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The random matrix theory (RMT) can be used to classify both topological phases of matter and quantum
chaos. We develop a systematic and transformative RMT to classify the quantum chaos in the colored
Sachdev-Ye-Kitaev (SYK) model first introduced by Gross and Rosenhaus. Here we focus on the two-
colored case and the four-colored case with a balanced number of Majorana fermions N. By identifying the
maximal symmetries, the independent parity conservation sectors, the minimum (irreducible) Hilbert
space, and especially the relevant antiunitary and unitary operators, we show that the color degrees of
freedom lead to novel quantum chaotic behaviors. When N is odd, different symmetry operators need to be
constructed to make the classifications complete. The two-colored case only shows the threefold Wigner-
Dyson way, and the four-colored case shows the tenfold generalized Wigner-Dyson way which may also
have nontrivial edge exponents. We also study two- and four-colored hybrid SYK models, which display
many salient quantum chaotic features hidden in the corresponding pure SYK models. These features
motivate us to develop a systematic RMT to study the energy level statistics of two or four uncorrelated
random matrix ensembles. The exact diagonalizations are performed to study both the bulk energy level
statistics and the edge exponents and to find excellent agreement with our exact maximal symmetry
classifications. Our complete and systematic methods can be easily extended to study the generic
imbalanced cases. They may be transferred to the classifications of colored tensor models, quantum
chromodynamics with pairings across different colors, quantum black holes, and interacting symmetry
protected (or enriched) topological phases.
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I. INTRODUCTION

The classification of phases of matter has a long
history. It spans from the Landau theory on the classifica-
tions of all the possible spontaneous symmetry-breaking
states to more recent classifications of the topological
insulators and superconductors [1–3] of noninteracting
electrons using the same symbols and techniques as the
random matrix theory (RMT). The latter inspired and
triggered the classifications of topological phases of inter-
acting bosons or fermions which break no symmetries [3,4].
On the other forefront, there are recent extensive research
activities on studying quantum chaos and quantum infor-
mation scrambling in the Sachdev-Ye-Kitaev (SYK) model
[5–9] and its various invariants. Because the ground states of
SYK models are quantum spin liquids which neither break
symmetry nor have any kind of topological order, one may
need to classify the SYK models by a different organization
pattern of matter which describes how quantum information
is scrambled in the system: the quantum chaos.

There are two completely independent ways to char-
acterize the quantum chaos. One way is to evaluate the
out-of-time-ordered correlation (OTOC) functions to des-
cribe the quantum information scrambling at an early time
(Ehrenfest time) [10–17]. It was found that the SYKmodels
show the maximal quantum chaos, with the largest possible
Lyapunov exponent λL ¼ 2π=β saturating the quantum
chaos bound [18]. This salient feature ties that of quantum
black holes, which are the fastest quantum information
scramblers in nature. This fact suggests that the SYKmodel
may be a boundary theory of some sort of bulk dilaton
gravity theory such as the well-known Jackiw-Teitelboim
(JT) gravity [19,20].
Another way is to use the RMT to describe the energy

level statistics (ELS), which can be used to probe the late-
time (Heisenberg time) dynamics [21–27]. It was found
that the ELS of the Majorana fermion SYK can be
described by the threefold-wayWigner-Dyson distributions
in an N (mod 8) periodicity [22–24]. The RMT has also
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been employed to study the quantum chaotic behaviors of
event horizon fluctuations of black holes [23].
The quantum chaos in the SYK models is due to the

quenched disorders. However, it inspired a new class
of clean quantum mechanical models called colored
(Gurau-Witten) or uncolored (Klebanov-Tarnopolsky) tensor
models [28–33],which share similar quantumchaotic proper-
ties to the SYK, at least in the large-N limit [34]. Despite the
lack of quenched disorders, the quantum chaos in tensor
models seemsmuchmore difficult to analyze by eitherOTOC
or RMT [33]. OTOC and RMT [35] may also be used to
demonstrate the quantum chaos in a clean quantum optics
model called the Dicke model, which describes the N qubits
interacting with a single-photon mode with both rotating-
wave and counter-rotating-wave interacting terms [36–39].
Gross and Rosenhaus [12] generalized the SYKmodel to

a colored SYK, which contains a ¼ 1; 2;…; f colors; each
has Na sites with a qa-body interaction. The model has a
total number of Majorana particles, Nt ¼

Pf
a¼1Na, and a

total q ¼ Pf
a¼1 qa-body interaction. It contains f towers of

operators. The SYK model can be treated as the f ¼ 1
special case with just one tower of operators. For the
balanced case with Na ¼ Nt=f and qa ¼ q=f, after the
quenched disorder average is performed, the system has a
reduced symmetry OðNt=fÞ ×OðNt=fÞ × � � � ×OðNt=fÞ,
compared to the SYK model with Nt ¼ fNa sites and
q ¼ fqa-body interaction, which has a full OðNtÞ sym-
metry. The operator spectrum contains a tower identical to
that of SYK with a q ¼ fqa-body interaction. The h ¼ 2
operator, which is the lowest-dimensional operator in this
tower, still leads to the maximal chaos. There is also a new
tower of operators with degeneracy f − 1. The lowest-
dimensional operator in this new tower is a h ¼ 1 operator,
whose operator product expansion (OPE) coefficient van-
ishes. There may be some intricate relations between the
colored SYK and the colored tensor (Gurau-Witten) models
[31,32]. Here, we study the quantum chaos in the colored
SYK from the RMT, which would be complementary to the
OTOC study by Gross and Rosenhaus [12]. For simplicity,
we only focus on the balanced q ¼ 4 cases with f ¼ 2
and f ¼ 4 colors. The analysis is much more involved, and
the results are dramatically different from the Majorana or
complex fermion SYK model. Our main results are
presented in Tables III and IV, and in Figs. 2, 5, and 6.
The two-colored SYK only shows a threefold Wigner-

