)
VZ = —ly[a/\l}/'lp—f—np‘LA(l}/,—lp)], (93)

and ditto for Wg(ng, nj). We are only interested in decay
chains of XY and £° which are each other’s antichains.

The final-state-angular distributions are obtained by
folding the spin distributions for production and decay,
according to prescription (7.1). Invoking Eq. (3.8) for the
production step and Egs. (9.1) and its antidistribution for
the decay steps, we get the angular distribution
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Wis(ly) = (S(ng,ng)Wy(ng,n,)Ws(ng, np)), o
+7,Vy-pVs-p+7,Vs, - Vs,
+7T,Vs, -kVs, -k
+7T4(Vs-pVs, -k + Vs -pVz -K).  (94)
where 1, represents the ensemble of 1 values in the decays.
The angular distributions of Eq. (9.4) still depend on the
spin vectors n, and n; which are difficult to measure. If we

are willing to consider proton- and antiproton-spin aver-
ages, then variables U and V simplify,

UZ = 1, VZ = —aAlA . lplA7
Us=1,  Vg=-azlz-Ll;. (9.5)

Since Uy = Us = 1 the effect of the folding is to make, in
the spin-density function S(ng,ns) of Eq. (3.8), the
replacements ny — Vy and ng — Vs. We notice that the
U and V variables are independent of the weak-asymmetry
parameters 3, and y,. Their dependence is hidden in the
vector function L(l,.-1,) of Eq. (9.3), and which is
absent in Eq. (9.4).

Inserting the expressions of Eq. (9.5) into the spin-
density function of Eq. (9.4) we get

Wes(l,) = R — aySN- Il -1, — azSN - I3l - 1,
+apazly - 115 - 15741, - ply -
+Tolas -1z + T3y - Ky -
+Ty(ly - Play - K +15 - Play - K)). (9.6)

S -

Thus, this is the angular distribution obtained when folding
the product of spin densities for production and decay.
X. DIFFERENTIAL DISTRIBUTIONS

Explicit expressions for the structure functions R, S, and
T are given in Appendix C. With their help we can rewrite
the differential distribution function of Eq. (9.6) as

W(E) = [Fo +nFi]

— /1 —n*sin(A®) sin O cos &
X [apF2Fs + agF3F
+ apyay FrF3[(n + cos?0)F, — nsin?0F,

+ (1 + n)sin®0F

+ 1/ 1 = 1? cos(AD) sin @ cos F ], (10.1)

where the argument € of the angular functions is a nine-
dimensional vector & = (0, Q,, Q,, QF. Qﬁ).

The ten angular functions F(€) are defined as

Fol€) =

Fi(8) =

Fa(§) = lp,

F3(8) =15 15,

Fa(€) =15 plx - P,

Fs5() =N-1j,

Fo(&) = N-1j,

F7(8) =Iar - Ixy,

Fs(€) =141 - Kklz, - k/sin?0,

Fo(€) = (15 -Plg, -k +15-ply, - k)/sing.  (10.2)

The cross-section distribution (9.6), and also the ten
angular functions above, depend on a number of unit
vectors; p and —p are unit vectors along the directions
of motion of the ° and the £° in the c.m. system; k and —k
are unit vectors along the directions of motion of the
incident electron and positron in the c.m. system; 1, and 13
are unit vectors along the directions of motion of the A and
A in the rest systems of the 20 and the £°; 1, and 1, are unit
vectors along the directions of motion of the p and the p in
the rest systems of the A and the A. Longitudinal and
transverse components of vectors are defined with respect
to the p direction.

The differential distribution function W(€) of Eq. (10.1)
involves two parameters related to the eTe™ — X0X°
reaction that can be determined by data: the ratio of form
factors #, and the relative phase of form factors A®. In
addition, the distribution function WW(€) depends on the
weak-asymmetry parameters a, and ai of the two
Lambda-hyperon decays. The dependence on the weak-
asymmetry parameters # and y drops out, since final-state-
proton and antiproton spins are not measured.

An important conclusion to be drawn from the differ-
ential distribution of Eq. (10.1) is that when the phase A®
is small, the parameters o, and aj are strongly correlated
and therefore difficult to separate. In order to contribute to
the experimental precision of @, and a5 a nonzero value of
A® is required.

