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We present a consistent canonical formulation of the flat Oppenheimer-Snyder model, including the
Schwarzschild exterior. The switching between comoving and stationary observers is realized by
promoting the coordinate transformation between dust proper time and Schwarzschild-Killing time to
a canonical one. This leads to two different forms of the Hamiltonian constraint, both (almost)
deparametrizable with regard to one of these times. A preliminary quantization of these constraints
reveals a consistent picture for both observers: the singularity is avoided by a bounce.
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I. INTRODUCTION

The Oppenheimer-Snyder (OS) model1 [1,2] is the
prototypical example for gravitational collapse. It has
shaped our understanding of how black holes form by
illustrating the need to consider the viewpoint of two
different observers—one comoving with the collapsing
matter and one stationary outside of it—to arrive at a
complete picture of the process. Our goal is to apply this
idea to quantum gravitational collapse. To this end, in this
paper we will lay the groundwork for a quantum OS model,
complete with the two complementary observers.
A complete theory of quantum gravity is not available as

of yet, but it is nevertheless possible to discuss quantiza-
tions of, e.g., specific cosmological models or models for
gravitational collapse in different approaches. Due to its
interior being homogeneous, the OS model has the advan-
tage that one can quantize it using methods of quantum
cosmology. Moreover, since it shares its dynamics with the
often quantized Friedmann models, some of the existing
literature on quantum cosmology can be applied to it. As
an explicit collapse model it has only been discussed
sparingly so far, e.g., in Refs. [3,4] with regard to singularity
avoidance and its mass spectrum. It was recently inves-
tigated in analogy to the hydrogen atom in Ref. [5].
In a previous work we discussed a quantization of the

Lemaître-Tolman-Bondi (LTB) model for inhomogeneous,
spherically symmetric dust collapse, implementing unitary
evolution from the point of view of the comoving observer
[6]. There we showed that the classical singularity is
avoided by a bounce: instead of fully collapsing to a

singularity, the matter configuration reexpands. This result
straightforwardly carries over to OS collapse.
Bouncing collapse is a common thread in various

approaches to quantizing gravitational collapse. It emerged,
e.g., in Ref. [7] where an effective one-loop action con-
sisting of an Einstein-Hilbert term plus a Weyl-squared
term was used to discuss the quantum-corrected trajectory
of a self-gravitating null dust shell. A null dust shell was
also investigated in the context of quantum geometrody-
namics [8,9], where a unitarily evolving wave packet
initially peaked on the classical collapsing trajectory was
shown to bounce. Bouncing collapse has also emerged in
loop quantum gravity and cosmology [10,11], and loop-
inspired effective semiclassical models [12].
As universal as the bounce seems to be, there is no

consensus on some aspects that are crucial for the plau-
sibility of this scenario, namely, the behavior of the horizon
and the lifetime of the temporary black-hole-like object.
Concerning the former, proposals include the vanishing of

the apparent horizon during the bounce [12–15] and a
transition between black and white hole horizons via a
superposition of the two [9,16]. We have seen in Ref. [6]
that the latter is a plausible scenario for the LTB model. The
mechanismbywhich quantum-gravitational effects reach the
horizon, usually a low-curvature region of spacetime, is also
a matter of debate. Ideas available are, e.g., an accumulation
of quantum effects over time [17] or a shockwave going
outward from the center of the collapsing body [14,15].
Of greater importance is the lifetime. If it turns out to be too

short, bouncing collapse would be immediately ruled out by
the fact that we do observe seemingly stationary black holes.
In fact, across various models there has emerged the result
that the pure transition from collapse to expansion has a
lifetime proportional to the mass of the collapsing matter
[18–21], which would mean that a solar-mass black hole
would decay after a few microseconds. The question is now
whether one should really take this time scale to be the total
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1Two years before Oppenheimer and Snyder, Datt recognized

the usefulness of comoving coordinates for solving the Einstein
equations [1], and even found a solution for homogeneous dust.
However, he did not supply any physical interpretation of his
solutions.
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lifetimeof theblackhole. InRef. [20] itwas proposed that this
transition time scale should be complemented by a time scale
associatedwith the process taking place should this transition
fail, in analogy to an alpha particle tunneling out of a nucleus.
There the tunneling time is also significantly shorter than the
total lifetime of the decaying nuclear core. We followed this
proposal in Ref. [6], leading to a lifetime proportional to the
mass of the dust cloud cubed. Another mechanism that could
increase the lifetime is the transition from expansion back to
collapse due to white hole instabilities [22].
For a more complete review of the above, see Ref. [23].
It is apparent that there are many open questions

regarding the scenario of bouncing collapse. We want to
try to gain more insight into these issues by taking the
lessons learned from the classical OS model to heart, and
considering both the comoving and the stationary observer.
In this way we hope to arrive at a more complete picture of
bouncing collapse and all it entails. Here we will work
towards this goal, building on Ref. [6].
We proceed here as follows. In Sec. II we present a

canonical formulation of the complete OS model, with a
Schwarzschild exterior. This was previously attempted in
Ref. [24], but in our opinion not quite satisfactorily due to the
treatment of the new boundary term at the surface of the
collapsing dust cloud. For simplicity we will largely restrict
ourselves to flat Friedmann models, but we expect the
procedure to also carry over to open and closed ones.
Using Brown-Kuchař dust [25] as the matter content allows
us to express the Hamiltonian constraint in a deparametrizable
form with regard to dust proper time. We then demonstrate
how one can implement the stationary observer in the
canonical formalism by promoting the coordinate transforma-
tion between the Schwarzschild-Killing time and dust proper
time to a canonical one. Thiswill lead to a different formof the
Hamiltonian constraint that is almost deparametrizable. In
Sec. IIIwe then investigate the quantization of the constraint in
these two forms. First,wediscuss howour results fromRef. [6]
apply to the OSmodel from the point of view of the comoving
observer. Due to the rather unusual structure of the form of the
Hamiltonian constraint relevant for the stationary observer,we
are only able to present a heuristic discussion of its quantiza-
tion. We leave a more rigorous investigation for upcoming
work. Finally, we conclude in Sec. IV.
Finally, we want to note that we are also currently

investigating a different canonical formulation of the OS
model [26], where in contrast to the present efforts the
foliation of spacetime is fixed.
In the following we will use units where G ¼ c ¼ 1.

II. CANONICAL FORMALISM FOR
THE OS MODEL

A. Partial symmetry reduction

We will start from the Arnowitt-Deser-Misner (ADM)-
decomposed action for spherically symmetric gravity with

Brown-Kuchař dust [25] as matter. Details on how one can
derive this action from the Einstein-Hilbert action, as well
as the falloff behavior of the relevant canonical variables,
can be found in Refs. [27–29]:

S ¼
Z

dt
Z

∞

0

drPτ _τ þ PR
_Rþ PΛ _Λ − NH − NrHr

−
Z

dtMþ _Tþ; ð1Þ

where

H ¼ Λ
2R2

P2
Λ −

1

R
PRPΛ þ RR00

Λ
−
Λ0R0R
Λ2

þ R02

2Λ

−
Λ
2
þ Pτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ02

Λ2

r
;

Hr ¼ PRR0 − P0
ΛΛþ Pττ

0:

Here τ is the dust proper time, and Λ and R are the
components of the spherically symmetric spatial metric on
the leaves of the foliation with label time t,

dσ2 ¼ Λ2ðt; rÞdr2 þ R2ðt; rÞdΩ2: ð2Þ

The ADM boundary term in Eq. (1) contains the ADM
mass of the spacetime MþðtÞ and the Schwarzschild-
Killing time at asymptotic infinity TþðtÞ. Following
Ref. [27], this boundary term will play a role in the
canonical formalism later on.
So far the action above describes any spherically

symmetric spacetime generated by nonrotating, timelike
dust, but in the present work we want to restrict ourselves to
the OS model: homogeneous dust with a Schwarzschild
exterior. To this end we follow Ref. [30] and work in
coordinates adapted to the discontinuity in the matter
content. The surface of the dust cloud will always be at
a coordinate radius rS > 0, and outside of it, r > rS, the
rest-mass density ρ of the dust vanishes. We can implement
this with our canonical variables via the vanishing of Pτ,
since one can express it through ρ as

Pτ ¼ 4πΛR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ02

Λ2

r
ρ;

where we refer to Ref. [25] for details.
Inside of the dust cloud we want to restrict ourselves to

homogeneous dust. It is then natural to also restrict the
ADM foliation for r ≤ rS such that its leaves coincide with
hypersurfaces of constant ρ and τ. As is well known, the
corresponding spacetime metric has to be of the form

ds2 ¼ −N̄2ðtÞdt2 þ a2ðtÞ
�

dr2

1 − ϵr2
þ r2dΩ2

�
; ð3Þ
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where ϵ ∈ f�1; 0g gives the sign of the curvature of
constant time slices, and N̄ and a are positive. For ϵ ¼
þ1 the radial coordinate r is smaller than 1. Note that for
now we leave ϵ open, while later on we will restrict to
ϵ ¼ 0. By comparison with the general ADM line element
(see, e.g., Ref. [31]), we see that we can implement the
restriction of the foliation described above by

N ¼ N̄; ð4Þ

Nr ¼ 0; ð5Þ

for r ≤ rS.
Furthermore, we can fix the behavior of the canonical

variables Λ and R for r ≤ rS as

Λ ¼ affiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2

p ; ð6Þ

R ¼ ar; ð7Þ

by comparing Eqs. (2) and (3). Consequently, we can also
note that Pτ behaves as

Pτ ¼
4πr2a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2

p ρ≡ r2

VS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2

p P̄τ;

with

VS ¼
Z

rS

0

dr
r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ϵr2
p :

The significance of P̄τ, which only depends on time, will be
apparent shortly. Last, we also express PΛ and PR in terms
of the scale factor and its time derivative as

PΛ ¼ −
R
N
ð _R − R0NrÞ ¼ −

a _ar2

N̄
; ð8Þ

PR ¼ −
Λ
N
ð _R − R0NrÞ − R

N
ð _Λ − ðΛNrÞ0Þ

¼ −
2a _ar

N̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2

p : ð9Þ

Now we are in a position to replace the canonical
coordinates Λ and R with the scale factor a in the region
r ≤ rS; we just need to find a canonical momentum for it.
To this end we consider the Liouville form from Eq. (1)
restricted to r ≤ rS,

Z
rS

0

drPτ _τ þ PR
_Rþ PΛ _Λ

¼
Z

rS

0

dr

�
r2

VS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2

p P̄τ _τ −
3a _a2r2

N̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2

p
�

¼ P̄τ _τ −
3VSa _a
N̄

_a:

This allows us to identify P̄τ as the momentum to τ, and as
the momentum canonically conjugate to a

p ¼ −
3VSa _a

N̄
;

from which, with the help of Eqs. (8) and (9), it directly
follows that

PΛ ¼ r2

3VS
p; ð10Þ

PR ¼ 2r

3VS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2

p p: ð11Þ

Finally, we can compute the Hamiltonian for r ≤ rS:

Z
rS

0

drNH þ NrHr ¼ N̄

�
−

p2

6VSa
−
3VS

2
ϵaþ P̄τ

�
:

The total action we have achieved by partial symmetry
reduction of the phase space is then

S ¼
Z

dt

�
p _aþ P̄τ _τ − N̄H̄

þ
Z

∞

rS

drðPR
_Rþ PΛ _Λ − NH − NrHrÞ −Mþ _Tþ

�
;

H ¼ Λ
2R2

P2
Λ −

1

R
PRPΛ þ RR00

Λ
−
Λ0R0R
Λ2

þ R02

2Λ
−
Λ
2
;

Hr ¼ PRR0 − P0
ΛΛ;

H̄ ¼ −
p2

6VSa
−
3VS

2
ϵaþ P̄τ: ð12Þ

Note that the newly gained Hamiltonian constraint for
the inside of the dust cloud is equivalent to that of a
Friedmann model with Brown-Kuchař dust and a vanishing
cosmological constant; see Ref. [32]. In fact, we could have
simply written down the total action (12) by adding up the
actions for the Friedmann model and Schwarzschild
spacetime in the exterior. Our more elaborate procedure
additionally gives us the falloff behavior of the canonical
variables of the exterior when approaching r → rS: impos-
ing that the canonical variables and those derivatives of
them we will encounter behave according to Eqs. (4), (5),
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(6), (7), (10), and (11) for r → rS ensures a matching
between interior and exterior that is as smooth as needed.
Employing this falloff behavior, one can see that the

Hamiltonian constraint has a discontinuity at the surface of
the star:H approaches H̄ − P̄τ for r → rS, but on the cloud’s
surface the constraint is given by just H̄. It is thus important
to note that we have to explicitly exclude the surface of the
dust cloud, r ¼ rS, from the exterior. Note that the momen-
tum constraint is continuous: Hr vanishes for r → rS.
From this it also follows that the total Hamiltonian—

NH þ NrHr in the exterior and N̄H̄ in the interior—has the
same discontinuity corresponding to the matter content of
the cloud.
Apart from the implementation of matter, our results so

far are close to those of Ref. [24], despite proceeding along
slightly different lines. It is in the following that the two
treatments will significantly diverge.

B. Kuchař’s canonical transformations

In order to simplify the constraints in the exterior we
follow Ref. [27] and perform two canonical transformations
in succession. The first one replaces the metric component
Λ by the mass of the dust cloud M, and the second in turn
replaces M by the Schwarzschild-Killing time T. Special
attention has to be paid to boundary terms arising from
these transformations, since in contrast to Refs. [27–29]
one of the boundaries is at a finite coordinate radius rS.
These terms could directly influence the dust cloud’s
interior, since the corresponding part of the action is
essentially also a boundary term.
Consider first the transformation ðΛ; R; PΛ; PRÞ to

ðM;R; PM; PRÞ according to

M¼R
2
ð1−FÞ; R¼R; PM ¼ΛPΛ

RF
;

PR¼PR−
ΛPΛ

2R
−
ΛPΛ

2RF
−

1

RΛ2F
½ðΛPΛÞ0RR0− ðRR0Þ0ΛPΛ�;

where

F ¼ R02

Λ2
−
P2
Λ

R2
:

This transformation generates a boundary term that
vanishes at r → ∞ (as detailed in Ref. [27]) but not at
r → rS,Z

∞

rS

drPR
_Rþ PΛ _Λ −

Z
∞

rS

drPR
_Rþ PM

_M

¼ R _R
2

ln

����RR0 − ΛPΛ

RR0 − ΛPΛ

����
����
r→rS

¼ a _ar2S
2

ln

�����
a − rS

3VS

ffiffiffiffiffiffiffiffiffi
1−ϵr2S

p p

aþ rS
3VS

ffiffiffiffiffiffiffiffiffi
1−ϵr2S

p p

�����:

We will postpone the discussion of how to deal with this
additional term for a little while, until after the second
canonical transformation. For now we just want to com-
ment on the behavior of the new canonical variableM at the
surface of the star,

MðrSÞ≡ M̄ ¼ r3S
3VS

�
p2

6VSa
þ 3VS

2
ϵa

�

¼ r3S
3VS

ðP̄τ − H̄Þ: ð13Þ

We can thus express M̄ as

M̄ ≈
r3S
3VS

P̄τ ¼
4π

3
r3Sa

3ρ;

where we once again replaced P̄τ by the mass density ρ.
We denote by “≈” a weak inequality, valid when the
constraints vanish. The mass of the Schwarzschild exterior
corresponds to the total mass of the interior. Appropriate
matching conditions give the same result; see, e.g.,
Ref. [33]. This serves as a consistency check for our
canonical treatment so far.
Now we implement the second canonical transformation:

ðM;PMÞ to ðT; PTÞ. The crucial observation is that on-shell
one can identify PM ¼ −T 0 (see Ref. [27] for details), so we
will define

T ¼ Tþ þ
Z

∞

r
dr0PM ð14Þ

and consider the relevant terms in the Liouville form to find
the corresponding momentum:

−Mþ _Tþ þ
Z

∞

rS

drPM
_M

¼ −Mþ _Tþ −
Z

∞

rS

drT 0 _M

¼ −M̄ _̄T −
Z

∞

rS

drM0 _T

þ d
dt

�
M̄T̄−MþTþ þ

Z
∞

rS

drM0T
�
;

where T̄ ¼ TðrSÞ. The total time derivative can be dis-
carded. We can immediately identify PT ¼ −M0, and the

additional boundary term −M̄ _̄T. Kuchař has shown in
Ref. [27] that the constraint system H ¼ 0 ¼ Hr is equiv-
alent to the far simpler system

PR ¼ 0 ¼ PT: ð15Þ

The behavior of PT and PR when approaching the
surface of the dust cloud,
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PTðr → rSÞ ¼ −
r2S
VS

�
p2

6VSa
þ 3VS

2
ϵa

�
¼ r2S

VS
ðH̄ − P̄τÞ;

PRðr → rSÞ ¼
rSp

2VS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2S

p �
1 −

1

1 − 2M̄
arS

�

¼ r4S
3V2

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵr2S

p p
arS − 2M̄

ðH̄ − P̄τÞ;

shows that the new constraints have the same discontinuity
at the surface of the dust cloud as the old ones.
Keeping track of the boundary terms and using the new

constraint system, our action now takes the form

S¼
Z

dtp _aþ P̄τ _τ

þa _ar2S
2

ln

�����
a− rS

3VS

ffiffiffiffiffiffiffiffiffi
1−ϵr2S

p p

aþ rS
3VS

ffiffiffiffiffiffiffiffiffi
1−ϵr2S

p p

�����− M̄ _̄T− N̄H̄

þ
Z

dt
Z

∞

rS

drðPR
_RþPT

_T−NRPR−NTPTÞ; ð16Þ

where the Lagrange multipliers were redefined into NR and
NT as needed. It is apparent that the action for the interior of
the dust cloud is not canonical anymore due to the addi-
tional boundary terms. In order to remedy this problem we
note that T̄ does not directly follow from Eq. (14) and
the behavior of PM for r → rS. We thus have to choose it
such that the additional terms in the Liouville form
disappear, making the preceding series of transformations
truly canonical.
For simplicity we will restrict ourselves to flat

Friedmann models in the interior, ϵ ¼ 0. VS is then simply
1
3
rS, and it will be convenient to rescale our canonical

variables according to R̄ ¼ arS and P̄R ¼ p=rS. The new
canonical variable R̄ is then the physical radius of the dust
cloud. We then consider the unwanted terms in Eq. (16),
inserting Eq. (13):

1

2
R̄ _̄Rln

���� R̄−P̄R

R̄þP̄R

����−P̄2
R

2R̄
_̄T

¼1

4

∂R̄2

∂t ln

���� R̄−P̄R

R̄þP̄R

����−P̄2
R

2

∂
∂t
�
T̄
R̄

�
−
P̄2
RT̄

4R̄3

∂R̄2

∂t
¼ R̄2

4

∂
∂tln

����R̄þP̄R

R̄−P̄R

����−P̄2
R

4

∂
∂t
�
T̄
R̄

�
þR̄T̄

4

∂
∂t
�
P̄2
R

R̄2

�
þ _KðP̄R;R̄Þ

¼ P̄4
R

4R̄2

�
R̄4

P̄4
R

∂
∂tln

����R̄þP̄R

R̄−P̄R

����− ∂
∂t
�
R̄T̄
P̄2
R

��
þ _KðP̄R;R̄Þ

¼ P̄4
R

4R̄2

∂
∂t
�
ln

����R̄þP̄R

R̄−P̄R

����−2R̄3

3P̄3
R
−
2R̄
P̄R

−
R̄T̄
P̄2
R

�
þ _KðP̄R;R̄Þ:

The exact form of the function K is not relevant here. We
can now directly read off that setting

T̄ ¼ −
2R̄2

3P̄R
− 2P̄R þ P̄2

R

R̄
ln

���� R̄þ P̄R

R̄ − P̄R

����þ A
P̄2
R

R̄
; ð17Þ

where A is some undetermined constant, will bring the
action (16) for ϵ ¼ 0 into a canonical form,

S ¼
Z

dtP̄R
_̄Rþ P̄τ _τ − N̄ H̄

þ
Z

∞

rS

drðPR
_Rþ PT

_T − NRPR − NTPTÞ; ð18Þ

H̄ ¼ −
P̄2
R

2R̄
þ P̄τ: ð19Þ

We will shortly show that Eq. (17) is consistent with the
interpretation of T as the Schwarzschild-Killing time.
It can easily be shown that this action indeed describes

spatially flat OS dust collapse. The action for the exterior
tells us that there the leaves of the foliation are indeed
embedded in a Schwarzschild spacetime via the variablesR
and T, and its dynamics are independent of this embedding,
completely analogous to Ref. [27]. The mass of this
Schwarzschild exterior is given by the dust cloud: as a
constraint, PT ¼ −M0 ≈ 0, so the massM is determined by
its value on the surface of the dust cloud, M̄ ¼ P̄2