Dyson way. For the cases where N is even, there are two
conserved parities ðQ1; Q2Þ corresponding to the two
colors. We construct one antiunitary operator P which
keeps the parities and commutes with the Hamiltonian. For
N ðmod 4Þ ¼ 0, the ELS is in the Gaussian orthogonal
ensemble with a degeneracy d ¼ 1 in a given parity sector
ðQ1; Q2Þ and total degeneracy dt ¼ 1 in the total parity
sectorQt ¼ Q1 þQ2. For N ðmod 4Þ ¼ 2, the ELS is in the
Gaussian unitary ensemble with degeneracy d ¼ 1 but total
degeneracy dt ¼ 2. For the cases where N is odd, we add

two decoupled Majorana fermions with each color at
infinity to construct Hilbert space separately for the two
colors. So it still leads to two conserved parities ðQ1; Q2Þ
corresponding to the two colors. Adding two Majorana
fermions into the system doubles the Hilbert space, but it
also gives one more conserved parity. There is an additional
antiunitary operator Pz, which also keeps the parities and
commutes with the Hamiltonian and plays complementary
roles to P. In both cases of N ðmod 4Þ ¼ 1; 3, the ELS is in
the Gaussian orthogonal ensemble with d ¼ 1 in a given
parity sector ðQ1; Q2Þ. But P and Pz exchange their roles
in the two cases, so dt ¼ 1þ 1 in the total parity sector
Qt ¼ Q1 þQ2 in the twice-enlarged Hilbert space. Then
exact diagonalizations are performed in the minimal Hilbert
space, which matches our theoretical classification results
(Fig. 2). We also study a hybrid two-colored SYK model
which violates the ðQ1; Q2Þ parities but conserves the total
parityQt. It shows several novel quantum chaotic behaviors
at all N (mod 4) values (Fig. 3), which are hidden in the
pure two-colored SYK model. Our systematic approach
can also be extended to a generic case with different
Na’s, a ¼ 1; 2.
The four-colored case shows dramatically different quan-

tum chaotic behaviors from the two-colored case. Due to a
possible spectral mirror symmetry, the four-colored SYK is
classified in a tenfold way, which may also show nontrivial
hard-edge universality. For the four-colored case, there are
always three independent conserved parities ðQ12; Q23; Q34Þ
corresponding to the sums of two of the four colors.
For the even-N case, the three independent conserved
parities commute with each other. We construct one anti-
unitary operator P which keeps the parities and commutes
with the Hamiltonian, and also find another antiunitary
operator Pm which keeps the parities and anticommutes
with the Hamiltonian. The product of the two antiunitary
operators leads to a unitary chirality operator Λ ¼ PPm,
which is nothing but the individual parity of each color,
which anticommutes with the Hamiltonian. So when
N ðmod 4Þ ¼ 0; 2, the ELS is in the classes BDI and CI,
respectively, with d ¼ 1 in a given parity sector
ðQ12; Q23; Q34Þ. In addition to the bulk RMT index
β ¼ 1, due to the chiral (mirror) symmetry, it also has the
edge exponents α ¼ 0; 1, respectively. It is the chiral
symmetry which dictates such a nontrivial “bulk-edge”
correspondence. For the odd-N case,Q0

23 does not commute
with the other two parities anymore. So one only has two
mutually conserved parities ðQ0

12; Q
0
34Þ. Then we add four

decoupled Majorana fermions with each color at infinity to
construct Hilbert space separately for the four colors. This
enlarges the Hilbert space by 4 times, but it also leads to two
more conserved parities. So the complete set of mutually
commuting conserved parities becomes ðQ12; Q23; Q34; Q0tÞ
in the enlarged Hilbert space. The two antiunitary P;Pm and
the chirality operator Λ still exist after shifting N → N þ 1,
but P keeps the parities and Pm swaps each of the parities.
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WhenN ðmod 4Þ ¼ 3; 1, the ELS is in class AI in both cases
with d ¼ 1. We also identify another antiunitary operatorPz,
which commutes with the Hamiltonian, but it swaps each
parity in ðQ12; Q23; Q34Þ, thus keeping the same total parity
Qt ¼ Q12 þQ34 and Q0t. This fact leads to dt ¼ 2 in the
total parity ðQt;Q0tÞ when N is odd. Then exact diagonal-
izations are performed to confirm our theoretical results
(Fig. 5), especially the edge exponent for N ðmod 4Þ ¼ 0; 2
(Fig. 6). We also study a hybrid four-colored SYK model
which violates the ðQ12; Q23; Q34Þ parities, but conserves
the total parity ðQt;Q0tÞ. It shows several novel quantum
chaotic behaviors at all N ðmod 4Þ values (Fig. 3), which are
hidden in the pure four-colored SYK model. Our systematic
approach can also be extended to the imbalanced cases with
different Na’s, a ¼ 1, 2, 3, 4. The broad impacts of the
methods and results achieved in the paper and some
perspectives are summarized in the concluding section.
As a byproduct, we develop a systematic RMT to study

the energy level statistics of two or four uncorrelated
random matrix ensembles. We then apply the new RMT
to study several salient features of the two- or four-colored
hybrid SYK models in Secs. IV and VI, respectively.
Finally, in the three appendixes, we discuss the intercolor

representation, which is independent of whetherN is odd or
even, so it can be most conveniently used to perform our
exact diagonalizations in the minimum Hilbert space. We
perform our classifications on two- and four-colored SYK
models and their corresponding hybrids in this minimum
Hilbert space. To allow for comparisons to the results
achieved with intracolor representations in the main text,
when N is odd, we also add decoupled Majorana fermions
at∞ and perform our classifications in the enlarged Hilbert
space. We reach the same conclusions among the three
different classification schemes (namely, the two different
intercolor schemes in the appendixes and the intracolor
scheme in the main text), which may bring additional and
considerable insights into the physical picture.

II. ENERGY LEVEL STATISTICS IN PURE AND
MIXED RANDOM MATRIX THEORY

In this section, we first review the known results on the
statistics of the nearest-neighbor (NN) energy level spac-
ings initiated in Ref. [40] and the next-nearest-neighbor
(NNN) energy level spacings initiated in Ref. [27] in pure
random matrix ensembles. Then we generalize the NN and
NNN statistics to the cases with mixed two and four
uncorrelated and identically distributed (UCID) random
matrix ensembles. The results will be heavily used in the
following sections when discussing two-colored or four-
colored hybrid SYK models.

