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Using holographic subregion complexity, we study the confinement-deconfinement phase transition of a
QCD-like gauge theory, holographically. In the model we consider here, we observe a connection between
the potential energy of a probe meson and the behavior of its complexity. Moreover, near the critical point,
at which the phase transition takes place, our numerical calculations indicate that we need less information
to specify a meson in the nonconformal vacuum than in the conformal one, despite the fact that the
nonconformal vacuum has larger energy.
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I. INTRODUCTION

Gauge-gravity duality, or more generally the holographic
idea, has provided a new framework to investigate various
properties of nonperturbative theories within the past two
decades. This duality is, in fact, a strong-weak duality and
maps a strongly coupled quantum gauge field theory to a
weakly coupled classical gravity in a higher dimension.
This idea has been frequently applied to describe various
phenomena in strongly coupled field theories, for which the
standard perturbation method is not applicable, ranging
from condensed matter physics to low-energy quantum
chromodynamics (QCD), the theory of strong interactions
[1,2]. Central aspects of low-energy QCD such as the
confined phase, confinement-deconfinement phase transi-
tion, and chiral symmetry breaking have been discussed
within the concept of gauge-gravity duality; for instance,
see [2] and references therein.
One of the interesting areas of theoretical physics is

quantum information theory, and, according to the holo-
graphic idea, an outstanding connection has been devel-
oped between quantum information and gravity started by
the Hubney-Ryu-Takayanagi proposal for entanglement
entropy, defined as a measure of the quantum correlation
of a pure quantum state. Entanglement entropy is one of the
important quantities in the context of information theory;
fortunately, there exists a simple geometrical prescription to
describe it and its properties [3,4], and it passes many tests
successfully.

Another main concept in information theory is quantum
complexity. It is defined as the minimum number of unitary
operators needed to prepare a target state from a reference
state or, in other words, the difficulty in converting one state
to another one [5,6]. Describing complexity holographi-
cally has received a lot of interest in the literature these
days, and there exist two conjectures, namely, CV
(complexity ¼ volume) and CA (complexity ¼ action).
In the CA conjecture, the complexity is given by the bulk
action evaluated on the Wheeler–de Witt patch anchored at
some boundary time [7,8]. The CV proposal states that the
complexity is identified as the volume of the extremal or
maximal volume of a codimensional-one hypersurface B in
the bulk ending on a time slice of the boundary

C ¼ VðBÞ
L̂GN

; ð1Þ

whereGN is the five-dimensional gravitational constant and
L̂ is some length scale of the bulk, for example, the anti–
de Sitter (AdS) radius. Inspired by the Hubney-Ryu-
Takayanagi proposal, this conjecture for the whole
boundary system is generalized for subsystems [9]. The
complexity for a subsystem A on the boundary equals the
volume of the codimensional-one hypersurface enclosed by
Hubney-Ryu-Takayanagi surface γA:

CA ¼ VγA

8πRGN
; ð2Þ

where R is the AdS5 radius and CA is known as holographic
subregion complexity (HSC). Some recent works on CA
and CV prescriptions and HSC for different gravity models
can be found in Refs. [10–20]. In this paper, we would like
to compute HSC to study the confinement-deconfinement
phase transition in a QCD-like gauge theory, and the
questions we are indeed interested in are, is HSC a relevant
order parameter of the phase transition or can HSC
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recognize the favorable vacuum, or, more generally, what
do we learn about the phase transition using HSC as a
quantity we can calculate? To do so, we consider a
background which almost perfectly describes the potential
in the confined phase [21]. Moreover, using entanglement
entropy, the critical energy scale Λc, the scale at which the
confinement-deconfinement phase transition takes place,
can be excellently found in this background [22]. Thus, we
start introducing the background(s) and then compute the
HSC on different relevant background(s) and discuss its
properties to answer the above questions.

