
 

Holographic entropy cone in AdS-Vaidya spacetimes

Reginald J. Caginalp 1,2,*

1Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94720, USA
2Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 26 October 2019; published 8 January 2020)

We examine the five-region holographic entropy cone inequalities for the special case of the
AdS3-Vaidya metric for a variety of boundary configurations. This is done by numerically solving the
geodesic equation in the bulk for various boundary configurations. In all the cases we examine, we find that
all the inequalities are satisfied when the bulk satisfies the null energy condition, while the inequalities are
all violated when the bulk spacetime violates the null energy condition. A proof of the five-region
holographic entropy cone inequalities for the dynamical bulk case remains an open problem—our results
provide evidence that these inequalities hold for dynamical bulk spacetimes.
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I. INTRODUCTION

Recent work has unveiled deep connections between
gravity and entanglement. The AdS=CFT correspondence
[1–3] states that any theory of quantum gravity in (dþ 1)-
dimensional anti–de Sitter space (AdSdþ1) is equivalent to a
conformal field theory (CFT) in d dimensions. The Ryu-
Takayanagi (RT) [4] formula and its covariant generaliza-
tion, the Hubeny-Rangamani-Takayanagi (HRT) formula
[5], posit that the entanglement entropies of holographic
CFTs are given in terms of minimal or extremal areas. These
have been derived from the basicAdS=CFTdictionary [6,7].
In general, entanglement entropies of quantum field theories
are difficult to compute. It is of great interest to try to
determine which types of states are dual to semiclassical
AdS bulks. The fact that holographic entanglement entro-
pies are given byminimal areas should therefore enable us to
constrain the entanglement structure of holographic states.
It is simple to show that if we have three spatial CFT

regions, A, B, C, then the RT formula implies strong
subadditivity [8,9]:

SðABCÞ þ SðBÞ ≤ SðABÞ þ SðBCÞ:
The above inequality is, of course, true for all quantum
states [10,11], though the general proof is technically
complicated. In addition, holographic entropies obeying
the RT formula obey the constraint of monogamy of mutual
information [9,12]:

IðA∶BCÞ ≥ IðA∶BÞ þ IðA∶CÞ:

Unlike strong subadditivity, this constraint is not obeyed
by all quantum systems. In addition, recent work [13] has
shown that holographic entanglement entropies for n
regions obey a set of inequalities known as the holographic
entropy cone, assuming the RT formula holds. Recently,
the exact holographic entropy cone for five regions has
been obtained [14]. However, it is not known in general if
these inequalities are valid for the covariant HRT formula.
Using the maximin formalism of Wall [15], it is possible

to show that (assuming the null-energy condition holds in
the bulk), strong subadditivity and monogamy of mutual
information hold for the HRT formula. However, the
validity of the inequalities for the entropy cone for the
HRT formula for five or more regions remains unknown.
Indeed, [16] showed that the set of five-region inequalities
provable with the maximin formalism is less strong than the
entropy cone inequalities.
Understanding the validity of the entropy cone inequal-

ities in the dynamical, HRT case is thus an important step
toward understanding the structure of holographic states. In
this paper, we will numerically calculate the entanglement
entropies for an AdS3-Vaidya spacetime, and examine the
validity of the five-region entropy cone inequalities, using
the HRT formula. This is a very simple setting to test these
inequalities, since the HRT surfaces will be geodesics (not
higher-dimensional surfaces), and the AdS3-Vaidya solu-
tion is a very simple dynamical spacetime.
We find that the inequalities are all valid, in the cases we

examined, as long as the bulk obeys the null energy
condition. If the bulk violates the null energy condition,
then all the inequalities are violated. This is analogous to
the situation for strong subadditivity, which requires the
null energy condition to hold in the bulk. We believe that
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this provides strong evidence for the validity of the five-
region inequalities when the bulk is dynamical. Moreover,
the shape of the curves resemble those of the strong
subadditivity curves. This may hint that there is a refor-
mulation of the HRT prescription for which both strong
subadditivity and the five-region inequalities are valid.
Indeed, this has already been done in certain limits for
the positive-energy spacetime we considered here [17].
Understanding the validity of these inequalities in general,

as well as further study of the entanglement of holographic
states, will be very important in furthering our understanding
of quantum gravity.
Our results build on previous work on the validity of

the five-region inequalities for dynamical bulks. [18,19]
numerically verified the inequalities for a holographic
model of two 1þ 1 dimensional heat baths joined at
t ¼ 0. It has also been shown that they are valid for large,
late-time CFT regions in collapsing black hole spacetimes
[17]. Shortly after the posting of our paper, a related paper
[20] appeared, with very interesting results. They showed
that the five-region inequalities are valid for the HRT
formula in the context of AdS3=CFT2. Our work provides
strong evidence for the validity of the conclusions of [20] by
providing explicit numerical calculations. We also provide a
detailed analysis of HRT surfaces in AdS3-Vaidya space-
times that should be useful in other contexts. The results
presented here are closely analogous to [21–23], which
numerically studied the validity of strong subadditivity and
monogamy of mutual information for AdS3-Vaidya space-
times. Similar computations have been done in the context of
the quantum null energy condition [24].