A. The statistics of NN and NNN energy level spacings
in pure random matrix ensembles

Let feng be an ordered set of eigenenergy obtained
from the Hamiltonian; then the energy level spacing is

sn ¼ enþ1 − en, and the ratios of NN energy level spacings
and NNN energy level spacings are defined as rn ¼
snþ1=sn and r0n ¼ ðsnþ3 þ snþ2Þ=ðsnþ1 þ snÞ, respectively.
By considering a 2 × 2 matrix system, Wigner derived

a simple approximate probability distribution function
(Wigner surmise): Pw;βðsÞ ¼ aβsβe−bβs

2

, where β ¼ 1, 2,
4 are the Dyson indices for the Gaussian orthogonal
ensemble (GOE), the Gaussian unitary ensemble (GUE),
and the Gaussian symplectic ensemble (GSE), respectively.
The probability distribution function for independent
random energy levels yields the Poisson distribution
PpðsÞ ¼ e−s. However, in order to compare different
results from different systems, the energy levels will need
an unfolding procedure, which is not convenient when
large enough statistics are not available.
The NN ratio r and NNN ratio r0 are introduced in

Refs. [40] and [27], respectively, to overcome the diffi-
culties in unfolding. Because taking the two ratios can get
rid of the dependence on the local density of states, the
unfolding becomes unnecessary. By considering a 3 × 3
matrix system, the authors in Ref. [40] obtained the
Wigner-like surmises of the ratio of the NN level spacing

distribution PwðrÞ ¼ 1
Zβ

ðrþr2Þβ
ð1þrþr2Þ1þ3β=2, where β ¼ 1, 2, 4 and

Zβ ¼ 8=27, 4π=81
ffiffiffi
3

p
, and 4π=729

ffiffiffi
3

p
for the GOE, GUE,

and GSE, respectively. The Poisson result is PpðrÞ ¼ 1
ð1þrÞ2.

The distribution function PWðrÞ has the same level repul-
sion at small r as PWðsÞ—namely, PWðrÞ ∼ rβ. However,
the large-r asymptotic behavior PWðrÞ ∼ r−ð2þβÞ is dra-
matically different from the fast exponential decay
of PWðsÞ.
By considering a 5 × 5 matrix system, a Wigner-like

surmise of the ratio of the NNN level spacing distribution
was obtained by us in Ref. [27]. The asymptotic behavior of

Pð2Þ
w ðr0Þ is different from that of PwðrÞ: it is Pð2Þ

w ðr0Þ ∼ r03βþ1

when r0 is small, and Pð2Þ
w ðr0Þ ∼ r0−3ðβþ1Þ when r0 is large.

The Poisson result is Pð2Þ
p ðr0Þ ¼ 6r0

ð1þr0Þ4. Instead of the

lengthy analytical results from Wigner-like surmises
detailed in Ref. [27], an approximate but precise and useful
relation between the probability distribution functions of

the NN ratio and the NNN ratio is found as Pð2Þ
w;βðr0Þ ≈

Pw;3βþ1ðrÞ by equating r ¼ r0.
It was known that the NN ratio satisfies the functional

equation PðrÞ ¼ 1
r2 Pð1rÞ, and so does the NNN ratio after

replacing r with r0. This property enables us to restrict the
study to the range [0, 1] by considering the variables r̃ ¼
minfr; 1=rg and r̃0 ¼ minfr0; 1=r0g. Thus, the above sur-
mise yields an analytic expression for the mean values
hr̃iw ¼ 0.386, 0.536, 0.603, 0.676 and hr̃0iw ¼ 0.500,
0.677, 0.734, 0.791 for the Poisson, GOE, GUE, and
GSE, respectively. From these mean values, one can also
find hr̃iGSE ≈ hr̃0iGOE, which is just a special case of the
β → 3β þ 1 rule with β ¼ 1.
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The motivation to introduce r0 in Ref. [27] is to deal with
the case with nearly double degenerate energy levels. When
the unperturbed Hamiltonian has double degenerate levels,
a small perturbation will lead to nearly double degenerate
levels. Then hr̃i can be very close to zero and rapidly
changes as the perturbation is increased. However, hr̃0imay
remain unchanged, so it becomes a much better criterion to
characterize the quantum chaos in this regime. Note that hr̃i
and hr̃0i are not expected to satisfy their values listed in
Table I in Ref. [27] when the energy levels are nearly
doubly degenerate. Namely, when hr̃i is close to zero, hr̃0i
will be close to 0.386, 0.536, 0.603, and 0.676. This
suggests that if one splits all energy levels into two sets, one
set of energy levels satisfies the Poisson, GOE, GUE, and
GSE, respectively. For this reason, which was detailed in
Ref. [27], both hr̃i and hr̃0i will be evaluated throughout
this paper.

B. The ELS of mixed two or four
random matrix ensembles

In one case, the unperturbed Hamiltonian has a double
degeneracy dictated by a symmetry, then a small perturba-
tion breaks the symmetry, and then the double degeneracy
into two nearly degenerated levels. This case was discussed
in Sec. II A. In another case, the unperturbed Hamiltonian
does not have any level degeneracy, then a small perturba-
tion just breaks some symmetry of the Hamiltonian, and
then it will mix different sets of energy levels, which can be
labeled by different conserved quantities in the absence of
the perturbation. For an infinitesimal perturbation, there is
still an obstacle to collecting statistics for individual sets of
energy levels. In this section, we investigate the ELS of
mixed two or four uncorrelated and identically distributed
(UCID) random matrix ensembles [41].
We begin with mixed two UCID random matrix ensem-

bles with size N ¼ 2, of which the joint probability
distribution function can be written as

pðe1; e2; e3; e4Þ ¼ pðe1; e2Þpðe3; e4Þ
∝ e−

1
2
ðe2

1
þe2

2
Þje1 − e2jβe−1

2
ðe2

3
þe2

4
Þje3 − e4jβ;