II. BACKGROUNDS

In Ref. [21], a five-dimensional metric, called modified
AdS (MAdS), is defined as

ds2 ¼ R2

z2
gðzÞð−dt2 þ dx⃗2 þ dz2Þ; ð3Þ

and the black hole version of the above metric, which we
call modified black hole (MBH), is introduced by [23]

ds2 ¼ R2

z2
gðzÞ

�
−fðzÞdt2 þ dx⃗2 þ dz2

fðzÞ
�
; ð4Þ

where gðzÞ ¼ eðc=2Þz2 , x⃗≡ ðx1; x2; x3Þ, and z is the radial
coordinate. c is a modifier parameter with energy2 dimen-
sion. The above backgrounds are dual to QCD-like gauge
theories at zero and nonzero temperature. Therefore, from
the fit to the slope of the Regge trajectories, it is estimated
to be 0.9 GeV2 [21]. This number can be found more
precisely by determining the critical energy scale, and it
turns out to be 0.94 GeV2 [22]. Clearly, the backgrounds
(3) and (4) are asymptotically AdS5 with radius R, and the
holographic QCD-like model is living on the boundary of
the backgrounds located at z ¼ 0.
The background (4) is a natural extension of (3) for

including thermodynamics where fðzÞ ¼ 1 − z4=z4h. The
Hawking temperature is given by T ¼ 1

πzh
, and zh is the

position of the horizon. By setting modifier parameter c
equal to zero in backgrounds (3) and (4), one can easily find
the AdS5 background (AdS) and AdS5 planar black hole
metric (BH), respectively. The phase transition, in the
gravitational picture, is described by changing the back-
ground geometry from (3) to (4), and we will see that HSC
does confirm it near the critical point. More properties of
these geometries have been discussed in Refs. [21–24].

III. POTENTIAL ENERGY

In the quantum field theory, potential energy between a
quark and antiquark (meson) can be obtained from the
expectation value of the rectangular Wilson loop, as a
nonlocal gauge-invariant operator. In fact, it can be done by
evaluating the expectation value of the Wilson loop on a

rectangular loop,R with two sides, time T , and distance r,
that T ≫ r (see Fig. 1 by the replacement L → T and
l → r). This configuration is equivalent to a static quark-
antiquark pair with the distance r between them. It is well
known that the expectation value of the Wilson loop is dual
to the on-shell classical action SðRÞ of a classical string
whose world sheet ends on the R, rectangular loop at the
boundary [25]. It is then straightforward to find potential
energy corresponding to the binding energy of the pair in
the background (3), and it turns out [21]

VðrÞ ¼
(
pð− κ0

r þ σ0rþOðr3ÞÞ; r → 0;

pðσrÞ; r → ∞;
ð5Þ

where p ≈ 0.94, κ0 ≈ 0.23, σ0 ≈ 0.16 GeV2, and σ ≈
0.19 GeV2 for c ¼ 0.9 GeV2. This potential is similar to
the Cornell potential and gives the expected linear and 1=r
behavior at a large and short distance, respectively. In other
words, this background describes the QCD at a low-energy,
confined phase. For more details, see Ref. [21].

IV. ENTANGLEMENT ENTROPY

A well-known nonlocal observable in the information
theory is entanglement entropy [26]. Consider a quantum
field theory whose pure state is described by the density
matrix ρ. The entanglement entropy of a spatial subregion
A, with complement Ā, denotes how much entanglement
exists between A and Ā, and it is given by

SA ¼ −TrðρA log ρAÞ; ð6Þ
where ρA ¼ TrĀðρÞ is the reduced density matrix obtained
by tracing over the degrees of freedom in the region Ā. The

FIG. 1. A strip entangling surface of length l and width L → ∞.
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entanglement entropy of A shows the amount of informa-
tion lost when an observer is limited to the subregion A.
Although calculating the entanglement entropy is normally
difficult, the holographic method provides a handy
approach to obtain the entanglement entropy. In fact,
Ryo and Takayanagi first proposed in Ref. [3] that the
entanglement entropy can be computed from

