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We study the implications of a change of coordinatization of momentum space for theories with curved
momentum space. We of course find that after a passive diffeomorphism the theory yields the same
physical predictions, as one would expect considering that a simple reparametrization should not change
physics. However, it appears that general momentum-space covariance (invariance under active diffeo-
morphisms of momentum space) cannot be enforced, and within a given set of prescriptions on how the
theory should encode momentum-space metric and affine connection the physical predictions do depend on
the momentum space background. These conclusions find support in some general arguments and in our
quantitative analysis of a much-studied toy model with maximally symmetric (curved) momentum space.
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I. INTRODUCTION

Several recent studies have been devoted to the pos-
sibility of Planck-scale-deformed relativistic symmetries
[1–3], and particularly to the case in which the deformation
is due to the presence of curvature on momentum space
[4–16]. This leads to scenarios which are conceptually
intriguing and often provide opportunities for quantum
gravity phenomenology [17]. The idea of a curved momen-
tum space, with the scale of curvature driven by Planck
energy EP ∼ 10−19 GeV=c2, can be dated back to the
seminal work of Born [18]. A notion of duality between
curvature of momentum space and spacetime noncommu-
tativity was first discussed in studies by Snyder [19]. These
ideas find a particularly satisfactory formalization in the
context of Hopf algebras [20], a mathematical framework
suitable for describing on the same footing noncommuta-
tive spacetimes and their associated symmetries, so that
the curvature of momentum space emerges naturally as
the dual aspect of spacetime noncommutativity (see for
instance [6]).
The “relative-locality framework” [8] has been adopted

in several studies as the basis for a Lagrangian description
of the relativistic kinematics of particles in theories with a
curved momentum space. The label “relative locality”
reflects the fact that in theories with deformed relativistic
symmetries (also known as DSR-relativistic theories

[1–3]), due to the presence of a second invariant scale l
with dimensions of inverse momentum, one typically finds
that the standard absolute notion of spacetime locality must
be replaced by a relative one [21,22] (in close analogy to
how the adoption of the speed-of-light relativistic invariant
leads to the replacement of absolute simultaneity with
relative simultaneity).
The Lagrangian formulation prescribed by the relative-

locality framework [8] gives the on-shell relation in terms
of the metric on momentum space, and free-particle
propagation is described in a manifestly covariant manner
as an evolution in an affine parameter governed by the on-
shell-relation Hamiltonian. The affine connection is then
used to formulate suitable boundary terms for particle
worldlines ending at an interaction vertex, thereby speci-
fying the form of energy-momentum conservation and of
the generators of spacetime translations. The picture will be
relativistic (but in general with deformed, DSR-relativistic,
laws) if certain conditions are satisfied [23,24], as it
happens for maximally symmetric momentum spaces
[25,26]. Several examples of these relativistic scenarios
have been considered in recent years [10–12,15,16,25–32].
The aim of this paper is to study the properties of such a

relativistic theory with curved momentum space under
changes of the coordinatization of momentum space. This
has been so far only contemplated by assuming that
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momentum-space general covariance could be adopted
axiomatically [15,33,34], essentially assuming that curva-
ture of momentum space should be accompanied by
general covariance just on the basis of an analogy with
how spacetime curvature is in some sense (within general
relativity) associated with general covariance; however, as
we shall here show, once the theory is fully specified its
properties under changes of the coordinatization of
momentum space are fixed (and therefore could not
possibly be imposed externally by axiomatization).
Crucial for our analysis is the difference between

invariance under passive diffeomorphisms and invariance
under active diffeomorphisms. A passive-diffeomorphism
transformation just applies the change of coordinatization
of momentum space to all aspects of the theory, including
the observable aspects, and the physical content of the
theory is automatically invariant under such passive diffeo-
morphisms, in the sense that each physical prediction is
trivially mapped into the corresponding prediction via the
action of the diffeomorphism transformation. The presence
of this sort of invariance under passive diffeomorphisms of
course does not ensure momentum-space background
independence. Background independence requires invari-
ance under active diffeormorphism, whose presence is
signaled [35] by the invariance in form of the action
(the equations of motion) under a change of momentum-
space coordinatization, provided that this is achieved
without introducing any external nondynamical tensor.1

Following Ref. [8] we assume that the on-shell relation is
obtained from the geometry of momentum space by
computing the geodesic distance from the origin to a
generic point of momentum space. We shall show that
the on-shell relation changes its form under changes of
momentum-space coordinatization, though this works out
in just such a way that the geodesic distance is invariant.
Still following Ref. [8] our actions include some boundary
terms describing conservation laws at particle interactions,
and these boundary terms are specified by the affine
connection on momentum space. By studying the behavior
of these boundary terms under changes of coordinatization
of momentum space we expose a clear mechanism by
which the theories are not invariant under active diffeo-
morphisms, i.e., their physical predictions are not inde-
pendent of the “momentum space background.”
For most of our analysis we rely on a specific relativistic

framework with curved momentum space, the so-called
“κ-momentum space” [4,6,11,12,28,30–32]. This is the
curved-momentum-space scenario associated with κ-
Minkowski noncommutative spacetime and its dual, the

κ-Poincaré Hopf algebra [36–38]. Notably κ-momentum
space is the group manifold AN3, coinciding with (half of)
de Sitter space [4,6,11,12,28,30,31].
In the following we use units for which the velocity of

light, c, is set to 1, and we assume the deformation scale to
be positive, l > 0.

II. DIFFEOMORPHISMS IN CURVED
MOMENTUMSPACE: THERELATIVE LOCALITY

FRAMEWORK

In this section we consider the effect of a change of
coordinates (passive diffeomorphisms) in a (relativistic)
curved momentum space within the relative locality frame-
work [8]. We start by characterizing the main features of the
formalism, outlining the construction of the relative locality
action. We then consider the effect of a change of
coordinates on the two main components of the action:
the bulk, consisting in the particle on-shell relations, and
the boundary terms, characterizing interactions. We first
study the problem from a general perspective, postponing a
specific example, based on a specific choice of momentum
space, to the following section.

A. The relative locality framework

In the relative-locality framework [8], the deformed
relativistic kinematics of a system of interacting particles
is encoded in the geometric properties of momentum space.
Considering the momentum space to be described by a
(generally curved) manifold P, one takes a coordinate
system pμ on P. Taking a point P in P, the geodesic
distance Dð0; pμÞ from the origin of the coordinate system
to the point pμ ≡ pμðPÞ describes an orbit in momentum
space, as the set of points (a curve in momentum space) for
which the geodesic distance has the same value. The value
of the geodesic distance is interpreted as the mass of a
particle of momentum pμ, and it takes a specific expression
in terms of coordinates pμ that is interpreted as the on-shell
relation for the particle, which therefore is encoded in the
metric gμν on the momentum space. Of course the existence
of the orbit depends on the topological properties of P, and
thus on the symmetries of momentum space. From the
relativistic perspective we are interested in cases in which
the curvature of momentum space still allows the descrip-
tion of spacetime symmetries (in the generalized DSR-
deformed sense). This restricts the choice of possible
momentum space metrics. In particular if one wants to
still have a full set of (DSR-)relativistic symmetries,
corresponding to 1 time and 3 space translations, 3
rotations, and 3 boosts, the choice of geometries is
restricted to maximally symmetric spaces. In this case,
the geodesic distance corresponds to an on-shell relation
invariant under the action of the (deformed) relativistic
symmetries, and the orbit corresponding to a given value of
the mass m is spanned by the action of (deformed) Lorentz

1In a theory which is background dependent one may still find
a reformulation of the theory, obtained by the ad hoc introduction
of an external non-dynamical tensor, such that the form of the
action is formally invariant under changes of coordination, but in
that case the background dependence is encoded in the properties
of the external tensor [35].
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transformations. Explicitly, the on-shell relation for a
particle of mass m and momentum pμ is given by

m ¼ Dð0; pμÞ ¼
Z

1

0

ds
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμνðγÞ_γμ _γν

q
;

γð0Þμ ¼ 0; γð1Þμ ¼ pμ ð1Þ
where γμðsÞ is the solution of the geodesic equation

̈γμ þ Δμ
νρ _γν _γρ ¼ 0; ð2Þ

Δμ
νρ being the Christoffel symbols of the metric gμν,

defined by the relation2

Δμ
νρ ¼ 1

2
gμσðgσν;ρ þ gσρ;ν − gνρ;σÞ; ð3Þ

s is an affine parameter on the curve γðsÞ, and the dot stands
for the derivative with respect to s: _γμ ¼ dγμ=ds.
Besides the deformed on-shell relation, the curvature of

momentum space manifests itself in a deformed composi-
tion law (p ⊕ q) between different particles momenta.
Following Ref. [8] the composition law determines a
connection on P that, in the origin of momentum space,
takes the form

Γρσ
μ ð0Þ ¼ −

∂
∂pρ

∂
∂qσ ðp ⊕ qÞμ

����
p;q¼0

: ð4Þ

An alternative description of the relationship between
composition law and affine connection was proposed in
Ref. [25] (also see the preliminary proposal by Mercati
[39]). The geometrical interpretation proposed in Ref. [25]
is illustrated in Fig. 1: each point P is associated with the
connection geodesic σðPÞðsÞ∶½0; 1� → P (relative to the
connection Γ) which connects it to the origin of momentum

space, i.e., pμðPÞ ¼ σðPÞμ ð1Þ. Considering two points P, Q
with coordinates p≡ pðPÞ, q≡ qðQÞ, one defines a
parametric surface σðs; tÞ∶½0; 1� × ½0; 1� → P with boun-
dary conditions σðs; 0Þ ¼ σðPÞðsÞ, σð0; tÞ ¼ σðQÞðtÞ, and
defined so that at any point of the surface the tangent vector
dσ
ds ðs; tÞ is parallel transported along the integral curves
associated with the tangent vector dσ

dt ðs; tÞ, i.e., satisfying
the condition

dσμðs; tÞ
dt

∇μ
Γ
dσνðs; tÞ

ds
¼ 0; ð5Þ

with ∇μ
ΓVνðPÞ ¼ ∂μVνðPÞ þ Γμρ

ν ðPÞVρðPÞ the covariant
derivative associated with Γ. The composition law for
two momenta is then defined as the extremal point of
σðs; tÞ:

p ⊕ q ¼ σð1; 1Þ: ð6Þ

The construction can be extended to define a “translated”
composition law ⊕½P�, where any momentum is associated
with the geodesic connecting it to the “subtraction point” P
instead of the origin of momentum space. In this case, at
second order in the curvature scale, the connection at P and
the composition law satisfy the relation

Γρσ
μ ðPÞ ¼ −

∂
∂pρ

∂
∂qσ ðp ⊕½kðPÞ� qÞμ

����
p;q¼kðPÞ

: ð7Þ

In the original formulation [8] of relative locality, a
different formula for the “translated” composition law
was adopted, namely

p ⊕½kðPÞ� q ¼ k ⊕ ðð⊖k ⊕ pÞ ⊕ ð⊖k ⊕ qÞÞ; ð8Þ
the associated connection still being relatedbyexpression (7).
The advantage of the geometrical interpretation proposed

in [25] is that it allows to associate (univocally) a
composition law to a given connection, Γ →⊕, which is
not the case for the original proposal of the “translated”
composition law defined in [8]. However, one can easily
see (see [26]) that if the composition law is associative, i.e.,
if p ⊕ ðq ⊕ kÞ ¼ ðp ⊕ qÞ ⊕ k, then the two definitions
coincide. This is the case for the explicit examples
that we will consider, based on different realizations of
κ-momentum space which, corresponding to the Lie group

FIG. 1. Visualization of the construction of the composition law
from the connection geodesics proposed in [25]. To each of the
two momentum space points p≡ pðPÞ and q≡ qðQÞ one
associates respectively the connection geodesics σðpÞ and σðqÞ
that connect them to the origin of momentum space. One then
defines a parametric surface σðs; tÞ with boundary conditions
determined by the curves σðpÞðsÞ and σðpÞðtÞ and defined by
imposing the tangent vector dσ

ds ðs; tÞ to be parallel transported
along the integral curves associated with the tangent vector
dσ
dt ðs; tÞ. The composition law is then defined as the extremal
point p ⊕ q ¼ σð1; 1Þ.