ð1Þ

where the level repulsion only exists between e1 and e2,
and between e3 and e4.
The ordering of levels can be summarized in the fol-

lowing three independent cases: (i) level ordering e1 ≤
e2 ≤ e3 ≤ e4, with two NN ratios defined as ðe3 − e2Þ=
ðe2 − e1Þ and ðe4 − e3Þ=ðe3 − e2Þ; (ii) level ordering e1 ≤
e3 ≤ e2 ≤ e4, with two NN ratios defined as ðe2 − e3Þ=
ðe3 − e1Þ and ðe4 − e2Þ=ðe2 − e3Þ; and (iii) level order-
ing e1 ≤ e3 ≤ e4 ≤ e2, with two NN ratios defined as
ðe4 − e3Þ=ðe3 − e1Þ and ðe2 − e4Þ=ðe4 − e3Þ. Other order-
ings can be related to these three by taking full advantage of

the symmetries in pðe1; e2Þ ¼ pðe2; e1Þ and pðe3; e4Þ ¼
pðe4; e3Þ.
Now, we generalize the r statistics defined in Ref. [42] to

mixed two random matrix ensembles; the probability
density function of r can be calculated from

Pmix-2ðrÞ ∝
Z
e1≤e2≤e3≤e4

Y4
i¼1

deipðe1; e2; e3; e4Þ

×

�
δ

�
r −

e3 − e2
e2 − e1

�
þ δ

�
r −

e4 − e3
e3 − e2

��

þ
Z
e1≤e3≤e2≤e4

Y4
i¼1

deipðe1; e2; e3; e4Þ

×

�
δ

�
r −

e2 − e3
e3 − e1

�
þ δ

�
r −

e4 − e2
e2 − e3

��

þ
Z
e1≤e3≤e4≤e2

Y4
i¼1

deipðe1; e2; e3; e4Þ

×

�
δ

�
r −

e4 − e3
e3 − e1

�
þ δ

�
r −

e2 − e4
e4 − e3

��
; ð2Þ

where only three independent cases are considered and the
other cases only contribute an overall factor.
After changing variables, the integral in Eq. (2) can be

rewritten in a neat form:

Pmix-2ðrÞ ∝
Z Y4

i¼1

deipsðe1; e2; e3; e4Þ
X2
j¼1

δðr − rjÞ; ð3Þ

where the NN ratio rj ¼ ðejþ2 − ejþ1Þ=ðejþ1 − ejÞ, and
psðe1; e2; e3; e4Þ ¼ ½pðe1; e2; e3; e4Þ þ pðe1; e3; e2; e4Þ þ
pðe1; e3; e4; e2Þ�=3 is fully symmetrized in feng.
The integrals in Eq. (3) can be evaluated analytically, and

the results are

Pmix-2ðrÞ ¼ AβðrÞ þ
1

r2
Aβð1=rÞ; ð4Þ

where AβðrÞ (β ¼ 1, 2, 4) are A1ðrÞ¼ð1þrÞ½15þ31rþ
34r2þ16r3−ð3þr−4r3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3þ4rþ4r2Þ

p
�=½4ð1þrþr2Þ2×

ð3þ4rþ4r2Þ3=2�, A2ðrÞ ¼ 3½ ffiffiffi
3

p
− ð21þ 70r þ 92r2þ

88r3 þ 40r4 þ 16r5Þð3þ 4rþ 4r2Þ−5=2�= ½2π ð1 þ rþr2Þ�,
and A4ðrÞ¼½11þ33rþ39r2þ23r3þ39r4þ33r5þ
11r6 −3

ffiffiffi
3

p ð1þ2rÞð279þ 1953r þ 7467r2 þ 18731r3þ
33883r4 þ 45581 r5 þ 46551r6 þ 36224r7 þ 22172r8 þ
11736r9þ6712r10þ4128r11þ2144r12þ672r13þ96r14Þ×
ð3þ4rþ4r2Þ−9=2�=½2 ffiffiffi

3
p

πð1þ rþ r2Þ4�.
To investigate the r0 statistic of mixed two random

matrix ensembles, one needs to consider the size N ¼ 3
case, and the joint probability distribution function can be
written as
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pðe1; e2; e3; e4; e5; e6Þ ¼ pðe1; e2; e3Þpðe4; e5; e6Þ
∝ e−

1
2
ðe2

1
þe2

2
þe2

3
Þjðe1 − e2Þðe1 − e3Þðe2 − e3Þjβ

× e−
1
2
ðe2

4
þe2

5
þe2

6
Þjðe4 − e5Þðe4 − e6Þðe5 − e6Þjβ: ð5Þ

After considering all the possible energy level orderings,
the probability density function Pmix-2ðr0Þ can be
expressed as

Pmix-2ðr0Þ ∝
Z Y6

i¼1

deipsðe1;…; e6Þ
X2
j¼1

δðr − r0jÞ; ð6Þ

where the NNN ratio r0j ¼ ðejþ4 − ejþ2Þ=ðejþ2 − ejÞ,
and psðe1; e2; e3; e4; e5; e6Þ ¼ ½pðe1; e2; e3; e4; e5; e6Þ þ
pðe1; e2; e4; e3; e5; e6Þ þ pðe1; e3; e4; e2; e5; e6Þ þ � � ��=10
is fully symmetrized in feng.
Just like the calculation of Pmix-2ðrÞ, Pmix-2ðr0Þ can be

evaluated exactly. Although the analytical result is lengthy,
the numerical evaluation of the integration is rather easy.
Similarly to the discussion in Sec. II A, r̃ ¼ minfr; 1=rg
and r̃0 ¼ minfr0; 1=r0g can be defined in the mixed case
also. The mean values of hr̃i and hr̃0i are listed in Table I.
These results will be used to distinguish the chaos regime
from the integrable regime for the two-colored hybrid SYK
models to be discussed in Sec. IV.
In the same manner, the ELS of mixed four UCID

random matrix ensembles with N ¼ 2 can be studied. We
skip the analytical calculations for the probability density

function, and only list the numerical results of hr̃i and hr̃0i
in Table II. In all the cases of β ¼ 1, 2, 4, we obtain hr̃i ≈
0.39 and hr̃0i ≈ 0.535, which are quite insensitive to the
values of β, so the differences between the mixed four
GOE/GUE/GSE are almost washed away. They are also
different from those in the mixed two UCID random matrix
ensembles listed in Table I. When comparing with the
Poisson results hr̃iP ≈ 0.386 and hr̃0iP ≈ 0.5, it is easy to
see that even though the hr̃i value is very close to the
Poisson result, hr̃0i is still easily distinguishable from the
Poisson value (in fact, it is quite close to the GOE value of
hr̃i ¼ 0.5359). This fact will be used to distinguish the
chaos regime from the integrable regime for the four-
colored hybrid SYK models to be discussed in Sec. VI.