SA ¼ areaðγAÞ
4GN

; ð7Þ

where γA is a codimension-2 minimal surface whose
boundary ∂γA coincides with the boundary of the subregion
A on the boundary of the bulk where the quantum field
theory lives, i.e., ∂γA ¼ ∂A. This proposal received a lot of
interest during the past decade and passed several nontrivial
checks known in the quantum field theory. For more
details, we refer the interested reader to Ref. [4].
Now let us consider a strip entangling surface of length

l and width L → ∞. Indeed, the subsystem A is defined by
− l

2
< x1ð≡xÞ < l

2
and x2, x3 ∈ ð−∞;þ∞Þ at a given time;

see Fig. 1. Entanglement entropy is proportional to the
minimal area of γA, and it turns out to be [22]

SðcÞA ¼ L2

2G5

Z
z�

0

R3z3gðzÞ3
z3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z6�gðzÞ3 − z6gðz�Þ3

p dz; ð8Þ

where z� ¼ zðx ¼ 0Þ. Considering the disconnected con-
figuration described by two surfaces located at x ¼ �l=2,
the entanglement entropy for the disconnected case
becomes [22]

SðdÞA ¼ L2

2G5

Z ffiffiffiffiffiffi
2=c

p

0

�
R2gðzÞ
z2

�
3=2

dz: ð9Þ

Then, in order to specify the phase transition, according to
the results reported in Ref. [22], we define

ΔSðlÞ≡ 2G5

L2
ðSðcÞA − SðdÞA Þ: ð10Þ

Using the above definition, the phase transition and its
critical energy scale have been predicted [22]. It is shown
that the phase transition occurs at lc ≈ 1 fm (compatible
with the size of the hadrons) for a reasonable value of c, i.e.,
c ≈ 0.9 GeV2. As shown in Fig. 2 (blue curve), the point at
which the sign of ΔS changes characterizes the phase
transition. It occurs in the regime of l for which the linear
behavior of the Cornell-type potential has dominated.

V. SUBREGION HOLOGRAPHIC COMPLEXITY

Motivated by holographic entanglement entropy and by
an extension of the Hubney-Ryu-Takayanagi proposal,
HSC for a subsystem A in the boundary theory is defined
as follows [9]:

CA ¼ VγA

8πRG5

; ð11Þ

where VγA is the volume of the codimension-one hyper-
surface enclosed by minimal hypersurface γA obtained to
calculate holographic entanglement entropy. Then, using
metric (3), one easily finds the area of the minimal surface:

S ¼ L2

4G5

Z
l=2

−l=2

R3

z3
gðzÞ3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0ðxÞ2

q
dx; ð12Þ

where zðxÞ [or, equivalently, xðzÞ] is the profile of the
minimal surface. Then, by using the constant of motion, the
profile of the minimal surface is obtained:

xðzÞ ¼ 2

Z
z�

z

z3gðz�Þ3=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z6�gðzÞ3 − z6gðz�Þ3

p dz: ð13Þ

In the static case, the volume enclosed by γA is obtained
by integrating the inside of the minimal surface. It can be

FIG. 2. Left: The potential energy VðlÞ, the difference of the entanglement entropies ΔS and C1 in terms of l (fm) for c ¼ 0.94 GeV2.
Right: The potential of meson in AdS and MAdS background for c ¼ 0.94 GeV2. Note that 1 fm ¼ð197.3 MeVÞ−1 ¼ 5.068 GeV−1.
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done by slicing the bulk with planes of constant z. We
therefore have

VγAðz�Þ ¼ 2L2

Z
z�

0

R4

z4
gðzÞ2xðzÞdz; ð14Þ

and a similar calculation for the metric (4) leads to

VγAðz�Þ ¼ 2L2

Z
z�

0

R4

z4
gðzÞ2xðzÞffiffiffiffiffiffiffiffiffi

fðzÞp dz: ð15Þ

It is obvious that the above two equations reduce to the case
of AdS and BH by setting c ¼ 0, respectively. Similar to
the case of entanglement entropy, the volume is divergent,
and we need to introduce a normalized volume, relative
complexity, as follows:

C1 ≡ CMAdS

CAdS
− 1; ð16aÞ

C2 ≡ CMBH

CBH
− 1; ð16bÞ

where CMAdS, CAdS, CMBH, and CBH are the HSC for A in
MAdS, AdS, MBH, and BH geometry, respectively. We use
the above definitions to discuss the phase transition.