2Notice the role of the upper and lower indexes, due to the
momentum-space metric, and such that ∂μ ¼ ∂=∂pμ, where we
used the common notation for partial derivatives f;μ ¼ ∂μf.
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manifold AN3 (see Sec. III A), is characterized by an
associative composition law.
Finally we point out that the composition law must obey

certain compatibility conditions with the metric in order to
achieve a genuinely relativistic framework. In particular
one requires the summation law to be compatible with the
generalized (deformed) Lorentz transformation (see
below). While we will assume in the following of this
manuscript that these relativity conditions are fulfilled, we
will make them explicit when considering an example of
maximally symmetric momentum space based on the κ-
Poincaré/κ-Minkowski description of symmetries.
Before passing to the investigation of the behavior under

diffeomorphisms of the specific components of the relative
locality framework, let us first review briefly how these
structures are implemented in the relative locality action.
When describing the kinematics of a system of interacting
particles, for each particle the action will have a bulk term

Z
ðLkinðpÞ − NðDð0; pÞ2 −m2

pÞÞ; ð9Þ

where N is a Lagrange multiplier imposing the on-shell
relation, and the kinetic term is

LkinðpÞ ¼ χμp _pμ; ð10Þ

for some spacetime coordinates χμ tangent to momentum
space. For each interaction the action will have a boundary
term

ζμKμðp; q;…Þ; ð11Þ

where ζμ is a Lagrange multiplier imposing the conserva-
tion law Kμðp; q;…Þ ¼ 0, p; q;… being the momenta of
the particle involved in the chain of processes.Kμðp; q;…Þ
here is a function of the momenta constructed from the
composition law⊕Γ, where we emphasize the fact that⊕ is
associated with a certain connection Γ. The total action will
look like

X
i

Z
ðLkinðpiÞ − NðDð0; piÞ2 −m2

pi
ÞÞ

þ
X
I

ζμIK
I
μðp1; p2;…Þ; ð12Þ

where i sums over particles, and I over the number of
vertices.
We postpone a more detailed discussion of the boundary

terms to Sec. (II C). First, we will focus on the role of
the on-shell relation and its behavior under (passive)
diffeomorphisms.

B. On-shell relation and momentum-space
diffeomorphisms

Let us consider two sets of momentum-space coordinates
pμ and p̃ν related by the passive diffeomorphism (change of
coordinates)

pμ ¼ fμðp̃νÞ: ð13Þ

Substituting the map (13) in the on-shell relation (1),
written in coordinates pμ, one directly finds (see also [25])

m ¼ Dð0; pμÞ ¼ Dð0; fμðp̃νÞÞ ¼ Dð0; p̃μÞ: ð14Þ

By inserting the passive diffeomorphism in the on-shell
relation, one actually gets the on-shell relation in the new
coordinates p̃ν. To see this, it is sufficient to note that the
integrand in the geodesic distance in (1) is a scalar function
of pμ. Indeed the _γμ transform as a vector

_γμ ¼
dfμðγ̃Þ
ds

¼ ∂fμðγ̃Þ
∂ γ̃ν

_̃γν; ð15Þ

while the metric tensor transforms as a two-rank tensor

gμνðγÞ ¼ ∂f−1ρ ðγÞ
∂γμ

∂f−1σ ðγÞ
∂γν g̃ρσðγ̃Þ; ð16Þ

where f−1μ ðγÞ ¼ γ̃μ. By the chain rule

∂f−1μ ðγÞ
∂γρ

∂fρðγ̃Þ
∂ γ̃ν ¼ ∂f−1μ ðγÞ

∂ γ̃ν ¼ δνμ; ð17Þ

so that from (15), (16) and (17) one gets

gμν _γμ _γν ¼ g̃μν _̃γμ _̃γν; ð18Þ

which implies Eq. (14), and which can be also ascribed to
the fact that the geodesic distance from the origin depends
only on the final point.
Notice that this means that the on-shell relation in

coordinates p̃ν, can be obtained directly starting from
the on-shell relation in coordinates pμ, and rewriting it
in terms of the coordinates p̃ν through the map (13). We
will return to this obvious but important point in Sec. III B,
showing its behavior for an explicit example of momen-
tum space.

C. Including boundary terms

Besides the on-shell relation, a relative-locality model is
specified by the boundary terms that govern the interaction
processes [8]. A boundary term enforces on one hand the
momenta conservation law at the vertex, and on the other
hand it generates translations through its action by Poisson
brackets (see [8,11], and Appendix B 1). It is worth noting
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that starting from a definite set of coordinates in momentum
space, the same conservation law for a certain process can
be implemented by several different choices of the boun-
dary term. Indeed, in general, given the conservation law

Kμðp; q;…Þ ¼ 0; ð19Þ

one can define a wide class of alternative boundary terms
K0

μ which satisfy the same conservation law (19). On the
other hand, given a set of coordinates in momentum space,
which in turn fixes the Poisson brackets fpμ; xνg between
momenta and spacetime coordinates, the translations gen-
erated by Kμ and K0

μ are in general different. In this section
the discussion is kept as general as possible, but the
physical content will become clearer in the following
sections when we will focus on an explicit example of
momentum space.
The conservation law is related to a deformed summation

rule ⊕, which must be compatible to the deformed
symmetries of the theory. Taking for instance a process
with two incoming (p, q) and one outgoing k particle, one
has the conservation law

ðp ⊕ qÞμ ¼ kμ; ð20Þ

where⊕ encodes the deformation in the summation rule of
momenta, which in general is itself a function of the
momenta involved in the process.
The conservation law (20) is justified by the fact that the

quantity (p ⊕ q) transforms, under generic diffeomor-
phisms, with the same law of a momentum-space coor-
dinate, thus providing a good definition for the “total
momentum” of the system of particles with momenta p and
q. The change of (p ⊕ q) under diffeomorphisms can be
deduced relying on the construction outlined in Sec. II A. In
particular (see [25]) one can show that, given the (passive)
diffeomorphism (13) [pμ ¼ fμðp̃Þ], the following property
holds:

ðp⊕ qÞμ ≡ ðp⊕Γ qÞμ ¼ ðfðp̃Þ⊕fðΓ̃Þ fðq̃ÞÞμ ¼ fμðp̃⊕Γ̃ q̃Þ
≡ fμðp̃ ⊕̃ q̃Þ; ð21Þ

where, with self-explanatory notation, we have taken into
account of the change of the composition law⊕→ ⊕̃ due to
the transformation law Γ ¼ fðΓ̃Þ of the connection under
diffeomorphisms

Γρσ
μ ðkÞ ¼ fðΓ̃ðk̃ÞÞρσμ

¼ M̄ρ
αM̄σ

βM
λ
μΓ̃

αβ
λ ðk̃Þ − M̄ρ

αM̄σ
β∂βMα

μ; ð22Þ

with Mα
μðk̃Þ ¼ ∂fμðk̃Þ=∂k̃α, and M̄μ

αðk̃Þ its inverse.
Indeed, using (22) and the fact that dσμ=ds transforms
as a vector, dσμ=ds ¼ Mα

μdσ̃α=ds, where the surface is

mapped as σðs; tÞ ¼ fðσ̃ðs; tÞÞ, one can verify that Eq. (5)
implies

dσ̃μðs; tÞ
dt

∇μ
Γ̃
dσ̃νðs; tÞ

ds
¼ 0: ð23Þ

Thus, the surface σ̃ is a solution of the parallel transport
equation with connection Γ̃ and boundary points p̃ ¼
σ̃ð1; 0Þ and q̃ ¼ σ̃ð0; 1Þ, and we get, in particular,
that p ⊕ q ¼ σð1; 1Þ ¼ fðσ̃ð1; 1ÞÞ ¼ fðp̃ ⊕ q̃Þ.
Equation (21) expresses that ðp ⊕ qÞμ transforms under

diffeomorphisms with the same law of a single momentum
pμ [thus (p ⊕ q) can be interpreted as a total momentum].
This guarantees in particular that, in the case of a
maximally symmetric momentum space, under (deformed)
Lorentz transformations, which are a subset of the possible
diffeomorphisms, the conservation law (20) transforms
covariantly. Indeed, denoting as ΛðpÞ the deformed
Lorentz transformation3 associated with a specific max-
imally symmetric momentum space, Eq. (21) implies that,
if an observer describes the summation law p ⊕ q, a second
observer, relatively boosted (or rotated) respectively to the
first, describes the same quantity as

ðΛðpÞ ⊕ΛðΓÞ ΛðqÞÞμ ¼ Λμðp ⊕Γ qÞ: ð24Þ

In turn, the last expression ensures that the conservation
law for a given process is preserved under boosts, so that if
it holds for the first observer, it holds also for the relatively
boosted (or rotated) one. Taking again as example the
conservation law (20), the left-hand side of (20) transforms
as ΛμðkÞ, while the right-hand side as in (24), i.e., (20)
transforms as

kμ ¼ ðp ⊕Γ qÞμ ⇒ ΛμðkÞ
¼ Λμðp ⊕Γ qÞ ¼ ðΛðpÞ ⊕ΛðΓÞ ΛðqÞÞμ: ð25Þ

Thus, if the summation law is built from a connection
[obeying transformation law (22)], and the momentum
space is maximally symmetric, the invariance under
(deformed) Lorentz transformations is ensured. The con-
verse is also obviously true, considering the notion of
parallel transport at the basis of the construction outlined in
Sec. II A: if one can define a summation law for momenta
such that the composition of two momenta transforms with
the same law of a single momentum coordinate, then this
automatically defines a connection in momentum space
through relation (7). The requirement of covariance how-
ever does not single out the summation law or the