TABLE I. List of numerical values of averages hr̃i and hr̃0i for
the mixed two UCID random matrix ensembles. The values of
hr̃iW and hr̃0iW are calculated from the derived N ¼ 2 surmise
and the N ¼ 3 surmise, respectively. The values of hr̃inum and
hr̃0inum are calculated from diagonalizing the corresponding
mixed two GOE (real), GUE (complex), and GSE (quaternion)
matrix ensembles of size N ¼ 1000 with Gaussian distributed
entries, averaged over 105 histograms. It is interesting to see that
they are slightly above the corresponding Poisson values: hr̃iP ≈
0.386 and hr̃0iP ≈ 0.5.

Mix-2 β ¼ 1 β ¼ 2 β ¼ 4

hr̃iW 0.423 0.421 0.394
hr̃0iW 0.600 0.649 0.709

hr̃inum 0.424 0.422 0.410
hr̃0inum 0.599 0.650 0.706

TABLE II. The same as Table I, but using the r statistic for the
mixed four UCID random matrix ensemble. They seem quite
insensitive to the values of β. They are closer to the corresponding
Poisson values than the mixed two matrix case listed in Table I.

Mix-4 β ¼ 1 β ¼ 2 β ¼ 4

hr̃inum 0.396 0.393 0.389
hr̃0inum 0.535 0.537 0.533

TABLE III. The ELS and degeneracy of the two-colored SYK
model. The degeneracy d ¼ 1 is at a given parity sector ðQ1; Q2Þ.
The total degeneracy dt is at a total parity sector Qt ¼ Q1 þQ2.
(a)N-even case: WhenN ðmod 4Þ ¼ 0, Pmaps ðQ1; Q2Þ to itself.
When N ðmod 4Þ ¼ 2, P maps ðQ1; Q2Þ into ðQ1 þ 1; Q2 þ 1Þ.
(b) N-odd case: When N ðmod 4Þ ¼ 1, Pz maps ðQ1; Q2Þ to
itself, and P maps ðQ1; Q2Þ into ðQ1 þ 1; Q2 þ 1Þ. When N
ðmod 4Þ ¼ 3, P maps ðQ1; Q2Þ to itself, and Pz maps ðQ1; Q2Þ
into ðQ1 þ 1; Q2 þ 1Þ. So P and Pz exchange their roles in the
two cases of odd N. Therefore, dt is the degeneracy in the
enlarged Hilbert space, which may not be seen in the exact
diagonalization in the minimum Hilbert space, which is defined
without adding the two Majorana fermions at ∞. When doing
exact diagonalization in the minimum Hilbert space, only the
dt ¼ 2 at N ðmod 4Þ ¼ 2 case can be seen, as shown in Figs. 3(a)
and 3(b). However, the dt ¼ 1þ 1 at N ðmod 4Þ ¼ 1; 3 cases
cannot be seen (see also Appendix A).

N (mod 4) 0 1 2 3

ELS GOE GOE GUE GOE
β 1 1 2 1
ðQ1; Q2Þ d ¼ 1 d ¼ 1 d ¼ 1 d ¼ 1
Qt ¼ Q1 þQ2 dt ¼ 1 dt ¼ 1þ 1 dt ¼ 2 dt ¼ 1þ 1

TABLE IV. The ELS and degeneracy of the four-colored SYK
model. The degeneracy d ¼ 1 is in a given parity sector
ðQ12; Q23; Q34; Q0tÞ. Q0t is defined only when N is odd. The
total degeneracy dt is in a total parity sector ðQt;Q0tÞ. When N is
odd, the Pz operator in Eq. (22) maps ðQ12; Q23; Q34Þ to a
different parity sector ðQ12 þ 1; Q23 þ 1; Q34 þ 1Þ. However,
both sets have the same total parity, ðQt;Q0tÞ. So, dt ¼ 2. When
performing exact diagonalization with a P12 and P34 basis, both
sets dt ¼ 2 can be seen and were shown in Figs. 7(a) and 7(c) (see
also Appendix B).

N (mod 4) 0 1 2 3

ELS BDI AI CI AI
ðβ; αÞ (1,0) (1,-) (1,1) (1,-)

ðQ12; Q23; Q34; Q0tÞ d ¼ 1 d ¼ 1 d ¼ 1 d ¼ 1
ðQt;Q0tÞ dt ¼ 1 dt ¼ 2 dt ¼ 1 dt ¼ 2
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III. THE TWO-COLORED q= 4 SYK

The two-colored a ¼ 1, 2 SYK with q1 ¼ q2 ¼ 2 and
N1 ¼ N2 ¼ N can be written as

H1122 ¼
XN

i<j;k<l

Jij;klχ1iχ1jχ2kχ2l; ð7Þ

where Jij;kl ¼ −Jji;kl ¼ −Jij;lk are real and satisfy the
Gaussian distribution with the mean value hJij;kli ¼ 0

and variance hJ2ij;kli ¼ 2J2=N3.
At first sight, no matter if N is even or odd, one can

always introduce N complex fermions by combining the
two colors ci ¼ ðχ1i − iχ2iÞ=

ffiffiffi
2

p
and c†i ¼ ðχ1i þ iχ2iÞ=

ffiffiffi
2

p
.

Both ci and c†i can be represented by real matrices, and the
particle-hole symmetry operator can be defined as
P12 ¼ K

Q
N
i¼1ðc†i þ ciÞ, where K is a complex conjugate

operator. This way of pairing Majorana fermions with
different colors to form complex fermions is called the
intercolor scheme. As is shown in Appendix A, this
construction using P12 across the two colors is an alter-
native representation to discuss the symmetry class of the
Hamiltonian. However, we choose a different approach,
called the intracolor scheme, in the main text. Both
approaches have their own advantages, and they are
complementary to each other.
Due to the absence of spectral mirror symmetry,

two-colored SYK models will be classified in a threefold
way. The threefold way classifies three Wigner-Dyson
ensembles: GUE, GOE, and GSE. This classification needs
an antiunitary operator Tþ, which commutes with the
Hamiltonian as well as all compatible conserved quantities.
If such a Tþ exists, then if its squared value ðTþÞ2 ¼ þ1, it
means the Hamiltonian is a GOE; if its squared value
ðTþÞ2 ¼ −1, it means the Hamiltonian is a GSE. If such a
Tþ does not exist, the Hamiltonian must be a GUE.

