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Quantum field theory in zero spatial dimensions has a rich infrared landscape and a universal ultraviolet,
inverting the usual Wilsonian paradigm. For holographic theories this implies a rich landscape of
asymptotically AdS2 geometries. Isolating the interiors of these spacetimes suggests a study of the analog
of the TT̄ deformation in quantum mechanics, which we pursue here. An equivalent description of this
deformation in terms of coupling to worldline gravity is proposed, and applications to quantum-mechanical
systems—including the Schwarzian theory—are studied.
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I. INTRODUCTION

The techniques of the ordinary Wilsonian renormaliza-
tion group can be applied to theories of quantum mechan-
ics, i.e., (0þ 1)-dimensional quantum field theories, but
they result in a very dramatic feature. The universality of
infrared physics, wherein lies the power of low-energy
effective field theory, is totally lost. Rather than having a
small handful of relevant operators that can be written down
to deform free field Lagrangians, every (nonderivative,
nonsingular) operator appears to be relevant. This allows
the possibility of a rich infrared landscape not available in
higher-dimensional theories. On the other hand, there is a
universality of the ultraviolet of quantum mechanics due to
the paucity of irrelevant operators. This picture suggests
exploring the diversity of the infrared landscape and the
robustness of the ultraviolet landscape.
There is a wide class of integrable deformations of

quantum mechanics parametrized by arbitrary functions.
These deformations can be considered as transformations of
the Hamiltonian H → FðHÞ. They can also be written as
first-order flows ∂H=∂λ ¼ fðHÞ or ∂LE=∂λ ¼ fðTÞ, where
LE is a Euclidean Lagrangian and T the stress tensor, which
is really just a scalar in d ¼ 1. The operators providing the
deformation are manifestly well-defined “composite” oper-
ators. The flows are integrable in the sense that the deformed
eigenvalues of the Hamiltonian are immediately calculable
in terms of the original eigenvalues, and the eigenfunctions

are unchanged. An analysis of these more general deforma-
tions and their application to interesting quantum-mechani-
cal models is considered in future work [1].
In this paper, we focus on a particular fðHÞ deformation

important for holography. In the context of AdS=CFT, the
Wilsonian picture implies a rich landscape of asymptoti-
cally AdS2 geometries, a perspective which was empha-
sized in [2]. One example of such a geometry is the
Anninos-Hofman centaur, which embeds the static patch of
two-dimensional de Sitter spacetime into an asymptotically
AdS2 spacetime [2,3]. Isolating and studying these infrared
geometries by excising the ultraviolet region would provide
a potential route to holography for general spacetimes, such
as de Sitter space or other accelerated cosmologies, through
the rigorous starting point of AdS=CFT. Furthermore,
through the examples of D0-brane quantum mechanics
and Banks-Fischler-Shenker-Susskind (BFSS) theory, it is
clear that quantum mechanics—without the complication
of spatial locality and Lorentz invariance that comes from
quantum field theory—already contains local emergent
spacetime with black holes. Many of the puzzles of
quantum gravity are therefore directly accessible in theories
of quantum mechanics.
The strategy we pursue here is to derive and study the

analog of the TT̄ deformation [4–6] for one-dimensional
quantum-mechanical theories. This is an irrelevant defor-
mation that is proposed to be dual to a sharp radial cutoff in
anti–de Sitter space [7], which performs the excision
required to isolate the infrared geometry.1 In addition to
allowing us to access a diverse landscape of geometries, the
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1The bulk interpretation of the TT̄ deformation was alter-
natively shown to correspond to mixed boundary conditions at
the usual AdS boundary [8].
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TT̄ deformation in d ¼ 1 is a universally well-defined
composite operator available in any quantum-mechanical
theory. Furthermore, it explicitly preserves all symmetries
of the original theory (including supersymmetry) and
provides a universal way to couple quantum mechanics
to worldline gravity.

A. Summary

In Sec. II we derive the deforming operator correspond-
ing to a finite Dirichlet cutoff in AdS2. We begin in
Sec. II A with Jackiw-Teitelboim (JT) gravity in AdS2
[9,10], obtaining the operator via dimensional reduction
of the TT̄ operator in AdS3. In Sec. II B we derive the
deforming operator for a general dilaton-gravity theory
with matter fields directly in AdS2 by applying the
algorithm of [11]. Such theories can capture exotic geom-
etries like the Anninos-Hofman centaur, which contains an
infrared de Sitter region with its cosmological horizon
accessible to probes from the ultraviolet AdS2 boundary.
By applying the flow derived in Sec. II B the de Sitter
region can be isolated. We furthermore show that the flow
in the de Sitter region is a d ¼ 1, the static patch version of
the TT̄ þ Λ2 flow of [12]. In Sec. II C we investigate chaos
in JT gravity at finite cutoff, calculating the Lyapunov
exponent and showing it to be unaffected.
In Sec. III we study properties of the flow triggered by

the deforming operator of Sec. II directly in quantum-
mechanical theories. In Sec. III A we show that all
symmetries, including supersymmetry, are preserved along
the flow. In Sec. III B we solve for the deformed ultraviolet
Lagrangians obtained by flowing generic quantum-
mechanical theories. In all cases we find that the ultraviolet
theory can be written—in a particular gauge—as a world-
line action with a cosmological constant or background
electric field.
In Sec. IV, we apply our deformation to the Schwarzian

theory. We derive the action of the deformed theory in
Sec. IVA. To compare to the bulk, we recast the finite
cutoff dictionary in terms of a gauge-invariant fixed-length
boundary condition as is commonly used in the Schwarzian
literature. Section IV C is devoted to a computation of the
Lyapunov exponent in the deformed Schwarzian theory. In
Sec. IV D we compute the deformed density of states and
give an exact expression for the deformed partition
function.
In Sec. V we provide a nonperturbative definition of our

deformation in terms of coupling to a theory of worldline
gravity. This can be understood as the one-dimensional
version of the proposal that a TT̄ deformation of a two-
dimensional QFT can be nonperturbatively defined as
coupling the theory to Jackiw-Teitelboim gravity with
vanishing cosmological constant [13].
Appendix A looks at distinct quantum-mechanical flows

triggered by the operator T2. The flow of a free particle is
shown to result in a deformed Lagrangian that is

functionally identical to that obtained by a TT̄ deformation
of two-dimensional Yang-Mills theory. Appendix B shows
that the deformation of two-dimensional interacting scalars
by the operator proposed in Sec. II A leads to a Nambu-
Goto-like action in a nontrivial target space metric.
A few clarifying comments about conventions are in

order. We often switch between the Hamiltonian H and the
stress tensor T, which is just a scalar for d ¼ 1. The only
distinction meant here is that H is an operator written in
terms of fields and their conjugate momenta, while T is in
terms of fields and their derivatives. We mostly work in
Euclidean signature, writing SE and LE for Euclidean
actions and Lagrangians.

II. TT̄ FLOW IN AdS2

In this section we derive the particular deformation that
corresponds to a finite Dirichlet cutoff in AdS2. For d > 1,
the deformation that corresponds to finite cutoff for
Einstein gravity in AdSdþ1 is always made up of a
quadratic combination of the stress tensor. The natural
guess for d ¼ 1 is then to write a flow that uses the only
possible quadratic combination available: ∂SE=∂λ ¼R
dτT2. For some analysis of this deformation, see

Appendix A. The conclusion is that this flow does not
seem to capture the physics of simple gravitational theories
at finite cutoff that we are accustomed to from the higher-
dimensional examples: the differential equation for the
energy levels does not take the form of Burger’s equation,
and the solution does not have a square-root singularity.
To make a sharp statement we need to specify a bulk

theory in AdS2 for which we want to extract the deforming
operator that gives the physics at finite Dirichlet cutoff. For
a general bulk theory we have to use the algorithm from
[11] to derive the deforming operator in the dual quantum
mechanics (we do this in Sec. II B). For Jackiw-Teitelboim
gravity, we can alternatively exploit the relation to three-
dimensional gravity in the spherically symmetric sector to
obtain the deformation through dimensional reduction [14].
We now turn to this.
We begin with three-dimensional Einstein gravity with

negative cosmological constant and the usual boundary
terms [15]

SE ¼ −
1

16πG

Z
d3x

ffiffiffi
g

p ðRþ 2Þ − 1

8πG

Z
d2x

ffiffiffiffiffi
g0

q
ðK − 1Þ;

ð2:1Þ

and parametrize the metric as

ds2 ¼ gð2Þαβ ðxαÞdxαdxβ þΦ2ðxαÞdϕ2

¼ grrdr2 þ r2γττdτ2 þΦ2ðr; τÞdϕ2; ð2:2Þ

with ϕ ∼ ϕþ 1. In particular, we have assumed a Uð1Þ and
Z2 reflection symmetry for ϕ. Asymptotically AdS3
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metrics require Φ → OðrÞ at large r. Solutions that fit into
this ansatz include spinless Banados-Teitelboim-Zanelli
(BTZ) black holes,

ds2 ¼ ðr2 − r2þÞdτ2 þ
dr2

r2 − r2þ
þ r2dϕ2;

M ¼ r2þ
16πG

; Ẽ ¼ rc
8πG

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2c

s �
; ð2:3Þ

where we have written the usual mass M of the solutions,
and the energy Ẽ at finite cutoff rc. The energy is computed
as Ẽ ¼ R

dϕ ffiffiffiffiffiffiffigϕϕ
p T̃αβuαuβ, with uα being a normal vector

to the radial cutoff surface.
To dimensionally reduce the action above along the ϕ

circle, we use the following relation between the three- and
two-dimensional Ricci scalar and extrinsic curvature,

R3d¼R2d−2Φ−1
□Φ; K2d ¼K1dþnμ∂μ logΦ; ð2:4Þ

with nμ being a normal vector to the one-dimensional
boundary. Upon plugging this in (2.1), the second terms in
both equations in (2.4) cancel and we end up with the two-
dimensional action,

SE ¼ −
1

16πG

Z
d2x

ffiffiffiffiffiffiffi
gð2Þ

q
ΦðRþ 2Þ

−
1

8πG

Z ffiffiffiffiffiffiffiffiffiffi
r2γττ

q
ΦðK − 1Þ; ð2:5Þ

where all geometric quantities are now in one lower
dimension. The effective two-dimensional Newton con-
stant is the dimensionless ratioΦ=G. This is JT gravity with
an appropriate set of boundary terms. Thus all solutions of
three-dimensional gravity with spherical and Z2 symmetry
lead to solutions of JT gravity. For example the BTZ black
holes lead to the two-dimensional black holes of JT gravity,

ds2 ¼ ðr2 − r2þÞdτ2 þ
dr2

r2 − r2þ
; Φ ¼ r; ð2:6Þ

and all solutions of JT gravity uplift to solutions of three-
dimensional gravity.