II. SETUP

Consider a holographic CFT with a Cauchy slice Σ of a
static bulk, at a moment of time reflection symmetry. Let A
be a boundary subregion. The Ryu-Takayanagi formula
posits that

SðAÞ ¼ minmArea
4GN

;

where m is a codimension-2 surface in the bulk
(with ∂m ¼ ∂A) homologous to A. That is, there is a bulk
region χ such that ∂χ ¼ A ∪ m. The Hubeny-Rangamani-
Takayanagi formula is the covariant generalization of this
equation. If A is some spacelike CFT subregion, then the
HRT formula says that

SðAÞ ¼ minextremal mArea
4GN

;

where extremal m means that m is a co-dimension
2 spacelike surface that extremizes the area and has
∂m ¼ ∂A and is homologous to A.
We will consider the planar AdS3-Vaidya spacetime,

with metric

FIG. 1. The quantities T (left) and M (right) plotted vs tb. We see that T > 0 and M > 0 so strong subadditivity and monogamy of
mutual information are always satisfied. The jumps at late times are due to numerical errors.

FIG. 2. The quantity S0 plotted vs tb. We see that S0 > 0 so the
corresponding inequality is always satisfied. The jump at late
times is due to numerical errors.
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ds2 ¼ −ðr2 −mðvÞÞdv2 þ 2drdvþ r2dx2:

The null-energy condition (i.e., Tμνkμkν ≥ 0 for all lightlike
k) is satisfied if and only if dm=dv is positive.
We can rewrite this metric in more standard coordinates,

t and r, with

v ¼ tþ gðrÞ; g0ðrÞ ¼ 1

f

⇒ dv ¼ dtþ g0ðrÞdr ¼ dtþ dr
f
;

which means

ds2 ¼ −f
�
dt2 þ dr2

f2
þ 2

dtdr
f

�
þ 2drdtþ 2

dr2

f
þ r2dx2

¼ −fdt2 þ dr2

f
þ r2dx2: ð1Þ

We will consider a thin-shell limit,

mðvÞ ¼ �mΘðvÞ;

which represents a shell of infalling null matter. The plus
sign satisfies the null energy condition and corresponds to
positive energy matter—inside the shell, the metric is pure
AdS3, outside the shell, the metric corresponds to a black
hole, i.e., the Bañados-Teitelboim-Zanelli (BTZ) metric.
The minus sign violates the null energy condition; this
choice represents a shell of negative-energy null matter so
that outside the matter, the metric is pure AdS, while inside
it is BTZ. We will consider both cases, starting with the
positive-energy metric. For simplicity, we will set m ¼ 1.
For AdS, we have f ¼ r2 so that

g0 ¼ −
1

r
⇒ v ¼ t −

1

r
:

Meanwhile for BTZ, we have g ¼ r2 − 1, which gives

g0 ¼ −
1

r2 − 1
⇒ g ¼ − tanh−1

1

r
⇒ v ¼ t − tanh−1

1

r
:

Our discussion of geodesic kinematics largely follows
that of [21].

FIG. 3. The quantities Si (i ¼ 1, 2, 3, 4) plotted vs tb. We see that Si > 0 for all i so the corresponding inequalities given in the main
text are always satisfied. The jumps at late times are due to numerical errors.
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III. POSITIVE ENERGY VAIDYA METRIC

We wish to obtain entanglement entropies in the CFT
dual to the Vaidya metric. The HRT prescription tells us
that we need to calculate the areas of the extremal
codimension 2 surfaces that are anchored at the boundary
of the CFT subregion. In our case, this corresponds to
spacelike geodesics. We discuss the geodesic kinematics in
the Appendix A.

A. Constant-time intervals

We begin by testing strong subadditivity. We consider
adjacent three regions A, B, C, all at constant time tb. We
choose lA ¼ 2, lB ¼ 4, lC ¼ 2. We then consider the
quantity

TðA;B; CÞ≡ 4GN ½SðABÞ þ SðBCÞ − SðABCÞ − SðBÞ�

as a function of the boundary time tb. Strong subadditivity
will be satisfied if and only if T ≥ 0. SðABÞ is given by the
length of a geodesic with lx ¼ 6 over 4GN. SðBCÞ is
identical. ABC is an interval of length 8, while B is an
interval of length 4. Using this information, we can plot T
as a function of tb. This is done in Fig. 1. We see that T > 0,
so strong subadditivity is always satisfied.
We do the same calculation for monogamy of mutual

information. Define

M≡ 4GN ½IðA∶BCÞ − IðA∶BÞ − IðA∶CÞ�
¼ 4GN ½SðAÞ þ SðBCÞ − SðABCÞ − SðAÞ − SðBÞ
þ SðABÞ − SðAÞ − SðCÞ þ SðACÞ�

¼ 4GN ½−SðAÞ þ SðBCÞ − SðABCÞ − SðBÞ
þ SðABÞ − SðCÞ þ SðACÞ�: ð2Þ

We plot this quantity as a function of tb in Fig. 1. Again,
sinceM > 0, we see that monogamy of mutual information
is always satisfied.
Next, we consider five regions. There are several

inequalities that are valid for the RT formula for five
regions. These bound the holographic entropy cone. For
example, we have that

FIG. 4. The covariant “trapezoid” and “zigzag” configurations.
In both cases, each of the components (A, B, and C) haveΔx ¼ 1.