A. N-even case

In the N-even case, just following Ref. [27], the intra-
color scheme needs to split the site i into even and odd sites
[see Fig. 1(a)], and then introduce Nc ¼ N=2 complex
fermions for each color: c1i ¼ ðχ1;2i − iχ1;2i−1Þ=

ffiffiffi
2

p
and

c†1i ¼ ðχ1;2i þ iχ1;2i−1Þ=
ffiffiffi
2

p
. The particle-hole symmetry

operator can be defined as P1 ¼ K
QNc

i¼1ðc†1i þ c1iÞ or
R1 ¼ P1ð−1ÞQ1 ¼ K

QNc
i¼1ðc†1i − c1iÞ, but using P1 is

enough for the symmetry classification, and R1 will
not lead to any new result. It is easy to show that
P1c1iP1 ¼ ηc†1i, P1c

†
1iP1 ¼ ηc1i, P1χ1iP1 ¼ ηχ1i, and

P2
1 ¼ ð−1ÞbNc=2c, where η ¼ ð−1ÞbðNc−1Þ=2c. The number

operator of color-1 fermions Q1 ¼
PNc

i¼1 c
†
1ic1i is not a

conserved quantity, but its parity ð−1ÞQ1 commutes with
H1122. The fact that P1Q1P−1

1 ¼ Nc −Q1 also justifies P1

as an antiunitary particle-hole transformation. One can
similarly construct the P2 operator from color-2 fermions,
so it is convenient to characterize the Hilbert space in terms
of the conserved joint parities ðQ1; Q2Þ, which block-
diagonalize it into four sectors: ðQ1;Q2Þ¼ðEven;EvenÞ,
ðQ1; Q2Þ ¼ ðEven;OddÞ, ðQ1; Q2Þ ¼ ðOdd;EvenÞ, and
ðQ1; Q2Þ ¼ ðOdd;OddÞ. Unfortunately, neither P1 nor
P2 commutes or anticommutes with the Hamiltonian,
but P1, P2, R1, and R2 can be used as building blocks
to construct operators which will do the job.
To construct an antiunitary operator which commutes or

anticommutes with H1122, we introduce

P ¼ K
YNc

i¼1

ðc†1i þ c1iÞðc†2i þ c2iÞ ¼ KP1P2; ð8Þ

which can be contrasted to the similar operator in the four-
colored case [Eq. (18)] to be discussed in Sec. IV. One can
show that

PχaiP ¼ ð−1ÞbNc
2
cηχai ¼ ð−1ÞNc−1χai; a ¼ 1; 2: ð9Þ

It is easy to see that P2 ¼ ð−1ÞNc , PQ1P−1 ¼ Nc −Q1,
and PQ2P−1 ¼ Nc −Q2, and the operator P indeed com-
mutes with the Hamiltonian ½P;H1122� ¼ 0. Other combi-
nations of P1, P2, R1, and R2 play exactly the same role as
P; thus, no anticommuting operators exist and spectral
mirror symmetry is absent. This is the main difference from
the four-colored case to be discussed in Sec. IV, where one
can find two antiunitary operators: one P in Eq. (18)
commutes, and another Pm in Eq. (20) anticommutes with
the Hamiltonian.
For N ðmod 4Þ ¼ 0, Nc ¼ N=2 is even, and then Pmaps

the ðQ1; Q2Þ sector to the same joint parities sector and
P2 ¼ 1, so the ELS is a GOE. The level degeneracy is
d ¼ 1 in a given ðQ1; Q2Þ sector. Because the four sectors

1 2 3 4 N-1 N

N-1 N1 2 3 4
(a)

1 2 3 4 N

N1 2 3 4
(b)

FIG. 1. The two-colored SYK with (a) N even and (b) N odd.
Majorana fermions are represented by dots. Each dot has an
associated number and color, representing its site index and color
index, respectively. A solid dot means the Majorana fermion is
represented by a real matrix, while an empty dot means the
Majorana fermion is represented by a imaginary matrix. A dashed
line connecting them means a complex fermion. In (b), the long
vertical dashed line separates the system from two decoupled
Majorana fermions added at infinity. The same conventions apply
to the other figures.
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are unrelated, the level degeneracy is dt ¼ 1 in the total
parity sector Qt ¼ Q1 þQ2.
For Nðmod 4Þ ¼ 2, Nc ¼ N=2 is odd, and then P maps

the ðQ1; Q2Þ sector to a different joint parities sector
with ðQ1 þ 1; Q2 þ 1Þ, so the ELS is a GUE. The level
degeneracy is d ¼ 1 in a given ðQ1; Q2Þ sector. However, if
we just focus on the total parity Qt, it is still mapped to the
same total parity sector, so it has the dt ¼ 2 double
degeneracy [43] in a given total parity sector Qt. Note
that the four sectors can still be separated into two sectors
with a given total parity Qt, which may be useful when we
consider a quadratic perturbation such as Eq. (12), which
violates the separate parities ðQ1; Q2Þ but still conserves
the total parity Qt.