A. Dimensional reduction of TT̄ in d = 2

Before we dimensionally reduce the TT̄ flow of CFT2,
we first write it in a different-looking but equivalent form.
(An infinite number of such rewritings are possible.) For a
flow of a CFT given by

∂SE
∂λ ¼ 8

Z
d2x

ffiffiffi
γ

p
TT̄; ð2:7Þ

we have Tμ
μ ¼ −16λTT̄ ¼ −2λðTijTij − ðTi

iÞ2Þ along the

flow. We solve this equation for Tϕ
ϕ to get

Tϕ
ϕ ¼ Tτ

τ þ 4λTτϕTτϕ

4λTτ
τ − 1

: ð2:8Þ

Plugging this into the flow equation (2.7) gives

∂SE
∂λ ¼

Z
d2x

ffiffiffi
γ

p �ðTτ
τÞ2 þ TτϕTτϕ

1=2 − 2λTτ
τ

�
: ð2:9Þ

A few comments are in order about this equation. The first
is that it involves composite operators of arbitrary powers.
For the holographic application we are interested in, these
are well-defined due to large-c factorization. At finite c,
this may be well-defined by its relation to the TT̄ operator.
In particular, as long as Tμ

μ ∝ TT̄ as operators along this
flow, the operator above is equal to TT̄ and therefore well
defined. In particular, to agree with the results of TT̄
deformation it will also have to obey factorization as we see
below. The operator can be made manifestly well defined
by changing it slightly. In particular, we can rewrite Tτ

τ →R
Tτ
τ ¼ E and Tτϕ ¼ Tτϕ →

R
Tτϕ ¼ iJ, where we set the

circle size to one. Then we have composite operators built
out of powers of energy and momentum, which are
manifestly well defined and factorize in eigenstates of
energy and momentum. The deformation written this way
is not manifestly local. In Appendix B we discuss
deforming nonconformal theories by such an operator,
which is not the same as TT̄.
The second comment concerns the presence of a pole in

the deforming operator due to the 1=2 − 2λTτ
τ denominator.

This is only an issue in trying to understand the flow
nonperturbatively. A priori, one can define this in various
ways, including analytic continuation in λ. However, this
pole is signaling the complexification of the energy levels.
It occurs for states with energy Tτ

τðλÞ ¼ 1=4λ. Jumping
ahead to (2.11), we see that this happens when the square
root vanishes. By slightly increasing or decreasing λwe can
make the energy of this state become complex, which
regularizes the singularity. The only states for which this is
not true are the double 0’s of the square root, which are
extremal states with E0 ¼ J ¼ 1=4λ. Such states are
protected and do not flow; the pole is canceled by the 0
in E2 − J2 in the numerator.
Using hTτ

τi ¼ E and hTτϕi ¼ hTτϕi ¼ iJ in energy-
momentum eigenstates and assuming factorization, we
obtain the following equation for the energy levels,

∂E
∂λ ¼ E2 − J2

1=2 − 2λE
; ð2:10Þ

which has the usual solution

EðλÞ ¼ 1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λE0 þ 16λ2J2

q
Þ: ð2:11Þ
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Since Tϕ
ϕ has been eliminated in the right-hand side of the

flow equation (2.9), it is now easier to dimensionally
reduce. We set Tτϕ ¼ Tτϕ ¼ 0 and call Tτ

τ ≔ T to get

∂SE
∂λ ¼

Z
dτ

T2

1=2 − 2λT
; ð2:12Þ

where we have fixed to a metric of unit lapse. This leads to
a differential equation for the energy levels,

∂E
∂λ ¼ E2

1=2 − 2λE
⇒ EðλÞ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8E0λ

p
4λ

: ð2:13Þ

This agrees precisely with the energy of the two-
dimensional black holes at finite cutoff upon the identi-
fication λ ¼ 2πG=r2c. [Recall that to translate the bulk
answer to a boundary quantity we need to rescale by an
additional factor of rc; see Eq. (2.25).] If we modified the
source for the dilaton asΦ ¼ rΦr, which would correspond
to circle size Φr in the three-dimensional picture, the flow
equations (2.12) and (2.13) would remain true with the
modified identification λ ¼ 2πG=ðΦrr2cÞ.
The energies E0 are the energies of the initial theory,

which are obtained from SE in the limit λ → 0. This theory
should be thought of as a nearly CFT1 which is dual to
nearly AdS2. An example of such a theory is the
Schwarzian theory, which we discuss in detail in Sec. IV.
Setting E0 ¼ 1 and rescaling λ → λ=2 shows that EðλÞ is

the generating function of the Catalan numbers. In other
words, the deformed energy levels (and as we shortly see,
the deformed Hamiltonian) solve the equation

EðλÞ ¼ E0 þ 2λEðλÞ2 ⇒ EðλÞ ¼
X∞
n¼0

Cnð2λÞnEnþ1
0 ;

Cn ¼
ð2nÞ!

ðnþ 1Þ!n! : ð2:14Þ

B. General dilaton gravity with matter

The deformation found by dimensional reduction to
d ¼ 1 in the previous subsection can also be found directly
in d ¼ 1 using the technique in [11]. To allow for more
general bulk solutions, we turn on a potential UðΦÞ for the
dilaton Φ. This accommodates theories like the CGHS
model [16] and admits an embedding of the de Sitter
cosmic horizon within an asymptotically AdS2 spacetime
[2,3]. At the end of this section we also add matter. The
action is

SE ¼ −
1

2κ2

Z
M
d2x

ffiffiffi
g

p ðΦR − 2UðΦÞÞ

−
1

κ2

Z
∂M

dτ
ffiffiffiffiffi
g0

q
ΦðK − 1Þ; ð2:15Þ

with g0 ¼ gττ being the induced metric on the boundary and
K its extrinsic curvature. To have an asymptotic AdS2
geometry at large negative values for the dilaton would
mean UðΦÞ → −Φ as Φ → −∞. The boundary term
κ−2

R
dτ

ffiffiffiffiffi
g0

p
Φ ensures we obtain finite quantities in such

a situation, although the analysis below is more general. [In
the case of different asymptotics for UðΦÞ we do not add
additional counterterms which may be needed to have a
finite limit as λ → 0. This does not affect the matching at
finite cutoff as discussed in [11].] The equations of motion
for the dilaton give R ¼ 2U0. The equations of motion of
the metric are

ðgμν∇2 −∇μ∇νÞΦþ gμνUðΦÞ ¼ 0: ð2:16Þ

We consider a gauge in which the metric is diagonal and
focus on static dilatons,

Φ ¼ ΦðrÞ; ds2 ¼ N2ðrÞdτ2 þ dr2

N2ðrÞ : ð2:17Þ

A simple solution to the equations of motion of JT gravity
is given by [17]

Φ ¼ rΦr; N2 ¼ fðΦÞ
�
1 −

2Mκ2

ΦrfðΦÞ
�

ð2:18Þ

with

fðΦÞ ¼ −
2

Φ2
r

Z
Φ
UðxÞdx: ð2:19Þ

This solution describes a two-dimensional black hole
whenever fðΦÞ > 0 and has horizons at fðΦÞ ¼
2Mκ2=Φr. The constant M plays the role of the mass of
the solution. Notice that these solutions also possess a
Killing vector ∂τ. The renormalized Brown-York stress
scalar and canonical momentum of the dilaton are given by

T̃ττ ¼ 2ffiffiffiffiffi
g0

p δSE
δg0

¼ 2ffiffiffiffiffi
g0

p �
πττ þ

ffiffiffiffiffi
g0

p
2

1

g0
Φ
κ2

�
; ð2:20Þ

Õ ¼ 1ffiffiffiffiffi
g0

p δSE
δΦ

¼ 1ffiffiffiffiffi
g0

p �
πΦ þ

ffiffiffiffiffi
g0

p
κ2

�
; ð2:21Þ

which are obtained by varying the on-shell action with
respect to γττ and Φ. The quasilocal energy of our solution
(2.17) at finite radial cutoff r ¼ rc is

Ebulk ¼ T̃τ
τ ¼

Φrrc
κ2

�
1−

1

rc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðΦ0Þ−2Mκ2=Φr

q �
; ð2:22Þ

where Φ0 ¼ Φðr ¼ rcÞ. To derive the deformation of the
one-dimensional boundary theory that reproduces these
energy levels, we proceed as in higher dimensions by
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analyzing the Hamiltonian constraint. For our theory it is
given as

H ¼ κ2ÕT̃τ
τ −Φ0Õ − T̃τ

τ þ
1

κ2
ðΦ0 þ UðΦ0ÞÞ ¼ 0: ð2:23Þ

For a purely AdS2 potential UðΦ0Þ ¼ −Φ0, the last two
terms in the Hamiltonian constraint cancel. The deforma-
tion can be derived from this equation as discussed in [11],
where in this case we also flow the source for the dilaton.
The bulk flow equation is given as

d
drc

W½g0ðrcÞ;Φ0ðrcÞ�

¼
Z

dτ
ffiffiffiffiffi
g0

q �
1

2
T̃ττ∂rcg

0ðrcÞ þ Õ∂rcΦ0

�
: ð2:24Þ

The dictionary to translate between bulk variables and EFT
variables is given as

g0ττ ¼ r2cγττ; T̃ττ ¼ rcTττ; Φ0 ¼ rcΦr; Õ¼ r−2c O:

ð2:25Þ

The choice for the sources is made by demanding finiteness
as rc → ∞, although at finite rc other choices are possible.
Following the steps in [11] leads to

∂
∂rc SEFT ¼

Z
dτ

ffiffiffi
γ

p
Θ ð2:26Þ

with Θ given by Θ ¼ T̃τ
τ þΦ0Õ. We use the Hamiltonian

constraint (2.23) to rewrite this as

Θ ¼ κ2ÕT̃τ
τ þ

1

κ2
ðΦ0 þUðΦ0ÞÞ; ð2:27Þ

which—using the dictionary to translate to field theory
variables—is given as

Θ ¼ κ2

r3c
OTτ

τ þ
1

κ2
ðrcΦr þ UðrcΦrÞÞ: ð2:28Þ

The flow of the effective action is thus

rc
∂SEFT
∂rc ¼

Z
dτ

ffiffiffi
γ

p �
κ2

r2c
OTτ

τ þ
r2c
κ2

ðΦr þ r−1c UðrcΦrÞÞ
�
:

ð2:29Þ

Using the Hamiltonian constraint one more time in the form

O ¼ rcTτ
τ − r2cκ−2ðrcΦr þUðrcΦrÞÞ

κ2r−1c Tτ
τ − rcΦr

ð2:30Þ

to trade out O from the flow equation, and using
λ ¼ κ2=ð4Φrr2cÞ, we can write our flow as

rc
∂SEFT
∂rc ¼

Z
dτ

ffiffiffi
γ

p �
−16rcT2λ2 þ rc þ UðrcΦrÞ=Φr

4λrc − 16rcTλ2

�
ð2:31Þ

⇒
∂SEFT
∂λ

¼
Z

dτ
ffiffiffi
γ

p �
T2 − ð1þ ðrcΦrÞ−1UðrcΦrÞÞ=ð16λ2Þ

1=2 − 2λT

�
;

ð2:32Þ

where we again defined Tτ
τ ≔ T. Setting UðxÞ ¼ −x gives

the flow we considered for JT gravity.
The flow equation for the effective action can be turned

into a flow equation for the energy levels of the deformed
quantum mechanics,

∂E
∂λ ¼

E2 − ð1þ
ffiffiffiffi
αλ

p
Φr

Uð Φrffiffiffiffi
αλ

p ÞÞ=ð16λ2Þ
1=2 − 2λE

; ð2:33Þ

with α ¼ 4Φr=κ2. The solutions to this flow equation are

EðλÞ ¼ 1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αλfðΦr=

ffiffiffiffiffi
αλ

p
Þ − 8λE0

q
Þ; ð2:34Þ

where fðxÞ is defined as in (2.19). The JT energy levels are
obtained by setting fðxÞ ¼ x2=Φ2

r .