VI. NUMERICAL RESULTS

In this section, we will argue that our findings from the
numerical calculations of HSC at zero as well as nonzero
temperature are reasonable. Indeed, a general expectation is
that the HSC should behave differently at zero and nonzero
temperatures, since each of them indicates the confinement
and nonconfinement regime in field theory, respectively.

A. Zero temperature

As was previously mentioned, the state we consider here
corresponds to the modified background (3) probed by a
classical string (quark-antiquark pair or meson in the dual
field theory) on the gravity side. Therefore, according to the
definition (11), CMAdS (CAdS) is identified with the complex-
ity of the probe meson living in a nonconformal (con-
formal) vacuum both at zero temperature. Our results are
shown in Fig. 2 (left). The red and blue curves denote the
potential energy between the pair and difference of entan-
glement entropies ΔS, respectively. The black curve is the
relative complexity of the pair obtained from Eq. (16a). The
horizontal axis is the distance between the quark-antiquark
pair, i.e., r≡ l. As is clearly seen, the relative complexity
increases with l up to a maximum at l ¼ lmax and then
decreases with rising l. It is important to notice that it
changes sign, say, at l ¼ ls. There are obviously three
different regions as follows:

(i) C1 > 0 and l < ls.—CMAdS > CAdS for small values
of l, i.e., l < ls, probing the UV regime in field
theory. To be more specific, at a high energy the
information needed to prepare the state of a meson in
the nonconformal vacuum is larger than in the
conformal one.

(ii) C1 < 0 and ls < l < lc.—CMAdS < CAdS, and, there-
fore, the state of a meson is easier to specify in the
nonconformal vacuum than the other one.

(iii) C1 < 0 and l > lc.—It is similar to the pre-
vious case.

These above categories have a simple physical inter-
pretation as follows. Based on results reported in Ref. [22],
the QCD phase transition happens in the region with C1 <
0 and exactly at l ¼ lc and Λc ¼ l−1c ¼ 175 MeV.
Therefore, the region with l < lc describes the field theory
in the confined phase, the region of l > lc indeed is not
physical, and the background (3) must be replaced with the
black hole one which, in this case, is (4) or an AdS5 planar
black hole. As a result, the third category is not acceptable.
Moreover, for allowed values of l and near lc in the
confined phase, the second category, the complexity of
the meson in the nonconformal vacuum is less than the
vacuum one, or, equivalently, we need less information to
prepare the meson in the nonconformal vacuum. It seems
reasonable, since the background (3) describes the confined
phase of QCD and produces the relevant potential energy
between the pair given by (5) in agreement with our
intuition. Put in other words, although HSC does not help
us to find the value of critical energy scale Λc, it states that
for Λð¼ l−1Þ≲ Λc the state of the meson in the non-
conformal vacuum is easier to specify.
About the first category, we would like to make a

comment on the potential energy. It can be seen from this
figure that the potential energy of the meson becomes
zero around lmax, at which the maximum value of the
relative complexity C1 happens. Furthermore, it is sig-
nificant to notice that the difference between conformal
and nonconformal vacuums is expected to realize more by
larger values of l, and, as a result, the relative complexity
should be a monotonically increasing function. However,
when the r term in the potential starts dominating,
the relative complexity C1 decreases. Therefore, one
may conclude that at zero temperature, as soon as the
rð1rÞ term is dominant in the potential energy, the relative
complexity decreases (increases). In fact, at least in this
model, the increase or decrease of relative complexity C1

seems to be related to the dominant term in the potential
energy.
Our results become more interesting when we consider

the stability of a meson at zero temperature in a conformal
and nonconformal vacuum, too. The potential energies for
both cases have been plotted in figure 2, right. As this
figure shows, a meson in the nonconformal vacuum is
always less stable than the conformal one. Moreover, our
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complexity calculation indicates that the less stable meson
needs less information to specified, of course, near the
critical point, 175 MeV≲ E≲ 270 MeV. It therefore
seems that near the critical point a better option is to
choose the less stable meson (in a nonconformal vacuum)
with less information. However, for l < ls the story is vice
versa, and the less stable meson needs more information to
be specified; see Table I. One may thus conclude that the
regime of E > 270 MeV is much better described by a
conformal vacuum (instead of a nonconformal one), since it
is more stable and needs less information to specify
a meson.
We would like to mention that we intuitively expect that

more (less) information is needed to specify a more (less)
stable meson. Altogether, the only conflict arises when
E > 270 MeV, in the region where the 1

r term dominates or
r term starts dominating in the potential. Then this
incompatibility is cured in the regime that the r term in
the potential plays a more important role, i.e., close to the
critical point. As a matter of fact, it seems that the r term in
the potential help us to find the appropriate result corre-
sponding to our intuition.
Since complexity refers to classifying various quan-

tum states based on their difficulties, it can be also
defined as a difficulty in creating a state [5]. From this
point of view, the above results indicate that, near the
critical temperature, the difficulty in preparing a meson
state in the nonconformal vacuum, dual to (3), is less
than the conformal.

B. Finite temperature

Similar to the zero temperature case, we plot C2 in terms
of l in Fig. 3 (left). We observe that there is no substantial
difference among various temperatures and also C2 is
always positive, i.e., CMBH > CBH. Therefore, in order to
specify the state of the meson in the thermal vacuum, less
information is needed than in the nonconformal thermal
vacuum. It is easy to check that, for a given value of l, a
quark and antiquark pair is less bounded in the thermal
vacuum, as one can see in Fig. 3 (right), and, thus, the
bound state in the thermal nonconformal vacuum is
stronger. In other words, the color screening, which
prevents the quark and antiquark from binding to each
other in the deconfined phase, is stronger in the thermal
vacuum. Therefore, in order to specify a bound state in the
thermal nonconformal vacuum, we need more information,
since the quark and antiquark are more bounded.
We would also like to mention that, based on Fig. 2 and

its discussion, the potential energies in Fig. 3 (right) are
obviously not linear, we naively expect the relative com-
plexity C2 increases similar to Fig. 2, and it is confirmed by
Fig. 3 (left). Therefore, it seems that in a given vacuum a
connection between the complexity of a meson and the
potential energy of the pair exists. In fact, it can be
classified in two categories as follows:

(i) When the linear term is not as important as the r term
in the potential energy, the absolute value of relative
complexity increases. This result is confirmed by the
relative complexity C1 and C2. Note that although,
for instance, the relative complexity C2 is not
negative, this positivity has no physical interpreta-
tion, because one can define C0

2 ≡ CBH
CMBH

− 1, which is
clearly negative and leads to the same results.
Moreover, it seems that the place of the maximum
(or minimum) depends on the strength of the
potential energies, though we do not have any
analytical or numerical calculation.

TABLE I. A short summary of information and stability in a
nonconformal vacuum comparing to a conformal one.

Cases Information Stability

T ¼ 0; l < ls More Less
T ¼ 0; ls < l < lc Less Less
T ≠ 0; l > lc More More

FIG. 3. Left: C2 as a function of l (fm) for c ¼ 0.94 GeV2. Right: The potential energy of meson for BH and MBH for T ¼ 200 MeV.
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(ii) Otherwise, when the r term is dominant, the absolute
value of relative complexity decreases.

In Fig. 4, we plot C2 in terms of the temperature for two
values of l to cross-check our previous result about the
color screening. It is obvious that for larger values of l we
need more information to specify the state of the probe

meson in a nonconformal thermal vacuum. In other words,
the screening becomes stronger when the temperature or
distance l is raised. Therefore, as we discussed already, the
screening of the static quark-antiquark potential and C2

together increase.
Before closing this section, we would like to note that

using Fig. 4 it is impossible to specify the dependence of
the complexities CMBH or CBH on the temperature [27].
Indeed, for T ≳ Λc the relative complexity C2 is almost
constant, and, therefore, both complexities CMBH and CBH
can be an increasing or decreasing function of the temper-
ature or even independent of T. The same argument is also
true for other values of the temperature. However, using
this figure at a fixed temperature, it is realized that CMBH

CBH
∝ T

for large enough temperatures, meaning that the meson
complexity in a nonconformal vacuum is always bigger
than a conformal one.
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