B. N-odd case

When Nðmod 4Þ ¼ 1; 3, the above procedures for even
N need to be modified. In fact, one can still take advantage
of the above representation with the N-even case by adding
two decoupled Majorana fermions χ1;Nþ1 ¼ χ1;∞ and
χ2;Nþ1 ¼ χ2;∞ to make explicit the parity conservation in
color 1 and color 2, respectively [see Fig. 1(b)]. In doing so,
one also doubles the Hilbert space when comparing it with
the Hilbert space without χ1;∞ and χ2;∞. A similar strategy
was used before to study the symmetry protected topo-
logical phase of a chain of an odd number of Majorana
fermions [44] and the ELS of the SYK model with N odd
[22]. Then one can still define P1, P2, and P with Nc ¼
ðN þ 1Þ=2 as before, and Eq. (9) still applies. From the fact
that χ1∞ and χ2∞ do not appear in the Hamiltonian, we have
two more building blocks: Z1 ¼ P1χ1∞ ¼ K

QNc−1
i¼1 ðc†1i þ

c1iÞ and Z2 ¼ P2χ2∞ ¼ K
QNc−1

i¼1 ðc†2i þ c2iÞ, which can be
obtained by factoring out χ1∞ and χ2∞ from P1 and P2,
respectively. So when N is odd, P1, P2, R1, R2, and Z1, Z2

are building blocks to construct various operators.
In addition to the P operator introduced in Eq. (8),

another special operator can be constructed for the N-odd
case:

Pz ¼ K
YNc−1

i¼1

ðc†1i þ c1iÞðc†2i þ c2iÞ ¼ KZ1Z2: ð10Þ

One can show that

PzχaiPz ¼ −ð−1ÞbNc
2
cηχai ¼ ð−1ÞNcχai; a ¼ 1; 2; ð11Þ

where, of course, as usual, i ¼ ∞ is always excluded. It is
also easy to see that P2

z ¼ ð−1ÞNc−1, and Pz still commutes
with the Hamiltonian ½Pz;H1122� ¼ 0. It also leads to
PzQaP−1

z ¼Nc−1−Qaþ2na∞, where na∞ ¼ c†a∞ca∞ ¼
1=2 − iχa∞χa;N and a ¼ 1; 2.
When N ðmod 4Þ ¼ 3, Nc is even, the P operator maps

ðQ1; Q2Þ to a sector with the same joint parities, and
P2 ¼ 1. So the ELS is a GOE, and the level degeneracy

d ¼ 1 at a given parities sector ðQ1; Q2Þ. When using the
Pz operator in Eq. (10), which maps ðQ1; Q2Þ to a sector
with opposite joint parities ðQ1 þ 1; Q2 þ 1Þ, one can
conclude that the double degeneracy dt ¼ 1þ 1 in a given
total parity sector Qt.
When N ðmod 4Þ ¼ 1, Nc is odd, the Pz operator maps

ðQ1; Q2Þ to a sector with the same joint parities, and
P2
z ¼ 1. So the ELS is still a GOE, and the level degeneracy

d ¼ 1 at a given parities sector ðQ1; Q2Þ. While the P
operator maps ðQ1; Q2Þ to a sector with opposite parities
ðQ1 þ 1; Q2 þ 1Þ, one can conclude the double degeneracy
dt ¼ 1þ 1 in a given total parity sector Qt.
In summary, when N is even, there are two cases: when

N ðmod 4Þ ¼ 0, the ELS is a GOE; when N ðmod 4Þ ¼ 2,
the ELS is a GUE. One uses the P operator [Eq. (8)] in both
cases. When N is odd, one may need to add a decoupled
Majorana fermion at infinity for each color. There are also
two cases; both cases are GOEs. WhenN ðmod 4Þ ¼ 3, one
still uses the P operator [Eq. (8)], but when N ðmod 4Þ ¼ 1,
one must use the Pz operator [Eq. (10)]. These theoretical
results are listed in Table III and are confirmed by the exact
diagonalizations shown in Fig. 2.

IV. HYBRID TWO-COLORED q = 2
AND q= 4 SYK MODEL

In the following, we will discuss a ðQ1; Q2Þ parity-
violating hybrid two-colored SYK model Eq. (12) which
still conserves the total parityQt. It can be used to study the
stability of quantum chaos and the Kolmogorov-Arnold-
Moser theorem in the f ¼ 2-colored SYK models [27].
Furthermore, one can demonstrate the importance of
identifying the maximal symmetry, the largest conserved
quantities and the minimal Hilbert space to perform the

N=9

1.0

0.8

0.6

0.4

0.2

1 2 3 40

P(r)

r

1 2 3 40

N=10

P(r)

r

GOE GUE

N=11

1 2 3 40 1 2 3 40

N=12

P(r)

r

P(r)

r

GOE GOE
1.0

0.8

0.6

0.4

0.2

FIG. 2. Distribution of the ratio of consecutive level spacings
PðrÞ for two-colored SYK with various N ¼ 9, 10, 11, 12. When
N ðmod 4Þ ¼ 1, 2, 3, 0, the energy level statistics show GOE,
GUE, GOE, and GOE, respectively, which agree with the
symmetry analysis summarized in Table III. The four background
curves are the PðrÞ’s of Poisson (red), GOE (blue), GUE (green),
and GSE (purple).
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correct classifications in the RMT. A small-perturbation
K=J → 0 limit which breaks ðQ1; Q2Þ but conserves Qt ¼
Q1 þQ2 may also be used to drag out the rich and novel
physics encoded in Table III from a very effective angle.
This kind of small perturbation may also be used to probe
the interior of a dual black hole in the bulk [45].
A two-colored q ¼ 2 and q ¼ 4 hybrid SYK model is

hybrid from H1122 and H12:

HHb
1122 ¼

XN
i<j;k<l

Jij;klχ1iχ1jχ2kχ2l þ i
XN
i;j

Ki;jχ1iχ2j; ð12Þ

where Jij;kl, Ki;j are real and satisfy the Gaussian distri-
bution with hJij;kli ¼ 0, hJ2ij;kli ¼ 4J2=N3 and hKi;ji ¼ 0,
hK2

i;ji ¼ 2K2=N, respectively. Of course, other hybrid two-
colored models can be constructed, but Eq. (12) is the most
democratic one between the two colors. For the hybrid
model, parities ðQ1; Q2Þ do not conserve separately any-
more, but the total parity Qt remains conserved. However,
P in Eq. (8) [or Z in Eq. (10) for N ðmod 4Þ ¼ 1] does not
commute with HHb

1122 anymore due to fP;H12g ¼ 0 (or
fZ;H12g ¼ 0); thus, different operators are needed to
classify Eq. (12).