FIG. 6. The three configurations we consider. Each of the components has its Δx fixed to be 1.

FIG. 5. Strong subadditivity is verified for the trapezoid and zigzag configurations.
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FIG. 7. The inequalities plotted vs tb for the zigzag region for a variety of values ofΔt=Δx. We see that the inequalities are all satisfied.
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FIG. 8. The inequalities plotted vs tb for the Region 2 (with 2 flat components) for a variety of values of Δt=Δx. We see that the
inequalities are all satisfied.
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FIG. 9. The inequalities plotted vs tb for the Region 3 (with 1 flat component) for a variety of values of Δt=Δx. We see that the
inequalities are all satisfied.
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SðAjBCÞ þ SðBjCDÞ þ SðCjDEÞ þ SðDjEAÞ þ SðEjABÞ
≥ SðABCDEÞ ð3Þ

(see [13]). Here SðXjYÞ≡ SðXYÞ − SðYÞ is the conditional
entropy. To test this in the nonstatic case, consider 5 regions
A, B,C,D, E, all of which are constant time intervals on the
boundary. Take lA ¼ lC ¼ lE ¼ 2, lB ¼ lD ¼ 4. Then
define the quantity

S0 ≡ 4GN ½SðAjBCÞ þ SðBjCDÞ þ SðCjDEÞ þ SðDjEAÞ
þ SðEjABÞ − SðABCDEÞ�: ð4Þ

We plot this as a function of tb. See Fig. 2. We see that
S0 > 0 so this inequality is always satisfied in this non-
static case.
There are several more inequalities for the holographic

five-region case [13]. For example,

2SðABCÞ þ SðABDÞ þ SðABEÞ þ SðACDÞ þ SðADEÞ þ SðBCEÞ þ SðBDEÞ
≥ SðABÞ þ SðABCDÞ þ SðABCEÞ þ SðABDEÞ þ SðACÞ þ SðADÞ þ SðBCÞ þ SðBEÞ þ SðDEÞ; ð5Þ

SðABEÞ þ SðABCÞ þ SðABDÞ þ SðACDÞ þ SðACEÞ þ SðADEÞ þ SðBCEÞ þ SðBDEÞ þ SðCDEÞ
≥ SðABÞ þ SðABCEÞ þ SðABDEÞ þ SðACÞ þ SðACDEÞ þ SðADÞ þ SðBCDÞ þ SðBEÞ þ SðCEÞ þ SðDEÞ; ð6Þ

SðABCÞ þ SðABDÞ þ SðABEÞ þ SðACDÞ þ SðACEÞ þ SðBCÞ þ SðDEÞ
≥ SðABÞ þ SðABCDÞ þ SðABCEÞ þ SðACÞ þ SðADEÞ þ SðBÞ þ SðCÞ þ SðDÞ þ SðEÞ; ð7Þ

3SðABCÞ þ 3SðABDÞ þ 3SðACEÞ þ SðABEÞ þ SðACDÞ þ SðADEÞ þ SðBCDÞ þ SðBCEÞ
þ SðBDEÞ þ SðCDEÞ ≥ 2SðABÞ þ 2SðABCDÞ þ 2SðABCEÞ þ 2SðACÞ þ 2SðBDÞ þ 2SðCEÞ
þ SðABDEÞ þ SðACDEÞ þ SðADÞ þ SðAEÞ þ SðBCÞ þ SðDEÞ: ð8Þ

For each of these inequalities, we define the quantities Si
to be 4GN times the left-hand side minus 4GN times the
right-hand side for i ¼ 1, 2, 3, 4. Inequality i will be
satisfied if and only if Si is positive. We plot each of these
quantities as functions of tb. See Fig. 3. We see that for each
i, Si is positive so that the five-region inequalities are all
satisfied in this case, even though the spacetime is not
static.

B. Spacelike intervals with nonzero Δt
We now consider the case where the interval is not

constant-time. Again, the details of the kinematics are
discussed in Appendix A.
To find the geodesic length for a given set of parameters,

we proceed as follows. If tb < 0, we solve for the AdS
geodesic. We then calculate vðτÞ ¼ tðτÞ − 1

rðτÞ. If v never

crosses 0, the geodesic is entirely in the AdS bulk. If it

crosses 0, then the geodesic has a portion in the BTZ
spacetime. We then numerically find the values of rc, px,
EA that correspond to the given values of Δx, Δt, tb. We
then substitute these results back into our formula for
geodesic length. Similarly, if tb ≥ 0, we calculate the pure
BTZ solution, and see if vðτÞ ¼ tðτÞ − tanh−1ð 1

rðτÞÞ is ever
negative, there is a component in the AdS bulk. We
numerically find the values of r1, EA, px that correspond
to the values ofΔx,Δt, tb and use these to find the geodesic
length.
Finally, we are ready to test the entropy inequalities for

regions that are not purely spacelike. We begin by testing
strong subadditivity. We test two cases, the “trapezoidal”
case, and the “zigzag” case; both of these are shown in
Fig. 4. We plot the quantity

SðABÞ þ SðBCÞ − SðBÞ − SðABCÞ

FIG. 10. Strong subadditivity versus boundary time tb for the
negative-energy Vaidya spacetime. We see that strong subaddi-
tivity is violated. Here, we consider strong subadditivity for
regions A, B, and C, as well as for AB, C, and D.
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(times 4GN) for these regions as a function of the boundary
start time of the region A, for a variety of values of Δt=Δx,
fixingΔx ¼ 1. We show the results in Figs. 5. These curves
show that strong subadditivity is obeyed for these regions.

We now test the five-region inequalities. We use the same
labeling scheme for the inequalities as used above, in the
constant-time case. We consider the three configurations
shown in Fig. 6. We consider a variety of values of Δt=Δx,

FIG. 11. The inequalities plotted vs tb. We see that the inequalities are all violated for this spacetime that violates the null energy
condition.
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again fixing the value ofΔx for each component to be 1. We
plot these curves as functions of the boundary start time tb.
We do this for the zigzag configuration in Fig. 7, the
configuration with 2 flat components in Fig. 8, and the
configuration with 1 flat component in Fig. 9 We see that
the inequalities are all satisfied, and that the shapes of the
curves strongly resemble those of the strong subadditivity.

IV. NEGATIVE ENERGY VAIDYA METRIC

We now consider the negative-energy Vaidya metric. As
discussed above, this violates the null energy condition. We
will see that strong subadditivity is violated, as well as the
five-body inequalities. The geodesic kinematics are dis-
cussed in IV.
We consider five adjacent constant-time intervals,

A;B;C;D; E. A;C, and E have width 2, while B and D
have width 4. To start with, we plot strong subadditivity for
a couple collections of regions in Fig. 10. We see that
strong subadditivity is violated, which is expected since our
metric violates the null energy condition.
Next, we check the five-region inequalities. We use the

same numbering scheme as before (with labels 0 through 4),
and we plot 4GN times the left hand side minus 4GN times
the right-hand side of each of the inequalities. We show the
results in Fig. 11. We see that all of the inequalities are
violated for this spacetime, roughly in the places where
strong subadditivity is violated. Furthermore, we once again
see that the curves for the five-region inequalities resemble
the strong subadditivity curves.
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APPENDIX A: CONSTANT TIME INTERVALS
FOR POSITIVE-ENERGY METRIC

In this Appendix, we describe some of the details of the
geodesic kinematics for the Vaidya spacetime. The geo-
desic equation for v is given by

v̈þ 1

2
∂rf _v2 − r_x2 ¼ 0;

where an overdot denotes a derivative with respect to the
affine parameter τ. In addition, the tangent vector dxμ=dτ
has unit norm, so that

−fðr; vÞ _v2 þ 2_v _rþr2 _x2 ¼ 1:

Because the metric has no explicit x-dependence, the
quantity px ≡ gxx _x ¼ r2 _x is conserved along the geodesic.

When we express the metric in terms of t and r (instead of v
and r), we found that the metric takes the form

ds2 ¼ −hðrÞdt2 þ 1

hðrÞ dr
2 þ r2dx2;

where hðrÞ ¼ r2 in AdS, and hðrÞ ¼ r2 −m in BTZ. For
simplicity, we will set m ¼ 1 throughout. Other than at the
shell, there is no explicit dependence in the metric on t, so
there is a quantity that is conserved except at the shell. It is
given by

E≡ gtt_t ¼ hðrÞ_t:

In these coordinates, the normalization condition for the
vector dxμ=dτ becomes

− hðrÞ_t2 þ _r2

hðrÞ þ r2 _x2 ¼ 1

_r2 ¼ hþ E2 −
hp2

x

r2

Alternatively, we can write this in terms of r0, where the
prime denotes a derivative with respect to x. Then we obtain

r02 ¼ r4h
p2
x
þ r4E2

p2
x

− hr2:

We will first solve these equations for constant time
intervals, and then solve them for general covariant regions.
We begin by considering a region A on the boundary that

is constant in time, and is a single interval in x. That is,

A ¼ fðx; tÞ ∈ CFTjx ∈ ½0;lx�; t ¼ const ¼ tbg:

To calculate the entanglement entropy SðAÞ of this region
in the CFT, the HRT prescription tells us that we need to
find the extremal boundary-anchored curve (i.e., spacelike
geodesic) χA such that ∂χA ¼ ∂A and χA is homologous
to A.
There are three cases (i) the geodesic is entirely in the

AdS bulk, (ii) the geodesic is entirely in the BTZ bulk, or
(iii) the geodesic is in both the BTZ bulk and the AdS bulk.
See Fig. 12. We consider each of these cases in turn.

a. Geodesics entirely in the AdS bulk

We are considering a constant time geodesic in the AdS
bulk, so E ¼ 0. Therefore, we have

dr
dτ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − p2

x

q
;

which has solution
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rðτÞ ¼ 1

2
ðp2

xe−τ þ eτÞ:

Now, x obeys the equation

_x ¼ px

r2
;

which has solution

xðτÞ ¼ Const −
2px

p2
x þ e2τ

:

This means that

lx ¼ xðτ ¼ ∞Þ − xðτ ¼ −∞Þ ¼ 2

px
:

We have normalized our affine parameter so that τ
measures the length of the curve. For τ approaching
�∞, r approaches ∞. For large R, there are two roots
of τ., one large and positive, the other large and negative.
They are

τb− ¼ − logð2RÞ þ 2 logðpxÞ
τbþ ¼ logð2RÞ;

so the total length of the curve is

L ¼ τbþ − τb− ¼ 2 logð2RÞ − 2 logðpxÞ:

To get to the boundary, of course, we need to send R → ∞,
and the length diverges. Thus, to obtain a regularized, finite
length, we need to subtract the UV-divergent term. Thus,
we obtain:

Lreg ¼ 2 log
lx

2
:

This is a concave function, so it satisfies strong
subadditivity.

b. Geodesics entirely in the BTZ bulk

In this case we have

_r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 1þ E2 − p2

x þ
p2
x

r2

r
:

There are two solutions to this equation:

r1ðτÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2E2 þ 2p2

x þ 2þ e2τ − E4e−2τ þ 2E2ðp2
x þ 1Þe−2τ − ðp2 − 1Þ2e−2τ

q
; ðA1Þ

r2ðτÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−E2 þ 2E2p2

x þ 2E2 − p4
x þ 2p2

x − 1Þe2τ − e−2τ − 2E2 þ 2p2
x þ 2

q
: ðA2Þ

With a few lines of algebra, we can cast these in the
following form:

r1ðτÞ2 ¼
1

4
ðeτ þ Bþe−τÞðeτ þ B−e−τÞ;

r2ðτÞ2 ¼ −
1

4
ðBþeτ − e−τÞðB−eτ − e−τÞ;

where we have defined the quantities

B� ¼ ðpx � 1Þ2 − E2:

We are, of course, looking for geodesics that are boundary
anchored. As τ goes to minus infinity, r22 goes to −1=4.
Thus, the solution r2 can never describe the geodesics we

FIG. 12. A Penrose diagram of the Vaidya spacetime (the red
line represents the shell of null matter), showing the three cases
for the spacelike geodesics. (i) Entirely in the AdS bulk,
(ii) entirely in the BTZ bulk, and (iii) partially in the BTZ bulk,
and partially in the AdS bulk.

HOLOGRAPHIC ENTROPY CONE IN ADS-VAIDYA SPACETIMES PHYS. REV. D 101, 026010 (2020)

026010-11



are interested in. Therefore, we restrict our attention to the
solution r1. We first obtain expressions for x and t. We find

tðτÞ ¼ constþ 1

2
log

�
A− þ e2τ

Aþ þ e2τ

�
;

xðτÞ ¼ const −
1

2
log

�
B− þ e2τ

Bþ þ e2τ

�
;

where we have defined

A� ¼ p2
x − ð1� EÞ2:

An analysis exactly the same as above gives us that the
regularized length is [subtracting off the UV-divergent term
2 logð2RÞ]

Lreg ¼ −
1

2
logðBþB−Þ:

Meanwhile,

Δt ¼ 1

2
logðA−=AþÞ; lx ¼ −

1

2
logðB−=BþÞ:

In particular, if we have a constant-time interval, then
E ¼ 0 and

Lreg ¼ −
1

2
logðp2

x − 1Þ2; lx ¼
1

2
log

�
px þ 1

px − 1

�
:

Finally, we turn to geodesics that are partially in AdS and
partially in BTZ.

APPENDIX B: GEODESICS IN BOTH
ADS AND BTZ

Because the shell is located at v ¼ 0, if the interval is at
boundary time tb < 0, it will be in pure AdS. If tb > 0, then
we calculate vðτÞ ¼ tðτÞ − tanh−1ð1=rðτÞÞ for the pure
BTZ geodesic, and see if it dips below 0. If it does, then
it will have a component that is in the AdS bulk. If not, it
will be contained entirely in the BTZ bulk.
We begin by considering what happens at the junction of

AdS and BTZ. Because we do not want a delta function in
v00, then v0 needs to be continuous. This means:

v0 ¼ 2ðr0A − r0BÞ:

In AdS space, we have that

v0 ¼ t0 þ r0A
r2c

¼ EA

px
þ r0A

r2c
;

where rc is the value of r when the geodesic crosses
the shell, and EA is the value of E in the AdS region.
We combine these two to get

r0B ¼ −
EA

2px
þ
�
1 −

1

2r2c

�
r0A:

From the BTZ side we know that

v0 ¼ t0 þ r0B
r2c − 1

¼ r2c
r2c − 1

EB

px
þ r0B

r2c
¼ r2c

r2c − 1

EB

px
þ r0B
r2c − 1

:

This gives us:

ðr2c−1ÞEA

px
þ r0A−

r0A
r2c

¼ r2c
EB

px
þ r0B�

r2c−
1

2

�
EA

px
−

r0A
2r2c

¼ r2c
EB

px
EB ¼

�
1−

1

2r2c

�
EA−

pxr0A
2r4c

:

In addition, we know that

r0A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6c
p2
x
þ r4cE2

A

p2
x

− r4c

s
:

The value of the affine parameter in the BTZ geodesic when
r ¼ rc is given by

αc ≡ expð2τcÞ ¼
1

2
½−ðBþ þ B−Þ þ 4r2c

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4BþB− þ ðBþ þ B− − 4r2cÞ2

q
�: ðB1Þ

There are two BTZ components. For second component,
from τc to τ ¼ ∞, we have

ΔxB ¼ xðτ ¼ ∞Þ − xðτcÞ ¼ −
1

2
log

�
B− þ αc
Bþ þ αc

�
;

ΔtB ¼ 1

2
log

�
A− þ αc
Aþ þ αc

�
:

At the shell, we have that tc ¼ tanh−1ð1=rcÞ, so the
boundary time is

tb ¼ tanh−1ð1=rcÞ þ ΔtB:

Meanwhile, the length of the curve is

LB ¼ log 2R −
1

2
logαc:

By symmetry, the portion of the curve in AdS has E ¼ 0,
and the two BTZ components have the same Δx and the
same length. The curve in AdS obeys

rðτÞ ¼ 1

2
ðp2

xe−τ þ eτÞ

This satisfies r ¼ rc at two values of the affine parameter
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τ� ¼ log
�
rc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − p2

x

q �
:

Using our expression for xðτÞ, we find that

ΔxA ¼ xðτþÞ − xðτ−Þ ¼
2

rcpx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − p2

x

q

and that

LA ¼ τþ − τ− ¼ log

�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − p2

x

p
rc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − p2

x

p �
:

We know that L ¼ LA þ 2LB and lx ¼ 2ΔxB þ ΔxA.
We then find

lx ¼
2

rcpx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − p2

x

q
þ 1

2
log

�
Bþ þ αc
B− þ αc

�
;

Lreg ¼ log

�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − p2

x

p
rc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c − p2

x

p �
− log αc:

For given values of tb and lx, we can solve numerically
to find the corresponding values of rc and px. We do this
numerically for tb ¼ 0.8, and show the result in Fig. 13.

APPENDIX C: SPACELIKE INTERVALS WITH
NONZERO Δt FOR POSITIVE-ENERGY METRIC

In this situation, there are four cases: (i) entirely in AdS,
(ii) entirely in BTZ, (iii) starts in AdS, crosses into BTZ,
(iv) starts in BTZ, crosses into AdS, crosses back into BTZ.
See Fig. 14. Without loss of generality, suppose Δt ≥ 0.
Then the interval is characterized by three parameters, Δx,
Δt, and the starting boundary time of the interval tb. Again,

because the shell is located at v ¼ 0, if tb < 0, the curve is
either (i) or (iii). If tb ≥ 0, the curve is either (ii) or (iv).

Geodesics entirely in AdS or BTZ

We begin with the AdS case. The solution is

rðτÞ ¼ 1

2
ððp2

x − E2Þe−τ þ eτÞ;

tðτÞ ¼ Const −
2E

p2
x − E2 þ e2τ

;

xðτÞ ¼ Const −
2px

p2
x − E2 þ e2τ

:

This is very similar to the case considered above with
E ¼ 0. We calculate

Δx¼ 2px

p2
x −E2

; Δt¼ 2E
p2
x −E2

; Lreg ¼− logðp2
x −E2Þ:

We calculated the solution to the BTZ case with E ≠ 0
above. The solution is

rðτÞ2 ¼ 1

4
ðeτ þ Bþe−τÞðeτ þ B−e−τÞ;

FIG. 14. A Penrose diagram of the Vaidya spacetime (the red
line represents the shell of null matter), showing the four cases for
the general spacelike geodesics. (i) Entirely in the AdS bulk,
(ii) entirely in the BTZ bulk, (iii) starts in AdS, crosses into BTZ,
and (iv) starts in BTZ, crosses into AdS, and crosses back
into BTZ.

FIG. 13. The regularized geodesic length Lreg as a function of
the boundary interval length, lx at boundary time tb ¼ 0.8.
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tðτÞ ¼ Constþ 1

2
log

�
A− þ e2τ

Aþ þ e2τ

�
;

xðτÞ ¼ Const −
1

2
log

�
B− þ e2τ

Bþ þ e2τ

�
;

where we have defined the quantities

B� ¼ ðpx � 1Þ2 − E2; A� ¼ p2
x − ð1� EÞ2:

This tells us that

Δx ¼ 1

2
log

�
A−

Aþ

�
; Δt ¼ −

1

2
log

�
B−

Bþ

�
;

Lreg ¼ −
1

2
logðBþB−Þ:

We now turn our attention to the geodesics that cross
the shell.

Geodesics that start in AdS, end in BTZ

In this case, the geodesic intersects the shell once, say at
coordinate rc. The affine parameter (in the AdS portion) at
which the crossing occurs is

τc ¼ log
�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

q �

Because this occurs at the shell, we need tc ¼ tðτcÞ ¼ 1=rc,
which fixes the constant in the equation for tðτÞ. The length
of the geodesic in AdS is given by

LA ¼ log2Rþ log
�
rcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2cþE2

A−p2
x

q �
− logðp2

x−E2
AÞ:

Meanwhile,

ΔxA ¼ 2px

p2
x − E2

A
−

px

rcðrc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

p
Þ ;

ΔtA ¼ EA

px
ΔxA: ðC1Þ

As we calculated above, the value of E in the BTZ portion
is given by

EB ¼
�
1 −

1

2r2c

�
EA −

pxr0A
2r4c

; r0A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r6c
p2
x
þ r4cE2

A

p2
x

− r4c

s
:

The value of the affine parameter in the BTZ portion of the
crossing is

αB ≡ expð2τBÞ ¼
1

2
½−ðBþ þ B−Þ þ 4r2c

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−4BþB− þ ðBþ þ B− − 4r2cÞ2

q
�; ðC2Þ

where B� is as defined above, using the energy EB.
Furthermore, we have

ΔxB ¼ xðτ ¼ ∞Þ − xðτBÞ ¼ −
1

2
log

�
B− þ αB
Bþ þ αB

�
;

ΔtB ¼ 1

2
log

�
A− þ αB
Aþ þ αB

�
;

LB ¼ log 2R −
1

2
log αB:

In the AdS region, the time of the boundary crossing is
given by tc ¼ 1=rc. Therefore, the starting time of the
interval is

tb ¼
1

rc
− ΔtA:

The total (regularized) length of the curve is

Lreg ¼ −
1

2
logαc ¼ log2R

þ log
�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þE2

A −p2
x

q �
− logðp2

x −E2
AÞ; ðC3Þ

while

Δx ¼ ΔxA þ ΔxB; Δt ¼ ΔtA þ ΔtB:

c. Geodesics that start in BTZ, cross into AdS,
end in BTZ

Finally we consider the geodesics that start in the BTZ
bulk (so that tb ¼ 0), cross over into the AdS bulk, and then
cross back to the BTZ bulk. These geodesics cross the shell
twice, say at r1 and r2, with r1 > r2. If the part of the
geodesic in AdS has EA, then the length of the AdS portion
is given by

LA ¼ τ1 − τ2 ¼ log
�
r1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ E2

A − p2
x

q �
− log

�
r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22 þ E2

A − p2
x

q �
: ðC4Þ

Also,

ΔtA ¼ 1

r2
−

1

r1
; ΔxA ¼ px

EA
ΔtA:
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We now consider the BTZ portions of the geodesics.
Consider the upper BTZ arc of the geodesic. The shell
is at v ¼ 0, so since r1 > r2, r01 < 0. Thus, we obtain

r10A ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r61
p2
x
þ r41E

2
A

p2
x

− r41

s
;

and

EB1 ¼
�
1 −

1

2r21

�
EA −

pxr10A
2r41

:

We know r x and t as functions of τ for the BTZ curve for
these values of the conserved momenta. We can numeri-
cally solve for τ1B when rB1 is equal to r1. Because tB1ðτ1BÞ
has to be equal to tanh−1ð1=r1Þ, this fixes the constant. We
then compute

ΔxB1 ¼ xB1ðτ∞Þ− xB1ðτ1BÞ; ΔxB1 ¼ xB1ð∞Þ− xB1ðτ1BÞ;
LB1 ¼ τ∞ − τ1B: ðC5Þ

We repeat this procedure for the bottom BTZ arc. For r2,
however, r20A > 0, so that

r10A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r62
p2
x
þ r42E

2
A

p2
x

− r42

s
;

which means

EB2 ¼
�
1 −

1

2r22

�
EA −

pxr10A
2r42

:

We then follow the same procedure to compute ΔxB2, ΔtB2
and LB2. The totals are, of course,

Δx ¼ ΔxA þΔxB1 þΔxB2; Δt ¼ ΔtA þΔtB1 þΔtB2:

To obtain the regularized geodesic length, we have to
subtract off the usual UV-divergent term:

Lreg ¼ LA þ LB1 þ LB2 − 2 logð2RÞ:

The boundary time of the start point of the interval is
given by

tb ¼
1

r1
− ΔtB1:

If we are given r1 and EA, we can calculate r2 as follows. In
the AdS region, we can solve for the value of τ at which r is
equal t or1. We know that t evaluated at this value is 1=r1,
which fixes the value of the integration constant in the tðτÞ
function. We then find the other value of τ for which the

function vðτÞ ¼ rðτÞ − 1
tðτÞ vanishes. Evaluating the func-

tion rðτÞ at this value then gives us r2. Therefore, the
geodesic is specified by three parameters: EA, px, and r1.
From these we can calculate the starting time tb and the
values of Δx and Δt. For values of tb, Δx and Δt, we can
numerically find the corresponding values of EA, px, and
r1, and then use these to calculate the geodesic lengths.

APPENDIX D: GEODESIC KINEMATICS FOR
CONSTANT-TIME INTERVALS FOR

NEGATIVE-ENERGY METRIC

We consider constant-time intervals. For boundary time
tb < 0 the geodesics will be entirely in the BTZ bulk, while
for large enough tb it will be entirely in the AdS bulk. These
cases were treated above; we will now consider the case
where the geodesic is partially in the AdS region, and
partially in the BTZ region. We first consider the BTZ part.
By the symmetry of the problem, E ¼ 0 in the BTZ arc.
Suppose that the geodesic crosses the shell at rc. The value
of the affine parameter at this value of r is

τc ¼ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − 1j

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − p2

xj
q �

:

From the equation for _r, it is clear that r ¼ px is the turning
point. Therefore, by symmetry, the length of the BTZ part
of the geodesic is

LB ¼ 2ðτc − τpx
Þ ¼ 2 log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − 1j

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − p2

xj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2

x − 1j
p �

:

Similarly, the change in x is given by

ΔxB ¼ − log

 
ðpx − 1Þ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − 1j

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − p2

xj
p

Þ2
ðpx þ 1Þ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − 1j

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr2c − p2

xj
p

Þ2

!

þ log

 
ðpx − 1Þ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2

x − 1j
p

Þ2
ðpx þ 1Þ2 þ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2

x − 1j
p

Þ2

!
: ðD1Þ

We now turn to the AdS components. Similar to the
positive-energy case, we require that at the shell v ¼ 0 we
must have

v0 ¼ 2ðr0A − r0BÞ:

EB ¼ 0 so

v0 ¼ r0B
r2c − 1

;

which means that
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r0A ¼ r0B þ v0

2
¼ r0B þ r0B

2ðr2c − 1Þ ¼
ð2r2c − 1Þr0B
2ðr2c − 1Þ :

Note that this means that r0A becomes negative when rc < 1
2
.

In AdS, we know that

r0A
2 ¼ r6c

p2
x
þ r4cE2

A

p2
x

− r4c;

r0A
2p2

x ¼ r6c þ r4cE2
A − r4cp2

x;

r0A
2p2

x

r4c
þ p2

x − r2c ¼ E2
A;

E2
A ¼ ð2r2c − 1Þ2r0B2p2

x

4r4cðr2c − 1Þ2 þ p2
x − r2c:

Also, we know that

r0B
2 ¼ ðr2c − 1Þr2c

�
r2c
p2
x
− 1

�
;

which means

E2
A ¼ ð2r2c − 1Þ2ðr2c − p2

xÞ
4r2cðr2c − 1Þ þ p2

x − r2c

¼ ðð2r2c − 1Þ2 − 4r4c þ 4r2cÞðr2c − p2
xÞ

4r2cðr2c − 1Þ ¼ ðr2c − p2
xÞ

4r2cðr2c − 1Þ :

ðD2Þ

If rc >
1
2
then r0 > 0 and _r > 0, and the solution is

rðτÞ ¼ 1

2
ðeτ þ ðp2

x − E2Þe−τÞ:

We have that

τc ¼ log
�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

q �
:

For large R, the corresponding (large, positive) value of τ is
log 2R so the length of the AdS arc is

LA ¼ log 2R − log
�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

q �
:

The change in x is given by

ΔxA ¼ px

rcðrc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

p
Þ :

We find the starting point of the interval in the usual way:

tb ¼ tc − ΔtA ¼ 1

rc
−

EA

rcðrc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

p
Þ ;

since ΔtA ¼ ΔxA
EA
px
. The total arc length and displace-

ment are

L ¼ LB þ 2LA; Δx ¼ 2ΔxA þ ΔxB:

On the other hand, if rc < 1
2
, _r < 0 and the solution is

given by

rðτÞ ¼ 1

2
ðe−τ þ ðp2

x − E2ÞeτÞ;

and we have that

τc ¼ − log
�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

q �
:

The positive affine parameter for large R is given by

τ∞ ¼ logð2RÞ − logðp2
x − E2

AÞ;

which means that the total length of the AdS arc is given by

LA ¼ τ∞ − τc ¼ logð2RÞ − logðp2
x − E2

AÞ
þ log

�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

q �
: ðD3Þ

Meanwhile,

ΔxA ¼ xðτ∞Þ − xðτcÞ ¼
px

rc
�
rc þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2c þ E2

A − p2
x

p �
−

2px

−E2
A þ p2

x þ ðp2
x − E2

AÞ2
ðD4Þ

FIG. 15. The regularized geodesic length Lreg as a function of
the boundary interval length, Δx for various values of the
boundary time tb in the negative-energy Vaidya spacetime. We
see that the curves are not convex, meaning there will be
violations of strong subadditivity.
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and

tb ¼
1

rc
−
EA

px
ΔxA:

Once again, the total geodesic length and displacement are

L ¼ LB þ 2LA; Δx ¼ 2ΔxA þ ΔxB:

To find the geodesic for the negative-energy metric for a
given interval, we proceed as follows. First, if tb ≤ 0, the

geodesic is of course entirely in BTZ. If tb > 0, we find
the trajectory of the geodesic in AdS, and calculate vðτÞ. If
at any point it dips below 0, then there will be a portion of
the geodesic that is in the BTZ bulk. We then use a
numerical algorithm to find the values of rc and px that
correspond to the desired tb and Δx. We show a plot of the
(regularized) geodesic length as a function of the dis-
placement for various values of the boundary time tb in
Fig. 15. We see the nonconvex behavior of some of these
curves, which means that strong subadditivity will be
violated.
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