
 

Sequential hyperon decays in the reaction e + e− → Σ0Σ̄0
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We report on a study of the sequential hyperon decay Σ0 → Λγ; Λ → pπ− and its corresponding
antihyperon decay. We derive a multidimensional and model-independent formalism for the case when the
hyperons are produced in the reaction eþe− → Σ0Σ̄0. Cross-section distributions are calculated using the
folding technique. We also study sequential decays of single-tagged hyperons.
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I. INTRODUCTION

The BESIII experiment [1] has created new opportunities
for research into hyperon physics, based on eþe− annihi-
lation into hyperon-antihyperon pairs. Such possibilities
are interesting, and for several reasons:

(i) They offer the currently only feasible way for
investigating the electromagnetic structure of hyper-
ons [2].

(ii) By measuring in the vicinity of vector-charmonium
states, one gains information on the strong baryon-
antibaryon decay processes of charmonia.

(iii) They offer a model-independent method for meas-
uring weak-decay-asymmetry parameters, which
can probe CP symmetry [3].

The basic reaction, eþe− → YȲ, is graphed in Fig. 1. In
the continuum region, i.e., in energy regions that do not
overlap with energies of vector charmonia like J=ψ , ψ 0 and
ψð2SÞ, the production process is dominated by one-photon
exchange, eþe− → γ� → YȲ. The reaction amplitude is
then governed by the electromagnetic form factors GE and
GM. In the vicinity of vector resonances, the electromag-
netic form factors are replaced by hadronic form factorsGψ

E
and Gψ

M. However, the shapes of the differential-cross-
section distributions are the same in the two cases: all
physics of the production mechanism is contained within
the form factors, or equivalently, the strength of form
factors, Dψ ðsÞ; the ratio of form-factor magnitudes, ηψðsÞ;
and the relative phase of form factors, ΔΦψðsÞ.
Analyses of joint-decay distributions of hyperons, such

as Λð→ pπ−ÞΛ̄ð→ p̄πþÞ, enables us to determine the

weak-interaction-decay parameters, αβγ. For a complete
determination we need to know the bayon-final-state
polarizations.
The theoretical description of the annihilation reaction of

Fig. 1 is described in Ref. [4], and the corresponding
annihilation reaction mediated by J=ψ in Ref. [5]. Accurate
experimental results for the form-factor parameters ηψ and
ΔΦψ and the weak-interaction parameters αΛðαΛ̄Þ for the
latter annihilation process are all reported in Ref. [3]. A
precise knowledge of the asymmetry parameters αΛðαΛ̄Þ is
needed for studies of spin polarization in Ω−, Ξ−, and Λþ

c
decays, and for tests of the Standard Model.
The graph of Fig. 1 can be generalized in the sense that it

can include hyperons that decay sequentially. It can also
include cases where the produced hyperon is of a different
kind than the produced antihyperon, i.e., eþe− → Y1Ȳ2.
In this paper we shall consider annihilation into Σ0Σ̄0

pairs, in a way similar to that of Ref. [6]. The Σ0 decays
electromagnetically, Σ0 → Λγ, and subsequently the
Lambda hyperon decays weakly, Λ → pπ−. The interest
of such a study is many-fold:

(i) The form factors provide information about the pro-
duction process. So far, literature has focused on
electromagnetic form factors whose interpretation is

FIG. 1. Graph describing the electromagnetic annihilation
reaction eþe− → Λ̄Λ. The same reaction can also proceed
hadronicly via vector charmonium states such as J=ψ , ψ 0, or
ψð2SÞ, replacing the photon.
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straightforward [2,7]. However, recent experimental
advances call for an interpretation also of the
hadronic form factors. In particular, it would be
interesting to compare the decay of J=ψ into various
hyperon-antihyperon pairs with the corresponding
decays of other vector charmonia.

(ii) The BESIII Collaboration plans to perform a first
measurement of the branching fraction of the Σ0

Dalitz decay Σ0 → Λγ�, γ� → eþe− using the large
data sample available for the eþe− → J=ψ → Σ̄0Σ0

process. Then, the most important background will
come from eþe− → J=ψ → Σ̄0Σ0; (Σ0 → Λγ;
Λ → pπ− þ c:c), where one of the photons under-
goes external conversion into an eþe− pair. This is
because the branching ratio of the Σ0 → Λγ, accord-
ing to QED, is 3 orders of magnitude larger than that
of the Dalitz decay. In order to properly account for
the background, precise knowledge of the joint
angular distribution is required.

(iii) It can provide an independent measurement of the
Lambda asymmetry parameters αΛ and αΛ̄.

(iv) It can provide a first test of strong CP symmetry in
the Σ0 → Λγ decay [8].

Our calculation is performed in steps. First, we review
some important facts; the spin structure of the eþe− →
Σ0Σ̄0 annihilation reaction [4]; the classical αβγ description
of hyperon decays [9]; the description of the electromag-
netic Σ0 → Λγ decay, both for real and virtual photons
[6,10]. The virtual photons decay into Dalitz lepton pairs.
An important element of our calculation is the factorization
of the squared amplitudes into a spin-independent frac-
tional decay rate and a spin-density distribution.
Following these reviews we demonstrate how the folding

method of Ref. [11] is adapted to sequential decays. Both
simple and double decay chains are treated. Finally, we join
production and decay steps to give the cross-section
distributions.
The information we are hoping to gain resides in the

angular distributions, and we are therefore not overly
concerned with absolute normalizations, although they
may be obtained without too much effort.

II. BARYON FORM FACTORS

The diagram in Fig. 1 describes the annihilation reaction
e−ðk1Þeþðk2Þ → Yðp1ÞȲðp2Þ and involves two vertex func-
tions: one of them leptonic, the other one baryonic. The
strength of the lepton-vertex function is determined by the
electric charge ee, but two form factorsGMðsÞ andGEðsÞ are
needed for describing the baryonic vertex function. Here,
s ¼ ðp1 þ p2Þ2 with p1 and p2 as defined in Fig. 1.
The strength of the baryon form factors is measured by

the function DðsÞ,

DðsÞ ¼ sjGMj2 þ 4M2jGEj2; ð2:1Þ

with the M-variable representing the hyperon mass. The
ratio of form factors is measured by ηðsÞ,

ηðsÞ ¼ sjGMj2 − 4M2jGEj2
sjGMj2 þ 4M2jGEj2

; ð2:2Þ

with ηðsÞ satisfying −1 ≤ ηðsÞ ≤ 1. The relative phase of
form factors is measured by ΔΦðsÞ,

GE

GM
¼ eiΔΦðsÞ

���� GE

GM

����: ð2:3Þ

In Ref. [5] annihilation in the region of the J=ψ and
ψð2SÞ masses is considered. The photon propagator of
Fig. 1 is then replaced by the appropriate vector-meson
propagator.

III. CROSS SECTION FOR e − e+ → Y(s1)Ȳ(s2)

Our first task is to review the calculation of the cross-
section distribution for eþe− annihilation into baryon-
antibaryon pairs, with baryon-four-vector polarizations s1
and s2 [4,5]. From the squared matrix element of this
process, jMj2, we remove a factor e4e=s2, which is the
square of the propagator, and get

dσ ¼ 1

2s
e4e
s2

jMredðs1; s2Þj2dLipsðk1 þ k2;p1; p2Þ; ð3:1Þ

with s ¼ ðp1 þ p2Þ2, and dLips denotes the phase-space
element of Ref. [12], as described in Appendix A. For a
baryon of momentum p the four-vector spin s is related to
the three-vector spin n, the spin in the rest system, by

sðp;nÞ ¼ nk
M

ðjpj; Ep̂Þ þ ð0;n⊥Þ: ð3:2Þ

Longitudinal and transverse directions of vectors are
relative to the p̂ direction.
In the global c.m. system kinematics simplifies. There,

three-momenta p and k are defined such that

p1 ¼ −p2 ¼ p; ð3:3Þ

k1 ¼ −k2 ¼ k; ð3:4Þ

and with scattering angle θ defined by

cos θ ¼ p̂ · k̂: ð3:5Þ

Furthermore, according to Appendix B, in the global c.m.
system the phase-space element reads

dLipsðk1 þ k2;p1; p2Þ ¼
p

32π2k
dΩ; ð3:6Þ

with p ¼ jpj and k ¼ jkj.
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The matrix element in Eq. (3.1) can be written as a sum
of terms that depends on the baryon and antibaryon spin
directions in their respective rest systems, n1 and n2,

jMredðeþe− → Yðs1ÞȲðs2ÞÞj2 ¼ sDðsÞSðn1;n2Þ; ð3:7Þ

with the strength function DðsÞ defined in Eq. (2.1). We
call a function such as Sðn1;n2Þ a spin density. In the
present case, the spin density is a sum of seven mutually
orthogonal contributions [4],