A. N-even case

When N is even, Nc ¼ N=2, we can still take advantage
of the building blocks in Sec. III and construct the
following operator:

Pm ¼ K
YNc

i¼1

ðc†1i þ c1iÞðc†2i − c2iÞ ¼ KP1R2: ð13Þ

Then one can show that

Pmχ1iPm ¼ ð−1ÞbNc
2
cþNcηχ1i ¼ −χ1i;

Pmχ2iPm ¼ −ð−1ÞbNc
2
cþNcηχ2i ¼ χ2i: ð14Þ

Due to the opposite signs in the two colors, one can show
that ½Pm;H12� ¼ 0. It is obvious that ½Pm;H1122� ¼ 0;
thus one can conclude that Pm commutes with the hybrid
Hamiltonian ½Pm;HHb

1122� ¼ 0. Since PmQ1P−1
m ¼ Nc −Q1

and PmQ2P−1
m ¼ Nc −Q2, one can show that PmQtP−1

m ¼
2Nc −Qt and Pm always map to the same total parity sector
and P2

m ¼ 1 always holds. So, surprisingly or counter-
intuitively, in sharp contrast to all the type-I hybrid SYK
models studied in Ref. [27], the hybrid system is a GOE at a
given total parity sector. This is exactly what is observed
in Fig. 3.
For N ðmod 4Þ ¼ 2 in Fig. 3(b), it is instructive to look

at the K=J → 0 limit; H1122 at K=J ¼ 0 has twofold
degeneracy dt ¼ 2, confining it to the total parity Qt
(see Table III). It consists of two sectors ðQ1; Q2Þ and

ðQ1 þ 1; Q2 þ 1Þ, which are mapped to each other by the
operator P in Eq. (8). However, as shown in Fig. 2, when
we perform the ELS on separate parities ðQ1; Q2Þ, then the
ELS shows a GUE. Indeed, if we take just one set of energy
levels at any ratio ofK=J, then the hr̃0i value tells us that the
set stays at the GUE until K=J ∼ e−6. The other set shows
identical behavior. As pointed out in Sec. II, when the NN
ratio hr̃i is in its GOE value, the corresponding NNN ratio
hr̃0i would be close to hr̃i’s GSE value; when hr̃i is in
Poisson, the hr̃0i would be close to 1=2. Figure 3(b) shows
that the hybrid two-colored SYK is a GOE in some range
near K=J ¼ 1. And there is a chaotic-to-nonchaotic tran-
sition from the GOE to the Poisson as K=J increases.
For N ðmod 4Þ ¼ 0 in Fig. 3(d), in the K=J → 0 limit,

H1122 has no degeneracy dt ¼ 1 (see Table III). When
performing the exact diagonalization in the total parity
sector ð−1ÞQt, the energy levels in two opposite parity

=

= =

=

(a)

(c) (d)

(b)

FIG. 3. The averaged value of the r̃ parameter and r̃0 parameter
for the hybrid two-colored SYK models with N ¼ 9, 10, 11, 12.
All the data are taken at a given total parity sector Qt ¼ Q1 þQ2

and averaged over 1000, 800, 600, and 400 samples, respectively.
The four dashed horizontal lines represent the values 0.386,
0.536, 0.603, 0.676, and, if there is no mixing or nearly double
degeneracy, the hr̃i’s at those values mean that the ELS is
Poisson, GOE, GUE, and GSE, respectively. (a) For N
ðmod 4Þ ¼ 1, the graph shows that H1122 (namely, at K=J¼0)
is in a GOE. There is a chaotic-to-nonchaotic transition from the
GOE to the Poisson as K=J increases. (b) For N ðmod 4Þ ¼ 2, hr̃i
(black curve) for NN ELS is rapidly changing, but hr̃0i (orange
curve) for NNN ELS shows a nice GUE plateau near K ¼ 0.
(c) For N ðmod 4Þ ¼ 3, the graph shows similar behaviors to (a).
(d) For N ðmod 4Þ ¼ 0, the (slightly above) Poisson-like near
K=J ¼ 0will be split into two independent GOEs when projected
into two separate parities ðQ1; Q2Þ. However, as shown in
Sec. II B, the NN ELS and NNN ELS of the mixed ensemble
of the two uncorrelated GOE sectors lead to hr̃i ≈ 0.42 and
hr̃0i ≈ 0.6, listed in Table I. This is indeed observed here. All the
chaotic-to-nonchaotic transition is through the GOE due to the
Pm symmetry at finite K=J.
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sectors ðQ1; Q2Þ and ðQ1 þ 1; Q2 þ 1Þ are independent of
each other and mixed together. Because there is no level
repulsion between the energy levels in the two separate
parity sectors, the ELS may start to show something close
to the Poisson [41]. In Sec. II B, we show that a mixed two
GOE indeed leads to hr̃i ≈ 0.423 and hr̃0i ≈ 0.600, which
agrees with Fig. 3(d) precisely. So, hr̃i and hr̃0i in Fig. 3(d)
at small K=J indicate that two uncorrelated GOEs are
mixed together. Then, as shown in Fig. 2(b), if one
performs the ELS on separate parities ðQ1; Q2Þ, then the
ELS shows its real face: a GOE. In a given total parity
sector, the hybrid two-colored SYK is a GOE in some range
near K=J ¼ e2; there is a chaotic-to-nonchaotic transition
from the GOE to the Poisson as K=J increases.

B. N-odd case

When N is odd, as in the q ¼ 4 case discussed in
Sec. III B, after adding χ1;Nþ1 ¼ χ1∞ and χ2;Nþ1 ¼ χ2∞,
one can still define Nc ¼ ðN þ 1Þ=2. Then Eqs. (13) and
(14) still follow, and the discussions following them still
hold [46]. So, the hybrid system should be a GOE. In
reality, there is a chaotic-to-nonchaotic transition from the
GOE to the Poisson as K=J increases.
In order to count the level degeneracy, one may try the

following operator by replacing P1 in Eq. (13) with Z1:

P0
m ¼ K

YNc−1

i¼1

ðc†1i þ c1iÞ
YNc

i¼1

ðc†2i − c2iÞ ¼ KZ1R2: ð15Þ

Then one can show that

P0
mχ1iP0

m ¼ Pmχ1iPm ¼ −χ1i;

P0
mχ2iP0

m ¼ Pmχ2iPm ¼ χ2i; ð16Þ

where, as usual, i ¼ ∞ is always excluded. