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We discuss the comments made by Emanuel Gallo and Thomas Mädler on our papers [Gen. Relativ.
Gravit. 49, 77 (2017) and Phys. Rev. D 99, 084054 (2019)] on boosted Kerr black holes in general
relativity. We considered their criticisms carefully, as they added a significant contribution to the question
of boosted Kerr black holes in general relativity examined in our papers. Here, we expand on further results
of our papers that were not duly included in the published papers, as noticed by Gallo and Mädler. We now
consider the complete asymptotic Lorentz transformations of Robinson-Trautman (RT) coordinates to
Bondi-Sachs (BS) asymptotic coordinates of a radiative RT spacetime, which include the perturbation term
of the boosted RT metric corresponding to the Lense-Thirring rotation originating from the Kerr metric.
The transformation of the rotation parameter ω as the RT coordinates transform to BS coordinates is
obtained, as well as the form of the boosted Kerr metric where we make use of the complete asymptotic
Lorentz transformation.

DOI: 10.1103/PhysRevD.101.028502

I. INTRODUCTION

Our aim in this Reply is to discuss the criticisms of our
papers [1,2] made by Emanuel Gallo and ThomasMädler in
their Comment on Ref. [2] (see Ref. [14]). The authors
correctly showed that the metrics presented in Refs. [1,2]
contain an incomplete piece of a Lorentz transformation, as
the additional transformations of the time and radial coor-
dinates are still missing. Therefore, the chosen coordinates
do not represent adapted coordinates with respect to an
asymptotic inertial observer. Here, we now include the
missing pieces of the Lorentz transformations that actually
connect the Robinson-Trautman (RT) coordinates
ðu; r; θ;ϕÞ used in radiative RT spacetimes to Bondi-
Sachs (BS) coordinates ðU;R;Θ;ΦÞ that satisfy the boun-
dary conditions, as discussed in Sec. II of our Ref. [3]. These
pieces of Lorentz transformations (missing in Refs. [1,2])
play an important role in approaching the issue of boosted
Kerr black holes in general relativity.
In Secs. II and III we discuss RT radiative spacetimes, the

relation between RT coordinates and the BS system that
allows to extract physical quantities such as the Bondi mass
aspect, the Bondi momentum aspect, and the total Bondi
mass, and the Bondi momentum along the z direction. We
also obtain a perturbative form of the boosted RT metric
that includes a Lense-Thirring rotation term originating
from the Kerr metric. We then obtain the transformation of
the rotation parameter ω as the RT coordinates transform to
BS coordinates, and obtain the form of the “boosted” Kerr

metric where the Lorentz transformation is complete. We
restrict this discussion to the axisymmetric metrics only [1],
but it can be extended in a straightforward way to the
nonaxisymmetric case [2,3].

II. THE ROBINSON-TRAUTMAN RADIATIVE
SPACETIMES, THE BONDI-SACHS CONDITIONS,

AND THE SLOW-ROTATION LIMIT
OF KERR METRICS

We start by discussing the case of nontwisting radiative
spacetimes, namely, RT spacetimes, which are the only
known radiative spacetimes. To our knowledge, twisting
radiative spacetimes—which might have boosted Kerr
black holes as remnants—have yet to be found.
Although RT spacetimes describe the exterior vacuum

gravitational field of a bounded system radiating gravita-
tional waves, the RT metrics do not satisfy the appropriate
BS boundary conditions formulated for radiating systems.
Therefore, we were led to implement transformations
between RT and BS coordinates, which allow us to obtain
some of the basic BS physical quantities, namely, the news
functions and the BS energy-momentum fluxes of the
emitted gravitational waves, as well as the BS energy-
momentum conservation laws. This was explained in detail
in our Ref. [3] (see also Ref. [4]). There we obtained the
transformations of RT coordinates ðu; r; θ;ϕÞ of a general
radiative RT spacetime to BS coordinates ðU;R;Θ;ΦÞ of
the BS metric for asymptotically flat isolated systems
emitting gravitational waves and satisfying the appropriate
boundary conditions. In this construction we see that the*ivano@cbpf.br
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news functions of the nonaxisymmetric RT geometry, which
constitute part of the data to be specified in the evolution of
the system, are already completely specified once the metric
functionKðu; θ;ϕÞ of theRT geometry is given.On the other
hand,Kðu; θ;ϕÞ can be obtained, for all u > u0, by integrat-
ing the RT equation from a given initial data Kðu0; θ;ϕÞ
specified at the initial characteristic surface u ¼ u0. The
news functions determine the dominant wave zone curva-
tures, and are fundamental in the construction of the net
fluxes of energy and momentum of the emitted gravitational
waves, when the initial data are evolved numerically.
Now, as can be seen in Sec. 2 of Ref. [3], the trans-