C. Dissecting the Anninos-Hofman centaur

An interesting application of this flow is to the
AdS2-dS2 centaur geometry [2,3]. This solution arises
for certain special potentials UðΦÞ and is an embedding
of the static patch of dS2 inside of an asymptotically AdS2
spacetime. The remarkable feature of this two-dimensional
embedding is that the physics of the de Sitter horizon is
accessible to the AdS boundary. Using the flow (2.32)
we can then explicitly isolate the static patch region. In
that region fðxÞ ≈ −x2=Φ2

r , and the resulting flow is
precisely a two-dimensional, static patch version of the
flow in [12]. (The static patch case is also currently under
consideration [18].) In this case we do not need to consider
the proposed Λ2 flow, and instead turn on a source that
gradually changes the geometry from AdS2 to dS2.

D. Adding matter

We can also consider the flow equation for gravitational
theories in AdS2 with additional matter. We consider a
matter sector that does not couple directly to the dilaton.
(For two-dimensional dilaton-gravity models that descend
from higher-dimensional theories with free matter, there is
a coupling to the dilaton due to the dimensional reduction
over the transverse directions.) We also assume that we do
not add any new boundary counterterms for the bulk matter.
The Hamiltonian constraint of this section gets modified by
the addition of the radial-radial component of the bulk
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matter stress tensor t̃rr. This feeds into the flow considered
in this section by an additive term,

∂S
∂λ ¼

Z
dτ

�
T2 − ð1þ ðrcΦrÞ−1UðrcΦrÞÞ=ð16λ2Þ

1=2 − 2λT

−
t̃rrrc=ð4λÞ
1=2 − 2λT

�
: ð2:35Þ

As in [11] the matter stress tensor needs to be processed
into operators and sources of the quantum-mechanical
theory. The curious difference between d ¼ 1 and d > 1
is the direct coupling between the bulk matter stress tensor
and the Brown-York stress tensor.

E. Chaos in JT gravity at finite cutoff

Having derived the field theory deformation correspond-
ing to Dirichlet boundary conditions for gravity and matter
fields at finite cutoff, we would like to understand the effect
of such a cutoff on chaos in JT gravity. Specifically, we
study this through the delay of an outgoing signal due to the
release of matter from the boundary in the distant past,
finding exponential dependence on the time separation. It
may be slightly confusing that there is a time delay even
though the particles do not directly interact. But this effect
is well understood and illustrated in Fig. 1. The fact that
there is a time delay at all has to do with the new black hole

geometry created by the infalling particle; the outgoing
particle ends up closer to a horizon and therefore takes
longer to escape. That this grows as one releases the
infalling particle earlier in the past is simply because the
outgoing particle spends even more time closer to a
horizon. The particular exponential dependence simply
arises from translating time near the horizon to time near
the boundary; it is the usual redshift. The exponential
dependence, arising from the near-horizon physics as it
does, should not be affected by a finite cutoff. We
corroborate this expectation with a calculation below.
The analysis is basically that of [19] adapted to a finite

radial cutoff. The equations of motion of JT gravity enforce
an AdS2 metric

ds2 ¼ −
4dXþdX−

ðXþ − X−Þ2 ; ð2:36Þ

while the metric for the black hole exterior region in
Schwarzschild coordinates is given by

ds2 ¼ −ðr2 − r2þÞdt2 þ
dr2

r2 − r2þ
; ð2:37Þ

where rþ is related to the mass of the black hole through
r2þ ¼ 2κ2M. In Poincaré coordinates, the past and future
horizons are located at Xþ ¼ 1=rþ and X− ¼ −1=rþ. The
black hole metric is periodic in Euclidean time, correspond-
ing to a temperature T∞ ¼ rþ=2π. The subscript here
indicates that this is the temperature as measured with
respect to coordinate time t. Later on we have to convert
this to a temperaturemeasured by an observer at finite cutoff.
We use two sets of Schwarzschild coordinates, with

tilded quantities corresponding to the heavier black hole.
We release matter from the boundary at Xþ ¼ X− ¼ 0,
which we define to be Schwarzschild time t ¼ t̃ ¼ 0.
This fixes the transformation between Poincaré and
Schwarzschild coordinates to be

X�ðr; tÞ ¼ 1

rþ

− ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r ∓ rþ

p þ erþt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rþ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r ∓ rþ

p þ erþt
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rþ

p : ð2:38Þ

The dilaton is given by ΦðrÞ ¼ r, and the observer
measuring the time delay is fixed at a constant value of
the dilaton. The infalling matter of energy δM increases the
mass of the black hole to M̃ ¼ M þ δM. We follow in the
matter until it reaches the radial cutoff surface at r ¼ rc,
t ¼ t1. This is point B in Fig. 1. t1 can be written in terms of
rc by solving the null geodesic equation of motion, or by
solving X−ðrc; t1Þ ¼ 0 (and equivalently so for the point B̃
in terms of the tilded quantities in the new black hole
geometry). This gives

erþt1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ rþ

rc

1 − rþ
rc

vuut : ð2:39Þ

FIG. 1. Shock waves in JT gravity from finite cutoff. The aqua
green and orange regions correspond to black hole exterior
spacetimes of mass M and slightly larger mass M̃, respectively.
The gray region is the extension of the Penrose diagram of the
heavier black hole into the past. At point A an ingoing massless
particle is released. At point B it passes through the finite cutoff
boundary in the initial black hole geometry and at B̃ in the new
black hole geometry. The black dashed lines are lines of constant
and equal values of the dilaton. Points C and C̃ are where the
outgoing signal meets these lines.
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Now we consider the outgoing signal, specifically events
C and C̃ in the figure. Event C occurs at ðrc; t2Þ and C̃ at
ðr̃c; t̃2Þ. Fixing our observer at a constant value of the
dilaton sets rc ¼ r̃c. The time t2 is the time at which
the observer would have measured the outgoing signal if
the infalling matter had not been sent, while t̃2 is the actual
time measured. We want to calculate the time delay t̃2 − t2,
most importantly how it depends on the time separation
t2 − t1 of the ingoing and outgoing rays, as this givea us the
Lyapunov exponent. Before we can do so, we first convert
all the times to ones as measured by a field theory observer.
Following the dictionary [11] the field theory time tb is
defined through

r2cdt2b ¼ ðr2c − r2þÞdt2 ⇒ tb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

r2þ
r2c

s
t; ð2:40Þ

where we took a flat field theory metric γtt ¼ −1. After
solving for t̃2 in terms of t2, by using that events C and C̃
occur at the same Xþ, and converting to times and
temperatures appropriate for the dual theory at finite cutoff,
we obtain a time delay at large tb;2 − tb;1 given by

t̃b;2 − tb;2 ≈
δMβc
8πM

4π2ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2cβ2c=ð4π2Þ

p
Þ2

r2cβ2c

× exp

�
2π

βc
ðtb;2 − tb;1Þ

�
: ð2:41Þ

This is to first order in δM and nonperturbative in rc. Here
βc ¼ β∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2π=β∞rcÞ2

p
is the temperature at finite

cutoff. Taking a large time separation at fixed cutoff rc
requires fixing tb;1 and taking tb;2 large, since the infalling
matter is fixed to fall in from the AdS boundary at t ¼ 0.
Notice that to this order in δM the right-hand side can be
written in terms of tilded quantities, as appropriate for the
late-time observer, and still take the same functional form.
Notice also that for sufficiently large tb;2 we can ignore the
rc-dependent part of the prefactor by using (2.39).
This bulk analysis tells us that the Lyapunov exponent of

the boundary EFT is still maximal; i.e., we still have a
Lyapunov exponent given by λL ¼ 2π=βc. In Sec. IV C we
do a boundary quantum-mechanical calculation of the
Lyapunov exponent, finding again that it remains maximal.

III. TT̄ IN QUANTUM MECHANICS

The particular deformation proposed in (2.12) was
engineered to give physics that agrees with a finite radial
cutoff for JT gravity in AdS2. In this section, we study
various aspects of the deformation directly in quantum
mechanics, without relying on any holographically dual
picture. In particular we analyze the symmetries along the
flow and show that the resulting ultraviolet action is

universally given by a worldline action with nontrivial
target space metric.

A. Conserved charges and supersymmetry

Let us consider deformed Hamiltonians H which are
given as a function of the original Hamiltonian H0,
Hðqi; piÞ ¼ fðH0ðqi; piÞÞ. This captures the deformation
(2.12) and others considered in this paper. If the original
Hamiltonian has a classical conserved quantity _pi ¼ 0, i.e.,
∂H0=∂qi ¼ 0, then we have

∂H
∂qi ¼ f0ðH0Þ

∂H0

∂qi ¼ 0; ð3:1Þ

so the conserved quantity remains conserved for any
analytic function f. Thus all classically integrable theories
remain integrable. Quantum mechanically, for a conserved
chargeQ in the original theory we have ½H0; Q� ¼ 0, which
automatically gives ½fðH0Þ; Q� ¼ 0 for any analytic func-
tion f. Thus all quantum-mechanical conserved charges
remain conserved charges.
It is interesting to consider the case of a theory invariant

under supersymmetry. This means its Hamiltonian can be
written as

H ¼ fQ;Q†g ¼ Q2
1 ¼ Q2

2; Q ¼ 1

2
ðQ1 þ iQ2Þ ð3:2Þ

for two real supercharges Qi. As we just argued, all
conserved charges remain conserved under these
Hamiltonian flows, but we maintain the algebra by writing
λ-deformed supercharges which still obey the supersym-
metry algebra. It is simplest to work with the real super-
charges, which can be written as the square root of the
Hamiltonian,

HðλÞ ¼ 1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λQ2

i

q
Þ

⇒ QiðλÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λQ2

i

q
Þ

r
; ð3:3Þ

with no sum over i intended. The branch of the (overall)
square root depends on the given eigenvalue and is chosen
to match onto the eigenvalue at λ ¼ 0, which can be either
positive or negative. This solution arises from a flow

QiðλÞ∂λQiðλÞ ¼
QiðλÞ4

1 − 4λQiðλÞ2
: ð3:4Þ

The preservation of supersymmetry for the TT̄ deformation
in d ¼ 2 was considered in [20,21], and further work
investigating TT̄ deformations and supersymmetry can be
found in [22,23].
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B. Worldline action