3For a maximally symmetric momentum space the deformed
Lorentz transformations correspond to the charge/generators
associated with the Killing vectors of the metric that reduce to
standard Lorentz transformations in the limit of vanishing
momentum space curvature.
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associated connection, unless some further restriction is
imposed, like for instance the requirement for the sum to be
associative, or eventually some restriction on the torsion
and curvature of the connection (see the discussions in [25],
in [23], and in [40]). We will see in Sec. III A the example
of κ-momentum space, that relying on the structures given
by the Hopf algebras, a covariant summation law arises
naturally, which, due to the underlying group structure, is
associative (but not commutative), and defines a nonmetric,
torsionful, connection. Another possibility, which was
explored in [25], would be to start from a metric con-
nection. As it was shown in [25], the associated summation
law is not associative in that case.
Once specified the summation law relative to a set of

momentum space coordinates, the conservation law (20)
can be implemented by different choices of the boundary
term. We will adopt in this manuscript the prescription for
which one chooses, between the class of admissible
boundary terms enforcing the conservation law (20), the
one corresponding to

Kμ ¼ Pin
μ − Pout

μ ð26Þ

where Pin
μ and Pout

μ are respectively the total momentum
incoming and outgoing the interaction, computed with the
deformed composition law⊕. As it has been shown in [11]
this choice of boundary terms is compatible with the
definition of translational symmetry in the theory, and its
compatibility with Lorentz (boost) transformations has
been recently established in [32]. Specifically the notion
of translational symmetry implemented in [11] is consistent
with the requirement that all the Lagrange multipliers ζμ,
which turn out to play the role of “interaction coordinates,”
change under translation by the same amount bμ, i.e., δzμ ¼
bμ (see also Appendix B).
For the particular case (20) of two incoming and one

outgoing particles, the prescription (26) amounts to the
expression4

Kμ ¼ ðp ⊕ qÞμ − kμ: ð27Þ

To some extent this choice looks the most “natural,” as it
does not imply extra functions of momenta multiplying the
incoming or outgoing total momentum, and we will denote
the theory built on this prescription5 as the “proper” theory
SðpÞ, indicating with SðpÞ the action constructed with the

prescription (27), starting from the coordinates p on
momentum space P. However, any boundary term of the
form

KF
μ ¼ F μðKÞ ¼ F μðp ⊕ qÞ − F μðkÞ; ð28Þ

where F μ is an invertible map, will produce the conserva-
tion law (20). On the other hand, the translations generated
by Kμ and KF

μ are in general different:

fKμ; ·g ¼ fðp ⊕ qÞμ; ·g − fkμ; ·g; ð29Þ

fKF
μ; ·g ¼ ∂F μðp ⊕ qÞ

∂ðp ⊕ qÞρ
fðp ⊕ qÞρ; ·g

−
∂F μðkÞ
∂kρ fkρ; ·g ≠ fKμ; ·g: ð30Þ

Notice at this point that defining the boundary term as in
(27), it follows from (21) that under diffeomorphisms the
boundary term changes as

Kμ ¼ ðp ⊕ qÞμ − kμ ¼ ðfðp̃Þ ⊕ fðq̃ÞÞμ − fμðk̃Þ
¼ fμðp̃ ⊕̃ q̃Þ − fμðk̃Þ ¼ K̃f

μ ≠ K̃μ; ð31Þ

where K̃μ ¼ p̃ ⊕̃ q̃μ − k̃μ is the boundary term one would
have chosen to build the proper theory in coordinates p̃μ,
i.e., the boundary term obtained following the prescription
(27), starting from a theory defined in momentum space
coordinates p̃μ. Notice also that the relation between the
boundary terms K̃μ and K̃f

μ is of the same kind of the one
described by Eqs. (27) and (28), so that, as shown in
Eqs. (29)–(30), in general they generate the same con-
servation laws but different translation transformations.
Thus, the diffeomorphism (13) does not map the theory
SðpμÞ, the proper theory in coordinates pμ obtained with
the “natural” prescription (27) for the boundary terms, to
the proper theory Sðp̃μÞ in coordinates p̃μ, the one with
boundary terms K̃ðp̃Þμ, but it maps it to an “improper”
theory Sfðp̃μÞ characterized by boundary terms of the kind
K̃fðp̃Þ. We will show in the next sections that while the
theories Sðpμ;KμÞ and Sðp̃μ; K̃μÞ lead to different predic-
tions for the observables relative to a certain process, the
theories Sðpμ;KμÞ and Sfðp̃μ; K̃

fÞ lead to the same
predictions, as it is expected since they are connected just
by a reparametrization.
Denoting as “proper” the theories constructed with the

notion of “naturality” discussed above, and “improper” the
theories with boundary terms of the kind fμðK̃Þ, we can
delineate the following diagram:

4We are not considering here the alternative choice of
boundary terms of the form Kμ ¼ ððp ⊕ qÞ ⊕ ð⊖kÞÞμ, which
was first proposed in [8], and then used in some studies [15,33]
due to its geometrical properties, since it was shown in [11] that it
is not compatible with a well-defined notion of translational
symmetry.

5Alternatives to our prescriptions may be worthy of inves-
tigation. We postpone their discussion to the final Sec. V.
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III. DIFFEOMORPHISMS BETWEEN
“TIME-ORDERED” κ-MOMENTUM SPACES

In order to clarify the considerations of the previous
section, we will now focus on a specific example of
relativistic curved momentum space, characterized by a
de Sitter type of curvature. As stated before the maximal
symmetry of de Sitter space ensures the existence of the
whole set of relativistic symmetries, and in particular it has
been shown [4,6] that a de Sitter curved momentum space
corresponds to a description of a Hopf-algebraic non-
commutative spacetime of κ-Minkowski/κ-Poincaré type

[36,37], where the deformation of relativistic symmetries is
encoded in the Hopf-algebra structures of κ-Poincaré. We
will denote the set of momentum space geometrical
structures associated with this kind of spacetime as κ-
momentum space. We will consider two choices of bases
for the so-called “time-ordered bases” of κ-momentum
space [38,41–43], study the relative locality action asso-
ciated with each choice of basis, and consider the effect of
diffeomorphisms relating the two coordinate bases. Before
doing so we discuss the construction of κ-momentum space
and its relation with κ-Poincaré/κ-Minkowski.

A. The bicrossproduct or “time-ordered”
κ-Poincaré basis

The bicrossproduct basis of κ-Poincaré Pκ was intro-
duced in [37] as the Hopf algebra deformation of special
relativistic symmetries with structure Uðsoð1; 3ÞÞ⊳◀T,
with T the translation sector. It has been noticed however
[34,43–45] that the Hopf algebra defined in [37], some-
times called “Majid-Ruegg” basis in the literature, corre-
sponds only to a specific choice of basis within the class of
possible bicrossproduct formulations of κ-Poincaré. We
consider in this paper a generalized class of κ-Poincaré
bicrossproduct basis which takes the form

½Pμ; Pν� ¼ 0; ½Rj; Rk� ¼ ϵjklRl; ½N j;N k� ¼ −ϵjklRl;

½Rj; P0� ¼ 0; ½Rj; Pk� ¼ ϵjklPl; ½Rj;N k� ¼ ϵjklN l;

½N j; P0� ¼ eλlP0Pj; ½N j; Pk� ¼ δjk

�
eð2−λÞlP0 − e−λlP0

2l
−
l
2
eλlP0P⃗2

�
þ ð1 − λÞleλlP0PjPk; ð32Þ

ΔP0 ¼ P0 ⊗ 1þ 1 ⊗ P0; ΔPj ¼ Pj ⊗ e−λlP0 þ eð1−λÞlP0 ⊗ Pj;

ΔRj ¼ Rj ⊗ 1þ 1 ⊗ Rj; ΔN j ¼ N j ⊗ 1þ elP0 ⊗ N j − lϵjkleλlP0Pk ⊗ Rl; ð33Þ

where E, Pj, Nj, and Mj are respectively time translation,
space translation, boost, and rotation generators. Here l ∝
1=Mp (l ¼ −1=κ, in the conventions used in [37]) is a
deformation parameter with dimensions of an inverse
momentum. The different bases are parametrized by
λ ∈ ½0; 1�, so that for λ ¼ 0 the Majid-Ruegg basis is
recovered. The algebra (32) admits a quadratic invariant
element (the mass Casimir)

□λ ¼
�
2

l

�
2

sinh2
�
l
2
P0

�
− P⃗2elð2λ−1ÞP0 : ð34Þ

While we postpone a detailed discussion to a future work,
we here generalize to this class of bases some of the
properties already considered for the Majid-Ruegg basis.

The bicrossproduct construction has, among others, two
important properties: the Lorentz sector of the algebra is
undeformed; the momenta (i.e., the translation generators)
are in full duality with, and act homogeneously [37] on, the
κ-Minkowski noncommutative coordinates, defined by

½X0; Xj� ¼ lXj; ½Xj; Xk� ¼ 0: ð35Þ

If one consider the set of “time-ordered” plane waves

upðXÞ≕ epμXμ ≔ eλp0X0

epjXj
eð1−λÞp0X0

; ð36Þ

it’s easy to see [4,6] that these are elements of the group
ANð3Þ, the Lie group corresponding to half of de Sitter
space SOð4; 1Þ=SOð3; 1Þ arising in the Iwasawa decom-
position of SO(4,1). The plane waves (36) form a basis for

FIG. 2. The diagram shows how passive diffeomorphisms
connect physically equivalent proper theories with improper
theories. On the contrary, proper theories in different coordinates,
which turn out to be physically inequivalent, are not connected by
passive diffeomorphisms.
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the action of Pκ (cf. [4,38,43]) and the momentum space,
parametrized by pμ coordinates, inherits the de Sitter
geometry from the group structure of ANð3Þ (see also
[12]). It is possible to show6 that for this class of “time-
ordered” plane waves the metric in momentum space is (see
also [34,44])

dp2 ¼ gμνðpÞdpμdpν

¼ ð1 − λ2l2e−2lð1−λÞp0p⃗2Þdp2
0

− e−2lð1−λÞp0dp⃗2 − 2λle−2lð1−λÞp0 p⃗ · dp⃗dp0: ð37Þ
One can show that this metric is invariant under the action
of deformed Lorentz transformations of momenta (as
shown for the Majid-Ruegg case in [12]).
The full duality between momenta and coordinates of the

bicrossproduct construction can be appreciated by noticing
that the translation coproducts (33) can be derived from the
group product law, defining the action [43]

Pμ⊳upðXÞ ¼ pμupðXÞ;
Pμ⊳upðXÞ · uqðXÞ ¼ ·ðΔPμðupðXÞ ⊗ uqðXÞÞÞ ð38Þ

on the product of plane waves

upðXÞ · uqðXÞ ¼ up⊕qðXÞ: ð39Þ
From the definitions (39) and (36), using Eq. (35) one gets
(for instance using the Baker-Campbell-Hausdorff formula
for the product of exponentials of noncommutative
Lie-algebra elements)