2R̄ ≈ P̄τ.
The dynamics of the interior of the dust cloud are

generated by the Hamiltonian N̄ H̄:

_̄R ¼ −N̄
P̄R

R̄
; _̄PR ¼ −N̄

P̄2
R

2R̄2
;

_τ ¼ N̄; _̄Pτ ¼ 0:

Using the constraint H̄ ¼ 0 allows us to easily solve the
equations of motion by using τ as a time parameter,

P̄τ ≈
P̄2
R

2R̄
¼ R̄ _̄R

2

2_τ2
¼ R̄

2

�∂R̄
∂τ

�
2

:

Expressing P̄τ in terms of ρ shows that this is simply the
equation of motion for a flat Friedmann model with dust as
matter. Its solutions are

R̄
3
2ðτÞ ¼ � 3

2

ffiffiffiffiffiffiffiffi
2P̄τ

q
τ þ R̄

3
2ð0Þ;

P̄RðτÞ ¼ −R̄ðτÞ ∂R̄∂τ ¼ ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2P̄τR̄ðτÞ

q
: ð20Þ

Plugging these into Eq. (17), we find

T̄¼ τþB�2

ffiffiffiffiffiffiffiffi
2P̄τ

q " ffiffiffiffī
R

p
−

ffiffiffiffiffi
P̄τ

2

r
ln

����
ffiffiffiffī
R

p
þ

ffiffiffiffiffiffiffiffi
2P̄τ

p
ffiffiffiffī
R

p
−

ffiffiffiffiffiffiffiffi
2P̄τ

p ����
#
; ð21Þ

where B ¼ 2AP̄τ � 2R̄
3
2ð0Þ

3
ffiffiffiffiffiffi
2P̄τ

p is constant. We see that on shell

and for R̄ > 2P̄τ, apart from an irrelevant constant shift, T̄
indeedmatches theSchwarzschild-Killing timeon the surface
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of the dust cloud in its form known from the transformation
betweenSchwarzschild andPainlevé-Gullstrand coordinates;
see, e.g., Ref. [29]. The different signs in it correspond to
an expanding and a collapsing dust cloud, respectively.
Furthermore, the expression above is evenwell defined inside
the horizon, due to the absolute value in the logarithm. This
will play a role during quantization.
We expect this procedure to also work for ϵ ¼ �1.

Instead of Painlevé-Gullstrand time one would then find for
τðT̄Þ different time coordinates adapted to the comoving
observer in each case.

C. Switching between observers as
a canonical transformation

We now want to introduce Schwarzschild-Killing time
into the phase space. To this end we can use the prescription
(21) (with B ¼ 0) to introduce T̄ as a canonical variable,
promoting the transformation from Schwarzschild to
Painlevé-Gullstrand coordinates to a canonical transforma-
tion on phase space.
We consider a generating function of the third kind

ΩðP̄R; P̄τ; R̄; T̄Þ, where R̄ ¼ R̄. Ω can then be determined
from

R̄ ¼ −
∂Ω
∂P̄R

¼! R̄;

τ ¼ −
∂Ω
∂P̄τ

¼! T̄ ∓ 2

ffiffiffiffiffiffiffiffi
2P̄τ

q " ffiffiffiffi
R̄

p
−

ffiffiffiffiffi
P̄τ

2

r
ln

�����
ffiffiffiffi
R̄

p
þ

ffiffiffiffiffiffiffiffi
2P̄τ

p
ffiffiffiffi
R̄

p
−

ffiffiffiffiffiffiffiffi
2P̄τ

p
�����
#

to be of the form

Ω ¼ −P̄RR̄ − P̄τT̄

�
Z

dP̄τ2

ffiffiffiffiffiffiffiffi
2P̄τ

q " ffiffiffiffi
R̄

p
−

ffiffiffiffiffi
P̄τ

2

r
ln

�����
ffiffiffiffi
R̄

p
þ

ffiffiffiffiffiffiffiffi
2P̄τ

p
ffiffiffiffi
R̄

p
−

ffiffiffiffiffiffiffiffi
2P̄τ

p
�����
#

þ ΘðT̄; R̄Þ;
where Θ is an undetermined function. Note that we have to
restrict P̄τ to be positive. We will see that the final form of
H̄ can easily be extended to again include negative P̄τ.
Now we can determine the momenta conjugate to R̄ and

T̄ according to

P̄T ¼ −
∂Ω
∂T̄ ¼ P̄τ −

∂Θ
∂T̄ ;

P̄R ¼ −
∂Ω
∂R̄ ¼ P̄R −

∂Θ
∂R̄ ∓

Z
dP̄τ

ffiffiffiffiffiffiffiffi
2P̄τ

R̄

s
R̄

R̄ − 2P̄τ

¼ P̄R −
∂Θ
∂R̄�

ffiffiffiffiffiffiffiffiffiffiffi
2P̄τR̄

q
� R̄

8<
:

artanh
ffiffiffiffiffiffi
2P̄τ

R̄

q
; R̄ > 2P̄τ;

arcoth
ffiffiffiffiffiffi
2P̄τ

R̄

q
; R̄ < 2P̄τ:

Furthermore we choose Θ ¼ 0, such that the momentum
P̄T ¼ P̄τ continues to have a nice physical interpretation in
terms of the dust cloud’s mass.
Due to the different signs in Eq. (21), the system has to

be split into two distinct parts: one describing collapsing
dust clouds and one describing expanding dust clouds. In
addition, the new momentum P̄R diverges at R̄ ¼ 2P̄τ.
This divergence leads to a disjointed constraint surface,

split at the horizon, as can be seen by simplifying the
Hamiltonian constraint (19) in terms of the new canonical
variables. To this end we first note that

P̄R �
ffiffiffiffiffiffiffiffiffiffiffi
2R̄P̄τ

q
≈ 0

is equivalent to Eq. (19), where the signs were chosen to
align with the equation of motion (20); just as in Eq. (21),
the upper sign corresponds to expansion and the lower one
to collapse. Inserting the new canonical variables, we see
that

P̄R

R̄
≈�

8<
:

artanh
ffiffiffiffiffiffi
2P̄T

R̄

q
; R̄ > 2P̄T;

arcoth
ffiffiffiffiffiffi
2P̄T

R̄

q
; R̄ < 2P̄T:

Solving for P̄T then leads to the final form of the
Hamiltonian constraint,

H̄T ¼ P̄T −
R̄
2

(
tanh2 P̄R

R̄
; R̄ > 2P̄T;

coth2 P̄R

R̄
; R̄ < 2P̄T:

ð22Þ

As is apparent, the split between collapse and expansion
has disappeared, but there is one at the horizon: passing
from R̄ > 2P̄T to R̄ < 2P̄T on the constraint surface is only
possible by taking jP̄Rj → ∞. Since the position of this
split still depends on P̄T , we call this constraint almost
deparametrizable.

III. QUANTIZATION

A. The comoving observer

We first consider the action in the form (18). Following
Dirac’s prescription for quantizing constrained systems
and using the Schrödinger representation leads to the
equations

δψ

δRðrÞ ¼ 0;
δψ

δTðrÞ ¼ 0

corresponding to Eq. (15) and

iℏ
∂ψ
∂τ ¼ ℏ2

2
R̄−1þaþb ∂

∂R̄ R̄−a ∂
∂R̄ R̄−bψ ð23Þ
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corresponding to Eq. (19) for the wave functional
ψðτ; R̄;R; T�, where a; b ∈ R control the factor ordering.
The first two equations turn the wave functional into a wave
function that only depends on the interior degrees of
freedom. The last equation is effectively a Schrödinger
equation with dust proper time as the time parameter.
We discussed this Schrödinger equation for Lemaître-

Tolman-Bondi collapse in Ref. [6]. We will briefly reca-
pitulate the results of this previous work and how they
relate to the OS model.
We can make use of the structure of Eq. (23) and

effectively deparametrize the theory, treating τ as an
external parameter. This gives us access to the full structure
of quantum mechanics we employed in Ref. [6]: it allowed
us to define a Hilbert space, and make the effective
Hamiltonian into a self-adjoint operator. The system thus
evolves unitarily with dust proper time.
Analysis of the asymptotic behavior of wave packets

near the classical singularity R̄ ¼ 0 then showed that the
probability distribution for R̄ based on these wave packets
always vanishes at the singularity, provided the factor
ordering fulfills j1þ aj ≥ 3 or j1þ aj < 2, regardless of
the specific wave packet, or the self-adjoint extension of the
Hamiltonian. Furthermore, one can choose a self-adjoint
extension such that the same is true regardless of the factor
ordering.
Since one expects wave packets to exhibit semiclassical

behavior, following the classical trajectories far away from
the singularity, we interpreted this as a fairly generic
avoidance of the singularity by dust collapse when quantum
gravity effects are taken into account. This carries over as is
to the OS case.
Considering one specific wave packet, we showed that it

avoided the singularity via a bounce, transitioning from the
classical collapsing trajectory to the expanding one shortly
before hitting the singularity. The minimal radius of the
dust cloud is then inversely proportional toM

1
3. This has the

effect that for astrophysically relevant masses this minimal
radius is sub-Planckian, e.g., for a solar mass the radius is
of order 10−13lP.
Because we considered an inhomogeneous model for

dust collapse in Ref. [6], another effect emerged: near the
singularity, the dust shells could possibly reverse their
order. This would lead to a higher minimal radius of the full
inhomogeneous dust cloud, since an inner dust shell, with
less mass contained inside it, is now the outermost one.
This effect can obviously not play a role here, since we have
restricted ourselves to homogeneous collapse.
If our treatment of the inhomogeneous model in Ref. [6]

is valid, then quantum cosmology as embedded in a full
theory of quantum gravity would be unstable. Perhaps
unsurprisingly, homogeneity would necessarily break near
the classical singularity. This possibility has been discussed
before, e.g., in Ref. [34] using anisotropic cosmological
models. To see it here explicitly suggests that it might also

be possible to investigate this phenomenon more closely
using the OS model. We leave a detailed discussion of this
for future work.

B. The stationary observer

We now want to discuss quantization of the system after
introducing Schwarzschild-Killing time as a canonical
variable. The exterior constraints act as in the last sub-
section, such that the wave function only depends on the
interior degrees of freedom. In the interior we have the
Hamiltonian constraint (22).
The quantization of Eq. (22) in this form is quite

challenging due to the complicated dependency on the
momentum, and because it is only almost deparametriz-
able. We are currently investigating this Hamiltonian in
more detail in a phase-space approach called coherent state
quantization. Here we want to present a preliminary,
heuristic way of finding quantum-corrected dynamics of
this system.
First we want to note that, because tanh2ðxÞ < 1 and

coth2ðxÞ > 1, the constraint surface described by Eq. (22)
can also be given in terms of

P̄T ≈
R̄
2
tanh2

P̄R

R̄
or P̄T ≈

R̄
2
coth2

P̄R

R̄
:

A point in phase space is on the constraint surface if either
condition is fulfilled. We will hence quantize both partial
constraints separately, and will accept as physical states
arbitrary linear combinations of solutions to either con-
straint equation. Note that in this form the constraints are
again truly deparametrizable.
Next we want to perform another canonical transforma-

tion ðR̄; P̄RÞ to (Φ;Π), given by

Φ ¼ R̄2

2
cosh2

P̄R

R̄
; Π ¼ tanh

P̄R

R̄
:

Note that the new momentum is bounded, jΠj < 1. We then
replace the constraints by equivalent ones by squaring both
sides, and express them in the new variables:

P̄2
T ≈

Φ
2
ð1 − Π2ÞΠ4 or P̄2

T ≈
Φ
2
ð1 − Π2Þ 1

Π4
:

Canonically quantizing these constraints then gives in
the momentum representation with regard to (Φ;Π),
choosing the most straightforward factor ordering,

− ℏ2
∂2

∂T̄2
ψþðT̄;ΠÞ −

iℏ
2
ð1 − Π2ÞΠ4

∂
∂ΠψþðT̄;ΠÞ ¼ 0;

− ℏ2
∂2

∂T̄2
ψ−ðT̄;ΠÞ −

iℏ
2
ð1 − Π2Þ 1

Π4

∂
∂Πψ−ðT̄;ΠÞ ¼ 0:

Physical states are then given by
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ψðT̄;ΠÞ ¼ CþψþðT̄;ΠÞ þ C−ψ−ðT̄;ΠÞ;

where C� are arbitrary constants.
The stationary modes are

ψω
�ðT̄;ΠÞ ¼ exp

�
i
ℏ
ωT̄ −

2i
ℏ
ω2f�ðΠÞ

�
;

where

fþðΠÞ ¼ −
1

3Π3
−

1

Π
þ 1

2
ln

�
1þ Π
1 − Π

�
;

f−ðΠÞ ¼ −
Π3

3
− Πþ 1

2
ln

�
1þ Π
1 − Π

�
:

We will restrict our attention to positive-energy modes,
ω > 0. Next, we construct wave packets in momentum
space via

ΨðT̄;ΠÞ ¼
Z

∞

0

dωAðωÞψωðT̄;ΠÞ;

where the most convenient choice for AðωÞ is

AðωÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffi
βα

ΓðαÞ

s
ωα exp

�
−
β

2
ω2

�
;

with the parameters α; β > 0. AðωÞ is centered around the

energy (squared) ω2 ¼ α
β with width Δω2 ¼

ffiffi
α

p
β .

The wave packet is plotted in Fig. 1. It can be given
explicitly in terms of hypergeometric functions,

ΨðT̄;ΠÞ ¼ CþΨþðT̄;ΠÞ þ C−Ψ−ðT̄;ΠÞ;

with

Ψ�ðT̄;ΠÞ

¼
2
α
2ℏ

α
2

ffiffiffiffiffiffiffi
βα

ΓðαÞ
q

ðβℏþ4if�ðΠÞÞαþ1
2

�
2iT̄Γðα

2
þ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

βℏþ4if�ðΠÞ
p

× 1F1

�
αþ2

2
;
3

2
;−

1

2ℏ
T̄2

βℏþ4if�ðΠÞ
�

þ
ffiffiffiffiffiffi
2ℏ

p
Γ
�
αþ1

2

�
1F1

�
αþ1

2
;
1

2
;−

1

2ℏ
T̄2

βℏþ4if�ðΠÞ
��

:

To interpret the results let us consider the classical
equations of motion. Note first that

(a)

(b)

(c)

FIG. 1. jΨðT̄;ΠÞj2 for different contributions from R̄ > 2P̄T

and R̄ < 2P̄T compared to the classical trajectories outside (full
green lines) and inside (dotted red line) the horizon with energy
P̄T ¼ ffiffiffiffiffiffiffiffi

α=β
p

, for α ¼ 10.1 and β ¼ 8.54, in units where ℏ ¼ 1.

TIM SCHMITZ PHYS. REV. D 101, 026016 (2020)

026016-8



dR̄
dT̄

¼

8>><
>>:

− sinh
P̄R
R̄

cosh3
P̄R
R̄

; R̄ > 2P̄T;

cosh
P̄R
R̄

sinh3
P̄R
R̄

; R̄ < 2P̄T;

from which we can read off that outside of the horizon
positive momentum P̄R corresponds to collapse toward the
horizon, and a negative momentum corresponds to expan-
sion away from it. Inside of the horizon the situation is
reversed, with the sign of dR̄

dT̄ always matching that of P̄R,
such that both inside and outside positive momentum
means motion towards the horizon. This carries over to
our new momentum Π.
Furthermore, we can see from Eq. (22) that near the

horizon P̄R has to diverge, meaningΠ goes to�1, while far
away from the horizon the momentum goes to 0. Solving
the equations of motion makes this more precise. For
R̄ > 2P̄T , ΠðT̄Þ is given implicitly by

−
1

3Π3
−

1

Π
þ 1

2
ln

�
1þ Π
1 − Π

�
¼ T̄

4P̄T
;

where P̄T is a constant of motion. The trajectory in

position space then follows from the above as R̄ ¼ 2P̄T
Π2 .

Analogously, we compute for R̄ < 2P̄T

−
Π3

3
− Πþ 1

2
ln

�
1þ Π
1 − Π

�
¼ T̄

4P̄T
;

and R̄ ¼ 2P̄TΠ2. These trajectories are plotted in Fig. 2.
By comparison to the classical trajectories we see that the

wave packets in Figs. 1(a) and 1(c) represent dust clouds
that start far away from the horizon and collapse toward it.
After a transition they start to expand away from the
horizon, matching the behavior that we saw in the dust
proper time case: the cloud bounces.
Let us take a closer look at the transition between

collapse and expansion: when only considering the dynam-
ics as generated by the part of the constraint corresponding
to R̄ > 2P̄T , meaning we set C− ¼ 0, there is no transition;
the trajectory in momentum space consists of two dis-
connected pieces. Only if we allow a contribution from
inside of the horizon, C− ≠ 0, are these two pieces
connected. This suggests that the bounce here is facilitated
by interference between inside and outside solutions. One
could say that the inside leaks out into the near-horizon
region, leading to quantum gravitational corrections there.
We want to emphasize that our investigation is only fit to

give a first indication of quantum-corrected OS collapse
from the point of view of an exterior observer. How exactly
the interior and exterior dynamics mix, and what happens at
the transition between collapse and expansion especially
with regard to the horizon cannot be investigated in
sufficient detail here. We hope to gain insight into at least

some of these questions by a more thorough investigation
of the quantum dynamics of Eq. (22) in future work.

IV. CONCLUSIONS

In this paper we have laid the groundwork for a quantum
OS model. First, we presented a consistent canonical
formulation of the flat OS model, based on a partial

(a)

(b)

FIG. 2. The classical trajectories ΠðT̄Þ and R̄ðT̄Þ inside and
outside of the horizon for P̄T ¼ 10, in units where ℏ ¼ 1.
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symmetry reduction of spherically symmetric gravity with
discontinuous dust—homogeneous in one region and
vanishing outside of it—as the matter source. A particularly
interesting feature was the emergence of the coordinate
transformation between Schwarzschild-Killing time and
Painlevé-Gullstrand time from the canonical formalism.
Using Brown-Kuchař dust gave us access to the dust

proper time as a canonical variable, and brought the
Hamiltonian constraint into a deparametrizable form with
regard to this time. By performing the deparametrization
when quantizing the system in this form, we effectively
took the point of view of the comoving observer.
This quantum theory is identical to that from our

treatment of the Lemaître-Tolman-Bondi model in
Ref. [6], exhibiting singularity avoidance by a bounce.
The comparison between inhomogeneous collapse in
Ref. [6] and homogeneous collapse here has revealed an
interesting possibility: in Ref. [6] we found indications that
shell crossing becomes unavoidable close to the bounce, a
feature which cannot show up in homogeneous models.
Using the OS model it may thus be possible to further
investigate instabilities of the homogeneous sector of a less
symmetry-reduced quantum gravity model.
Back at the classical level, we then implemented

Schwarzschild-Killing time into the canonical formalism
by promoting the aforementioned coordinate transforma-
tion to a canonical one. This gave us access to the
Hamiltonian constraint in a form almost deparametrizable
with regard to Killing time, and with that the point of view
of the stationary observer.
Due to the unusual structure of the Hamiltonian con-

straint in this form, we presented here a preliminary,

heuristic quantization of it. The results nevertheless serve
as a consistency check for our approach, since a bounce
emerged as well; our method of switching observers
classically can produce consistent quantum theories.
Furthermore, we have seen that the bounce is only present
if one takes into account the inside of the horizon, pointing
to a leaking out of this region into the outside as a possible
mechanism for quantum gravitational corrections at the
horizon.
The dynamics of the inside are of course somewhat

arbitrary, since the relevant classical observer does not have
access to this region. The prescription we used here did
however emerge quite naturally from the canonical formalism.
In the future we plan to quantize the Hamiltonian

constraint for the stationary observer in a more rigorous
way, and will then be able to gain more insight into some of
the open questions concerning the behavior of the horizon,
the black hole lifetime, and how exactly the inside and
outside mix, complementing our discussion in Ref. [6].
This will hopefully lead us to a more complete picture of
bouncing collapse.
Other interesting possibilities for further work are the

inclusion of Hawking radiation, and the investigation of
white hole instabilities. Both could influence the bouncing
collapse scenario significantly, depending on the time
scales involved.
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