Sðn1;n2Þ ¼ Rþ SN · n1 þ SN · n2 þ T 1n1 · p̂n2 · p̂

þ T 2n1⊥ · n2⊥ þ T 3n1⊥ · k̂n2⊥ · k̂

þ T 4ðn1 · p̂n2⊥ · k̂þ n2 · p̂n1⊥ · k̂Þ; ð3:8Þ

where N is the normal to the scattering plane,

N ¼ 1

sin θ
p̂ × k̂: ð3:9Þ

The six structure functions R, S, and T of Eq. (3.8)
depend on the scattering angle θ, the ratio function ηðsÞ,
and the phase function ΔΦðsÞ. Their detailed expressions
are given in Appendix C.
The cross-section distribution for polarized final-state

hyperons becomes

dσ
dΩ

¼ p
k
α2eDðsÞ
4s2

Sðn1;n2Þ; ð3:10Þ

where αe is the fine-structure constant. Summing over
baryon and antibaryon final-state polarizations gives as a
result

dσ
dΩ

ðeþe− → γ⋆ → YȲÞ ¼ p
k
α2eDðsÞ

s2
R: ð3:11Þ

Summing only over the antibaryon polarizations gives

dσ
dΩ

¼ p
k
α2eDðsÞ
2s2

ðRþ SN · n1Þ: ð3:12Þ

This result tells us that the baryon is polarized and that its
polarization is directed along the normal to the scattering
plane, p̂ × k̂, and that the value of the polarization is

PYðθÞ ¼
S
R

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
cos θ sin θ

1þ ηcos2θ
sinðΔΦÞ. ð3:13Þ

From Eq. (3.8) we conclude that there is a corresponding
result for the antibaryon, but it should then be remembered
that p is the momentum of the baryon, but −p that of the
antibaryon.
Baryon and antibaryon polarizations in eþe− annihila-

tion were first discussed by Dubničkova et al. [13], but with

results slightly different from ours, and later by Czyż et al.
[14]. For details see Ref. [4].

IV. WEAK BARYON DECAYS

Weak decays of spin one-half baryons, such as
Λ → pπ−, involve two amplitudes, one S-wave and one
P-wave amplitude, and the decay distribution is commonly
parametrized by three parameters, denoted αβγ, and which
fulfill a relation

α2 þ β2 þ γ2 ¼ 1: ð4:1Þ

Details of this description can be found in Refs. [15]
or [4,9].
Since we shall encounter several weak baryon decays of

the same structure as the Λ → pπ− decay, we shall use a
generic notation, c → dπ, for those decays.
The matrix element describing the decay of a polarized c

baryon into a polarized d baryon is

Mðc → dπÞ ¼ ūðpd; sdÞðAþ Bγ5Þuðpc; scÞ; ð4:2Þ

with p and s with appropriate indices denoting momenta
and spin four-vectors of the baryons. The square of this
matrix element we factorize, writing

jMðc → dπÞj2 ¼ Tr

�
1

2
ð1þ γ5=sdÞð=pd þmdÞðAþ Bγ5Þ

× ð=pc þmcÞ
1

2
ð1þ γ5=scÞðA⋆ − B⋆γ5Þ

�
¼ Rðc → dπÞGðnc;ndÞ; ð4:3Þ

where nc and nd are the spin vectors of baryons c and d in
their rest frames, Eq. (3.2). The R-factor is a spin
independent factor, defined by

Rðc → dπÞ ¼ 2mcΓðc → dπÞ=Φðc → dπÞ;
¼ jAj2ððmc þmdÞ2 −m2

πÞ
þ jBj2ððmc −mdÞ2 −m2

πÞ; ð4:4Þ

where Φðc → dπÞ ¼ Φðmc;md;mπÞ is the phase-space
volume of Appendix B. We refer to Rðc → dπÞ as the
fractional decay rate, since it is a decay rate per unit
phase space. Further inspection of Eq. (4.3) tells us that
Γðc → dπÞ is defined as an average over the spins of both
initial- and final-state baryon.
The spin-density-distribution function, Gðnc;ndÞ of

Eq. (4.3), is a Lorentz scalar, which we choose to evaluate
in the rest system of the mother baryon, c,

Gðc; dÞ ¼ 1þ αcnc · ld þ αcnd · ld þ nc ·Lcðnd; ldÞ;
ð4:5Þ
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with

Lcðnd; ldÞ ¼ γcnd þ ½ð1 − γcÞnd · ld�ld þ βcnd × ld:

ð4:6Þ
The vector ld is a unit vector in the direction of motion
of the daughter baryon, d, in the rest system of mother
baryon c. The indices on the αβγ parameters remind us they
characterize baryon c. A spin density is normalized if the
spin-independent term is unity.
We observe an important symmetry,

nc ·Lcðnd; ldÞ ¼ nd ·Lcðnc;−ldÞ: ð4:7Þ
Since the spin of baryon d is usually not measured, the

interesting spin-density is obtained by taking the average
over the spin directions nd,

Wcðnc; ldÞ ¼ hGcðc; dÞind

¼ Uc þ nc · Vc; ð4:8Þ
with

Uc ¼ 1; Vc ¼ αcld: ð4:9Þ
For an initial state polarization Pc we put nc ¼ Pc, and get
an angular distribution known from the weak hyperon
decay Λ → pπ− [4,9].
The matrix element describing the decay of a polarized c̄

(anti)baryon into a polarized d̄ (anti)baryon is similar to
that of Eq. (4.2),

Mðc̄ → d̄πÞ ¼ v̄ðpc̄; sc̄ÞðA0 þ B0γ5Þvðpd̄; sd̄Þ: ð4:10Þ
The relation between the parameters A, B and A0, B0 is
clarified in Refs. [16,17].
The square of the antibaryon matrix element of

Eq. (4.10) is factorized exactly as the baryon-matrix
element of Eq. (4.3),

jMðc̄ → d̄πÞj2 ¼ Rðc̄ → d̄πÞGðnc̄;nd̄Þ; ð4:11Þ
where nc̄ and nd̄ are the spin vectors of baryons c̄ and d̄ in
their rest systems.
The functions Rðc̄ → d̄πÞ and Gðnc̄;nd̄Þ are tied to

hyperons c̄ and d̄ in exactly the same way as those tied to
hyperons c and d, Eqs. (4.4) and (4.5), or to be specific,

Gðc̄; d̄Þ ¼ 1þ αc̄nc̄ · ld̄ þ αc̄nd̄ · ld̄ þ nc̄ ·Lc̄ðnd̄; ld̄Þ:
ð4:12Þ

For CP conserving interactions the asymmetry param-
eters of the hyperon pair c, d are related to those of
antihyperon pair c̄, d̄ by [16,17]

αc ¼ −αc̄; βc ¼ −βc̄; γc ¼ γc̄: ð4:13Þ

V. ELECTROMAGNETIC HYPERON DECAYS:
REAL PHOTONS

Electromagnetic transitions such as Σ0 → Λγ and Ξ0 →
Σ0γ are readily investigated in eþe− annihilation. The
electromagnetic Σ0 → Λ transition is caused by the four-
vector current [12]

Jμðc → dÞ ¼ 1

mc þmd

�
F1ðk2Þ

�
k2

md −mc
γμ þ kμ

�

þ F2ðk2Þiσμνkν
�
; ð5:1Þ

with k ¼ pc − pd. This transition current is gauge invari-
ant, inasmuch as k · J ¼ 0. In fact, the F1ðk2Þ and F2ðk2Þ
contributions are each, by themselves, gauge invariant. For
real photons k2 ¼ 0 and the F1 contribution vanishes, since
F1 itself vanishes, F1ð0Þ ¼ 0. Thus, for this case it is
sufficient to consider the F2 term. We denote by μcd,

μcd ¼ eF2ð0Þ=ðmc þmdÞ; ð5:2Þ

the strength of the M1 magnetic transition. As a conse-
quence, the expression for the matrix element for any
electromagnetic Σ0 → Λγ like decay, becomes

Mγðc → dγÞ ¼ μcdūdðpd; sdÞðσμνe⋆μð−ikνÞÞucðpc; scÞ
¼ μcdūdðpd; sdÞð=e⋆=kÞucðpc; scÞ; ð5:3Þ

where sc and sd are the spin four-vectors of the two
baryons.
It is convenient to write the square of this matrix element

on the form

jMγðc → dγÞj2 ¼ μ2cdTr

�
1

2
ð1þ γ5=sdÞð=pd þmdÞ=e⋆=k

× ð=pc þmcÞ
1

2
ð1þ γ5=scÞ=e=k

�
¼ Hμν

γ ðkÞeμðkÞe⋆ν ðkÞ; ð5:4Þ

with Hμν
γ ðkÞ referred to as the hadron tensor. We have also

made use of the simplifying identity

eμiσμνkν ¼ −=e=k; ð5:5Þ

valid for real photons.
Summation over the two photon-spin directions entails

replacing eμðkÞe⋆ν ðkÞ by −gμν. This leads toX
eγ

jMγðc → dγÞj2 ¼ Rðc → dγÞGγðnc;ndÞ; ð5:6Þ

and again nc and nd are the spin vectors of baryons c and d
in their rest systems. Photon polarizations are summed
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over. There are also electromagnetic transitions between
charged baryons, but in this section we limit ourselves to
electromagnetic transitions between neutral baryons.
The factorization of Eq. (5.6) is chosen so that the

fractional decay rate Rðc → dγÞ is the unpolarized part of
Eq. (5.6) and its Gγðnc;ndÞ factor the normalized spin-
density-distribution function. Here, unpolarized means
averaged over the spin directions of both initial and final
baryons.
The fractional decay rate, Rðc → dγÞ of Eq. (5.7), has the

same structure as the corresponding one for weak baryon
decays, Eq. (4.4),

Rðc → dγÞ ¼ 2mcΓðc → dγÞ=Φðc → dγÞ;
¼ μ2cdðm2

c −m2
dÞ2; ð5:7Þ

where Φðc → dγÞ ¼ Φðmc;md;mγÞ is the phase-space
volume.
The electromagnetic decay width is

Γðc → dγÞ ¼ 1

2π
μ2cdω

3; ð5:8Þ

where ω is the photon energy. Remember, that this width is
obtained after averaging over both initial and final baryon
spin states.
The spin-density-distribution function of Eq. (5.6)

involves an implicit summation over photon polarizations.
For such a case

Gγðnc;ndÞ ¼ 1 − nc · lγlγ · nd; ð5:9Þ

where lγ is a unit vector in the direction of motion of the
photon, and ld ¼ −lγ a unit vector in the direction of
motion of baryon d, both in the rest system of baryon c.
We notice that when both hadron spins are parallel or

antiparallel to the photon momentum, then the decay
probability vanishes, a property of angular-momentum
conservation. We also notice that expression (5.9) cannot
be written in the αβγ representation of Eqs. (4.5) and (4.6).
When the spin of the final-state baryon d is not

measured, the relevant spin density is obtained by forming
the average over the spin directions nd,

Wγðnc; ldÞ ¼ hGγðc; dÞind

¼ Uc þ nc · Vc; ð5:10Þ

with

Uc ¼ 1; Vc ¼ 0: ð5:11Þ

Thus, the decay-distribution function is independent of the
initial-state baryon spin vector nc.

The antiparticle matrix element corresponding to the
particle matrix element of Eq. (5.3) is simply

Mγðc̄ → d̄γÞ ¼ μcdv̄c̄ðpc̄; sc̄Þð=e⋆=kÞvd̄ðpd̄; sd̄Þ: ð5:12Þ

We assume the parameter μ is the same for particle
transitions c → d as for antiparticle transitions c̄ → d̄.
The normalized spin density corresponding to the anti-

particle-matrix element of Eq. (5.12) is the same as that
corresponding to the particle matrix element of Eq. (5.3), as
given in Eq. (5.9), provided we replace the particle spin
vectors nc and nd by the antiparticle spin vectors nc̄ and nd̄.
The possibility to search for P-violating admixtures in

the electromagnetic decay Σ0 → Λγ was advocated by Nair
et al. [8]. Such contributions are created by making the
substitution

=e�=k → ð1 − bγ5Þ=e�=k; ð5:13Þ

in the decay amplitude of Eq. (5.3). This substitution is
gauge invariant and changes the normalized spin density
(5.9) into

Gγðnc;ndÞ ¼ 1 − nc · lγlγ · nd þ ρc½nc · lγ − nd · lγ�;
ð5:14Þ

with asymmetry parameter

ρc ¼
2ℜðbÞ
1þ jbj2 : ð5:15Þ

Similarly, the decay width of Eq. (5.8) is changed into

Γðc → dγÞ ¼ 1

2π
ð1þ jbj2Þμ2cdω3: ð5:16Þ

Parity violating admixtures in the antiparticle decay
Σ̄0 → Λ̄γ can also be simulated by the substitution of
Eq. (5.13). Replacing the parameter b by b̄, the spin density
for the antiparticle decay becomes

Gγðnc̄;nd̄Þ ¼ 1 − nc̄ · lγlγ · nd̄ − ρc̄½nc̄ · lγ − nd̄ · lγ�;
ð5:17Þ

where

ρc̄ ¼
2ℜðb̄Þ
1þ jb̄j2 : ð5:18Þ

The P-violating interference term now enters with the
opposite sign. If CP is conserved then b̄ ¼ −b. For a full
discussion of P and CP conservation in this context we
refer to Ref. [8].
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VI. ELECTROMAGNETIC HYPERON DECAYS:
VIRTUAL PHOTONS

The leptonic decay Σ0 → Λeþe− is a small fraction of
the electromagnetic decay Σ0 → Λγ [18,19]. The lepton
pair of the leptonic decay is interpreted as the decay product
of a virtual, massive photon. This pair is often referred to as
a Dalitz lepton pair.
The form factors F1ðk2Þ and F2ðk2Þ have been calculated

in chiral perturbation theory [20,21]. The form factor
F1ðk2Þ remains small for virtual photons and it is therefore
reasonable to neglect its contribution.
The steps to follow in order to find the cross-section

distribution for virtual photons are well known. The square
of the reduced matrix element is written as

jMeðc → deþe−Þj2 ¼ 1

m4
γ
Hμν

e Lμν; ð6:1Þ

where Hμν
e is the hadron tensor and Lμν the lepton tensor.

The hadron tensor can be extracted from Eq. (5.4),

Hμν
e ðc → deþe−Þ ¼ μ2cdTr

�
1

2
ð1þ γ5=sdÞð=pd þmdÞσμτkτ

× ð=pc þmcÞ
1

2
ð1þ γ5=scÞσνλkλ

�
:

ð6:2Þ
We need the square of Me for fixed baryon spins but

summed over lepton spins. The summation over lepton
spins leads to a lepton tensor,

Lμνðk1; k2Þ ¼ e2
X
l spin

v̄ðk2Þγμuðk1Þūðk1Þγνvðk2Þ

¼ 4e2
�
kμkν − k1μk1ν − k2μk2ν −

1

2
gμνk2

�
;

ð6:3Þ
where k1 and k2 are the lepton momenta, and k ¼ k1 þ k2
the four momentum of the virtual photon.
Next, we integrate over the lepton momenta. For this

purpose we rewrite the phase-space element as

dLipsðpc;pd; k1; k2Þ

¼ 1

2π
dm2

γdLipsðpc;pd; kÞdLipsðk; k1; k2Þ; ð6:4Þ

with k2 ¼ m2
γ and dLipsðk; k1; k2Þ the phase-space element

for the lepton pair, as in Appendix B.
The integration over the lepton phase space affects only

the lepton tensor. Thus, we note that

hk1μk1νi ¼
�
1

3

�
1 −

m2
e

k2

	
kμkν −

1

12
k2
�
1 −

4m2
e

k2

	
gμν

�
h1i;

ð6:5Þ

and similarly for hk2μk2νi, with brackets denoting integra-
tion over lepton phase space, dLipsðk; k1; k2Þ, and h1i
denoting the phase-space volume itself. The term pro-
portional to kμkν in Eq. (6.5) vanishes due to gauge
invariance. As a consequence, we get as average of the
lepton tensor,

hLμνi ¼ Lðk2Þð−gμνÞ; ð6:6Þ

Lðk2Þ ¼ αek2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

k2

s �
1 −

1

3

�
1 −

4m2
e

k2

	�
: ð6:7Þ

The lepton tensor Lμν of Eq. (6.6) comes with a factor
ð−gμνÞ. Contracting it with the hadron tensorHμνðc → dgÞ,
with g representing the virtual photon, is equivalent to
summing over photon polarizations. We write

jMeðc → dgÞj2 ¼ −Hμ
μðc → dgÞ;

¼ Rðc → dgÞGðnc;ndÞ: ð6:8Þ

The factorization is chosen so that Rðc → dgÞ is spin
independent, and so that the spin-independent term of
Gðnc;ndÞ is unity.
The functions R and G are easily calculated. Neglecting

terms unimportant for the Σ0 → Λγ transition, we get for
the fractional decay rate of Eq. (6.8),

Rðc → dgÞ ¼ 2mcΓðc → dgÞ=Φðc → dgÞ;
¼ μ2cd½ðmc −mdÞ2 −m2

γ �ðmc þmdÞ2; ð6:9Þ

where Φðc → dgÞ ¼ Φðmc;md;mγÞ is the phase-space
volume. For mγ ¼ 0 we recover Rðc → dγÞ for real
photons, Eq. (5.7).
Again neglecting terms unimportant for the Σ0 → Λγ

transition, the properly normalized spin density reads

Gðnc;ndÞ ¼ 1 − nc · lγlγ · nd: ð6:10Þ

Thus, it is in this approximation also equal to the normal-
ized spin density for real photons, Eq. (5.9). The exact
expressions for R and G are given in Appendix D.
Next, we combine the matrix elements for the transitions

c → dg and g → eþe−, g representing a virtual photon of
mass mγ .
Since the lepton tensor of Eq. (6.7) lacks spin depend-

ence, so that Gðg → eþe−Þ ¼ 1, we have the spin-density
relation

Gðc → deþe−Þ ¼ Gðc → dgÞGðg → eþe−Þ; ð6:11Þ

and a corresponding R-factor relation

Rðc → deþe−Þ ¼ Rðc → dgÞRðg → eþe−Þ: ð6:12Þ
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The function Rðg → eþe−Þ collects the remains, the
lepton tensor of Eq. (6.7) multiplied by the propagator 1=k4

of Eq. (6.1),

Rðg → eþe−Þ ¼ αe
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

k2

s �
1 −

1

3

�
1 −

4m2
e

k2

	�
:

ð6:13Þ

This expression comes with the phase-space element

dLips ¼ 1

2π
dm2

γdLipsðpc;pd; kÞ; ð6:14Þ

where k is the four-momentum of the virtual photon and
k2 ¼ m2

γ . Remember that m2
γ ≥ 4m2

e so there is no singu-
larity in Rðg → eþe−Þ.
Deviations from the Dalitz-distribution function of

Eq. (6.13) signals the importance of electromagnetic form
factors in the virtual photon exchange.

VII. FOLDING

Our general aim is to calculate the cross-section dis-
tributions for eþe− annihilation into Σ0Σ̄0 pairs that sub-
sequently decay, as Σ0 → Λ → p or Σ̄0 → Λ̄ → p̄, and as
illustrated in Fig. 2. The first step in this endeavour is to
perform the folding of a product of spin densities, a
technique especially adapted to spin one-half baryons.
A folding procedure implies forming an average over

intermediate-spin directions n according to the prescription

h1in ¼ 1; hnin ¼ 0; hn · kn · lin ¼ k · l: ð7:1Þ

For more details see Ref. [11].

In the present case there are five spin densities; the
annihilation spin density SðnΣ;nΣ̄Þ of Eq. (3.8); the spin
densities of the electromagnetic and weak decays,
Eqs. (5.9) and (4.5),

GðΣ0 → ΛγÞ ¼ 1 − nΣ · lγlγ · nΛ; ð7:2Þ

GðΛ → pπ−Þ ¼ 1þ αΛnΛ · lp þ αΛnp · lp

þ nΛ ·LΛðnp; lpÞ; ð7:3Þ

with LΛðnp; lpÞ defined in Eq. (4.6); and the antihyperon
versions of the last two spin densities. Remember that the
symbol l represents a unit vector.
The spin density for the Σ0 → p transition is obtained by

folding a product of spin densities. Averaging over the
Lambda and final-state proton spins, according to the
folding prescription Eq. (7.1), gives us

GðΣ0 → pÞ ¼ hGðΣ0 → ΛγÞGðΛ → pπ−ÞinΛ;np

¼ 1 − αΛnΣ · lγlγ · lp: ð7:4Þ

We notice that this spin density does not depend on the
asymmetry parameters βΛ and γΛ, a consequence of the
average over the final-state-proton-spin directions.
To the baryon decay chain Σ0 → Λ → p there is a

corresponding antibaryon decay chain Σ̄0 → Λ̄ → p̄, and
a corresponding transition-spin density.
To go from the baryon to the antibaryon case, we simply

replace the baryon variables by their antibaryon counter-
parts, nΣ → nΣ̄, αΛ → αΛ̄, etc.
The inclusion of parity violation in the Σ0 → Λγ decay is

straightforward. We simply replace GðΣ0 → ΛγÞ of
Eq. (7.2) by

GðΣ0 → ΛγÞ ¼ 1 − nΣ · lγlγ · nΛ þ ρΣ½nΣ · lγ − nΛ · lγ�
ð7:5Þ

of Eq. (5.14), and get

GðΣ0 → pÞ ¼ hGðΣ0 → ΛγÞGðΛ → pπ−ÞinΛ;np

¼ ð1 − ρΣαΛlγ · lpÞ − nΣ · lγðαΛlγ · lp − ρΣÞ:
ð7:6Þ

From this expression the angular distribution in the
decay of a Σ0 of polarization PΣ is obtained by the
substitution nΣ → PΣ. The angular distribution in the decay
of an unpolarized Σ0 hyperon becomes ð1 − ρΣαΛlγ · lpÞ.
Hence, as a consequence of parity violation the cross-
section distribution acquires a small angular depen-
dent term.

FIG. 2. Graph describing the reaction eþe− → Σ̄0Σ0, and the
subsequent decays, Σ0→Λγ; Λ → pπ− and Σ̄0 → Λ̄γ; Λ̄ → p̄πþ.
The reaction graphed can, in addition to photons, be mediated by
vector charmonia, such as J=ψ , ψ 0 and ψð2SÞ. Solid lines refer to
baryons, dashed to mesons, and wavy to photons.
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VIII. SINGLE CHAIN DECAYS

Single-chain decays of Σ0 hyperons can be studied in the
eþe− annihilation into Σ0Σ̄0 pairs, provided the Σ̄0 is
somehow identified, e.g., as a missing hyperon [6]. The
spin-density state of the Σ0 will then be obtained from
Eq. (3.8) as

hSðnΣ;nΣ̄ÞinΣ̄
¼ Rþ SN · nΣ: ð8:1Þ

A Σ0 hyperon in a state of polarization PΣ, subject to the
condition jPΣj ≤ 1, is characterized by a normalized spin-
density function,

SΣðnΣÞ ¼ 1þ PΣ · nΣ: ð8:2Þ

Therefore, by Eq. (8.1), it follows that

PΣ ¼ SN=R: ð8:3Þ

If a Σ0 hyperon of polarization PΣ undergoes an
electromagnetic decay, Σ0 → Λγ, we can determine the
spin-density distribution of the Λ hyperon by folding the
initial state Σ0 spin density of Eq. (8.2) with the Σ0 decay
distribution of Eq. (5.9), to get

WΛðnΛ; lΛÞ ¼ hSΣðnΣÞGγðnΣ;nΛÞinΣ

¼ 1 − PΣ · lΛlΛ · nΛ; ð8:4Þ

with lΛ ¼ −lγ and a Λ polarization

PΛ ¼ −PΣ · lΛlΛ: ð8:5Þ

Consequently, the Λ polarization is directed along the Λ
momentum lΛ, a fact which is independent of the initial Σ0

hyperon spin.
Let us now consider also the weak decay of the

Λ-hyperon, Λ → pπ−, which is described by the spin
density GΛðnΛ;npÞ of Eq. (4.5). Since the spin of the
final-state proton is usually not measured, we form the
average over the proton-spin directions. Then, the spin-
density-distribution function of Eq. (8.4) is expanded to

WpðlΛ; lpÞ ¼ hSΣðnΣÞGγðnΣ;nΛÞGpðnΛ;npÞinΣ;nΛ;np

¼ 1 − αΛPΣ · lΛlΛ · lp;

¼ 1þ αΛPΛ · lp: ð8:6Þ

The decay chain Σ0 → Λγ → pπ− makes part of our
annihilation process and it is therefore of interest to
investigate what additional information may be obtained
by measuring the spin of the final-state proton. Thus,
instead of the spin density of Eq. (7.6) we investigate the
spin density

GðΣ0 → pÞ ¼ hGðΣ0 → ΛγÞGðΛ → pπ−ÞinΛ
: ð8:7Þ

Invoking the vector-function identity of Eq. (4.6) we get

GðΣ0 → pÞ ¼ 1þ αΛnp · lp − nΣ · lγ½αΛlγ · lp
þ np ·LΛðlγ;−lpÞ�: ð8:8Þ

Finally, the spin-density-distribution function for the
final state proton is obtained as

SðnpÞ ¼ hSðnΣÞSðnΣ;npÞinΛ;nΣ

¼ Up þ Vp · np; ð8:9Þ

Up ¼ 1 − αΛPΣ · lγlγ · lp; ð8:10Þ

Vp ¼ αΛlp − PΣ · lγLΛðlγ;−lpÞ: ð8:11Þ

This result describes a proton polarization which is Vp=Up.
It is explicitly dependent on αΛ, but there is a hidden
dependence on βΛ and γΛ in the vector function LΛ.

IX. PRODUCTION AND DECAY OF Σ0Σ̄0 PAIRS

Now, we come to the main task of our investigation:
production and decay of Σ0Σ̄0 pairs. The starting point is
the reaction eþe− → Σ0Σ̄0, the spin-density distribution of
which was calculated in Sec. III. We name it SðnΣ;nΣ̄Þ. The
explicit expression is given by Eq. (3.8), with n1, n2

replaced by nΣ;nΣ̄.
The spin-density distribution WΣðnΣ;npÞ for the decay

chain Σ0 → Λγ; Λ → pπ− is given in Eq. (8.8). We write

WΣðnΣ;npÞ ¼ UΣ þ nΣ · VΣ; ð9:1Þ

UΣ ¼ 1þ αΛnp · lp ð9:2Þ

VΣ ¼ −lγ½αΛlγ · lp þ np ·LΛðlγ;−lpÞ�; ð9:3Þ

and ditto for WΣ̄ðnΣ̄;np̄Þ. We are only interested in decay
chains of Σ0 and Σ̄0 which are each other’s antichains.
The final-state-angular distributions are obtained by

folding the spin distributions for production and decay,
according to prescription (7.1). Invoking Eq. (3.8) for the
production step and Eqs. (9.1) and its antidistribution for
the decay steps, we get the angular distribution
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WΣΣ̄ðlaÞ ¼ hSðnΣ;nΣ̄ÞWΣðnΣ;npÞWΣ̄ðnΣ̄;np̄ÞinΣ;nΣ̄

¼ RUΣUΣ̄ þ SUΣ̄N · VΣ þ SUΣN · VΣ̄

þ T 1VΣ · p̂VΣ̄ · p̂þ T 2VΣ⊥ · VΣ̄⊥
þ T 3VΣ⊥ · k̂VΣ̄⊥ · k̂

þ T 4ðVΣ · p̂VΣ̄⊥ · k̂þ VΣ̄ · p̂VΣ⊥ · k̂Þ; ð9:4Þ

where la represents the ensemble of l values in the decays.
The angular distributions of Eq. (9.4) still depend on the

spin vectors np and np̄ which are difficult to measure. If we
are willing to consider proton- and antiproton-spin aver-
ages, then variables U and V simplify,

UΣ ¼ 1; VΣ ¼ −αΛlΛ · lplΛ;

UΣ̄ ¼ 1; VΣ̄ ¼ −αΛ̄lΛ̄ · lp̄lΛ̄: ð9:5Þ

Since UΣ ¼ UΣ̄ ¼ 1 the effect of the folding is to make, in
the spin-density function SðnΣ;nΣ̄Þ of Eq. (3.8), the
replacements nΣ → VΣ and nΣ̄ → VΣ̄. We notice that the
U and V variables are independent of the weak-asymmetry
parameters βΛ and γΛ. Their dependence is hidden in the
vector function LΛðlγ;−lpÞ of Eq. (9.3), and which is
absent in Eq. (9.4).
Inserting the expressions of Eq. (9.5) into the spin-

density function of Eq. (9.4) we get

WΣΣ̄ðlaÞ ¼ R − αΛSN · lΛlΛ · lp − αΛ̄SN · lΛ̄lΛ̄ · lp̄

þ αΛαΛ̄lΛ · lplΛ̄ · lp̄½T 1lΛ · p̂lΛ̄ · p̂

þ T 2lΛ⊥ · lΛ̄⊥ þ T 3lΛ⊥ · k̂lΛ̄⊥ · k̂

þ T 4ðlΛ · p̂lΛ̄⊥ · k̂þ lΛ̄ · p̂lΛ⊥ · k̂Þ�: ð9:6Þ

Thus, this is the angular distribution obtained when folding
the product of spin densities for production and decay.

X. DIFFERENTIAL DISTRIBUTIONS

Explicit expressions for the structure functionsR, S, and
T are given in Appendix C. With their help we can rewrite
the differential distribution function of Eq. (9.6) as

WðξÞ ¼ ½F 0 þ ηF 1�

−
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
sinðΔΦÞ sin θ cos θ

× ½αΛF 2F 5 þ αΛ̄F 3F 6�
þ αΛαΛ̄F 2F 3½ðηþ cos2θÞF 4 − ηsin2θF 7

þ ð1þ ηÞsin2θF 8

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
cosðΔΦÞ sin θ cos θF 9�; ð10:1Þ

where the argument ξ of the angular functions is a nine-
dimensional vector ξ ¼ ðθ;ΩΛ;Ωp;ΩΛ̄;Ωp̄Þ.

The ten angular functions F kðξÞ are defined as

F 0ðξÞ ¼ 1;

F 1ðξÞ ¼ cos2θ;

F 2ðξÞ ¼ lΛ · lp;

F 3ðξÞ ¼ lΛ̄ · lp̄;

F 4ðξÞ ¼ lΛ · p̂lΛ̄ · p̂;

F 5ðξÞ ¼ N · lΛ;

F 6ðξÞ ¼ N · lΛ̄;

F 7ðξÞ ¼ lΛ⊥ · lΛ̄⊥;
F 8ðξÞ ¼ lΛ⊥ · k̂lΛ̄⊥ · k̂=sin2θ;

F 9ðξÞ ¼ ðlΛ · p̂lΛ̄⊥ · k̂þ lΛ̄ · p̂lΛ⊥ · k̂Þ= sin θ: ð10:2Þ

The cross-section distribution (9.6), and also the ten
angular functions above, depend on a number of unit
vectors; p̂ and −p̂ are unit vectors along the directions
of motion of the Σ0 and the Σ̄0 in the c.m. system; k̂ and −k̂
are unit vectors along the directions of motion of the
incident electron and positron in the c.m. system; lΛ and lΛ̄
are unit vectors along the directions of motion of the Λ and
Λ̄ in the rest systems of the Σ0 and the Σ̄0; lp and lp̄ are unit
vectors along the directions of motion of the p and the p̄ in
the rest systems of the Λ and the Λ̄. Longitudinal and
transverse components of vectors are defined with respect
to the p̂ direction.
The differential distribution function WðξÞ of Eq. (10.1)

involves two parameters related to the eþe− → Σ0Σ̄0

reaction that can be determined by data: the ratio of form
factors η, and the relative phase of form factors ΔΦ. In
addition, the distribution function WðξÞ depends on the
weak-asymmetry parameters αΛ and αΛ̄ of the two
Lambda-hyperon decays. The dependence on the weak-
asymmetry parameters β and γ drops out, since final-state-
proton and antiproton spins are not measured.
An important conclusion to be drawn from the differ-

ential distribution of Eq. (10.1) is that when the phase ΔΦ
is small, the parameters αΛ and αΛ̄ are strongly correlated
and therefore difficult to separate. In order to contribute to
the experimental precision of αΛ and αΛ̄ a nonzero value of
ΔΦ is required.
The sequential differential decay distribution of a single-

tagged Σ0 produced in eþe− annihilation can be obtained
form Eq. (10.1) by suitably integrating over the angular
variables ΩΛ̄ and Ωp̄. As a result we get the differential
distribution for Σ0 production and decay,

dσ ∝ ½R − αΛSN · lΛlΛ · lp�dΩdΩΛdΩp

¼ ½1þ ηcos2θ − αΛ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
sinðΔΦÞ sin θ cos θ

× cos θΛp sin θΛ sinϕΛ�dΩdΩΛdΩp: ð10:3Þ
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Here, θ is the Σ0 production angle, θΛp the relative angle
between the vectors lΛ and lp, and θΛ and ϕΛ the direc-
tional angles of lΛ in the global coordinate system of
Appendix E. From the angular distribution of Eq. (10.3) we
can determine the product αΛ sinðΔΦÞ, and from the
corresponding Σ0 distribution the product αΛ̄ sinðΔΦÞ.
In this application the final-state-proton spin can be

included in a formula of finite length. From Eq. (9.4) we get

dσ ∝ ½R − αΛSN · lΛlΛ · lp þ αΛRnp · lp

þ SN · lΛnp ·LΛð−lΛ;−lpÞ�dΩdΩΛdΩp; ð10:4Þ

with np the final-state-proton-spin vector, and the function
LΛð−lΛ;−lpÞ defined in Eq. (4.6), and dependent on the
weak interaction parameters βΛ and γΛ.
Important information can be retrieved from Eq. (10.3).

Denoting its right-hand side WΣ, and forming the average
over the final-state-phase space, we get

hWΣi ¼ h1þ ηcos2θi ¼ 1þ 1

3
η: ð10:5Þ

The correlation between the scattering angle θ and the
angle θNp, with cos θNp ¼ N · lp, can also be determined,
and

hcos θ cos θNpWΣi ¼ −
π

144
αΛ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
sinðΔΦÞ: ð10:6Þ

Thus, knowledge of the weak interaction parameter αΛ, and
the ratio of form factors η, allows us to determine the
relative phase Φ between form factors, by considering the
ratio of expressions (10.6) and (10.5). Since the absolute
value of cross sections are usually unknown it is essential to
consider cross-section ratios for information.

XI. CROSS-SECTION DISTRIBUTIONS

We shall now consider the phase-space imbedding of the
differential-distribution function of Eq. (10.1). We start
with the cross-section-distribution function for creation of a
pair of baryons, eþe− → Σ0Σ̄0. Combining Eqs. (3.1),
(3.6), and (3.7), we get

dσðeþe− → γ⋆ → Σ0Σ̄0Þ ¼ p
k
α2eDðsÞ
4s2

SðnΣ0 ;nΣ̄0ÞdΩ;
ð11:1Þ

whereΩ are the baryon scattering angles in the c.m. system.
Next we consider the propagator factors associated with

the sequential decays of the baryons Σ0 and Σ̄0 produced in
the eþe− annihilation process. These sequential decays are
illustrated in Fig. 2. There are three factors associated with
the square of each propagator. Let us consider the decay
c → dg, where g can represent a pion or a photon. Other

decay modes are also possible to incorporate. Then, we
have

Pc ¼
�

π

mcΓc
δðsc −m2

cÞ
��

dsc
2π

dLipsðpc;pd; pgÞ
�
½RcGc�:

ð11:2Þ

Here, the first factor comes from squaring the propagator in
the Feynman diagram; the second factor from dividing the
phase-space element into a product of two-body phase-
space elements; and the third factor is the reduced matrix
element squared for the decay c → dg, and the product of
the normalized spin density Gc and the fractional decay
rate Rc.
The fractional decay rate Rc is defined in Eq. (5.7) as

Rðc → dgÞ ¼ 2mcΓðc → dgÞ=Φðc → dgÞ; ð11:3Þ

where Φ is the two-body phase-space volume, and Γðc →
dgÞ the channel width for the decay c → dg. It was defined
to be spin averaged for both initial and final baryon states.
However, in a sequential decay both final spin-state
contributions must be included. This is achieved by
multiplying Rðc → dγÞ by a factor of 2. This factor can
be incorporated in the channel width Γðc → dgÞ, reinter-
preting it to include the sum over final baryon spin states.
Finally, we observe that

dLipsðpc;pd; pgÞ ¼ Φcðc → dgÞ dΩc

4π
; ð11:4Þ

giving as a consequence a P factor

Pc ¼ Gc
Γðc → dgÞ
Γðc → allÞ

dΩc

4π
; ð11:5Þ

with Ωc the angular variable in the rest system of baryon c.
In our application index c represents one of the four mother
hyperons Σ0;Λ and Σ̄0; Λ̄. Similarly, index d represents one
of the four daughter hyperons Λ, p and Λ̄; p̄.
The differential-distribution functionWðξÞ of Eq. (10.1)

is obtained by folding a product of five spin densities

WðξÞ ¼


SðnΣ0 ;nΣ̄0Þ

Y
c

Gcðnc;ndÞ
�

n
: ð11:6Þ

Folding involves averages over spin directions, but as
remarked, cross-section distributions require summing over
the spin directions. Thus, an average over the spin density
SðnΣ0 ;nΣ̄0Þ is accompanied by an extra factor of 4, and it is
not normalized to unity either but to R.
The folding formula Eq. (11.6) combined with

Eqs. (11.1) and (3.11) gives the master equation
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dσ ¼ dσðeþe− → γ⋆ → Σ0Σ̄0Þ

×

�
WðξÞ
R

�Y
c

�
Γðc → dgÞ
Γðc → allÞ

dΩc

4π

�
: ð11:7Þ

This readily understood structure agrees with that reported
in Ref. [11].
Since spin densities are normalized, except for the

annihilation density SðnΣ0 ;nΣ̄0Þ, the overall normalization
condition reads Z

WðξÞ
Y
c

dΩc

4π
¼ R: ð11:8Þ

This normalization is checked explicitly in single-chain-
sequential decay in Ref. [6].
When the Σ0 → Λγ reaction is involved, and the photon

is real, then the channel width in Eq. (11.7) is for all
practical purposes equal to the total width, ΓðΣ0 → ΛγÞ ¼
ΓðΣ0 → allÞ.
We also point out that for virtual photons the cross-

section distribution of Eq. (11.7) receives an additional
lepton factor,

1

2π
dm2

γRðg → eþe−Þ; ð11:9Þ

where mγ is the virtual photon mass, m2
γ ¼ k2, and R the

Dalitz function

Rðg → eþe−Þ ¼ αe
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
e

k2

s �
1 −

1

3

�
1 −

4m2
e

k2

	�
:

ð11:10Þ
The eþe− annihilation reactions described above are all

concerned with annihilation through ordinary photons, as
illustrated in Fig. 1. However, the same reactions can be
initiated by other vector mesons as well. Of special interest
is the J=ψ case, which is treated in Ref. [5], and which is
accessible to the BESIII experiment. By making the
replacement

α2e
s2

→
αψαg

ðs −m2
ψÞ2 þm2

ψΓðmψÞ
ð11:11Þ

in the photon-induced reaction, Eq. (11.1), we get the cross-
section-distribution formula for annihilation through the
J=ψ meson. The meaning of the parameters αψ and αg is
explained in Ref. [5]. This replacement is equivalent to
replacing in the master formula of Eq. (11.7) the corre-
sponding photon-induced eþe− → Σ0Σ̄0 annihilation cross
section by the J=ψ induced cross section,

dσðeþe− → γ⋆ → Σ0Σ̄0Þ → dσðeþe− → J=ψ → Σ0Σ̄0Þ:
ð11:12Þ

XII. SUMMARY

In two previous publications we analyzed the hyperon
decay Λ → pπ− and its corresponding antihyperon
decay, Λ̄ → p̄πþ, for hyperons produced in the reaction
eþe− → ΛΛ̄. Annihilation via one-photon states eþe− →
γ� → ΛΛ̄ was analyzed in Ref. [4], and annihilation via
vector-charmonium states eþe− → J=ψ , ψ 0, ψð2SÞ → ΛΛ̄
in Ref. [5].
In the present investigation we analyze the sequential

hyperon decay Σ0 → Λγ; Λ → pπ−, and its corresponding
sequential antihyperon decay, again when simultaneously
taking place in the reaction eþe− → Σ0Σ̄0. The structure of
the cross-section distribution for annihilation, whether via
one-photon states or vector-charmonium states, is the same.
The aim of the present investigation was, among other

things, to discuss how to relate measured observables to
observables used in theoretical analyses. In studies of
reactions like eþe− → Σ0Σ̄0ðΛΛ̄Þ it is customary to use
different coordinate systems for observables referring to the
Σ0ðΛÞ and Σ̄0ðΛ̄Þ hyperons, whereas we prefer the use of a
single-common-global-coordinate system.
The cross-section distribution for production and sub-

sequent decay of a Σ0Σ̄0 pair is described by an easy to
understand master formula,

dσ ¼ dσðeþe− → Σ0Σ̄0Þ
�
WðξÞ
R

�
dΦðΣ0;Λ; p; Σ̄0; Λ̄; p̄Þ;

ð12:1Þ

already encountered in Ref. [4]. The master formula is a
product of three factors, describing the annihilation of
lepton pairs into hyperon pairs, the folded product of spin
densities representing hyperon production and decay, and
the phase space of sequential hyperon decays. Each event
is specified by a nine-dimensional vector ξ ¼ ðθ;ΩΛ;Ωp;
ΩΛ̄;Ωp̄Þ, with θ the scattering angle in the eþe− → Σ0Σ̄0

subprocess.
According to Eq. (3.11), the cross-section distribution

for the reaction eþe− → Σ0Σ̄0 can in the one-photon
approximation be written as

dσ
dΩΣ0

ðeþe− → γ⋆ → Σ0Σ̄0Þ ¼ p
k
α2eDðsÞ

s2
R; ð12:2Þ

where αe is the fine-structure constant, and R a function
defined by the equation

R ¼ 1þ ηðsÞ cos2 θ: ð12:3Þ

Two complex form factors, GMðsÞ and GEðsÞ, are needed
for a unique characterization of the Σ0Σ̄0γ-electromagnetic-
vertex function, but it is more convenient to work with the
three real combinations thereof, DðsÞ, ηðsÞ, and ΔΦðsÞ
defined in Sec. II.
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The reaction eþe− → Σ0Σ̄0 can also be initiated by a
vector-charmonium state, such as the J=ψ . Since the
photon and the J=ψ are both vector mesons the structures
of the corresponding cross-section distributions will be
similar. In fact we obtain the J=ψ cross-section distribution
by making the replacement

α2e
s2

→
αψαg

ðs −m2
ψÞ2 þm2

ψΓðmψÞ
ð12:4Þ

in the photon-induced cross-section distribution. The con-
stant αψ is determined by the electromagnetic-decay width
ΓðJ=ψ → eþe−Þ, and the constant αg similarly by the
hadronic-decay width ΓðJ=ψ → Σ0Σ̄0Þ. The redefined real
form-factor functions are now denoted DψðsÞ, ηψ ðsÞ,
and ΔΦψðsÞ.
The differential-spin-distribution function WðξÞ of

Eq. (12.1) is obtained by folding a product of five spin
densities,

WðξÞ ¼ hSðnΣ0 ;nΣ̄0ÞGðnΣ0 ;nΛÞGðnΛ;npÞ
×GðnΣ̄0 ;nΛ̄ÞGðnΛ̄;np̄Þin; ð12:5Þ

in accordance with the prescription of Eq. (7.1). The
folding operation h…in applies to each of the six hadron
spin vectors, nΣ0 ;…;np̄.
The function SðnΣ0 ; lΣ0 ;nΣ̄0 ; lΣ̄0Þ represents the spin-

density distribution for the hyperon pair produced in the
eþe− → Σ0Σ̄0 reaction, and lΣ0 and lΣ̄0 are unit vectors in
their directions of motion in the global c.m. system. The
four remaining spin-density distributions GðnΛ;npÞ etc.,
represent spin-density distributions for the hyperon decays
Σ0 → Λγ, Λ → pπ−, or their antihyperon counterparts. The
simplest spin-density-decay distribution of the four is that
for the decay Σ0 → Λγ,

GðnΣ0 ;nΛ; lΛÞ ¼ 1 − nΣ0 · lΛlΛ · nΛ: ð12:6Þ
The decay-distribution functions GðnY1

;nY2
Þ are nor-

malized to unity, i.e., the spin independent terms are unity,
but the density-distribution function SðnΣ0 ;nΣ̄0Þ is normal-
ized to R.
The phase-space factor, dΦðΣ0;Λ; p; Σ̄0; Λ̄; p̄Þ of the

master equation, describes the normalized phase-space
element for the sequential decays of the two baryons Σ0

and Σ̄0,

dΦðΣ0;Λ; p; Σ̄0; Λ̄; p̄Þ

¼ ΓðΣ0 → ΛγÞ
ΓðΣ0 → allÞ

dΩΛ

4π
·
ΓðΛ → pπ−Þ
ΓðΛ → allÞ

dΩp

4π

·
ΓðΣ̄0 → Λ̄γÞ
ΓðΣ̄0 → allÞ

dΩΛ̄

4π
·
ΓðΛ̄ → p̄π−Þ
ΓðΛ̄ → allÞ

dΩp̄

4π
: ð12:7Þ

The widths are defined in the usual way. For ΓðΣ0 → ΛγÞ
this means forming an average over the Σ0 spin direction,

and summing over the Lambda and gamma spin directions.
The angles ΩΛ define the direction of motion of the Λ
hyperon in the Σ0 rest system. And so on.
In addition to the reactions mentioned above we have

also calculated the cross-section distributions obtained
when one of the final-state photons is materialized as a
Dalitz eþe− pair. We have also investigated how parity
violating contributions affect the Σ0 → Λγ amplitude.

ACKNOWLEDGMENTS

K. S is supported by the Knut and Alice Wallenberg
Foundation (Sweden) under Contract No. 2016.0157. We
have greatly benefitted from discussions with Patrik
Adlarson and Stefan Leupold.

APPENDIX A: GRAPH CALCULATION

In this appendix we shall work out the phase-space
density for the two-step case. Our notation follows Pilkuhn
[12]. The cross-section distribution can be written as

dσ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðs;m2

e; m2
eÞ

p jMj2dLipsðk1 þ k2; flig; fli0gÞ;

ðA1Þ

where flig are the final-state momenta in the hyperon decay
chain and fli0g the final-state momenta in the antihyperon
decay chain. The average over the squared matrix element
indicates summation over final-state spins and average over
initial-state lepton. The definitions of the particle momenta
are explained in Fig. 1.
Since Γ ≪ M for the intermediate propagators, their

squares may be approximated as

1

ðs −M2Þ2 þM2Γ2ð ffiffiffi
s

p Þ ¼
π

MΓðMÞ δðs −M2Þ: ðA2Þ

This makes it convenient to pull out a factor K from the
squared matrix element,

K ¼
Y
i

1

ðsi −M2
i Þ2 þM2

iΓ2
i ðMiÞ

; ðA3Þ

and plug it into the phase-space density. In Eq. (A3) the
product runs over the four intermediate-state hyperons.
After some manipulations we can write the modified

phase-space density as

KdLipsðk1 þ k2; flig; fli0gÞ ¼
�

p
ð4πÞ2 ffiffiffi

s
p dΩ

�
CM

×
Y
i

�
qi

8πM2
iΓiðMiÞ

dΩi

�
Y
;

ðA4Þ
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where index CM refers to the two-body reaction eþe− →
YȲ, and index Y to each of the four intermediate-
state hyperon decays, in their respective hyperon rest
systems.

APPENDIX B: PHASE-SPACE VOLUME

The Lorentz invariant two-body phase-space element is
by definition

dLipsðk; k1; k2Þ ¼
d3k1

ð2πÞ32ω1

d3k2
ð2πÞ32ω2

ð2πÞ4δðk − k1 − k2Þ:

ðB1Þ
Integration exploiting the delta functions leads toZ

dLipsðk; k1; k2Þ ¼
kc

4π
ffiffiffi
s

p dΩc

4π
ðB2Þ

where
ffiffiffi
s

p ¼ M, kc the momentum, and Ωc the angular
variable, both in the c.m. system. In terms of the mass
variables

k2c ¼
1

4M2
½ðM2 þm2

1 −m2
2Þ2 − 4M2m2

1�: ðB3Þ

The phase-space volume Φ is obtained from Eq. (B2) by
integration over dΩc,

ΦðM;m1; m2Þ ¼
kc

4π
ffiffiffi
s

p : ðB4Þ

For equal masses m1 ¼ m2 ¼ m the value of the phase-
space volume becomes

ΦðM;m;mÞ≡ h1i ¼ 1

8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

M2

r
: ðB5Þ

APPENDIX C: STRUCTURE FUNCTIONS

The six structure functions R, S, and T of Eq. (3.8)
depend on the scattering angle θ, in the c.m. system, the
ratio function ηðsÞ, and the phase function ΔΦðsÞ. To be
specific [4,5],

R ¼ 1þ η cos2 θ; ðC1Þ

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
sin θ cos θ sinðΔΦÞ; ðC2Þ

T 1 ¼ ηþ cos2 θ; ðC3Þ

T 2 ¼ −η sin2 θ; ðC4Þ

T 3 ¼ 1þ η; ðC5Þ

T 4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
cos θ cosðΔΦÞ: ðC6Þ

The parameters η and ΔΦ are defined in Eqs. (2.2)
and (2.3).

APPENDIX D: DECAY INTO VIRTUAL GAMMA

The squared matrix element jMðc → dgÞj2 for the decay
of a baryon c into a baryon d and a virtual gamma g of mass
mγ is given in Eq. (6.8). It can be factorized into factors
Rðc → dgÞ and Ggðnc;ndÞ. The exact expression for the
fractional width is

Rðc → dgÞ ¼ μ2cd½ðmc −mdÞ2 −m2
γ �
�
ðmc þmdÞ2 þ

1

2
m2

γ

�
;

ðD1Þ
with 2me ≤ mγ ≤ ðmc −mdÞ. In the limit mγ ¼ 0 we
recover Rðc → dγÞ for real photons, Eq. (5.7). The exact
expression for the normalized spin density is

Ggðnc;ndÞ ¼ 1þ Bnc · lγlγ · nd þ Cnc · nd; ðD2Þ

A ¼ ðmc þmdÞ2 þ
1

2
m2

γ ;

B ¼ −ðmc þmdÞ2=A;

C ¼ 1

2
m2

γ=A: ðD3Þ

Here, we can without qualm put B ¼ −1 and C ¼ 0. In this
limit we recover the normalized spin density for real
photons, Eq. (5.9).

APPENDIX E: ANGULAR FUNCTIONS

The cross-section distribution (9.6) is a function of two
hyperon unit vectors: lΛ, the direction of motion of the
Lambda hyperon in the rest system of the Sigma hyperon,
and lp the direction of motion of the proton in the rest
system of the Lambda hyperon. Plus the corresponding
vectors for the antihyperon chain. In order to handle these
vectors we introduce a common global coordinate system,
which we define as follows.
The scattering plane of the reaction eþe− → Σ0Σ̄0 is

spanned by the unit vectors p̂ ¼ lΣ and k̂ ¼ le, as measured
in the c.m. system. The scattering plane makes up the
xz-plane, with the y-axis along the normal to the scattering
plane. We choose a right-handed coordinate system with
basis vectors

ez ¼ p̂;

ey ¼
1

sin θ
ðp̂ × k̂Þ;

ex ¼
1

sin θ
ðp̂ × k̂Þ × p̂: ðE1Þ

Expressed in terms of them the initial-state lepton momen-
tum becomes
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k̂ ¼ sin θex þ cos θez: ðE2Þ

This coordinate system is used for defining the direc-
tional angles of the Lambda and the proton. The directional
angles of the Lambda hyperon in the Sigma hyperon rest
system are

lΛ ¼ ðcosϕΛ sin θΛ; sinϕΛ sin θΛ; cos θΛÞ; ðE3Þ

whereas the directional angles of the proton in the Lambda
hyperon rest system are

lp ¼ ðcosϕp sin θp; sinϕp sin θp; cos θpÞ: ðE4Þ

And so for the antihyperons.
An event of the reaction eþe− → Σ0Σ̄0, Σ0 → Λ → p;

Σ̄0 → Λ̄ → p̄ is specified by a nine-dimensional vector
ξ ¼ ðθ;ΩΛ;Ωp;ΩΛ̄;Ωp̄Þ. The differential-cross-section
distribution is proportional to a function WðξÞ, which
according to Eq. (10.1) can be decomposed as

WðξÞ ¼ ½F 0ðξÞ þ ηF 1ðξÞ�

−
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
sinðΔΦÞ sin θ cos θ½αΛF 2ðξÞF 5ðξÞ

þ αΛ̄F 3ðξÞF 6ðξÞ�
þ αΛαΛ̄F 2ðξÞF 3ðξÞ½ðηþ cos2θÞF 4ðξÞ
− ηsin2θF 7ðξÞ þ ð1þ ηÞsin2θF 8ðξÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
cosðΔΦÞ sin θ cos θF 9ðξÞ�: ðE5Þ

The set of ten angular functions, F 0ðξÞ − F 9ðξÞ, are
defined in Eq. (10.2). The scalar products needed for their
determination are as follows:

N · lΛ ¼ sin θΛ sinϕΛ;

lΛ · lp ¼ sin θΛ sin θp cosðϕΛ − ϕpÞ þ cos θΛ cos θp

lΛ · p̂ ¼ cos θΛ;

lΛ⊥ · k̂ ¼ sin θ sin θΛ cosϕΛ;

lΛ⊥ · p̂ ¼ 0;

lΛ⊥ · lΛ̄⊥ ¼ sin θΛ sin θΛ̄ cosðϕΛ − ϕΛ̄Þ: ðE6Þ

We understand that the remaining scalar products are
obtained from those above by the substitution ðΛ;pÞ →
ðΛ̄; p̄Þ. With the scalar products of Eq. (E6) in hand one
quickly determines the ten angular functions F kðξÞ of
Eq. (10.2),

F 0ðξÞ ¼ 1;

F 1ðξÞ ¼ cos2θ;

F 2ðξÞ ¼ sin θΛ sin θp cosðϕΛ − ϕpÞ þ cos θΛ cos θp;

F 3ðξÞ ¼ sin θΛ̄ sin θp̄ cosðϕΛ̄ − ϕp̄Þ þ cos θΛ̄ cos θp̄;

F 4ðξÞ ¼ cos θΛ cos θΛ̄;

F 5ðξÞ ¼ sin θΛ sinϕΛ;

F 6ðξÞ ¼ sin θΛ̄ sinϕΛ̄;

F 7ðξÞ ¼ sin θΛ sin θΛ̄ cosðϕΛ − ϕΛ̄Þ;
F 8ðξÞ ¼ sin θΛ cosϕΛ sin θΛ̄ cosϕΛ̄;

F 9ðξÞ ¼ cos θΛ sin θΛ̄ cosϕΛ̄ þ sin θΛ cosϕΛ cos θΛ̄:

ðE7Þ

The differential distribution of Eq. (E5) involves two
parameters related to the eþe− → Σ0Σ̄0 reaction that can
be determined by data: the ratio of form factors η, and
the relative phase of form factors ΔΦ. In addition, the
distribution function WðξÞ depends on the weak-decay
parameters αΛ and αΛ̄ of the two Λ hyperon decays. The
dependence on the weak decay parameters β and γ drops
out, when final-state proton and antiproton spins are not
measured.

APPENDIX F: FINDING ANGULAR VARIABLES

The angular functions and differential distributions of the
previous appendix are expressed in terms of unit vectors
such as lp and lΛ, which are not directly measurable but
which must be calculated. We suggest the following
approach.
For each event we embed the particle momenta in its c.m.

system and with coordinate axes as defined in Eq. (E1). For
the Σ0 hyperon the components of the momentum are, by
definition,

p̂Σ0 ¼ ð0; 0; 1Þ: ðF1Þ

Then, let us consider the final-state proton with momen-
tum pp in the c.m. system. In the rest system of the Lambda
hyperon the momentum of the same proton is denoted Lp,
and given by the expression

Lp ¼ pp þ BΛppΛ; ðF2Þ

BΛp ¼ 1

mΛ

�
1

EΛ þmΛ
pΛ · pp − EΛ

�
: ðF3Þ

Now, the length of the vector Lp is well known, being the
momentum in the decay Λ → πN, and therefore

jLpj ¼
1

2mΛ
½ðm2

Λ þm2
π −m2

NÞ2 − 4m2
Λm

2
π�1=2: ðF4Þ
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Hence, the unit vector lp appearing in our form-factor
equations becomes

lp ¼ Lp=jLpj; ðF5Þ

¼ ðcosϕp sin θp; sinϕp sin θp; cos θpÞ: ðF6Þ

Corresponding equations for Λ in the decay Σ0 → Λγ are
easily written down. In the rest system of the Σ0 baryon the
final-state Λ hyperon has momentum

LΛ ¼ pΛ þ BΣΛpΣ0 ; ðF7Þ

BΣΛ ¼ 1

2mΣ0

�
1

EΣ0 þmΣ0

pΣ0 · pΛ − EΛ

�
; ðF8Þ

and the length of this vector is, as inferred from the
Eq. (F4),

jLΛj ¼
1

2m0
Σ
ðm2

Σ0 −m2
ΛÞ: ðF9Þ

By the same reasoning the unit vector lΛ appearing in our
form-factor equations is

lΛ ¼ LΛ=jLΛj; ðF10Þ

¼ ðcosϕΛ sin θΛ; sinϕΛ sin θΛ; cos θΛÞ: ðF11Þ

And so on for the antihyperons.

[1] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 95,
052003 (2017).

[2] S. Pacetti, R. B. Ferroli, and E. Tomasi-Gutafsson, Phys.
Rep. 550–551, 1 (2015).

[3] M. Ablikim et al. (BESIII Collaboration), Nat. Phys. 15,
631 (2019).

[4] G. Fäldt, Eur. Phys. J. A 52, 141 (2016).
[5] G. Fäldt and A. Kupsc, Phys. Lett. B 772, 16 (2017).
[6] G. Fäldt, Phys. Rev. D 97, 053002 (2018).
[7] V. Punjabi, C. F. Perdrisat, and M. K. Jones, Eur. Phys. J. A

51, 79 (2015).
[8] S. S. Nair, E. Perotti, and S. Leupold, Phys. Lett. B 788, 535

(2019).
[9] L. B. Okun, Leptons and Quarks (North-Holland,

Amsterdam, 1982).
[10] R. E. Behrends, Phys. Rev. 111, 1691 (1958).
[11] G. Fäldt, Eur. Phys. J. A 51, 74 (2015).

[12] H. Pilkuhn, Relativistic Particle Physics (Springer-Verlag,
Berlin, 1979).

[13] A. Z. Dubničkova, S. Dubnička, and M. P. Rekalo, Nuovo
Cimento A 109, 241 (1996).

[14] H. Czyż, A. Grzelińska, and J. H. Kühn, Phys. Rev. D 75,
074026 (2007).

[15] T. D. Lee and C. N. Yang, Phys. Rev. 108, 1645 (1957).
[16] J. F. Donoghue and S. Pakvasa, Phys. Rev. Lett. 55, 162

(1985).
[17] J. F. Donoghue, X.-G. He, and S. Pakvasa, Phys. Rev. D 34,

833 (1986).
[18] H. Courant et al., Phys. Rev. Lett. 10, 409 (1963).
[19] C. Alff et al., Phys. Rev. 137, B1105 (1965).
[20] B. Kubis and U.-G. Meißner, Eur. Phys. J. C 18, 747

(2001).
[21] C. Granados, S. Leupold, and E. Perotti, Eur. Phys. J. A 53,

117 (2017).

SEQUENTIAL HYPERON DECAYS IN THE REACTION … PHYS. REV. D 101, 033002 (2020)

033002-15

https://doi.org/10.1103/PhysRevD.95.052003
https://doi.org/10.1103/PhysRevD.95.052003
https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1016/j.physrep.2014.09.005
https://doi.org/10.1038/s41567-019-0494-8
https://doi.org/10.1038/s41567-019-0494-8
https://doi.org/10.1140/epja/i2016-16141-y
https://doi.org/10.1016/j.physletb.2017.06.011
https://doi.org/10.1103/PhysRevD.97.053002
https://doi.org/10.1140/epja/i2015-15079-x
https://doi.org/10.1140/epja/i2015-15079-x
https://doi.org/10.1016/j.physletb.2018.09.065
https://doi.org/10.1016/j.physletb.2018.09.065
https://doi.org/10.1103/PhysRev.111.1691
https://doi.org/10.1140/epja/i2015-15074-3
https://doi.org/10.1007/BF02731012
https://doi.org/10.1007/BF02731012
https://doi.org/10.1103/PhysRevD.75.074026
https://doi.org/10.1103/PhysRevD.75.074026
https://doi.org/10.1103/PhysRev.108.1645
https://doi.org/10.1103/PhysRevLett.55.162
https://doi.org/10.1103/PhysRevLett.55.162
https://doi.org/10.1103/PhysRevD.34.833
https://doi.org/10.1103/PhysRevD.34.833
https://doi.org/10.1103/PhysRevLett.10.409
https://doi.org/10.1103/PhysRev.137.B1105
https://doi.org/10.1007/s100520100570
https://doi.org/10.1007/s100520100570
https://doi.org/10.1140/epja/i2017-12324-4
https://doi.org/10.1140/epja/i2017-12324-4