The sequential differential decay distribution of a single-
tagged X° produced in e*e~ annihilation can be obtained
form Eq. (10.1) by suitably integrating over the angular
variables €7 and Qj;. As a result we get the differential
distribution for X° production and decay,

do o« [R — apySN - 11, - 1,]dQdQ,dQ,

= [1 + ncos?d — ayy/ 1 — n* sin(A®) sin & cos &
X c0s 6y, sin 6, sin p,]dQdQ,dQ,. (10.3)
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Here, 6 is the X° production angle, 6, p» the relative angle
between the vectors 1, and 1,,, and 6, and ¢, the direc-
tional angles of 1, in the global coordinate system of
Appendix E. From the angular distribution of Eq. (10.3) we
can determine the product a, sin(A®), and from the
corresponding X° distribution the product az sin(A®).

In this application the final-state-proton spin can be
included in a formula of finite length. From Eq. (9.4) we get

do o« [R—aySN -1, -1, + ayRn, -1,

+SN-1xn, - L, (=1,, -1,)]dQdQ,dQ,, (10.4)
with n,, the final-state-proton-spin vector, and the function
L, (=15.-1,) defined in Eq. (4.6), and dependent on the
weak interaction parameters 3, and y,.

Important information can be retrieved from Eq. (10.3).
Denoting its right-hand side Wy, and forming the average
over the final-state-phase space, we get

1
(Ws) = (1 +ncos?0) =1 + 3 (10.5)
The correlation between the scattering angle ¢ and the
angle Oy, with cos @y, = N -1, can also be determined,
and

(cos O cos Oy, Wg) = —%am/ 1 —n?sin(A®). (10.6)

Thus, knowledge of the weak interaction parameter a,, and
the ratio of form factors 7, allows us to determine the
relative phase ® between form factors, by considering the
ratio of expressions (10.6) and (10.5). Since the absolute
value of cross sections are usually unknown it is essential to
consider cross-section ratios for information.

XI. CROSS-SECTION DISTRIBUTIONS

We shall now consider the phase-space imbedding of the
differential-distribution function of Eq. (10.1). We start
with the cross-section-distribution function for creation of a
pair of baryons, ete™ — X°%°, Combining Egs. (3.1),
(3.6), and (3.7), we get

_pazD(s)
k452

do(ete™ — y* - 2059) S(nyo, ng0)dQ,

(11.1)

where € are the baryon scattering angles in the c.m. system.

Next we consider the propagator factors associated with
the sequential decays of the baryons ° and £° produced in
the e™e™ annihilation process. These sequential decays are
illustrated in Fig. 2. There are three factors associated with
the square of each propagator. Let us consider the decay
¢ — dg, where g can represent a pion or a photon. Other

decay modes are also possible to incorporate. Then, we
have

7 dsc .
P, = |:mCFC 5(Sc - mg)i| |:271' dLlps(pC;pd, pg) [RCGC]'

(11.2)

Here, the first factor comes from squaring the propagator in
the Feynman diagram; the second factor from dividing the
phase-space element into a product of two-body phase-
space elements; and the third factor is the reduced matrix
element squared for the decay ¢ — dg, and the product of
the normalized spin density G, and the fractional decay
rate R,.
The fractional decay rate R, is defined in Eq. (5.7) as
R(c = dg) =2mJTI(c - dg)/®(c — dg). (11.3)
where @ is the two-body phase-space volume, and I'(¢c —
dg) the channel width for the decay ¢ — dg. It was defined
to be spin averaged for both initial and final baryon states.
However, in a sequential decay both final spin-state
contributions must be included. This is achieved by
multiplying R(c — dy) by a factor of 2. This factor can
be incorporated in the channel width I'(¢ — dg), reinter-
preting it to include the sum over final baryon spin states.
Finally, we observe that

. dQ.
dLips(pe: pa: pg) = ®elc = dg) =, (11.4)
giving as a consequence a P factor
r dg) dQ
p. — g, Llc=dg) (11.5)

['(c — all) 4z ’

with Q. the angular variable in the rest system of baryon c.
In our application index c represents one of the four mother
hyperons X, A and £°, A. Similarly, index d represents one
of the four daughter hyperons A, p and A, p.

The differential-distribution function W(€) of Eq. (10.1)
is obtained by folding a product of five spin densities

W) = (s [JGunem) . (16

n

Folding involves averages over spin directions, but as
remarked, cross-section distributions require summing over
the spin directions. Thus, an average over the spin density
S(nyo, nso) is accompanied by an extra factor of 4, and it is
not normalized to unity either but to R.

The folding formula Eq. (11.6) combined with
Egs. (11.1) and (3.11) gives the master equation
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do = do(ete™ - y* — X°%0)

<R e

]. (11.7)

This readily understood structure agrees with that reported
in Ref. [11].

Since spin densities are normalized, except for the
annihilation density S(nyo, nso), the overall normalization

condition reads
dQ,
[well5G ==
p T

(11.8)

This normalization is checked explicitly in single-chain-
sequential decay in Ref. [6].

When the % — Ay reaction is involved, and the photon
is real, then the channel width in Eq. (11.7) is for all
practical purposes equal to the total width, I'(Z° — Ay) =
(0 — all).

We also point out that for virtual photons the cross-
section distribution of Eq. (11.7) receives an additional
lepton factor,

1
—dm?R(g - eTe™),

5 (11.9)

where m, is the virtual photon mass, m? = k?, and R the
Dalitz function

a, 4m? 1 4m?
Rlg=ete) =3\ 1- [1_§<1_ k2>]'

(11.10)

The e™e™ annihilation reactions described above are all
concerned with annihilation through ordinary photons, as
illustrated in Fig. 1. However, the same reactions can be
initiated by other vector mesons as well. Of special interest
is the J/y case, which is treated in Ref. [5], and which is
accessible to the BESIII experiment. By making the
replacement

LS

a a,a,
— 11.11
52 - (s — mﬁ,)2 + m&,F(ml,,) ( )

in the photon-induced reaction, Eq. (11.1), we get the cross-
section-distribution formula for annihilation through the
J/w meson. The meaning of the parameters «,, and a, is
explained in Ref. [5]. This replacement is equivalent to
replacing in the master formula of Eq. (11.7) the corre-
sponding photon-induced e*e~ — X% annihilation cross
section by the J/w induced cross section,

do(ete™ = y* - 2920 > do(efe™ — J/y — Z°20).
(11.12)

XII. SUMMARY

In two previous publications we analyzed the hyperon
decay A — pz~ and its corresponding antihyperon
decay, A — pxt, for hyperons produced in the reaction
e*e™ — AA. Annihilation via one-photon states e*e™ —
y* = AA was analyzed in Ref. [4], and annihilation via
vector-charmonium states ete™ — J/y, v/, w(2S) = AA
in Ref. [5].

In the present investigation we analyze the sequential
hyperon decay £ — Ay; A — pz~, and its corresponding
sequential antihyperon decay, again when simultaneously
taking place in the reaction e*e~ — X°X°. The structure of
the cross-section distribution for annihilation, whether via
one-photon states or vector-charmonium states, is the same.

The aim of the present investigation was, among other
things, to discuss how to relate measured observables to
observables used in theoretical analyses. In studies of
reactions like e*e™ — Z0X9(AA) it is customary to use
different coordinate systems for observables referring to the
29(A) and £°(A) hyperons, whereas we prefer the use of a
single-common-global-coordinate system.

The cross-section distribution for production and sub-
sequent decay of a X°Z° pair is described by an easy to
understand master formula,

do = do(ete™ — X0%) [@] do(z%, A, p; 20, A, p),

(12.1)

already encountered in Ref. [4]. The master formula is a
product of three factors, describing the annihilation of
lepton pairs into hyperon pairs, the folded product of spin
densities representing hyperon production and decay, and
the phase space of sequential hyperon decays. Each event
is specified by a nine-dimensional vector &€ = (0, Q,, Q,,
Q3. Q;), with 0 the scattering angle in the ete™ — 2050
subprocess.

According to Eq. (3.11), the cross-section distribution
for the reaction ete™ — XX can in the one-photon
approximation be written as

do . pazD(s)
+ = * ZOEO N
io, ¢ T o EY) =5

R, (12.2)

where a, is the fine-structure constant, and R a function
defined by the equation

R =14 n(s)cos?0. (12.3)
Two complex form factors, Gy (s) and Gg(s), are needed
for a unique characterization of the X°X%y-electromagnetic-
vertex function, but it is more convenient to work with the

three real combinations thereof, D(s), n(s), and Ad(s)
defined in Sec. II.
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The reaction eTe™ — X°2° can also be initiated by a
vector-charmonium state, such as the J/w. Since the
photon and the J/y are both vector mesons the structures
of the corresponding cross-section distributions will be
similar. In fact we obtain the J/y cross-section distribution
by making the replacement

az a,a

— vy 12.4
s> (s —my)* +mpT(m,) (12.4)

in the photon-induced cross-section distribution. The con-
stant «,, is determined by the electromagnetic-decay width
['(J/y — eTe”), and the constant a, similarly by the
hadronic-decay width I'(J /yr — £°%0). The redefined real
form-factor functions are now denoted DY (s), #*(s),
and A®Y(s).

The differential-spin-distribution function W(€) of
Eq. (12.1) is obtained by folding a product of five spin
densities,

W(E) = (S(nyo, n50)G(nyo,my)G(np, )

x G(ngo,nz)G(nz,np)),, (12.5)

in accordance with the prescription of Eq. (7.1). The
folding operation (...), applies to each of the six hadron
spin vectors, nyo, ..., N .

The function S(nyo, lyo;nso,150) represents the spin-
density distribution for the hyperon pair produced in the
ete™ — X% reaction, and lso and lso are unit vectors in
their directions of motion in the global c.m. system. The
four remaining spin-density distributions G(n,,n,) etc.,
represent spin-density distributions for the hyperon decays
% — Ay, A — pr~, or their antihyperon counterparts. The
simplest spin-density-decay distribution of the four is that
for the decay X — Ay,

G(nzo;nA,lA> =1 — Nyo - lAlA B LY\ (126)

The decay-distribution functions G(ny,.ny,) are nor-
malized to unity, i.e., the spin independent terms are unity,
but the density-distribution function S(nyo, nso) is normal-
ized to R. o

The phase-space factor, d®(X°, A, p;Z°, A, p) of the
master equation, describes the normalized phase-space
element for the sequential decays of the two baryons X0
and X0,

do(20, A, p; 20, A, p)

T > Ay)dQ, (A = pr)dQ,

I sall) 4z T(A-all) 4z
['(E° - Ay)dQx T'(A - pr7)dQ;
(X —all) 4r T(A—>all) 4z °

(12.7)

The widths are defined in the usual way. For ['(Z° — Ay)
this means forming an average over the X° spin direction,

and summing over the Lambda and gamma spin directions.
The angles €, define the direction of motion of the A
hyperon in the X rest system. And so on.

In addition to the reactions mentioned above we have
also calculated the cross-section distributions obtained
when one of the final-state photons is materialized as a
Dalitz ete™ pair. We have also investigated how parity
violating contributions affect the £° — Ay amplitude.
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APPENDIX A: GRAPH CALCULATION

In this appendix we shall work out the phase-space
density for the two-step case. Our notation follows Pilkuhn
[12]. The cross-section distribution can be written as

do — : |M2dLips(k; + ko; {1;}, {1:}),

2\/A(s, m2, m2)
(A1)

where {1;} are the final-state momenta in the hyperon decay
chain and {1} the final-state momenta in the antihyperon
decay chain. The average over the squared matrix element
indicates summation over final-state spins and average over
initial-state lepton. The definitions of the particle momenta
are explained in Fig. 1.

Since I' < M for the intermediate propagators, their
squares may be approximated as

1

GoE () e M)

(A2)

This makes it convenient to pull out a factor  from the
squared matrix element,

1
— A
=g omrmmany ™Y

and plug it into the phase-space density. In Eq. (A3) the
product runs over the four intermediate-state hyperons.

After some manipulations we can write the modified
phase-space density as

KdLips(k, + ky; {1}, {1;}) = [ﬁdg} N
qi
- H |:8”M¢2Fi (M;) dgl} Y
(Ad)
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where index CM refers to the two-body reaction ete™ —
YY, and index Y to each of the four intermediate-
state hyperon decays, in their respective hyperon rest
systems.

APPENDIX B: PHASE-SPACE VOLUME

The Lorentz invariant two-body phase-space element is
by definition

&’k d*k,
(27[)32(1)1 (27[)32602

dLlpS(k’ kla kZ) =

(BI)
Integration exploiting the delta functions leads to
k. dQ.
dLips(k; ki, ky) = — . B2
/ ips(ki k. k2) 4n\/s 4 (B2)

where /s = M, k. the momentum, and . the angular
variable, both in the c.m. system. In terms of the mass
variables

R

= m[(MZ + mi —m3)* — 4M*m7].

(B3)
The phase-space volume @ is obtained from Eq. (B2) by
integration over d€,,

k.
—. B4
For equal masses m; = m, = m the value of the phase-
space volume becomes

O(M;my, my) =

1 | 4m?

d?(M;m,m)E(l):g ~r

(BS)

APPENDIX C: STRUCTURE FUNCTIONS

The six structure functions R, S, and 7 of Eq. (3.8)
depend on the scattering angle 6, in the c.m. system, the
ratio function #(s), and the phase function A®(s). To be
specific [4,5],

R =1+ncos®0, (C1)
S =1/1—-n?sinfcosfsin(AD), (C2)
T, =n+ cos*0, (C3)
T, = —nsin’ 6, (C4)
T3=1+n, (C5)
T,= MCOSHCOS(A(D). (Co)

r)*s(k —ky — k»).

The parameters # and A® are defined in Egs. (2.2)
and (2.3).

APPENDIX D: DECAY INTO VIRTUAL GAMMA

The squared matrix element | M (¢ — dg)|* for the decay
of a baryon c into a baryon d and a virtual gamma g of mass
m, is given in Eq. (6.8). It can be factorized into factors
R(c — dg) and G,(n.,n,). The exact expression for the
fractional width is

1
R(c — dg) = p2,[(m. — mg)* —m2]| (m, + my)* + 5’"3 )
(D1)

with 2m, <m, < (m, —m,). In the limit m, =0 we
recover R(c — dy) for real photons, Eq. (5.7). The exact

expression for the normalized spin density is

G,m.n;) =1+Bn,-L1L -n,+Cn,-n,, (D2)
1
A= (mc + md)2 +§m%,
B = —(m, + my)*/A,
1
C= Em%/A (D3)

Here, we can without qualm put B = —1 and C = 0. In this
limit we recover the normalized spin density for real
photons, Eq. (5.9).

APPENDIX E: ANGULAR FUNCTIONS

The cross-section distribution (9.6) is a function of two
hyperon unit vectors: 1,, the direction of motion of the
Lambda hyperon in the rest system of the Sigma hyperon,
and 1, the direction of motion of the proton in the rest
system of the Lambda hyperon. Plus the corresponding
vectors for the antihyperon chain. In order to handle these
vectors we introduce a common global coordinate system,
which we define as follows.

The scattering plane of the reaction ete™ — X0 is
spanned by the unit vectors p = 1y and k= 1., as measured
in the c.m. system. The scattering plane makes up the
xz-plane, with the y-axis along the normal to the scattering
plane. We choose a right-handed coordinate system with
basis vectors

e, =P,
e — (p x k)
Y sing P '
1 .
=—(pxk p. El
&= (bxk)xp (E)

Expressed in terms of them the initial-state lepton momen-
tum becomes
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k = sinfe, + cos fe,. (E2)

This coordinate system is used for defining the direc-
tional angles of the Lambda and the proton. The directional
angles of the Lambda hyperon in the Sigma hyperon rest
system are

Iy = (cos ¢y sin@y, singhy sinfy,cosby), (E3)

whereas the directional angles of the proton in the Lambda
hyperon rest system are

1, = (cos¢,sin@,,sing,sind,,cosb,). (E4)

And so for the antihyperons.

An event of the reaction ete” — X020, 30 5 A — p;
30 - A = p is specified by a nine-dimensional vector
&= (0,Q,, Q,. Q3. Qﬁ)' The differential-cross-section
distribution is proportional to a function W(E), which
according to Eq. (10.1) can be decomposed as

W(E) = [Fo(§) +nF(§)]

- MSin(ACb) sin @ cos Olap F,(E)Fs(€)
+ a3 F3(8) Fo(8)]

+ apai Fa(E)F5(E)[(n + cos’0) F4 ()

— nsin?0F ;(E) + (1 + n)sin*0F g(€)

+1/1 = 5% cos(A®) sin O cos OF o ()]. (ES)

The set of ten angular functions, F(&) — Fq(E), are
defined in Eq. (10.2). The scalar products needed for their
determination are as follows:

N-1, =sinf, sing,,
Iy -1, =sin@, sinf, cos(¢pp — ) +cosf, cos b,

I - P =cosby,,
| IR k = sin@sin @, cos ¢y,
Ia-p=0,

In, 15, = sinf, sin3 cos(pp — Pr). (E6)

We understand that the remaining scalar products are
obtained from those above by the substitution (A;p) —
(A; p). With the scalar products of Eq. (E6) in hand one
quickly determines the ten angular functions F(€) of
Eq. (10.2),

Fol(§) = 1.

F(E) = cos?0,

F,(E) = sinf, sinf, cos(¢pp — ) + cosf, cos b,
F3(€) = sin @z sin 0}, cos(¢z — ¢p) + cos O cos 05,
F4(E) = cos B, cos by,

F5(&) = sinf, singy,

Fo(E) = sin O3 sin ¢3,

F7(8) = sin6, sin 0 cos(¢pp — P3).

Fg(E) = sinf) cos ¢ sin O3 cos @3,

Fo(E) = cosO, sin 5 cos ¢z + sin O, cos ¢y cos O5.

(E7)

The differential distribution of Eq. (E5) involves two
parameters related to the ete™ — X% reaction that can
be determined by data: the ratio of form factors #, and
the relative phase of form factors A®. In addition, the
distribution function W(E) depends on the weak-decay
parameters a, and aj of the two A hyperon decays. The
dependence on the weak decay parameters  and y drops
out, when final-state proton and antiproton spins are not
measured.

APPENDIX F: FINDING ANGULAR VARIABLES

The angular functions and differential distributions of the
previous appendix are expressed in terms of unit vectors
such as 1, and 1,, which are not directly measurable but
which must be calculated. We suggest the following
approach.

For each event we embed the particle momenta in its c.m.
system and with coordinate axes as defined in Eq. (E1). For
the X° hyperon the components of the momentum are, by
definition,

Pso = (0,0, 1). (F1)

Then, let us consider the final-state proton with momen-
tum p, in the c.m. system. In the rest system of the Lambda
hyperon the momentum of the same proton is denoted L ,,
and given by the expression

L, =p, + Ba,Pa. (F2)

1 1

By, =— |——
A mp |En +my

P Pa Py — EA . (F3)

Now, the length of the vector L » is well known, being the
momentum in the decay A — zN, and therefore

L, = 5—[(m} +mZ = m3)? — 4mimz]'2. (F4)

1
2mA
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Hence, the unit vector 1, appearing in our form-factor
equations becomes

lp:Lp/|Lp|’ (F5)

= (cos¢,sin6,,sing,sin6,,cosd,). (Fo6)

Corresponding equations for A in the decay X° — Ay are
easily written down. In the rest system of the X° baryon the
final-state A hyperon has momentum

LA =pa + BsaPy, (F7)

1 1

= ‘pPr—EA|, F8
2o E20+mzopzo Pa A (F8)

BZA

and the length of this vector is, as inferred from the
Eq. (F4),

1
LAl = 5—5 (m3, = m3). (F9)
2m. 0 A

By the same reasoning the unit vector 1, appearing in our
form-factor equations is

lA = LA/lLA

: (F10)
= (cos g, sinBy,sing, sin@y,cos6,).  (F11)

And so on for the antihyperons.
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