ðp⊕qÞ0¼p0þq0; ðp⊕qÞj¼pje−λq0 þeð1−λÞlp0q0;

ð40Þ
which show, comparing with (33), the correspondence of
the description of momenta as functions pμ on the group
ANð3Þ and as generators of translations Pμ in Pκ.
Following the construction outlined in Sec. II A, one can
show that the composition law (40) can be associated with a
connection

Γρσ
μ ðkÞ ¼ δjμðδρ0ðλ − 1Þðδσjlþ δσ0λl

2kjÞ þ δρjδ
σ
0λlÞ; ð41Þ

which can be shown to be nonmetric and torsionful. As
mentioned in Sec. II C Eq. (39) defines a deformed
summation law of momenta which, thanks to the symmetry
properties of the construction, in kinematical terms encodes
a (deformed) Lorentz invariant energy-momentum conser-
vation law [1,23]. Indeed, the action of the boost generator,
defined by the action encoded in the commutators (32), on
the plane wave upðXÞ, extends automatically to the product
plane wave (39) through the coproduct action (33), so that

the composed momentum p ⊕ q transforms, for a finite
Lorentz transformation [12,32], with the same law of a
single momentum:

ðp ⊕ qÞμ → ðp ⊕ qÞ0μ ¼ Λξ
μðp ⊕ qÞ: ð42Þ

Notice that in this case the coproduct structure is such that
the action of the boost generator can be formulated in terms
of a total boost [23] that obeys the decomposition

Λξ
μðp ⊕ qÞ ¼ ðΛξðpÞ ⊕ Λξ⊲pðqÞÞμ; ð43Þ

where ξ⊲p denotes the well-known “backreaction” from
the momentum of the first particle (see [12,32]). From the
considerations of Sec. II C, this can be in turn attributed to
the nonmetricity7 of the connection (41), i.e., making
explicit the role of Γ,

ðΛξðpÞ ⊕Γ Λξ⊲pðqÞÞμ ¼ ðΛξðpÞ ⊕ΛξðΓÞ ΛξðqÞÞμ: ð44Þ

In the bicrossproduct construction here outlined, the κ-
Minkowski noncommutative coordinates generate “trans-
lations” in the momentum space manifold,8 i.e., they
generate the translational symmetries of de Sitter [6]. In
order to view this we notice that one can derive the killing
vectors ξμν ≡ ξνðXμÞ associated with “translations” in
momentum space generated by Xμ, satisfying the Killing
equation9

∇μξνðXÞ þ∇νξμðXÞ ¼ 0: ð45Þ

One finds

ξ0μ ¼ ð1; ð1 − λÞlpjÞ; ξjμ ¼ ð0; e−λlp0δjkÞ: ð46Þ

From this construction arises a natural definition of phase
space, with spacetime coordinates defined as the functions

xμ ¼ ξμνðpÞχν; ð47Þ

generating translations in momentum space, where χμ are
vectors tangent to pμ satisfying the canonical Poisson
brackets

6One way of doing that is to consider, following the con-
struction of [4], the matrix representation of the Borel group
ANð3Þ ¼ SOð4; 1Þ=SOð3; 1Þ and to obtain the 5D coordinates
relative to the choice of ordering (36). These coordinates induce
on the hyperboloid the metric (37) (see also [34,44]).

7If one had started, as explored in [25], from a metric (Levi-
Civita) connection Aρσ

μ , which is invariant [ΛξðAÞ ¼ A], one
would have had the transformationΛξ

μðp⊕qÞ¼ðΛξðpÞ⊕ΛξðqÞÞμ.
However the composition law would have been nonassoci-
ative [25].

8These are not to be confused with physical translation in
spacetime, but again are expressions of the duality between de
Sitter momentum space and κ-Poincaré, i.e., they have the same
mathematical structure of translations in de Sitter spacetime if one
changed momenta with spacetime coordinates.

9The covariant derivative is defined from the metric (A1) as
∇μVν ¼ ∂μVν − Δμν

ρ Vρ, where the Christoffel symbols Δμν
ρ are

defined in (3).
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fχμ; χνg ¼ 0; fpμ; χνg ¼ δνμ: ð48Þ

From the last relations and (47) it follows that the Poisson
Brackets are

fx0; xjg ¼ lxj; fxi; xjg ¼ 0; fpμ; pνg ¼ 0;

fp0; x0g ¼ 1; fp0; xjg ¼ 0;

fpj; x0g ¼ ð1 − λÞlpj; fpj; xkg ¼ e−λlp0δkj : ð49Þ

The coordinates xμ thus correspond to the ANð3Þ gener-
ators Xμ, and one can check that the metric (37) is invariant
under translations generated by xμ by Poisson brackets as

δpμ ¼ ϵνfxν; pμg; ð50Þ

for some constant vector ϵμ.
The symplectic structure defined by (49) is associated

with an action

Z
dsLkinðsÞ with Lkin ¼ χμ _pμ ¼ xμξ̄νμðpÞ _pν; ð51Þ

where the dot stands for the derivative with respect to the
parameter s on the curve in momentum space,
_pμ ¼ dpμ=ds, and ξ̄νμðpÞ are the inverse of the Killing
vectors (47)

ξ̄μa ¼ ðξ−1Þμa → ξ̄0a ¼ ð1;−ð1 − λÞlpjeλlp0Þ;
ξ̄ja ¼ ð0; eλlp0δjkÞ: ð52Þ

The kinetic term is thus

Lkin ¼ x0 _p0 − xjð1 − λÞlpjeλlp0 _p0 þ xjeλlp0 _pj: ð53Þ

Alternatively the same symplectic structure (49) and
kinetic term (53) can be obtained through the Kirillov
construction [46]

Lkin ¼ hX̃; upðXÞ−1dupðXÞi; ð54Þ

where h·; ·i denotes the canonical pairing between the
ANð3Þ Lie algebra and its dual linear space in the basis X̃μ

hX̃μ; Xνi ¼ δνμ; X̃ ¼ xμX̃μ: ð55Þ

We have thus shown the correspondence of the class of
“time-ordered” bicrossproduct bases of Pκ and the de Sitter
or κ-momentum space. In the following sections we will
use this construction to define the relative locality action for
our class of theories. We conclude this section by noticing
that starting from the Majid-Ruegg basis (λ ¼ 0) the other
time-ordered bases (λ ∈ ½0; 1�) can be obtained through a
nonlinear redefinition of the space translation generators

Pj → e−λlP0Pj ð56Þ

to which corresponds the change of coordinates in momen-
tum space

pj → e−λlp0pj: ð57Þ

All the structures obtained in this section can be obtained
by taking into account this change of coordinates.

B. Aside on the on-shell relation for time-ordered bases

Before considering two specific time-ordered bases, we
discuss the role of the on-shell relation for the generic time-
ordered parametrization (37) of κ-momentum space. We
have already shown in general that the on-shell relation,
corresponding to the geodesic distance in momentum space
from the origin to a given point P on the mass shell orbit,
changes accordingly, after a diffeomorphism, so that its
expression in terms of coordinates changes in the required
way for its value, the particle mass, to remain the same.
Some claims in Ref. [34] provide an invitation to analyze
this result in a very explicit way. Indeed in [34] the same
class of momentum space metrics (37) was considered, but
different conclusions were reached.
Referring for the details of the derivation to Appendix A,

we here mention some steps useful to clarify the following
discussion. To find the on-shell relations relative to the
class of metrics (37) we have to evaluate the geodesic
distance (1) on the solutions of the geodesic equations (2)
for these metrics. In doing so one has to be careful of the
fact that the metric defining the momentum space interval
(37) has upper indexes gμν, and the Christoffels (3) involve
also the inverse metric g−1 since the metric with lower
indexes has to be intended as the one satisfying

gμρgρν ¼ δνμ: ð58Þ

Starting from the metric (37), one finds

μ2 ¼ 2

l2
ðcosh ðlmÞ − 1Þ ¼ CλðpÞ

¼
�
2

l

�
2

sinh2
�
lp0

2

�
− p⃗2e−lð1−2λÞp0 : ð59Þ

Apart from a (trivial) redefinition of the mass, the geodesic
distance coincides with the quadratic Casimir (34) of κ-
Poincaré. We denote Cλ this mass Casimir, which will play
the role of Hamiltonian constraint for the particle action.
The expression of the on-shell relation depends explic-

itly on the parameter λ, i.e., it depends on the κ-Poincaré
basis, and coincides with the Casimir (34) in momentum
space variables. The dependence on λ remains even at first
order in the deformation parameter l:
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μ2 ¼ m2 þOðl2Þ ¼ p2
0 − p⃗2 þ lð1 − 2λÞp0p⃗2 þOðl2Þ:

ð60Þ

This result is in contrast with the one in [34], where the
form of the on-shell relation (at least at first order in l) was
claimed to be independent on λ. One can notice by
inspecting the derivation in Appendix A that the misleading
conclusions reached in [34] were mainly due to confusing
the role of the metric gμν and its inverse gμν.
One can see that the on-shell relation for the respective λ-

parametrized coordinates can be obtained, as discussed
earlier, evaluating the geodesic distance in theMajid-Ruegg
coordinates (λ ¼ 0), and then performing the coordinate
change (57) in the expression obtained, corresponding to
the (passive) diffeomorphism

pμ ¼ fμðp̃Þ≡ ðp̃0; eλlp̃0 p̃jÞ: ð61Þ

This shows, as it should be expected, that in both writings,
the physical content of the on-shell relation, i.e., the
value of the particle mass, is the same, but the way this
is implemented is by giving an appropriately different form
to the on-shell relation, once the dependence on coordinates
is made explicit.

C. “Time-to-the-right” basis for de Sitter
momentum space

We consider first the setup associated with the so called
“time-to-the-right” (TTR) basis of κ-momentum space,
which coincides with the Majid-Ruegg basis discussed
in Sec. III A. This is obtained setting the parameter λ
characterizing the class of time-ordered bases to zero. From
Eq. (36) we see that this choice corresponds to having
ordered the noncommutative time coordinate to the right in
the definition of the κ-Minkowski plane wave [or the
ANð3Þ group elements]. The on-shell relation, sum rule,
and phase space are thus given by setting λ ¼ 0 in
Eqs. (59), (40), and (49):

μ2 ¼ CðpÞ ¼
�
2

l

�
2

sinh2
�
lp0

2

�
− p⃗2e−lp0 : ð62Þ

ðp ⊕ qÞ0 ¼ p0 þ q0;

ðp ⊕ qÞj ¼ pj þ elp0qj: ð63Þ

fx0; xjg ¼ lxj; fxi; xjg ¼ 0; fpμ; pνg ¼ 0;

fp0; x0g ¼ 1; fp0; xjg ¼ 0;

fpj; x0g ¼ lpj; fpj; xkg ¼ δkj : ð64Þ

For the specific process characterized by the conserva-
tion law (20), the TTR boundary term will have the
expression

K0 ¼ p0 ⊕ q0 − k0 ¼ p0 þ q0 − kj;

Kj ¼ pj ⊕ qj − kj ¼ pj þ elp0qj − kj: ð65Þ

The translations, for the worldlines involved in the process,
will be generated by the action by Poisson bracket of Kμ.