In this subsection we solve for the deformed action under
the flow

∂SE
∂λ ¼

Z
dτ

T2

1=2 − 2λT
: ð3:5Þ

This flow can be considered for quantum-mechanical
theories with general kinetic terms. In this section we
focus on seed theories with canonical kinetic terms but
otherwise arbitrary interactions. We use the approach
of Appendix A, where we transform our deformed
Hamiltonian to obtain L ¼ P

i pidH=dpi −H. Since the
energy eigenvectors are unchanged under this deformation,
we can write the deformed Hamiltonian as

H ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λðPi

p2
i
2
þ Vðq1;…; qNÞÞ

q
4λ

: ð3:6Þ

We have chosen the starting Hamiltonian to be a bosonic
theory in N dimensions with a general potential
Vðq1;…; qNÞ. The Euclidean Lagrangian is then given as

LE ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4λ _q2i Þð1 − 8λVðq1;…; qNÞÞ

p
4λ

: ð3:7Þ

This form of the Lagrangian can be interpreted as a
worldline action with a nontrivial target space metric. To
see this, write (3.7) as

SE ¼ 1

4λ

Z
dτ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _X

μ _Xν
q �

; ð3:8Þ

where gμν ¼ δμνð1 − 8λVðX1;…; XNÞÞ is a curved target

space metric. Picking static gauge X0ðτÞ ¼ τ, XiðτÞ ¼
2

ffiffiffiffiffiffi
−λ

p
qiðτÞ gives the action from before. The potential

VðX1;…; XNÞ ≔ Vðq1ðX1Þ;…; qNðXNÞÞ, and the metric
becomes trivial for vanishing potential. The mass is
identified as m ¼ 1 since the expansion at small velocities
gives a kinetic term 1

2
_q2. Thus the one-dimensional particle

is embedded in an (N þ 1)-dimensional Euclidean space.
This is analogous to the TT̄ deformation of free bosons in
d ¼ 2 leading to a Nambu-Goto action [6]. In that case,
however, adding interactions seems to ruin the Nambu-
Goto form of the UV action [24], while in our case
interactions simply change the target space metric while
maintaining the worldline interpretation. For λ > 0 the
worldline interpretation requires either wrong-sign kinetic
terms or a Lorentzian target space metric, while for λ < 0
the interpretation is standard. This analysis can be gener-
alized to a seed theory with nontrivial metric hij _qi _qj.
We obtained the Lagrangian (3.7) from (3.8) by fixing a

particular gauge. Starting instead from (3.7), there are in
fact different ways to gauge unfix it and obtain different

interpretations of the deformed theory. For example, one
other very fruitful way of gauge unfixing (3.7) is by
interpreting the shift 1=4λ as coming from a Chern-
Simons term for a worldline gauge field q

R
dτa. We

can complete this worldline gauge field into a target space
gauge field Aμ. Parametrizing our worldline by target space
coordinates XμðτÞ, we have

SE ¼
Z

dτ

�
1

2e
_Xμ _Xμ þ

1

2
em2

�
− iq

Z
dτAμ

_Xμ ð3:9Þ

with e an einbein, ds2 ¼ e2dτ2. Solving the metric equa-
tion of motion for e and plugging it back into the action, we
find

SE ¼ m
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffi
_Xμ _Xμ

q
− iq

Z
dτAμ

_Xμ: ð3:10Þ

For λ < 0, choosing static gauge ( _X0 ¼ 1) and setting
AμdXμ ¼ ði=4λÞdτ and m ¼ 1=4λ, we find the same action
as before. On the other hand, for λ > 0 we need to use the
other branch of the solution to the equation of motion of e.
The other identifications remain the same [given the target
space metric gμν ¼ −ημνð1 − 8λVÞ]. Interpreting the
deformed theory as a worldline coupled to a gauge field
bears some resemblance with recent proposals of Kitaev
and Suh [25] and Yang [26], where quantum JT gravity is
interpreted as a worldline in AdS2 with an electric field.
Fermionic parameters can also be treated. As discussed

in Appendix A, the flows are easier in this case since the
kinetic term does not flow. We consider an arbitrary seed
theory of N fermions with canonical kinetic terms

SE ¼
Z

dτ

�
1

2
ψ̄ i _ψ

i þ Vðψ̄ i;ψ iÞ
�
: ð3:11Þ

As usual the deformed action can be found by Legendre
transorming the deformed Hamiltonian. The result is

SE¼
Z

dτ

�
1

2
ψ̄ i _ψ

iþ 1

4λ
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−8λVðψ̄ i;ψ iÞ

p
Þ
�
: ð3:12Þ

To see that this can be written as a worldline action we need
to reintroduce the bosonic parameters. For a seed theory

SE ¼
Z

dτ

�
1

2
_qi2 þ

1

2
ψ̄ i _ψ

i þ Vðqi; ψ̄ i;ψ iÞ
�

ð3:13Þ

we find a deformed action

SE¼
Z

dτ

�
1

2
ψ̄ i _ψ

i

þ 1

4λ
ð1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−4λ _q2i Þð1−8λVðqi; ψ̄ i;ψ iÞÞ

q
Þ
�

ð3:14Þ
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¼
Z

dτ

�
1

2
ψ̄ i _ψ

i þ 1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gμν _X

μ _Xν
q

Þ
�
; ð3:15Þ

where the various parameters are defined as before.
To see that this is the appropriate notion of a worldline

action, let us recall what happens when we couple the seed
theory directly to an einbein,

SE ¼
Z

dτ
�
1

2e
_q2i þ

1

2
ψ̄ i _ψ

i þ eVðqi; ψ̄ i;ψ iÞ
�
: ð3:16Þ

The equation of motion for the einbein e gives e ¼
ffiffiffiffiffi
_q2i
2V

q
,

which upon inserting back into the action gives

SE ¼
Z

dτ

�
1

2
ψ̄ i _ψ

i þ
ffiffiffiffiffiffiffiffiffiffiffi
2V _q2i

q �

¼
Z

dτ
�
1

2
ψ̄ i _ψ

i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gij _qi _qj

q �
;

gij ¼ 2δijV: ð3:17Þ
So we see that the fermion kinetic term is invariant under
einbein coupling, just as it is invariant under our TT̄
deformation. This is because it is topological and does
not contribute to the stress tensor, which is necessary to
couple to an einbein.
It is also interesting to study more general initial theories

containing higher derivative terms. The phase space of such
theories is larger and requires more canonical momenta and
coordinates than the usual pair fp; qg per field we have
been considering thus far. These momenta are obtained
via the Ostrogradsky formalism [27]. The flow of such
higher derivative theories is then obtained in the same way
as ordinary theories considered in this section. An interest-
ing example of such a higher derivative theory is the
Schwarzian theory, which we consider in Sec. IV.

C. Thermodynamics

It is interesting to consider the finite-temperature
partition function of the deformed theory, which can be
written as

ZðβÞλ ¼
Z

∞

−∞
dEe−βfðEÞρðEÞ: ð3:18Þ

For now we consider general invertible fðEÞ, restricting
to the one relevant to our TT̄ deformation at the end.
Performing a change of variables E → f−1ðEÞ lets us write
this as

ZðβÞλ ¼
Z

dEe−βEρðf−1ðEÞÞ df
−1ðEÞ
dE

: ð3:19Þ

This means the deformed finite-temperature partition func-
tion ZðβÞλ ¼

R
dEe−βEρλðEÞ has density of states

ρλðEÞ ¼ ρðf−1ðEÞÞ df
−1ðEÞ
dE

: ð3:20Þ

For certain fðEÞ, ZðβÞλ can be written as an integral
transform of the partition function of the seed theory ZðβÞ,

e−βfðEÞ ¼
Z

∞

0

dβ0e−β0EKðβ; β0Þ

⇒ ZðβÞλ ¼
Z

∞

0

dβ0Zðβ0ÞKðβ; β0Þ: ð3:21Þ

The kernel is simply the inverse Laplace transform of the
Boltzmann weight of the deformed theory,

Kðβ; β0Þ ¼ 1

2πi

Z þi∞

−i∞
dEe−βfðEÞþβ0E: ð3:22Þ

Thus for certain fðEÞ for which this integral converges, we
can write the deformed partition function as an integral
transform of the original partition function. For the TT̄
deformation fðEÞ ¼ 1

4λ ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8Eλ

p Þ with λ < 0, we
have

ZðβÞλ ¼
βffiffiffiffiffiffiffiffiffiffiffi
−8πλ

p
Z

∞

0

dβ0

β03=2
exp

�ðβ − β0Þ2
8β0λ

�
Zðβ0Þ: ð3:23Þ

Depending on the spectrum of the quantum-mechanical
theory, this relation between partition functions may break
down at some value of β. In particular, consider a theory
with a linear specific heat, logZ ¼ cT. The exponential
suppression from the kernel at small β0 then competes with
the exponential divergence of Zðβ0Þ. The critical temper-
ature at which ZðβÞλ diverges is T ¼ ð−8λcÞ−1=2. This is a
standard Hagedorn divergence, which can be seen by
looking at the entropy at high energy. The seed theory
has SðEiÞ ¼ ð1 − β∂βÞ logZðβÞ ¼ 2

ffiffiffiffiffiffiffi
cEi

p
. Due to the

quadratic relation between the energy of the seed theory
and the deformed theory, Ei ¼ Eλ − 2λE2

λ , this leads to a
Hagedorn density of states exp ðEλ

ffiffiffiffiffiffiffiffiffiffiffi
−8λc

p Þ, from which the
Hagedorn temperature T ¼ ð−8λcÞ−1=2 can be read off.
Picking a seed theory with a faster density of states at high
energy can lower the Hagedorn temperature and push it all
the way to 0. Of course, these formulas are also valid for
quantum-mechanical theories with a finite spectrum, for
which no divergences can arise.