formations of RT coordinates ðu; r; θ;ϕÞ to BS coordinates
ðU;R;Θ;ΦÞ (satisfying the appropriate BS asymptotic
conditions) result, for a stationary axisymmetric configu-
ration, in the BS mass aspect mB ¼ m0=KðθÞ3 with
∂U=∂u ¼ KðθÞ, where KðθÞ ¼ ðcosh γ þ cos θ sinh γÞ.
Together with ∂R=∂r ¼ K−1ðθÞ we have the complete
Lorentz transformation. The mean value of the BS mass
aspect over the sphere gives the total Bondi mass MB ¼
m0 cosh γ. Therefore, the metric (1)–(2) of Ref. [3] in the
stationary axisymmetric case,

ds2¼ r2ðdθ2þ sin2θdϕ2Þ
K2ðθÞ −2dudr−

�
1−

2m0

r

�
du2; ð1Þ

corresponds effectively to a boosted Schwarzschild black
hole, as noted in the Comment below Eq. (30): “Note, we
are not saying that the metric (29) could not be interpreted
as a boosted black hole; what we are saying is that if these
NU coordinates are used, they must be yet related to a
Bondi system to extract physical quantities”. The men-
tioned relation between RT coordinates and the BS system
was actually implemented in Sec. 2 of Ref. [3] (see also
Ref. [4]) and the physical quantities were extracted,
namely, the Bondi mass aspect mBðθÞ ¼ m0=K3ðθÞ, the
Bondi momentum aspect pðzÞ

B ¼ m0 cos θ=K3ðθÞ, the total
Bondi mass MB ¼ m0 cosh γ, and the total Bondi linear

momentum along z, PðzÞ
B ¼ m0 sinh γ [5,6].

Also, if we consider for instance the expansions of
Eqs. (29) and (30) in Ref. [2], for large r and in the limit of
small rotation parameter ω ≪ m [namely, in the Lense-
Thirring (L-T) approximation [7] ], the same arguments
used for the boosted Schwarzschild case [3] apply,

ds2 ¼ r2ðdθ2 þ sin2θdϕ2Þ
K2ðθÞ − 2dudr −

�
1 −

2m0

r

�
du2

þ 4m0ω

rK2ðθÞ sin
2θdudϕþO

�
1

r2

�
; ð2Þ

including the perturbative L-T rotation term. This term
results from the Kerr metric; see Eq. (23) in Ref. [1].
A careful analysis indicates that the rotation parameter
transforms as

ω → ωB ¼ ω=KðθÞ; ð3Þ

as RT coordinates transform to BS coordinates, cf. Sec. 2 of
Ref. [3]. This transformation is considered a natural
extension of the RT-BS transformation system when the
Kerr rotation parameter is present, as for instance in Eq. (2).
Therefore, in BS coordinates ðU;R;Θ;ΦÞ the metric

(23) in Ref. [1] asymptotically assumes the form

ds2 ¼ ðR2 þ Σ̃2ÞðdΘ2 þ sin2ΘdΦ2Þ

− 2ðdU þ ωBsin2ΘdΦÞ
�
dR −

ωBsin2Θ
K2

dΦ
�

− ðdU þ ωBsin2ΘdΦÞ2
�

1

K2
−

2mBR

R2 þ Σ̃2

�

þO
�

1

R2

�
; ð4Þ

where the complete Lorentz transformation is applied. In
the above

Σ̃ ¼ ωB

�
sinh γ þ cosh γ cosΘ
cosh γ þ sinh γ cosΘ

�
;

and Θ ¼ θ, Φ ¼ ϕ. We note that Σ̃ ¼ Σ=K [1]. A straight-
forward extension to the nonaxisymmetric case can be
obtained by using the results of Ref. [3], cf. also the
following sections.

III. BOOSTED BLACK HOLES AS REMNANTS
OF NUMERICALLY EVOLVING INITIAL DATA

In past works we also examined radiative RT spacetimes
by numerically evolving initial data corresponding to head-
on and non-head-on collisions of two black holes, via the
RT dynamics, from a given characteristic initial surface
u ¼ u0 [8–11]. In the coordinate system ðu; r; θ;ϕÞ the RT
metric is expressed as

ds2 ¼ r2ðdθ2 þ sin2θdϕ2Þ
K2ðu; θ;ϕÞ − 2dudr

−
�
λðu; θ;ϕÞ − 2m0

r
− 2r

K;u

K

�
du2;

where

λ ¼ K2 þ K2

sin θ

�
sin θ

K;θ

K

�
;θ
þ K2

sin2θ
þ
�
K;ϕ

K

�
;ϕ
:

Initial data are evolved for a sufficiently long time, from
u0 to the final retarded time uf, when the net flux of
energy and momentum carried by the gravitational waves
ceases and the computation is stopped. The initial data
correspond to a planar collision which we take in the plane
(x; z) determined by the vector n ¼ ðn1; 0; n3Þ, cf. Ref. [9].
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The total energy MðuÞ emitted and the total impulse
imparted to the merged black hole due to the net momen-
tum flux of the gravitational waves PWðuÞ are evaluated
from the integrated function Kðu; θ;ϕÞ for u ∈ ½u0; uf�,
obtained from an accurate and numerically stable evolution
of the initial data Kðu0; θ;ϕÞ.
For all initial data the system settles down, at the

final time uf, to the form Kðuf; θ;ϕÞ≡ Kðθ;ϕÞ ¼
Kfðcosh γf þ nf · x̂ sinh γfÞ, with x̂ ¼ ðcos θ; sin θ cosϕ;
sin θ sinϕÞ. Of course, the final parameters ðKf; γf;nfÞ
[where nf ¼ ðn1f; 0; n3fÞ] depend on the initial data. As
can be seen in Refs. [8–11], the unit 3-vector nf has the
same direction as the final net total impulse imparted to the
merged system by the momentum carried by the emitted
gravitational waves. We note that Kðuf; θ;ϕÞ yields
λ ¼ K2

f (see, for instance, Ref. [12]).
Actually, the boost functionKðuf; θ;ϕÞ≡ Kðθ;ϕÞ in the

final metric is not a mere angle transformation, but rather
results from the dynamical process by which the net
momentum flux of the emitted gravitational waves leads
to a Schwarzschild black hole boosted along the direction
nf. We remark that γf turns out to be zero when the initial
black holes have a mass ratio of 1 [13]. The Lorentz
transformation ðu; rÞ → ðU;RÞ is completed with Kðθ;ϕÞ.
The Bondi mass aspect is given as mB ¼ m0=K3ðθ;ϕÞ.
After a straightforward integration, the final impulse is
Px
f ¼ n1fPf, P

z
f ¼ n3fPf, where Pf ¼ m0K3

f sinh γf.
Finally, even though twisting radiative spacetimes with

appropriate BS boundary conditions are not currently
known, from the above discussions we have that the
metrics (23) in Ref. [1] and (27) in Ref. [2] can also be
related to boosted Kerr black holes in light of the fact that
the RT coordinates used can be related to a BS system, and
that asymptotically the coordinate transformations ðu; rÞ →
ðU;RÞ result in Eq. (4).

IV. THE HORIZONS AND ERGOSPHERE
OF A BOOSTED KERR BLACK HOLE IN

ASYMPTOTIC BS COORDINATES

The locations of the horizons were defined in Ref. [1]
as the surfaces grr ¼ 0, where grr corresponds to the metric
in RT coordinates (namely, Eddington-Finkelstein-type
coordinates) ðu; r; θ;ϕÞ. However, these RT coordinates
were not actually transformed via the complete Lorentz
transformation [compare Eq. (23) of Ref. [1] and Eq. (4) of
the present Reply].
The complete Lorentz transformation was given in Sec. 2

of Ref. [3], which now includes the transformation (3) and
is used in Eq. (4) of this Reply [cf. also the text below
Eq. (1)]. From Eq. (4) we obtain

gRR ¼ K2R2 − 2mBK4Rþ K2Σ̃2 þ ω2
B sin

2Θ
ðR2 þ Σ̃2ÞK4

; ð5Þ

which results in the expression

R2 − 2mBK2Rþ Σ̃2 þ ω2
B sin

2Θ=K2 ¼ 0 ð6Þ

for the boosted horizons in BS coordinates. After some
algebra we obtain the roots of Eq. (6),