D. “Time-symmetric” basis for de Sitter
momentum space

As a different choice of time-ordered coordinates in
momentum space, we consider now the so-called “time-
symmetric” (TS) basis [43] p̃μ. This is the one obtained
choosing the ordering rule for the plane wave (36) so that
the time noncommutative coordinate appears symmetri-
cally, for instance, ∶XiX0∶ ¼ 1

2
ðX0Xi þ XiX0Þ, and

amounts to set the parameter λ to λ ¼ 1=2. We get from
Eqs. (59), (40), and (49)

μ2 ¼ C̃ðp̃Þ ¼
�
2

l

�
2

sinh2
�
lp̃0

2

�
− ð ⃗p̃Þ2; ð66Þ

ðp̃ ⊕̃ q̃Þ0 ¼ p̃0 þ q̃0;

ðp̃ ⊕̃ q̃Þj ¼ e−
1
2
lq̃0p̃j þ e

1
2
lp̃0 q̃j: ð67Þ

fx0; xjg ¼ lxj; fxi; xjg ¼ 0; fp̃μ; p̃νg ¼ 0;

fp̃0; x0g ¼ 1; fp̃0; xjg ¼ 0;

fp̃j; x0g ¼ 1

2
lp̃j; fp̃j; xkg ¼ e−

1
2
lp̃0δkj : ð68Þ

For the specific process characterized by the conserva-
tion law (20), the TTR boundary term will have the
expression

K̃0 ¼ p̃0⊕̃q̃0 − k̃0 ¼ p̃0 þ q̃0 − k̃j;

K̃j ¼ p̃j⊕̃q̃j − k̃j ¼ e−
1
2
lq̃0 p̃j þ e

1
2
lp̃0 q̃j − k̃j: ð69Þ

The translations, for the worldlines involved in the process,
will be generated by the action by the Poisson bracket
of K̃μ.

E. Diffeomorphism from TTR to TS momenta

We now consider the change of coordinates relating the
TTR and TS κ-momentum space bases. From Eq. (61) it
follows that TTR and TS coordinates are connected through
the passive diffeomorphism

pμ ¼ fμðp̃Þ≡ ðp̃0; e
1
2
lp̃0 p̃jÞ: ð70Þ

As shown in Sec. (A), and as one can easily verify, under
such a diffeomorphism, the on-shell relation (62) becomes
(66). Consider now the sum law (63). One finds
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ðp ⊕ qÞ0 ¼ p0 þ q0 ¼ p̃0 þ q̃0 ¼ ðp̃ ⊕̃ q̃Þ0;
ðp ⊕ qÞj ¼ pj þ elp0qj ¼ e

1
2
lp̃0p̃j þ elp̃0e

1
2
lq̃0 q̃j

¼ e
1
2
lðp̃0þq̃0Þðe−1

2
lq̃0 p̃j þ e

1
2
lp̃0 q̃jÞ

¼ e
1
2
lðp̃ ⊕̃ q̃Þ0ðp̃ ⊕̃ q̃Þj: ð71Þ

We see that the sum (63) does not change into (67) but in
fμðp̃ ⊕̃ q̃Þ, in agreement with the discussion of Sec. II C.
Then the boundary term (65) does not change into (69), but
into

K̃f
0 ¼ f0ðp̃ ⊕̃ q̃Þ − f0ðk̃Þ ¼ p̃0 þ q̃0 − k̃0;

K̃f
j ¼ fjðp̃ ⊕̃ q̃Þ − fjðk̃Þ
¼ e

1
2
lðp̃0þq̃0Þðe−1

2
lq̃0 p̃j þ e

1
2
lp̃0 q̃jÞ − e

1
2
lk̃0 k̃j: ð72Þ

These boundary terms are of the kind discussed in Sec. II C.
They produce the same conservation laws of Kμ (69):

K̃f
μ ¼ 0 ⇔

�
p̃0 þ q̃0 ¼ k̃0;

e−
1
2
lq̃0p̃j þ e

1
2
lp̃0 q̃j ¼ k̃j;

⇔ K̃μ ¼ 0: ð73Þ

However K̃f
μ and K̃μ generate different translations:

fK̃f
0 ; ·g ¼ fp̃0 þ q̃0 − k̃0; ·g;

fK̃f
j ; ·g ¼ e

1
2
lðp̃0þq̃0Þfðp̃ ⊕̃ q̃Þj; ·g

þ l
2
e
1
2
lðp̃0þq̃0Þðp̃ ⊕̃ q̃Þjfðp̃ ⊕̃ q̃Þ0; ·g

− e
1
2
lk̃0fk̃j; ·g −

l
2
k̃je

1
2
lk̃0fk0; ·g; ð74Þ

which differ from

fK̃μ; ·g ¼ fðp̃ ⊕̃ q̃Þμ; ·g − fk̃μ; ·g: ð75Þ

Thus, starting from the “proper” theory defined in TTR
coordinates (Sec. III C, let us call it “TTR theory”) and
performing the change (70) to TS coordinates, does not
lead to the theory defined in Sec. III D, characterized by the
boundary term K̃μ, which would be the proper theory one
would write down starting from TS coordinates (let us call
it “TS theory”). Instead, the change (70), leads to the
“improper” theory in TS coordinates, characterized by the
boundary term K̃f

μ, producing the same conservation laws
of the TS theory, but different translation generators (let us
call it “TSf theory”). As shown in Fig. 3, this is the same
behavior depicted in Fig. 2 for the general case.
We will see, with an explicit example, how the difference

in the translation generators leads, for TS and TSf theories,
to different predictions for the physical observables. We
will show however how, for TSf theory and TTR theory,

connected by a passive diffeomorphism (70), the predic-
tions coincide.

IV. OUR CASE STUDY

In this final section we consider an explicit physical
example illustrating the features determined in the previous
sections. Our analysis will concern the study of a a specific
process suitable to compare the time of travels of particles
for the TTR, TS, and TSf theories respectively. Let us focus
on the specific process depicted in Fig. 4. Here we have two
atoms (q, y and p, x), each one absorbing a photon,
propagating freely and finally emitting a second photon.
The energies of the absorbed photons are such that both

atoms in the excited states can be considered ultrarelativ-
istic p00 ≫ mp0 , q00 ≫ mq0 . We work at first order in the
deformation (OðlpÞ), and we take the case in which lq00

can be neglected, while lp00 cannot, so that the atom with

FIG. 3. Under a passive diffeomorphism from TTR to TS
coordinates, the proper TTR theory in TTR coordinates is
equivalent to an improper TSf theory in TS coordinates. Vice
versa, when starting from a proper TS theory in TS coordinates,
which is physically inequivalent to both TTR and TS0 theories,
the inverse diffeomorphism from TS to TTR coordinates yields
an improper TTRf−1 theory (physically equivalent to the proper
TS theory).

FIG. 4. Blue lines represent hard particles, red lines soft
particles, and black dotted lines stand for the observers.
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momentum q0 is soft and the one with momentum p0 is
hard. We suppose that the soft atom and the hard one are
generated at the same spatial point, but the soft atom is
generated after the hard one. We also suppose that they
deexcite at the same spatial point. Then, the main concern
of our study will be to predict which of the two atoms
reaches the spatial point of deexcitement first. We remark
that the processes involving the soft atom are causally
disconnected from the ones involving the hard atom and
this will reflect in the structure of the boundary terms we
will propose to describe the processes [11].
Before studying the process, let us derive the free

particle equations of motion for the generic time-ordered
κ-momentum space. From the discussions of Secs. II A,
III A, and III B, the Lagrangian of a free particle will be

LλðpÞ ¼ xμξ̄νμðpÞ _pν −N ðCλ − μ2Þ; ð76Þ

with Cλ given by Eq. (59). By variating the Lagrangian in
function of xa and pμ one gets the equations of motion

_pμ ¼ 0; CλðpÞ ¼ μ2; _xj ¼ N e−λlp0
∂CλðpÞ
∂pj

;

_x0 ¼ N
�∂CλðpÞ

∂p0

þ ð1 − λÞlpj
∂CλðpÞ
∂pj

�
: ð77Þ

We can solve the equations of motion for xjðx0Þ ¼
x̄j þ vjðx0 − x̄0Þ, evaluating the velocity

vj ¼ _xj

_x0
¼ 2lpjeλlp0

1 − e2lp0 þ l2p2e2λlp0
; ð78Þ

where we used the expression (59). Using again Eq. (59) for
massless particles, the on-shell relation Cλ ¼ 0 gives

l2p2 ¼ ðeð1−λÞlp0 − e−λlp0Þ2: ð79Þ

Substituting the last expression in (78) we find, for
massless particles,

vj ¼ −
pj

jpj ; ð80Þ

where one should notice that the choice pj < 0 (pj > 0)
coincides, in our covariant conventions, to consider a
particle propagating in the direction of the positive (neg-
ative) xj axis. We thus see that, in xμ coordinates, the
coordinate velocity of massless particles is undeformed.
This means, as discussed in previous works [11,22], that
within this choice of spacetime coordinates, all the features
of relative locality manifest themselves in the nontrivial
role of translation generators.
In the following we work for simplicity in ð1þ 1ÞD, and

at first order in l, which suffices to illustrate our results.

A. TTR analysis

We perform first the analysis within the time-to-the-right
framework defined in Sec. III C, so that for each particle the
on-shell relation is given by (62) and the composition law
of momenta is given by (63). Taking into account the
expression for the kinetic term (53) (for λ ¼ 0), the free-
particle part of the action is characterized, for each particle
pI , by the free Lagrangian (76)

LðpIÞ¼x0I _p
I
0þx1I _p

I
1−lx1I p

I
1 _p

I
0þN IðCðpIÞ−μ2I Þ; ð81Þ

where N p is a Lagrange multiplier, enforcing the on-shell
condition. The set of processes in Fig. 4 is then described
by the relative locality action

S ¼
Z

s0

−∞
dsðLðkÞ þ LðpÞÞ þ

Z
s1

−∞
dsðLðqÞ þ LðrÞÞ þ

Z
s3

s0

dsLðp0Þ þ
Z

s2

s1

dsLðq0Þ þ
Z þ∞

s2

dsðLðq00Þ þ Lðr0ÞÞ

þ
Z þ∞

s3

dsðLðp00Þ þ Lðk0ÞÞ − ζμ½0�K
½0�
μ ðs0Þ − ζμ½1�K

½1�
μ ðs1Þ − ζμ½2�K

½2�
μ ðs2Þ − ζμ½3�K

½3�
μ ðs3Þ; ð82Þ

where the ζ½i� are Lagrange multipliers enforcing the
conservation law at the interaction vertices and play the

role of interaction coordinates [8,11]. The K½i�
μ ðsiÞ are

K½0�
μ ðs0Þ ¼ ðp⊕ kÞμ −p0

μ; K½1�
μ ðs1Þ ¼ ðq⊕ rÞμ − q0μ;

K½2�
μ ðs2Þ ¼ q0μ − ðq00 ⊕ r0Þμ; K½3�

μ ðs3Þ ¼ p0
μ − ðp00 ⊕ k0Þμ:

ð83Þ

We notice that in each boundary term one has only the
momenta of the particles which are causally connected with

the interaction described by that boundary term. As a result,
the action can be split in two parts that do not affect each
other: a part describing the processes concerning the soft
atom and a part describing the processes concerning the
hard atom.
From the action (82), each particle satisfies the equations

of motion (77) with λ ¼ 0, so that each particle moves with
velocity v1I ¼ �1. Moreover the boundary terms in (82)

enforce the conservation laws at the vertices K½i�
μ ðsiÞ ¼ 0.

From the variation of the action (82) one obtains the
boundary conditions
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xμI ðsiÞ ¼ �ζν½i�

�∂K½i�
ν

∂pI
μ
þ lδμ0

∂K½i�
ν

∂pI
1

pI
1

�
; ð84Þ

where the þ=− sign is for particles incoming/outgoing at
the vertex. Notice that the boundary conditions (84) can be
also expressed in terms of Poisson brackets as explained in
Appendix B 1, through Eq. (B4).
To determine the time of arrival of the two atoms we

introduce an observer Alice which is local to the
excitation of the atoms and an observer Bob which is
local to their deexcitation. We take these observers to be
in relative rest, so that the relation between their
coordinates is given by a translation transformation.
Considering that (taking p0

1; q
0
1 < 0 in order to have

propagation in the positive direction of the x1 axis) the
atoms move with velocity (80) v1 ¼ 1, the relativistic
properties of the theory ensures that each observer
describes the particle worldlines

x1I ¼ x̄1I � ðx0I − x̄0I Þ: ð85Þ

Let us suppose that the hard atom is generated at Alice’s
coordinates x01A ¼ x00A ¼ 0, while the soft atom at y01A ¼ 0,
y00A ¼ t0 > 0. Taking p0

1; q
0
1 < 0 to have propagation in

the positive direction of the x1 axis, it follows that Alice’s
worldlines are

x01A ¼ x00A; y01A ¼ y00A − t0: ð86Þ

We suppose that the deexcitation of the two atoms occurs
at Bob’s spatial origin x01B ¼ y01B ¼ 0. To compute the
times at which these events happen, we use the world-
lines described by Bob. These worldlines can be obtained
by introducing in (85) the translation transformation
which relates the coordinates of Alice and Bob.
As discussed above, it follows from the action (82) that

assuming, according to [11], the interaction coordinates to
translate as ζμ½i�B ¼ ζμ½i�A þ bμ (see Appendix B), the trans-
lations are generated by the Poisson brackets of the

boundary terms K½i�
μ with the coordinates (with the appro-

priate sign for incoming and outgoing particles), so that

x0μBðsÞ ¼ x0μAðsÞ þ bνfK½0�
ν ; x0μg ¼ x0μAðsÞ − bνfK½3�

ν ; x0μg ¼ x0μAðsÞ − bνfp0
ν; x0μg;

y0μBðsÞ ¼ y0μAðsÞ þ bνfK½1�
ν ; y0μg ¼ y0μAðsÞ − bνfK½2�

ν ; y0μg ¼ y0μAðsÞ − bνfq0ν; y0μg; ð87Þ
which, written explicitly using (64), give

x00BðsÞ ¼ x00AðsÞ − b0 − b1lp0
1; x01BðsÞ ¼ x01AðsÞ − b1;

y00BðsÞ ¼ y00AðsÞ − b0 − b1lq01 ≃ y00AðsÞ − b0; y01BðsÞ ¼ y01AðsÞ − b1; ð88Þ
where we have neglected b1lq01. Substituting these relations for x̄μBðx̄AÞ in (85), we find that Bob describes the worldlines

x01B ¼ x00B − b1 þ b0 þ b1lp0
1; y01B ¼ y00B − b1 þ b0 − t0: ð89Þ

When we impose x01B ¼ y01B ¼ 0, we find:

x00B ¼ þb1 − b0 þ jb1lp0
1j;

y00B ¼ þb1 − b0 þ t0; ð90Þ
where we used that−b1lp0

1 ¼ jb1lp0
1j. So, if t0 < jb1lp0

1j,
the soft atom arrives at Bob before the hard atom, even if it
was emitted later at Alice.

B. TS analysis

A similar analysis can be carried out in the time-
symmetric setup defined in Sec. III D. The on-shell relation
for every particle is now given by (66), while the compo-
sition law of momenta by (67). The kinetic term is (53) with
λ ¼ 1=2, so that the free-particle part of the action is
characterized by the free Lagrangian (76)

L̃ðp̃IÞ ¼ x0 _̃p0 þ xj _̃pj −
1

2
lx1p̃1

_̃p0

þ 1

2
x1lp̃0

_̃p1 þN IðC̃ðp̃IÞ − μ2Þ: ð91Þ

The physical configuration of Fig. 4 is again described by
the action (82) where one has to substitute LðpIÞ → L̃ðp̃IÞ
and K½i�

μ → K̃½i�
μ , with K̃½i�

μ of the kind (69), i.e., they are
[see (83)]

K̃½0�
μ ðs0Þ ¼ ðp̃ ⊕̃ k̃Þμ − p̃0

μ; K̃½1�
μ ðs1Þ ¼ ðq̃ ⊕̃ r̃Þμ − q̃0μ;

K̃½2�
μ ðs2Þ ¼ q̃0μ − ðq̃00⊕̃r̃0Þμ; K̃½3�

μ ðs3Þ ¼ p̃0
μ − ðp̃00⊕̃k̃0Þμ:

ð92Þ
Each particle satisfies now the equations of motion (77)

with λ ¼ 1=2, and from (80) it follows that each particles
moves again with velocity v1I ¼ �1. The boundary con-
ditions following from the variation of the TS action are
different from (84) due to the difference in the kinetic term
in (91). They are

x̃μI ðsiÞ ¼ �ζν½i�

�∂K̃½i�
ν

∂p̃I
μ
þ 1

2
lðδμ0p̃I

1 − δμ1p̃
I
0Þ
∂K̃½i�

ν

∂p̃I
1

�
: ð93Þ
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Repeating the same steps as for the TTR case, noticing that since v1 ¼ �1 Eq. (85) and (86) still hold, and also that one
can show that Eq. (87), replacing Kμ with K̃μ and pμ with p̃μ, hold for the TS case, we find, using (68), that (88) are
replaced by

x00BðsÞ ¼ x00AðsÞ − b0 −
1

2
b1lp̃0

1; x01BðsÞ ¼ x01AðsÞ − b1 þ 1

2
b1lp̃0

0;

y00BðsÞ ¼ y00AðsÞ − b0 −
1

2
b1lq̃01 ≃ y00AðsÞ − b0; y01BðsÞ ¼ y01AðsÞ − b1 þ 1

2
b1lq̃00 ≃ y01AðsÞ − b1: ð94Þ

Substituting these relations for x̄μBðx̄AÞ, we find that Bob describes the worldlines

x01B ¼ x00B − b1 þ b0 þ 1

2
b1lðp̃0

0 þ p̃0
1Þ; y01B ¼ y00B − b1 þ b0 − t0: ð95Þ

Notice now that on-shell p̃0
0 ¼ jp̃0

1j þOðlðp̃0
1Þ2Þ ¼

−p̃0
1 þOðlðp̃0

1Þ2Þ, so that, imposing x01B ¼ y01B ¼ 0, we
find:

x00B ¼ þb1 − b0; y00B ¼ þb1 − b0 þ t0: ð96Þ

In the TS framework introduced in Sec. III D, contrary to
the TTR framework, the soft atom arrives at Bob always
after the hard photon.

C. Diffeomorphism from TTR to TS momenta

We consider here the same process, Fig. 4, analyzed in
the framework discussed in Sec. III E, i.e., the one obtained
from the TTR framework performing a (passive) diffeo-
morphism (70) on the momentum space coordinates,
changing from TTR to TS coordinates:

pμ ¼ fμðp̃Þ≡ ðp̃0; e
1
2
lp̃0 p̃jÞ: ð97Þ

One can easily verify that under the change (97) the free
particle Lagrangian (81) is mapped into the Lagrangian
(91):

LðpIÞ ¼ LðfðpIÞÞ ¼ L̃ðp̃IÞ: ð98Þ
Thus the free part of the action is the same of the TS one of
Sec. IV B, and generates the same equations of motion. The
only difference with the TS action is in the interaction
boundary terms, which are of the kind K̃f

μ (72), i.e., with
respect to (92), one has to substitute to each sum ðp̃ ⊕̃ q̃Þμ
the one [see (71)] obtained by the diffeomorphism
fμðp̃ ⊕̃ q̃Þ. For instance the boundary terms at s0 and s1
change into

K̃f½0�
0 ¼ ðp̃ ⊕̃ k̃Þ0 − p̃0

0; K̃f½0�
1 ¼ e

1
2
lðp0þk0Þðp̃ ⊕̃ k̃Þ1 − e

1
2
lp0

0 p̃0
1;

K̃f½0�
0 ¼ ðq̃ ⊕̃ r̃Þ0 − q̃00; K̃f½0�

1 ¼ e
1
2
lðq0þr0Þðq̃ ⊕̃ r̃Þ1 − e

1
2
lq0

0p̃0
1: ð99Þ

The boundary conditions are obtained by replacing K̃½i�
μ with K̃f½i�

μ in (93), and with the same mechanism shown in

Appendix B one finds that the translations are generated by the action by Poisson brackets of K̃f½i�
μ . Then, using (68)

together with (99), Bob’s coordinates are

x00BðsÞ ¼ x00AðsÞ − b0 − b1lp̃0
1; x01BðsÞ ¼ x01AðsÞ − b1;

y00BðsÞ ¼ y00AðsÞ − b0 − b1lq̃01 ≃ y00AðsÞ − b0; y01BðsÞ ¼ y01AðsÞ − b1: ð100Þ

Substituting these relations for x̄μBðx̄AÞ, we find that Bob describes the worldlines

x01B ¼ x00B − b1 þ b0 þ b1lp̃0
1; y01B ¼ y00B − b1 þ b0 − t0; ð101Þ

so that, imposing x01B ¼ y01B ¼ 0, we find that Bob detects the particles at the times

x00B ¼ þb1 − b0 þ jb1lp̃0
1j; y00B ¼ þb1 − b0 þ t0: ð102Þ

The difference in the arrival time of the two photons is jb1lp̃0
1j − t0 ¼ jb1lp0

1j − t0, as for the TTR case of Sec. IVA.
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Thus we see that, while the observable arrival time
derived in the proper TTR framework of Secs. III C and IV
A differs with the one derived in the proper TS framework
of Secs. III D and IV B, it coincides with the improper
framework TSf in TS coordinates, obtained from the TTR
by a (passive) diffeomorphism. Thus, this example shows
explicitly the meaning of the diagram depicted in Fig. 3 (or
in Fig. 2): while passive diffeomorphisms connect a proper
theory with a physically equivalent improper theory, proper
theories in different momentum space coordinate bases
yields different physical predictions, as they are not
connected by passive diffeomorphisms.

D. Generic (passive) diffeomorphism

The result obtained in the last subsection is valid for a
generic diffeomorphism. Indeed consider a diffeomorphism

pμ ¼ fμðp̃νÞ: ð103Þ
The free Lagrangian changes into Lfðp̃Þ ¼ Lðfðp̃ÞÞ. The
variation of Lfðp̃Þwith respect to xa will give the equations
of motion

∂fμðp̃Þ
∂p̃ν

_̃pν ¼ 0 ⇔ _̃pν ¼ 0: ð104Þ

The variation with respect to p̃μ gives the equations of
motion

∂Lfðp̃Þ
∂p̃μ

−
d
ds

∂Lfðp̃Þ
∂ _̃pμ

¼ ∂Lðfðp̃ÞÞ
∂fν

∂fνðp̃Þ
∂p̃μ

−
d
ds

∂Lðfðp̃ÞÞ
∂ _fν

∂ _fνðp̃Þ
∂ _̃pμ

¼ ∂fνðp̃Þ
∂p̃μ

�∂LðpÞ
∂pν

−
d
ds

∂LðpÞ
∂ _pν

�����
p¼fðp̃Þ

¼ 0; ð105Þ

where we used that ∂Lðfðp̃ÞÞ=∂fμ ¼ ∂LðpÞ=∂pμ, that
∂ _fνðp̃Þ=∂ _̃pμ ¼ ∂fνðp̃Þ=∂p̃μ and (104). Multiplying the
last expression by ð∂fν=∂p̃μÞ−1, it follows that the equa-
tions of motion are the same of the original action, just
rewritten in the new coordinate system. Similarly, as it is
shown in Appendix B 3 and in particular Eq. (B18), the
boundary terms generated by the p̃μ variation couple with

the interaction boundary termsKf
μ of the kind (72) in such a

way that the translations are generated by Poisson brackets
with Kf

μ:

xμB ¼ xμA � bνfKf ½i�
ν ðp̃Þ; xμg: ð106Þ

From Eq. (B19) this implies that translations
are obtained by simply rewriting the translations

for the original action in terms of the new momenta
variables:

xμB ¼ xμA � bνfKνðpÞ; xμgjp¼fðp̃Þ: ð107Þ

This, together with (105), allows us to write the analysis in
the framework obtained by the diffeomorphism from the
TTR one of IVA by simply rewriting the equations of
motion for Alice and Bob of IVA in terms of the new
variables. In particular Alice still describes the equa-
tions (86):

x01A ¼ x00A; y01A ¼ y00A − t0: ð108Þ

The translation transformations for the coordinate of the
soft and hard atoms are

x00BðsÞ ¼ x00AðsÞ − b0 − b1lf1ðp̃0Þ; x01BðsÞ ¼ x01AðsÞ − b1;

y00BðsÞ ¼ y00AðsÞ − b0 − b1lf1ðq̃0Þ ≃ y00AðsÞ − b0; y01BðsÞ ¼ y01AðsÞ − b1: ð109Þ

So, putting together (108) and (109), and using that the
deexcitation of the two atoms still occurs at Bob’s spatial
origin x01B ¼ y01B ¼ 0, we find

x00B ¼ þb1 − b0 þ jb1lf1ðp0Þj;
y00B ¼ þb1 − b0 þ t0; ð110Þ

which are the same results found in the previous section,
just rewritten in terms of the new coordinates. Then also the

condition for the soft atom to arrive at Bob before the hard
atom is simply the one of the previous section rewritten in
the new coordinate system:

t0 < jb1lf1ðp0Þj: ð111Þ

We can conclude that, after a change of coordinates, the
predictions of the theory do not change, but they get just
rewritten in the new coordinate system.
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V. CONCLUSIONS AND COMMENTS

In this paper we studied the effect of a change of
momentum-space coordinates when momentum space is
curved, relying on the relative locality framework proposed
in [8] and further developed in several following works
(see, e.g., Refs. [9–12,15,16,25,27–33]). While most of our
findings apply in general to the relative-locality framework
[8], we mainly focused on DSR-relativistic pictures, where
the entire set of (deformed) relativistic spacetime sym-
metries is available (and momentum space is maximally
symmetric).
We found, as expected, that the on-shell relation, defined

by the geodesic length in momentum space, in its explicit
form, depends on the (momentum-space) coordinates just
in the way needed for its value to be invariant. This also
rectifies some erroneous conclusions drawn in [34]. For
what concerns the boundary terms we considered two
different choices of coordinates, pμ and p̃μ, and found that
the respective actions, SðpμÞ and Sðp̃μÞ, lead in general to
different predictions for physical observables. We have
shown that a diffeomorphism in momentum space pμ ¼
fμðp̃μÞ does not map the action SðpμÞ to the action Sðp̃μÞ,
but it maps it into an action Sfðp̃μÞ which has the same
equations of motion and conservation laws of Sðp̃μÞ, but
different boundary terms, which in turn generate different
translational symmetries with respect to Sðp̃μÞ. The differ-
ence in translational symmetries is such that the observ-
ables of the theory Sfðp̃μÞ coincide with the ones of the
theory SðpμÞ. Indeed, the result of the diffeomorphism
amounts to a reparametrization of the boundary terms,
originally written in coordinates pμ, in terms of the new
coordinates p̃μ, under which the physical predictions do not
change, while in general, different boundary terms, char-
acterizing different translation generators, define different
theories, even if they encode the same conservation law.
Specifically for the kappa-momentum space, which was

our case study, we found that different κ-Poincaré bases
lead to inequivalent relativistic theories. We obtained this
result relying on a specific example of a physical observ-
able, which we identified with the temporal ordering (time
delay) between two events corresponding to the deexcita-
tion of two freely propagating atoms of different energies at
a common spatial point, measured by observers local to the
two events. We focused on the study of time delays both
because of its conceptual interest, and because of its
relevance for quantum gravity phenomenology [47,48].
Our conclusion is that at least for the example we
considered, the physical content of the theory depends
on the momentum space basis (in the sense explained
above). It would be of great interest to test our results
considering alternative observables other than time delays.
Our results rely moreover on a certain set of prescriptions

for how towrite the relative locality action. For instance, we
have assumed that the propagation of the two atoms, which

are taken to be not “causally connected,” can be described
by two separate (independent) relative locality actions. This
assumption is coherent with a commonly adopted perspec-
tive [8,28,30] for which the total action of two chains of
processes which are not causally connected is made of the
ordinary sum of two relative locality actions. However, it is
still legitimate and interesting to study possible alternatives,
as for instance the case in which the total action cannot be
decomposed into the sum of two actions each one depend-
ing on a different set of variables. Another prescription, as
stressed in Sec. II C, regards the form of the interaction
boundary term to be taken to construct the relative locality
action starting from a given set of momentum space
coordinates. We have assumed that the boundary term
should be given by the ordinary difference of the “total”
incoming and outgoing momenta, which has proven to
ensure compatibility with translational symmetry [11,32].
We conclude that, within the given set of prescriptions,

under a generic (passive) diffeomorphism in momentum
space, a theory with curved momentum space yields the
same physical predictions, but its action is not invariant in
form. This spoils the equivalence between passive and
active diffeomorphisms (in momentum space), while in
general relativity, on the other hand, such equivalence for
spacetime diffeomorphisms is at the basis of general
covariance.
A further comment should be made for how, in the

relative locality framework, diffeomorphisms affect a
theory invariant under ordinary special relativistic
(Poincaré) symmetries. The special relativistic limit must
be indeed obtained from the relative locality action in the
limit of vanishing momentum space curvature, i.e., when
momentum space is (Minkowskian) flat. The behavior
under diffeomorphisms of a theory with flat momentum
space is essentially the same as the behavior that we have
studied in this paper, of a theory with relativistic curved
momentum space: under a passive diffeomorphism, corre-
sponding to a generic change of momentum space coor-
dinates, the physical content of the theory is unchanged;
however, the action will not be invariant in form.10 In other
words, the theory is (obviously) invariant under a passive
diffeomorphism, which corresponds simply to a relabeling
of momenta, but it is not invariant under the corresponding
active diffeomorphism.
However, while our result holds identically for flat and

curved momentum spaces, its significance is greater in the
curved-momentum-space case. This is because on a curved
geometry (even a maximally symmetric one) there is no
“natural” choice of coordinates for constructing the action,
while for a flat geometry one has such a natural

10The theory is invariant only under the subsector of diffeo-
morphisms corresponding to Poincaré transformations for flat
momentum space, or to the respective relativistic transformations
for de Sitter momentum space (for instance κ-Poincaré sym-
metries for κ-momentum space).
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coordinatization. For instance, in κ-(de Sitter-)momentum
space one can construct the action starting from a class of
possible coordinates corresponding to different bases of κ-
Poincaré, leading to relativistic theories that are equally
legitimate from the theoretical point of view, but are
connected by active diffeomorphisms and, as we have
shown in this paper, yield different predictions for the
observation of time delays. It follows that theories formu-
lated in different bases of the same curved momentum
space are in general inequivalent, and lead to different
physical predictions, that need to be studied experimentally.
While our whole analysis relied on the relative-locality

framework, we expect that similar results will be found in
any formalism allowing for momentum-space curvature.
Indeed, our findings suggest that the duality between
spacetime and momentum space, while geometrically
appealing when both are described as curved manifolds,
physically is not fully realized, a feature which in the
relative-locality framework becomes evident upon observ-
ing that when one takes into account the boundary terms,
which constrain the motion of particles to be physical,
the different nature of the two spaces becomes relevant.
We also observe that the invariance of spacetime under
diffeomorphisms, strictly related to the notion of general

covariance, can be motivated by the presence of the
gravitational field, while an analogous physical source
for momentum-space curvature as so far not been discussed
in the literature and is not expected.
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APPENDIX A: ON-SHELL RELATION FOR
TIME-ORDERED PARAMETRIZED
MOMENTUM SPACE METRICS