IV. FLOWING THE SCHWARZIAN THEORY

In this section we apply some of the techniques of the
previous sections to the Schwarzian theory. This is a theory
which captures, among other things, Jackiw-Teitelboim
gravity in AdS2 [19,28,29].
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A. Deformed Schwarzian action

Picking a metric ðr2 − 1Þdτ2 þ dr2

r2−1, one introduces an
infrared cutoff on the spacetime with some curve
ðτðuÞ; rðuÞÞ, with u ∼ uþ 2π beng the boundary time
coordinate. This cutoff problem is formulated slightly
differently than in the TT̄ literature, where a sharp radial
cutoff r ¼ rc is chosen. Instead, one fixes the length of the
cutoff curve with a Dirichlet condition on the metric
ds2jbdry ¼ Λ2du2. At leading order in Λ, preserving this
boundary condition on the metric means picking
rðuÞ ¼ Λ=τ0ðuÞ. In particular, the length of the curve
remains fixed under diffeomorphisms that would change
a sharp radial cutoff. This means that we need to slightly
reformulate the problem of the flow of the bulk on-shell
action. Instead of flowing logZ½g0ijðrc; τÞ;ϕ0ðrc; τÞ� with
respect to rc, we need to flow logZ½g0ijðΛ; uÞ;ϕ0ðΛ; uÞ�
with respect to Λ. This can be done analogously to
Sec. II B, and the final result is the same up to rc → Λ.
Thus the boundary flow is identical and the map with the
bulk is modified to be λ ¼ 2πG=ðΦrΛ2Þ.
With a cutoff curve ðτðuÞ; rðuÞÞ, the bulk theory reduces

to an equivalent boundary theory at leading order in Λ, with
action given by

SE ¼−C
Z

duðSchðτ;uÞþ τ02=2Þ; C¼ Φr

8πG
; ð4:1Þ

where Φr is the renormalized value of the dilaton, which
we have taken to be a constant, and Schðτ; uÞ is the
Schwarzian,

Schðτ; uÞ ¼
�
τ00

τ0

�0
−
1

2

�
τ00

τ0

�
2

: ð4:2Þ

This is found by evaluating the boundary action (corre-
sponding to the Gibbons-Hawking-York extrinsic curvature
term and a counterterm) for a particular curve. The stress
tensor of this theory is given as T ¼ CðSchðτ; uÞ þ τ02=2Þ.
The action has corrections in Λ which we will consider in
Sec. IV B.
We want to flow the Schwarzian action under (2.12). To

apply the technique of Sec. III C, we first compute the
Hamiltonian of the Schwarzian theory in canonical vari-
ables. Dropping the total derivative term, the canonical
coordinates are q1 ¼ τ and q2 ¼ τ0. The momenta are
determined using the Ostrogradsky formalism [27],

p1 ¼
∂L
∂τ0 −

d
du

�∂L
∂τ00

�
¼ C

�
τ002

τ03
−
τ000

τ02
− τ0

�
; ð4:3Þ

p2 ¼
∂L
∂τ00 ¼ C

τ00

τ02
: ð4:4Þ

The undeformed and deformed Hamiltonian then become

H0 ¼
p2
2q

2
2

2C
þ C

2
q22 þ p1q2;

HðλÞ ¼ 1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λH0

p
Þ: ð4:5Þ

Legendre transforming this to a Lagrangian and analyti-
cally continuing to Euclidean signature through u → −iu,
q2 → iq2 gives

LEðλÞ ¼ −
ðτ0 − eϕÞ2
8λτ0eϕ

þ C
2

eϕ

τ0
ðϕ02 − τ02Þ; ð4:6Þ

where we have substituted q1 ¼ τ and q2 ¼ eϕ. These
substitutions are so the resulting Lagrangian is identical to
the one obtained by deforming the Schwarzian theory in
Liouville variables τ0 ¼ eϕ. The starting theory in that case
is given by LE ¼ Cðϕ02 − e2ϕÞ=2þ ωðτ0 − eϕÞ, where ω
serves as a Lagrange multiplier enforcing the con-
straint τ0 ¼ eϕ.
A few comments about (4.6) are in order. First, the λ → 0

limit seems to be ill defined here, but we need to remember
that at λ ¼ 0 the momentum p1 appears linearly, enforcing
the constraint τ0 ¼ eϕ in the variables chosen above.
Plugging this into (4.6) as we take λ → 0 gives us the
Schwarzian theory, and there are then corrections to this in
λ. We encounter a similar phenomenon in Sec. V and show
precisely that there are no issues at the level of the full path
integral. Second, it can be checked that the Lagrangian
(4.6), together with its stress tensor

TðλÞ ¼ 1

4λ

�
1 −

eϕ

τ0

�
; ð4:7Þ

satisfy the flow equation (2.12). Finally, upon substituting
the solution to the τ equation of motion that at λ → 0 gives
eϕ ¼ τ0, we find

LEðλÞ ¼
1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 4λCϕ02Þð1þ 4λCe2ϕÞ

q
Þ: ð4:8Þ

This is precisely the action one would get from flowing the
Liouville quantum mechanics LE ¼ Cðϕ02 − e2ϕÞ=2. This
Lagrangian can be obtained by the substitution τ0 ¼ eϕ in
the Schwarzian Lagrangian, although as seen below (4.6)
for a precise equivalence between the two theories we need
to incorporate a Lagrange multiplier enforcing the con-
straint τ0 ¼ eϕ.

B. Comparison to bulk

Another way to move the cutoff surface into the bulk is
to perform the procedure of [28] to higher orders. We can
compute corrections to the boundary term in the bulk action
systematically. Working in the finite-temperature geometry
ds2 ¼ ðr2 − 1Þdτ2 þ dr2=ðr2 − 1Þ, we pick a wiggly cutoff
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ðrðuÞ; τðuÞÞ with boundary conditions ds2jbdry ¼ Λ2du2

and Φjbdry ¼ ΛΦr for Λ large. The extrinsic curvature of
this cutoff surface is given as

K¼
ffiffiffiffiffiffiffiffiffiffiffi
r2−1

p
×

�
τ0ðr00 þ rð3r02þðr2−1Þ2τ02− rr00ÞÞþðr2−1Þr0τ00

ðr02þðr2−1Þ2τ02Þ3=2
�
:

ð4:9Þ

Using the boundary condition to expand rðuÞ in terms of
τðuÞ gives

r ¼ Λ
τ0
þ τ04 − τ002

2Λτ03
þOðΛ−3Þ: ð4:10Þ

The bulk action vanishes due to the path integral over the
dilaton. The boundary action −ð8πGÞ−1 R duΛ2ΦrðK − 1Þ
can be obtained by plugging (4.10) into (4.9) and expand-
ing in Λ. This gives

SE¼−
1

8πG

Z
duΦr

�
Schðτ;uÞþ τ02

2
−
τ07þ τ000τ002þ6τ000τ04

8τ03Λ2

þ
�
τ00ð−9τ002þ2τ04þ8τ000τ0Þ

8τ03Λ2

�0
þOðΛ−4Þ

�
: ð4:11Þ

So we can now check if the corrections to the Schwarzian
action computed in this way agree with the ones computed
by flowing the action via (2.12). The full nonperturbative
action with respect to this flow, for constant dilaton
Φr ¼ 8πGC, is given in (4.6). Since we only illustrate
the comparison at first order in λ we can simply consider
the single-field Lagrangian LðλÞ ¼ L0 þ 2λL2

0 þOðλ2Þ,
where we used the fact that the stress tensor of the
finite-temperature Schwarzian action is (minus) the
Schwarzian. Notice also that for constant dilaton the total
derivative term can be dropped, which leads to a much
simpler action.
Before comparing, we need to recall that our flow is

written for the on-shell action in the bulk. We have applied
the flow to the Schwarzian action, which is an off-shell
action in the sense that the bulk metric equations of motion
have not been imposed. We should therefore not expect that
the resulting action should agree with the corrections to the
Schwarzian obtained by the procedure above. Instead, we
should expect agreement on shell, i.e., upon imposing the
metric equations of motion. These equations are

ðgμν∇2 −∇μ∇νÞΦ − gμνΦ ¼ 0 ð4:12Þ

and are solved by

Φ ¼ αrþ
ffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1

p
ðβ sin τ þ γ cos τÞ: ð4:13Þ

The equation ofmotion of the Schwarzian theory is obtained
by varying the Schwarzian action with respect to τðuÞ. This
can be interpreted as an equation for Φr ¼ Φ=Λ, and it is
solved by (4.13) above, after rewriting it purely in terms of τ
through the expansion (4.10) at leading order. It can be
checked that this equivalence holds to higher orders inΛ; for
the case at hand it means that the equation of motion
following from (4.11) is solved, to order Λ2, by

Φr ¼
αþβ sinτþ γ cosτ

τ0

þατ04− τ002ðαþβ sinτþ γ cosτÞ
2Λ2τ03

þOðΛ−4Þ: ð4:14Þ

Now we see that imposing that the bulk metric equations of
motion go on shell can instead be done by imposing the
equation of motion of (4.11). The saddle τðuÞ ¼ u remains a
saddle of the corrected Schwarzian action, so we can
compare the actions on this saddle. We immediately see
that the only term that contributes in theOðΛ−2Þ part of the
action is the τ04=ð8Λ2Þ piece. Using λ ¼ 2πG=ðΦrΛ2Þ
shows that the action obtained by our flow agrees with
the action (4.11) when both are evaluated on shell.

C. Chaos in the deformed Schwarzian theory

In this section we investigate how a finite cutoff affects
the maximally chaotic behavior of JT gravity, by directly
calculating the Lyapunov exponent of the deformed boun-
dary action.

1. Propagator of quantum fluctuations

We begin by looking at the fluctuations around a saddle
and computing their two-point function. This is an impor-
tant piece of the calculation in Sec. IV C 2, where we
compute the gravitational corrections to an out-of-time-
order four-point function.
We want to find a saddle of the deformed Schwarzian

theory (4.6). The undeformed saddle τðuÞ ¼ u should
remain a saddle, since the deformed theory (thought in
terms of the single variable τ and not both τ and ϕ) has only
derivatives of τ appearing in the action. Setting τðuÞ ¼ u
and solving the remaining equation of motion gives

e−ϕðuÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λC

p
: ð4:15Þ

We expand the action (4.6) to quadratic order in the
fluctuations τ ¼ uþ εðuÞ, eϕ ¼ eηðuÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λC

p
with

εðuþ 2πÞ ¼ εðuÞ and ηðuþ 2πÞ ¼ ηðuÞ. Ignoring a con-
stant piece, we have

SEðλÞ ¼
1

8λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λC

p
Z

2π

0

duð−ε0ðuÞ2 þ 4λCη0ðuÞ2

− ð1þ 4λCÞηðuÞ2 þ 2ηðuÞε0ðuÞÞ: ð4:16Þ
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Expanding in Fourier modes

εðuÞ ¼
X
n∈Z

εneinu; ηðuÞ ¼
X
n∈Z

ηneinu; ð4:17Þ

the action becomes

SEðλÞ¼
1

2

X
n∈Z

ξinAijξ
j
−n;

A¼ π

2λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4λC

p
�
−n2 in

−in −1þ4λCðn2−1Þ

�
; ð4:18Þ

where ξn ¼ ðεnηnÞ. Just like the undeformed Schwarzian
action, the above kernel is not invertible for n ¼ 0;�1,
originating from the unbroken SLð2;RÞ gauge symmetry.
The relevant correlator that we extract is the one for the
fluctuation around the τ saddle, since τ couples to bulk
matter as we discuss below. Computing the generating
functional of ε and η correlators, which amounts to
inverting A, we find that the ε two-point function is

hεðuÞεð0Þi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4λC

p

2πC

X
n≠0;�1

1−4λCðn2−1Þ
n2ðn2−1Þ einu: ð4:19Þ

Note that this correlator goes to the undeformed one as
λ → 0. This sum can be done explicitly in terms of special
functions, but it is more transparent to perform it for 0 <
u < 2π by writing it as a contour integral,

hεðuÞεð0Þi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4λC

p

2πC

I
C

ds
e2πis − 1

ð1þ 4λCð1 − s2ÞÞ
s2ðs2 − 1Þ eisu:

ð4:20Þ

The contour initially circles all integer s ≠ 0;�1, but this is
deformed to contours circling s ¼ 0;�1 and one at infinity,
which can be dropped. The correlator evaluates to

hεðuÞεð0Þi¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4λC

p

2πC

�
1− ð1þ4λCÞ

�
π2

3
−πuþu2

2

�

þ
�
5

2
þ8λC

�
cosuþðu−πÞsinu

�
: ð4:21Þ

This does not exhibit 2π-periodicity because of the
assumption that allowed us to drop the contour at infinity;
the full answer obtained by doing the sum explicitly is
simply the above repeated over 2π intervals, which can be
represented in terms of special functions.