RH ¼ mBK2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

BK
4 − ω2

B

q
: ð7Þ

In the limit ω ¼ 0 (the Schwarzschild limit in BS coor-
dinates) we obtain RH ¼ 2mBK2 for the event horizon (in
RT coordinates rH ¼ 2m0). In the nonboosted limit K ¼ 1

the horizon is given by RH ¼ m2
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 − ω2
p

.
The same procedure applies to the case of the ergosphere

gUU ¼ 0, which corresponds to the limiting surface for
static observers where the Killing vector ∂=∂U becomes
null. We obtain

R2 − 2mBK2Rþ Σ̃2 ¼ 0 ð8Þ

in BS coordinates, where the complete asymptotic Lorentz
transformations are used.
The roots of Eq. (8) are

Rstat ¼ mBK2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

BK
4 − Σ̃2

q
: ð9Þ

In Fig. 1 we plot the sections of the ergosphere Rstat
(solid line) and the event horizon RH (dashed line) by a
plane containing the z axis. We should remark again that,
contrary to the results obtained in Ref. [1], here we made
use of the complete asymptotic Lorentz transformations so

FIG. 1. Sections of the ergosphere Rstat (solid line) and the
event horizon RH (dashed line) by a plane containing the z axis.
The parameters used are γ ¼ 0.9, m0 ¼ 200, and ω ¼ 195.
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that not only the ergosphere RstatðΘÞ but also the horizon
RHðΘÞ are deformed by the boost, as seen in the figure.
An extension of the nonaxisymmetric case [2], with a

view to completing the asymptotic Lorentz boost, yields for
the event horizon and ergosphere, respectively,

RHðθ;ΦÞ ¼ mBK2ðθ;ΦÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

BK
4ðθ;ΦÞ − ω2

B

q
ð10Þ

and

Rstatðθ;ΦÞ ¼ mBK2ðθ;ΦÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

BK
4ðθ;ΦÞ − Σ̃2

q
: ð11Þ

Here KðΘ;ΦÞ¼ coshγþsinhγn · x̂, where n¼ðn1;n2;n3Þ
and x̂ ¼ ðcosΘ; sinΘ cosΦ; sinΘ sinΦÞ, with n21 þ n22 þ
n23 ¼ 1.
In Fig. 2 we plot the sections of the ergosphere

RstatðΘ;ΦÞ (solid lines) and the event horizon RHðΘ;ΦÞ
(dashed lines) by planes containing the z axis correspond-
ing to Φ ≃ 0.185π (left panel) and Φ ¼ 0.25π (right panel).
We should remark again that, contrary to the results
obtained in Refs. [1,2], here we made use of the complete
asymptotic Lorentz transformations so that not only the

ergosphere RstatðΘÞ but also the horizon RHðΘÞ are
deformed by the boost, as seen in the figure.
We do not comment on further results of Gallo and

Mädler’s comments on these questions for the family of RT
geometries since they are complete, to our understanding,
and we do not disagree with them.

V. ERRATA

An important remark: in Ref. [1] the coordinates used
were RT coordinates ðu; r; θ;ϕÞ, which are also known as
outgoing Eddington-Finkelstein coordinates. In Ref. [2]
these same RT coordinates were used but were inadvert-
ently denoted as “Bondi-Sachs-type” coordinates. The
terms “Robinson-Trautman (RT) coordinates ðu; r; θ;ϕÞ”
and “Bondi-Sachs (BS) coordinates ðU;R;Θ;ΦÞ” are have
been maintained in the present Reply, and should also be
replaced in Ref. [2]. Our main reason to maintain this
notation is for the use of RT metrics (Secs. II and III of this
Reply) and BS metrics (cf. also Sec. 2 of Ref. [3]).
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FIG. 2. (Left panel) Sections of the ergosphere RstatðΘ;ΦÞ (solid line) and the event horizon RHðΘ;ΦÞ (dashed line) by a plane
containing the z axis corresponding to Φ ≃ 0.185π. This plane contains the two points that belong to both the ergosphere and the event
horizon. (Right panel) Sections analogous to those in the left panel, corresponding to the plane of section at Φ ¼ 0.25π containing the z
axis. The dashed line is the section of the event horizon, and the solid line is the section of the ergosphere; in this plane, the event horizon
and the ergosphere have only one common point. The parameters used are γ ¼ 0.9, m0 ¼ 200, and ω ¼ 195, with n1 ¼ 0.8, n2 ¼ 0.5,
and n3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − n21 − n22

p
≃ 0.33166.
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