In this section we show explicitly how to obtain the on-
shell relation (59) from the metric (37). To find the on-shell
relation we have to evaluate the geodesic distance (1) on the
solutions of the geodesic equations (2). One has to be
careful of the fact that the metric defining the momentum
space interval (37) has upper indexes gμν, and the
Christoffels (3) involve also the inverse metric g−1. One
gets, from (37),

gμν ≡ gðγÞ ¼

0
BBB@

1 − l2λ2e−2lð1−λÞγ0 γ⃗2 −lλe−2lð1−λÞγ0γ1 −lλe−2lð1−λÞγ0γ2 −lλe−2lð1−λÞγ0γ3
−lλe−2lð1−λÞγ0γ1 −e−2lð1−λÞγ0 0 0

−lλe−2lð1−λÞγ0γ2 0 −e−2lð1−λÞγ0 0

−lλe−2lð1−λÞγ0γ3 0 0 −e−2lð1−λÞγ0

1
CCCA: ðA1Þ

The inverse metric is

gμν ≡ g−1ðγÞ ¼

0
BBB@

1 −lλγ1 −lλγ2 −lλγ3
−lλγ1 l2λ2γ21 − e2lð1−λÞγ0 l2λ2γ1γ2 l2λ2γ1γ3

−lλγ2 l2λ2γ1γ2 l2λ2γ22 − e2lð1−λÞγ0 l2λ2γ2γ3

−lλγ3 γ1γ3ð−lÞ2λ2 l2λ2γ2γ3 l2λ2γ23 − e2lð1−λÞγ0

1
CCCA: ðA2Þ

From (A1) and (A2) one gets the Christoffels

Γ0
00 ¼ −λ2l3γ⃗2e−2lð1−λÞγ0 ; Γ0

0j ¼ Γ0
j0 ¼ −l2γje−2lð1−λÞγ0 ;

Γ0
jk ¼ −le−2lð1−λÞγ0δjk; Γj

00 ¼ −λl2γjð2 − λ − λ2l2γ⃗2e−2lð1−λÞγ0Þ;
Γj

0k ¼ Γj
k0 ¼ λ2l3γjγke−2lð1−λÞγ0 ; Γj

kl ¼ λl2γje−2lð1−λÞγ0δkl: ðA3Þ

One has to substitute them in Eq. (2) and solve for γðsÞ. We restrict our discussion to the 1þ 1D case for simplicity, such
that μ ¼ 0, 1, although all the results of this section can be easily generalized to the 3þ 1D case. The geodesic equations (2)
become

γ̈0 − le−2lð1−λÞγ0ð_γ1 þ λl_γ0γ1Þ2 ¼ 0;

̈γ1 − 2ð1 − λÞl_γ0 _γ1 − ð2λ − λ2Þl2 _γ20γ1 þ λl2γ1e−2lð1−λÞγ0ð_γ1 þ λl_γ0γ1Þ2 ¼ 0: ðA4Þ

The solutions are
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γ0ðsÞ ¼ −
1

l
ln

�
α

β
sinhðlβsþ θÞ

�
; γ1ðsÞ ¼

�
β

lα
coth ðlβsþ θÞ þ δ

��
α

β
sinhðlβsþ θÞ

�
λ

ðA5Þ

where α, β, δ, θ are some constants to be determined by the initial conditions γμð0Þ ¼ 0, γμð1Þ ¼ pμ. Substituting (A5) in
Eq. (A1) one finds

gμνðγðsÞÞ_γμðsÞ_γνðsÞ ¼ β2 ¼ const:; ðA6Þ

so that, from (1), m ¼ β. To determine the value of β consider first that, imposing γμð0Þ ¼ 0 one gets the relations

α ¼ β

sinhðθÞ ; δ ¼ −
β

lα
cothðθÞ: ðA7Þ

Substituting these in Eq. (A5) and imposing γμð1Þ ¼ pμ, one finds

p0 ¼ −
1

l
ln

�
sinh ðlβ þ θÞ

sinhðθÞ
�
; p1eλlp0 ¼ 1

l
ðcoth ðlβsþ θÞ sinhðθÞ − coshðθÞÞ: ðA8Þ

These relations can be inverted and solved for β to give the on-shell relation

μ2 ¼ 2

l2
ðcosh ðlmÞ − 1Þ ¼ CλðpÞ ¼

�
2

l

�
2

sinh2
�
lp0

2

�
− p2

1e
−lð1−2λÞp0 ; ðA9Þ

where we defined an “effective mass” μ (in the limit l → 0,
μ → m). One can show, by a similar derivation, that the
ð3þ 1ÞD version of (A9) is

μ2 ¼ CλðpÞ ¼
�
2

l

�
2

sinh2
�
lp0

2

�
− p⃗2e−lð1−2λÞp0 : ðA10Þ

APPENDIX B: TRANSLATIONS IN TERMS OF
POISSON BRACKETS

1. Generic case

Considering spacetime coordinates χμ, having canonical
Poisson brackets with the momenta pν (fpμ; χνg ¼ δνμ), and
spacetime coordinates xμ related to the former by some
vector field11 Eν

μðpÞ, the Poisson brackets between xμ and
pμ follow:

xμ ¼ Eμ
νðpÞχν;⇒ fpμ; xνg ¼ Eν

μðpÞ: ðB1Þ

Defining the inverse vector Ēν
μ∶ Ēν

ρE
ρ
μ ¼ δμb, the kinetic

term contributing to the free particle Lagrangian is then

Lkin ¼ xνĒμ
ν _pμ: ðB2Þ

In the relative locality action the free Lagrangian of an
outgoing (incoming) particle pμ is integrated in the interval

s ∈ ½−∞; si� (s ∈ ½si;∞�), so that the boundary terms
generated by their variation with respect to pμ couples
to the interaction boundary term as

∂L
∂ _pμ

ðsiÞ ¼ �ζν½i�
∂K½i�

ν

∂pμ
; ðB3Þ

the þ (−) sign standing for outgoing (incoming) particle.
The only contribution to the left-hand side of the last
equation comes from the kinetic term, so that from (B1)
and (B2) it follows that

xσðsiÞ ¼ �ζν½i�
∂K½i�

ν

∂pμ
Eσ
μðpÞ

¼ �ζν½i�
∂K½i�

ν

∂pμ
fpμ; xσg ¼ �ζν½i�fK½i�

ν ; xσg: ðB4Þ

Now, assuming that the translations are implemented as in
[11], which guarantees translational invariance for causally
connected processes, i.e.,

ζμ½i�B ¼ ζμ½i�A − bμ; ðB5Þ

it follows that the boundary condition (B4) changes as

xμBðsiÞ ¼ xμAðsiÞ � bνfK½i�
ν ; xμg: ðB6Þ

The translational invariance [11] is then implemented
extending the translation (B12) to all the points of the
worldline:

11We can refer to it as a momentum-space tetrad, but we are not
assuming that it project into a tangent flat Minkowski space.
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xμB ¼ xμA � bνfK½i�
ν ; xμg: ðB7Þ

2. Time-ordered case

We consider as explicit example the time-ordered case.
The kinetic term is (53), where in this case Eν

μðpÞ ¼ ξνμðpÞ,
defined in (46), so that for a particle ðp; xÞ, the free
Lagrangian is

L ¼ x0 _p0 − xjð1 − λÞlpjeλlp0 _p0

þ xjeλlp0 _pj þN ðCλðpÞ − μ2Þ: ðB8Þ
Variating the action in terms of pμ, it generates the
boundary term

d
ds

ðx0δp0 þ xjeλlp0δpj − xjð1 − λÞlpjeλlp0δp0Þ; ðB9Þ

which couples with the interaction boundary term K½i�
μ ðsiÞ

so to give

xjðsiÞ ¼ �ζν½i�
∂K½i�

ν

∂pj
e−λlp0 ;

x0ðsiÞ ¼ �ζν½i�

�∂K½i�
ν

∂p0

þ ð1 − λÞ ∂K
½i�
ν

∂pj
lpj

�
: ðB10Þ

Assuming (B5), it follows that the boundary conditions
(B10) transform under translations as

xjBðsiÞ ¼ xjAðsiÞ � bν
∂K½i�

ν

∂pj
e−λlp0 ;

x0BðsiÞ ¼ x0AðsiÞ � bν
�∂K½i�

ν

∂p0

þ ð1 − λÞ ∂K
½i�
ν

∂pj
lpj

�
: ðB11Þ

Considering now the Poisson brackets (49) the last expres-
sion is nothing but

xμBðsiÞ ¼ xμAðsiÞ � bνfK½i�
ν ; xμg: ðB12Þ

3. Behavior under diffeomorphism

Under a diffeomorphism pμðp̃μÞ the Lagrangian changes
into Lfðp̃Þ ¼ Lðfðp̃ÞÞ, so that it generates the boundary
terms

d
ds

�∂Lðfðp̃ÞÞ
∂ _fν

∂ _fνðp̃Þ
∂ _̃pμ

δp̃μ

�
¼ d

ds

�∂fνðp̃Þ
∂p̃μ

∂LðpÞ
∂ _pν

δp̃μ

�
:

ðB13Þ

The interaction boundary term changes into K̃f
μ, like in

(31), then the boundary conditions are

∂LðpÞ
∂ _pν

ðsiÞ ¼ �ζρ
∂K̃f

ρ

∂p̃μ
M̄μ

νðp̃Þ ðB14Þ

where again Mν
μðp̃Þ ¼ ∂fμðp̃Þ=∂p̃ν with inverse M̄μ

νðp̃Þ.
It follows from (B2) the boundary condition

xσðsiÞ ¼ �ζρ
∂K̃f

ρ

∂p̃μ
M̄μ

νðp̃ÞEσ
μðpÞ: ðB15Þ

Now notice that under a diffeomorphism the Poisson
brackets change as [as expected, Eσ

μðpÞ transforms as a
vector in the index μ]

Eσ
μðpÞ ¼ fpμ; xσg ¼ ffμðp̃Þ; xσg ¼ Mν

μðp̃Þfp̃ν; xσg;
ðB16Þ

so that, substituting the last expression into (B15), we get

xσðsiÞ ¼ �ζν
∂K̃f

ν

∂p̃μ
fp̃μ; xσg ¼ �ζνfK̃f

ν ; xσg: ðB17Þ

From the last expression it follows, with the same argument
above, that under a diffeomorphism the translated positions
are given by the relation

xσB ¼ xσA � bνfK̃f
ν ; xσg: ðB18Þ

We close this section by noticing that since, from (31),
K̃f

μðp̃; q̃;…Þ ¼ Kμðfðp̃Þ; fðq̃Þ;…Þ, it follows (the obvious
result) that

xσB ¼ xσA � bνfKνðpÞ; xσgjp¼fðp̃Þ: ðB19Þ

Meaning, the translations in the framework obtained by a
(passive) diffeomorphism pμ ¼ fμðp̃Þ are obtained by
simply rewriting the translations for the original action
in terms of the new momenta variables.
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