2. Out-of-time-order four-point function

We want to compute an out-of-time-order four-point
function of an operator dual to a bulk matter field. The
theory at finite cutoff is determined by flowing
the Schwarzian coupled to the matter sector. Like in the
previous section we consider a massless scalar in the bulk.
The flow of such a theory was considered in Sec. II B, and
we have

t̃rr ¼
1

2

�
π2χ
g0

− g0ij∂iχ∂jχ

�
: ð4:22Þ

For a bulk metric of the form ds2 ¼ NðrÞ2dr2 þ r2γττdτ2

and identifications πχðrc; τÞ ¼ ffiffiffi
γ

p
OχðτÞ, χðrc; τÞ ¼ JχðτÞ,

r−1c ¼ ffiffiffiffiffiffiffiffi
4λC

p
, and g0ττ ¼ r2cγττ, the flow equation becomes

∂SE
∂λ ¼

Z
dτ

ffiffiffi
γ

p T2 − 1
4

ffiffiffiffiffiffiffiffi
C=λ

p ðO2
χ − ð∂JχÞ2Þ

1
2
− 2λT

: ð4:23Þ

While this is the exact flow that needs to be considered to
match onto a finite Dirichlet cutoff in the bulk, we only
consider the corrections coming from the gravitational
sector. We expect these to be the important pieces for
the part of the OTOC that grows at late times. The deformed
boundary action we consider is given by

SEðλÞ ¼ Smatter on-shell þ
Z

duLEðλÞ; ð4:24Þ

with LEðλÞ given by (4.6). The on-shell matter action is
found by solving the bulk equations of motion for given
boundary conditions χr. It couples to gravity through the
boundary degree of freedom τðuÞ in the following way,

Smatter on-shell ¼ −D
Z

dudu0
�

τ0ðuÞτ0ðu0Þ
ðτðuÞ − τðu0ÞÞ2

�
Δ
χrðuÞχrðu0Þ;

D ¼ ðΔ − 1
2
ÞΓðΔÞffiffiffi

π
p

ΓðΔ − 1
2
Þ ; ð4:25Þ

where on the boundary χrðuÞ acts as a source for an
operator of scaling dimension Δ ¼ 1

2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p
Þ. We

take χ to be massless, giving Δ ¼ 1 and D ¼ 1=2π.
We turn to how the Lyapunov exponent is extracted

from the analytic continuation of the Euclidean four-point
function

F ¼ hVðu1ÞVðu2ÞWðu3ÞWðu4Þi − hVðu1ÞVðu2ÞihWðu3ÞWðu4Þi
hVðu1ÞVðu2ÞihWðu3ÞWðu4Þi

: ð4:26Þ
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In our case, this can be written as a two-point function of an
operator Bðu1; u2Þ,

F ¼ hBðu1; u2ÞBðu3; u4Þi: ð4:27Þ

Bðu1; u2Þ is found by expanding the on-shell matter action
(4.25) about the classical saddle (setting β ¼ 2π),

τðuÞ ¼ tan

�
uþ εðuÞ

2

�
; ð4:28Þ

to linear order in the fluctuation parameter εðuÞ, giving

Bðu1; u2Þ ¼ Δ
�
ε0ðu1Þ þ ε0ðu2Þ −

εðu1Þ − εðu2Þ
tan u12

2

�
: ð4:29Þ

It is clear that since the four-point function is a two-point
function of B, which in turn is linear in ε and its derivatives,
we need to calculate the propagator hεðuÞεð0Þi. This was
done in Sec. IV C 1 and the final answer is given in (4.21).
Plugging this into the equation for B given by (4.29) gives
us the four-point function. To extract the Lyapunov
exponent we Wick rotate to Lorentzian time u → iû and
look at the late-time behavior. After restoring β, in this limit
we find the OTOC to be

FVWVW ∼
β

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ λC

16π2

β2

s
exp

�
2π

β
û

�
: ð4:30Þ

Thus the Lyapunov exponent is unaffected, in agreement
with the bulk computation of subsection II E.2

D. Thermodynamics

Let us consider the finite-temperature partition function
of the deformed Schwarzian theory using the techniques
developed in Sec. III C. The undeformed partition function
is one-loop exact [30] and given by

ZðβÞ ¼ α

β3=2
exp

�
2π2C
β

�
; ð4:31Þ

where α is a dimensionful constant. The associated density
of states is given by

ρðEÞ ¼ αffiffiffiffiffiffiffiffiffiffiffi
2π3C

p sinh ð2π
ffiffiffiffiffiffiffiffiffi
2CE

p
Þ: ð4:32Þ

The deformed theory thus has a density of states given by
(3.20)

ρλðEÞ ¼
αffiffiffiffiffiffiffiffiffiffiffi
2π3C

p ð1 − 4λEÞ sinh ð2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CEð1 − 2λEÞ

p
Þ:

ð4:33Þ
It would be interesting to investigate a matrix model
description of such a density of states, especially for
λ > 0 which—if one were to truncate the spectrum where
it becomes complex—pulls the theory away from the
double-scaled limit studied in [31].
Using the integral transform (3.23), we can find the exact

deformed partition function for λ < 0,

ZλðβÞ ¼
αβe−

β
4λffiffiffiffiffiffiffiffiffiffiffi

−2πλ
p ðβ2 þ 16π2CλÞK2

�
−

1

4λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 16π2Cλ

q �
;

ð4:34Þ
where K2ðzÞ is the modified Bessel function of the second
kind. This partition function exhibits a Hagedorn diver-
gence at β ¼ 4π

ffiffiffiffiffiffiffiffiffi
−Cλ

p
, which is precisely the value at

which the linearized action in the previous subsection
diverged, but is otherwise well defined. In particular, it
can be analytically continued into the regime of λ > 0,
which is appropriate for JT gravity at finite cutoff. The
partition function is then complex.

V. TT̄ AS QUANTUM MEHCANICS
COUPLED TO GRAVITY

In this section we propose a nonperturbative definition of
quantum-mechanical theories deformed by our flow (2.12).
It proceeds analogously to the description of the TT̄ flow as
a coupling to JT gravity [13,32]. In our case, we propose
that the deformed quantum mechanics is equivalent to
coupling the initial (undeformed) theory to a theory of
one-dimensional gravity. We perform the path integral over
the additional fields introduced in the one-dimensional
gravitational theory, which is an einbein and a compact
scalar, after which we see that we recover (3.23). We work
in Euclidean signature throughout.
The coupling we propose is

ZλðβÞ ¼
Z

DeDXDΦ
VolðDiffÞ e

−S0½e;Φ�−S½e;X;λ�; ð5:1Þ

with S0½e;Φ� being the undeformed theory constructed
out of fields ΦðτÞ and placed on a one-dimensional metric
with einbein eðτÞ. The coordinate τ is compact: τ ∼ τ þ β0.
We have divided by the volume of the group of time
reparametrizations. The reparametrization-invariant action
S½e; X; λ� is

S½e; X; λ� ¼ −
1

8λ

Z
β0

0

edτðe−1 _X − 1Þ2

¼ −
1

8λ

Z
β0

0

dτðe−1 _X2 − 2 _X þ eÞ; ð5:2Þ
2Precisely this same answer is obtained if one considers

the theory LEðλÞ ¼ 1
4λ ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λCðSchðτ; uÞ þ τ02=2Þ

p
Þ but

ignores nonperturbative contributions.
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where _X ≡ ∂τX. The field X is compact with radius β and
thus satisfies Xðτ þ β0Þ ¼ XðτÞ þmβ with m being the
winding number around the target space circle.
We fix a gauge where e ¼ 1, keeping τ ∼ τ þ β0.

This fixes all reparametrizations except constant shifts
τ → τ þ c and time reversal τ → −τ. These residual sym-
metries are analogous to the conformal Killing group in the
string theory world sheet path integral. We divide out by
the volume of the group of these residual symmetries
explicitly in the end. The einbein gauge fixing can be done
using the Faddeev-Popov procedure. The path integral over
einbeins then reduces to an ordinary integral over β0. We
define the Faddeev-Popov measure as

1 ¼ ΔFPðeÞ
Z

∞

0

dβ0
Z

Dζδðe − 1ζÞ; ð5:3Þ

where ζ is our diffeomorphism and 1ζ a diffeomorphism of
the fiducial einbein e ¼ 1. A transformation that is simul-
taneously a small diffeomorphism and a small change in
this einbein (the latter interpreted as a change in the
modular parameter β0) gives δe ¼ _ζ þ δβ0=β0.3 Writing
the delta function as a Fourier integral by introducing a
field ω, expanding it for a small transformation around unit
einbein, and trading δβ0, ω and ζ for Grassmann fields a, b,
and c to invert the measure gives

ΔFPðe ¼ 1Þ ¼
Z

∞

0

dβ0
Z

DcDbDa

× exp

�
−4

Z
β0

0

dτðb_c − ab=β0Þ
�
: ð5:4Þ

The constant prefactor on the ghost action comes from a
particular normalization of the fields. Performing the path
integral over a and inserting (5.3) into (5.1) gives

ZλðβÞ¼
Z

∞

0

dβ0
Z

DcDbDΦDX

×

�
4

β0

Z
β0

0

dτb

�
e−S0½e¼1;Φ�−S½e¼1;X;λ�−4

R
β0
0
dτb_c; ð5:5Þ

We ended with one b ghost insertion, matching the number
of moduli of our manifold, which is the expected answer.
Before we evaluate the ghost piece, let us go back and first
compute the path integral over X. We expand the field X as

XðτÞ ¼ τ

�
mβ

β0

�
þ 1ffiffiffiffi

β0
p X

n∈Z
e2πinτ=β

0
qn; ð5:6Þ

with qn ¼ q�−n. The first term is a solution to the equation of
motion subject to the winding m boundary condition, and
the sum represents fluctuations around that saddle. Due to
the compactness of X we have q0 ∼ q0 þ β

ffiffiffiffi
β0

p
. The action

splits into a winding part and a fluctuation part. The
winding part can be evaluated straightforwardly,

Sm½e; X; λ� ¼ −
1

8β0λ
ðmβ − β0Þ2: ð5:7Þ

The fluctuating part is also not too complicated. Let us first
do the nonzero-mode piece. This gives

Z
Dqe−S½e¼1;q� ¼

�
det

�
1

8πλ
∂2
τ

��
−1=2

¼
Y
n>0

�
−2λβ02

πn2

�
;

ð5:8Þ

where we used the eigenvalues −ð2πnÞ2=β02 of the differ-
ential operator ∂2

τ. This product can be evaluated using zeta
function regularization and yields

Y
n>0

�
−2λβ02

πn2

�
¼ 1

β0
ffiffiffiffiffiffiffiffiffiffiffi
−8πλ

p : ð5:9Þ

The zero mode integral is

Z
β

ffiffiffi
β0

p

0

dq0 ¼ β
ffiffiffiffi
β0

p
: ð5:10Þ

We can now move onto the ghost contribution. We have to
exclude the c zero mode when performing the path integral.
This is because we do not gauge fix diffeomorphisms δτ ¼
k for some constant k (i.e., constant shifts). This means we
are excluding a zero mode for δτ, whose corresponding
Grassmann field arising from the Faddeev-Popov pro-
cedure is c, so we should exclude the zero mode for c
as well.4 To evaluate the functional determinant we can
expand the ghost fields in normalized, β0-periodic eigen-
functions of ∂2

τ , i.e., sines and cosines. b has a zero mode
b0=

ffiffiffiffi
β0

p
, and we see that the insertion 4β0−1

R β0
0 dτb ¼

4b0=
ffiffiffiffi
β0

p
picks it out. Thus the integral over the b zero

mode gives 4=
ffiffiffiffi
β0

p
. The integral over the nonzero modes of

b and c gives

3The second term in δe is obtained as follows. The metric is dt2
and by defining t ¼ β0x, we can make the β0 dependence explicit.
Deforming β0 to β0 þ δβ0 yields a deformed metric, which to first
order in δβ0 is ðβ02 þ 2β0δβ0Þdx2. Now, going back to the original
t coordinate, the change in the einbein due to a change in the
modular parameter of the circle is δe ¼ δβ0=β0.

4We could also choose to gauge fix shifts by inserting a term
like δðζð0ÞÞ, which fixes the origin of the circle. This is similar to
fixing the residual freedom via the insertion of a vertex operator,
although here we compute the vacuum amplitude with no
insertions. The Faddeev-Popov procedure for this delta function
would then produce an insertion of c in the path integral which
would soak up the c zero mode. Thus we see that the number of c
ghost insertions agrees with the number of Killing vectors.

GROSS, KRUTHOFF, ROLPH, and SHAGHOULIAN PHYS. REV. D 101, 026011 (2020)

026011-14



Z
DcDbe−4

R
β0
0

dτb_c ¼
Y∞
n¼1

8πn
β0

¼
ffiffiffiffi
β0

p
2

: ð5:11Þ

So altogether the ghosts contribute a factor of 2, which is
just a normalization chosen to cancel the 1=2 that comes
from dividing by time reversal. The lack of β0 dependence
in the final answer can also be seen by scaling it away in the
ghost action.
We are almost ready to assemble the pieces. The only

thing left to do is divide out by the reparametrizations we
did not fix. These were constant shifts in τ, which give a
volume factor of β0, and time reversal, which gives a factor
of 2. Putting everything together we get

ZλðβÞ¼
βffiffiffiffiffiffiffiffiffiffiffi
−8πλ

p
Z

∞

0

dβ0

β03=2
X
m∈Z

exp

�
1

8β0λ
ðmβ−β0Þ2

�
Zðβ0Þ;

ð5:12Þ

where

Zðβ0Þ ¼
Z

DΦe−S½e¼1;Φ�; ð5:13Þ

is the undeformed partition function that depends on β0
through the periodicity in τ. We see that the unit winding
sector of (5.12) gives the integral transform we found in
(3.23) and hence the full deformed theory.
An alternative route to a nonperturbative definition is to

consider the worldline in static gauge ∂τX ¼ 1, instead of
gauge fixing e. This is analogous to a proposal in two
dimensions to view the TT̄ deformation as a string world
sheet in static gauge [7,33]. The deformed action then
becomes

SE ¼ −
1

8λ

Z
β0

0

edτðe−1 − 1Þ2 þ
Z

β0

0

dτeL0ðe;ΦÞ: ð5:14Þ

In fact, this is similar to the deformed Schwarzian action
(4.6). To see this, write the action at temperature β0 as

SE ¼ −
1

8λ

Z
β0

0

du
τ0

eϕ

�
eϕ

τ0
− 1

�
2

þ
Z

β0

0

du
C
2

τ0

eϕ

��
eϕϕ0

τ0

�
2

− e2ϕ
�
: ð5:15Þ

Now notice that if we covariantize the λ ¼ 0 constraint
eϕ ¼ τ0 → eϕ ¼ e−1τ0 and plug into this action we get

SE¼−
1

8λ

Z
β0

0

dueðe−1−1Þ2

þ
Z

β0

0

due

�
C
2

�ð∂uðe−1∂uτÞÞ2
ð∂uτÞ2

− ðe−1∂uτÞ2Þ
�
; ð5:16Þ

where the term in square brackets is the covariantized
undeformed Schwarzian action. (To covariantize one sim-
ply replaces ∂u → e−1∂u and adds a factor of

ffiffiffi
g

p ¼ e.)
While we have already shown in this section that any initial
theory under our deformation can be understood as being
coupled to a dynamical worldline, the argument here
suggests that the deformed Schwarzian action can also
be viewed, like the lower derivative theories, as coupling
the Schwarzian action to a worldline in static gauge.

VI. DISCUSSION

The Wilsonian paradigm applied to quantum mechanics
implies a universal ultraviolet and a rich infrared, inverting
the usual picture for quantum field theory. Deforming
quantum-mechanical theories by operators built out of
the stress tensor provides a calculable way to modify the
ultraviolet and study the resulting physics. In holography,
the richness of the infrared of quantum mechanics implies a
huge landscape of asymptotically AdS2 geometries. We
have proposed deformations analogous to TT̄ in two
dimensions which should isolate these exotic interiors
and potentially provide a route to holography for more
general spacetimes.
Many properties of theories deformed by our proposed

flow (2.12) are exactly calculable, and we saw in Sec. III B
that the deformed actions are rather universally found to be
worldline actions. This suggests that our deformation
couples the theory to an einbein, an interpretation which
we made precise in Sec. V by coupling the original theory
to a theory of one-dimensional gravity.
For a particular sign of the deformation, the energy

spectrum becomes complex beyond some En. It is often
argued that one should truncate the spectrum beyond this
point to maintain unitarity. In higher dimensions, this comes
at the cost of spatial locality. In our case, there is no spatial
locality to begin with, so this is a much less violent
truncation. It defines a new quantum mechanics, where all
observables of the theory can be expressed in the eigenbasis
of the deformedHamiltonian,O ¼ P

n
i¼1 jEiihEij, whereEn

is the maximal energy. This is a principled yet somewhat
impractical definition of the theory.
We now speculate on a few possible extensions to the

work considered here.

A. Flowing from AdS2 → AdSd + 1

A thought that has surely crossed many minds is the
following: if one sign of TT̄ flow corresponds to flowing
into AdS, should the other sign not correspond to flowing
out? Usually we think of AdS as being a self-contained,
complete description—and it is—so this is a slightly
strange question to ask. But in string theory the examples
always arise from taking a near-horizon limit of branes in
some asymptotically flat spacetime, so it is natural to ask
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how to recover the spacetime that we threw away in the
near-horizon limit.
This idea was first seriously pursued in [34] (see also

[35–38]), where for a concrete realization of AdS3=CFT2, a
single-trace version of the TT̄ deformation with the sign
appropriate to flowing out was proposed and studied. The
brane construction is of intersecting fundamental strings
and NS-5 branes (compactified on T4) with near-horizon
AdS3 times a compact manifold. The deformation was
proposed to flow partially out, i.e., to move away from the
fundamental strings but to stay near the NS-5 branes. This
was proposed to deform the CFT2 into a two-dimensional
vacuum of little string theory, the six-dimensional world
volume theory of NS-5 branes.
Here we note that AdS2, which is the case studied in this

paper, is the universal near-horizon geometry of near-
extremal black holes. In particular, JT gravity gives a
universal description of the semiclassical physics of the
states near extremality. Can we TT̄ flow in quantum
mechanics to discover the spacetime in which our near-
extremal states are embedded? This can now be made
precise by considering near-extremal black hole states
in asymptotically AdSdþ1 spacetime. From the higher-
dimensional point of view, we can fix to a charge-Q sector
and perform the T2 flow of [11,39] to some critical radius
rc below which only near-extremal states fit. Of course, this
flow can be reversed to get back to the AdSdþ1 boundary.

5

But imagine dimensionally reducing the second half of the
flow. This is a flow that stands on its own, and can be
interpreted as a deformation of JT gravity, by an operator
similar to the ones studied in the previous sections.
To obtain the deforming operator, one can either dimen-

sionally reduce the d-dimensional operator as in Sec. II A,
or perform the analysis directly in the dimensionally
reduced theory, as in Sec. II B. To see how the latter
analysis would work in a class of examples, consider the
dimensional reduction of Einstein-Maxwell theory in dþ 1
dimensions (maintaining spherical symmetry) to d ¼ 2
dimensions,

S ¼ 1

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p ðΦ2Rþ λð∇ΦÞ2 − UðΦÞ

− fðΦÞF2Þ þ Sbdry: ð6:1Þ

The kinetic term for the dilaton can be eliminated by aWeyl
rescaling of the metric. By solving the equations of motion
of the Maxwell field, one gets a smaller set of equations that
is equivalent to the ones coming from the action above with
fðΦÞ ¼ 0 (see [40] for a nice discussion of this and other
issues relating JT gravity to near-extremal black holes in

higher dimensions). To extract the deforming operator at
leading order in N, we only need the classical equations, so
in the end we can consider

S ¼ 1

16πG

Z
d2x

ffiffiffiffiffiffi
−g

p ðΦ2R −UðΦÞÞ þ Sbdry: ð6:2Þ

Redefining Φ →
ffiffiffiffi
Φ

p
puts this theory in the class consid-

ered in Sec. II B.6 The deforming operator depends on the
potential UðΦÞ as in (2.32), and the potential depends on
the dimension d. Thus, by choosing a particular UðΦÞ, we
can flow out to an AdSdþ1 boundary for arbitrary d. All this
really accomplishes, however, is embedding the AdS2
region into AdSdþ1, unless the near-horizon theory is
somehow defined as including the complex energy states
resulting from the T2 flow in the AdSdþ1 theory.

B. SYK

It is natural to ask about the application of our defor-
mation, and more general ones constructed out of the stress
tensor, to the SYK model. One can imagine performing the
deformation either before or after averaging over disorder.
In some simple cases these deformations can change the
bilocal nature of SYK to trilocal, quadrilocal, and higher
n-local theories. In the spirit of the techniques exploited in
this paper, many quantities are still exactly calculable in the
deformed theory. It becomes an interesting question to map
out the space of integrable deformations to the SYK model,
their effects on the Schwarzian effective action, and their
nearly AdS2 bulk interpretation. This is work in progress.

C. Matrix models

The deformation considered in this paper is naturally
applied to one-dimensional theories.Recently, the authors of
[31] have proposed a random matrix model description
of quantities that are naturally computed from a two-dimen-
sional bulk point of view. For example, the Euclidean
wormhole with two boundaries of lengths β1 and β2 and
of cylinder topology is the leading (in L) contribution to the
matrix integral

R
DHe−LTrVðHÞZðβ1ÞZðβ2Þ, where the inte-

gral is over L × L matrices drawn from the distribution
VðHÞ. This is a theory in zero dimensions, and the
correspondence with the bulk is not ordinary AdS=CFT.
Phrasing the effects of a TT̄ deformation in terms of
such theories is an interesting avenue to explore. One way
is to travel from the two-dimensional bulk, to the one-
dimensional boundary theory, to the zero-dimensionalmatrix
model. This is spiritually the route followed in [31], where
the density of states of the one-dimensional Schwarzian

5This kind of two-part flow was first introduced in [12] to
study de Sitter spacetime, although there the second part of the
flow was modified by the addition of a term to reflect the de Sitter
physics.

6As usual, the boundary terms are up to the user and affect the
deformation. To maintain finite quantities on an asymptotic
AdSdþ1 boundary, the simplest choice is to dimensionally reduce
the usual counterterms.
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theory, which is equivalent to the two-dimensional bulk,
is used to read off a zero-dimensional matrix description.
As we have seen, the density of states of the Schwarzian
theory is modified by our deformation to (4.33). More
general fðHÞ deformations modify it in different ways,
and it would be fascinating to explore the types of matrix
models one can access with these deformations. Truncating
the spectrum for deformations with a poorly behaved ultra-
violet implies a density of stateswith both left and right edge,
which is different than the doubly scaled matrix models
studied in [31].

D. D0 branes

Thegravitational theories discussed so far in this paper are
motivated by top-down constructions, but it is not clear that
they should be dual to any ordinary, unitary theories of
quantum mechanics. For example, JT gravity has instead
been proposed to be dual to a randommatrix theory, which is
not a unitary quantum-mechanical theory.On the other hand,
the SYK model without disorder averaging is an ordinary
quantum-mechanical system, but it does not appear to
describe a bulk with a local Einstein-gravity-like limit.
This brings us to the world volume theory of a stack of

D0 branes. This is a one-dimensional matrix quantum
mechanics with maximal supersymmetry and action given
by the compactification of ten-dimensional N ¼ 1 super
Yang-Mills theory,

S ¼ 1

2g

Z
dtTrð _Xi _Xi þ ΨT _Ψþ ½Xi; Xj�2 −ΨTγi½Ψ; Xi�Þ;

i ¼ 1;…; 9: ð6:3Þ

The Xi are nine bosonicN × N Hermitian matrices andΨ is
a sixteen component SOð9Þ spinor, which is also an N × N
Hermitian matrix. The bulk theory is ten-dimensional type-
IIA string theory, which has a low-energy supergravity
description. The matrix quantum mechanics above is also
purported to describe M theory in eleven dimensions with
fixed lightlike momentum P− ¼ N=R, where R is the
radius of compactification. To decompactify, one takes
the double scaling limit N → ∞, R → ∞ with their ratio
fixed. So this is a top-down model of holography which has
all the features we would want: the field theory dual is one-
dimensional, and the bulk has a local Einstein-(super)
gravity-like limit with black holes, where questions about
quantum gravity can be sharply studied.
The bulk theory dual to the D0 brane quantum mechan-

ics is related to the dilaton-gravity models studied in this
paper, but the spacetime is not asymptotically AdS.
Nevertheless, the rules of holography are similar to
AdS=CFT. To extract the physics of a finite Dirichlet
cutoff one can study the flow of the bulk on-shell action and
process it into a flow equation for the boundary action.
In the BFSS description separation in space is repre-

sented as separation in the matrices, so excising space

should correspond to excising blocks of matrices. Or one
can more generally consider the fðHÞ deformations dis-
cussed in the introduction. These deformations—especially
in the way they affect the ten- or eleven-dimensional
gravitational theory—are an interesting arena of
exploration.
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APPENDIX A: T2 DEFORMATIONS

The simplest deformations of quantum mechanics, i.e.,
(0þ 1)-dimensional QFT, are by powers of the stress
tensor. The only possible quadratic contraction of the stress
tensor is T2. Solving for the deformed energy spectrum for
a T2 flow is trivial,

∂S
∂λ ¼

Z
dτT2 ⇒

∂E
∂λ ¼ E2 ⇒ EðλÞ ¼ 1

E−1
0 − λ

; ðA1Þ

where E0 represents the original undeformed energy and
we used the fact that hTi ¼ E. It is interesting to determine
the deformed Lagrangian. For a free-particle Euclidean
Lagrangian LE ¼ _q2, this can be done in two different
ways. The first way is to write down a differential
equation for the deformed Lagrangian LEðλ; q; _qÞ, using
T ¼ LE − ∂LE∂ _q _q,

∂LE

∂λ ¼
�
−
∂LE

∂ _q _qþ LE

�
2

: ðA2Þ

Expanding the Lagrangian as

LEðλ; q; _qÞ ¼
X
i¼0

λiLðiÞ
E ðA3Þ

reduces the flow equation to
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Lðmþ1Þ
E ¼ 1

mþ 1

Xm
i¼0

ðpðm−iÞpðiÞ _q2

− 2pðm−iÞ _qLðiÞ
E þ Lðm−iÞ

E LðiÞ
E Þ ðA4Þ

for pðiÞ ¼ ∂LðiÞ
E =∂ _q. For an initial free-particle Lagrangian

Lð0Þ
E ¼ _q2 one finds

LðnÞ
E ¼ 2

ð4nþ 1Þ!
ðnþ 1Þ!ð3nþ 2Þ! _q

2nþ2; ðA5Þ

which when inserted into (A3) gives

LEðλ; _qÞ ¼
3

4λ

�
−1þ3F2

�
−
1

2
;−

1

4
;
1

4
;
1

3
;
2

3
;
256λ _q2

27

��
:

ðA6Þ
As a functional of the original undeformed Lagrangian, this
expression is precisely the same as TT̄-deformed two-
dimensional Yang-Mills theory [41]. The connection exists
due to the latter theory being quasitopological; in particular
the only nonvanishing component of Fμν is F01, so the
deformation by TT̄ is the same as deforming by T2.
What about the more general case of interacting theo-

ries? As shown above, the deformed energy spectrum is
trivially calculable. In this sense the model is solved. But
what if we wanted the deformed Lagrangian, something we
could stick into a path integral? The differential equation
above is difficult to solve directly. But we can transform the
deformed Hamiltonian into a deformed (Lorentzian)
Lagrangian, via

Lðλ; q; _qÞ ¼ pðλ; q; _qÞ _q −Hðλ; pðq; _qÞ; qÞ: ðA7Þ

This requires knowing the deformed Hamiltonian in terms
of the canonical momenta. Since the eigenfunctions are
unchanged under these flows, we have

Hðλ; p; qÞ ¼ 1

H0ðp; qÞ−1 − λ
: ðA8Þ

We need to solve dHðλ; p; qÞ=dp ¼ _q for pðλ; q; _qÞ and
plug into (A7). This is soluble and gives an explicit
Lagrangian, but its form is not illuminating. [For vanishing
potential it reduces to (A6) above.] This gives the second
way of obtaining the deformed Lagrangian.
For (0þ 1)-dimensional fermions, finding the new

Lagrangian is much simpler. This follows from the fact

that the kinetic term is topological and therefore does not
contribute to the stress tensor. Suppose we start with the
Euclidean Lagrangian of a complex fermion with standard
kinetic term LE ¼ ψ̄ _ψ þVðψ ; ψ̄Þ. This has a Hamiltonian
H0 ¼ Vðψ ; ψ̄Þ. We deform this theory by a T2 flow and
Legendre transform (A8) to find the Lagrangian

LE ¼ ψ̄ _ψ þ 1

V−1 − λ
: ðA9Þ

APPENDIX B: DEFORMATION BY
CONSERVED CHARGES IN d = 2

This appendix is about two-dimensional theories. It is
known that deforming the conformal field theory of N free
bosons by TT̄ leads to a Nambu-Goto action in N þ 2
target space dimensions [6]. Adding interactions seems to
ruin the Nambu-Goto form of the UV action [24]. We can
instead consider deforming interacting bosons as discussed
in Sec. II A, where we use the trace relation Tμ

μ ∝ λTT̄ to
substitute out for Tϕϕ. While this is the same deformation as
TT̄ for conformal theories, they differ for nonconformal
theories. We also pass from the local stress tensor to its
nonlocal integrals. The reason for this is so that we can
eventually factorize the deforming operator in momentum-
energy eigenstates. Using the shorthand E ¼ R

Tτ
τ and

J ¼ −i
R
Tτϕ ¼ −i

R
Tτϕ, the proposed flow is

∂SE
∂λ ¼

Z
d2x

�
E2 − J2

1=2 − 2λE

�
: ðB1Þ

We can consider this flow for self-interacting bosons,
where we solve for the deformed Lagrangian by trans-
forming the Hamiltonian,

SE ¼
Z

d2x
ffiffiffi
g

p �
1

2
∂μϕ

i∂μϕi þ VðϕiÞ
�

ðB2Þ

⇒ Tμν ¼ −
2ffiffiffi
g

p δSE
δgμν

¼ −∂μϕ
i∂νϕ

i

þ 1

2
δμν∂αϕ

i∂αϕi þ δμνVðϕiÞ: ðB3Þ

The interactions can break the SOðNÞ symmetry of the
scalars. Setting the length of the spatial circle L ¼ 1, we
have for the free scalar theory J ¼ −iT01 ¼ i _ϕi∂xϕ

i ¼
πi∂xϕ

i and H ¼ T00 ¼ 1
2
ððπiÞ2 þ ð∂xϕ

iÞ2Þ þ VðϕiÞ,

HðλÞ ¼ 1

4λ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 8λ

�
1

2
π2i þ

1

2
ð∂xϕiÞ2 þ VðϕiÞ

�
þ 16λ2ðπi∂xϕiÞ2

s �
ðB4Þ
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⇒ LEðλÞ ¼
1

4λ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λð∂xϕiÞ2 − 8λVðϕiÞ

1 − 4λð∂xϕiÞ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδμν − 4λ∂μϕi∂νϕiÞ

q �
: ðB5Þ

This can be written as a Nambu-Goto-like action (plus a constant) but with nontrivial metric

LEðλÞ ¼
1

4λ
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð∂iXμ∂jXμ

q
ÞÞ; gμν ¼ δμν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4λð∂xϕiÞ2 − 8λVðϕiÞ

1 − 4λð∂xϕiÞ2

s
: ðB6Þ

To recover (B5) we fix to static gauge X0 ¼ τ, Xi ¼ ϕi, XNþ1 ¼ x. Notice that for vanishing potential the metric becomes
trivial. This type of deformation mimics the quantum-mechanical deformations considered in Sec. III B, where we always
obtained a worldline action in the ultraviolet with a target space metric set by the potential. The connection with Nambu-
Goto is formal because of the gradient terms in the metric.
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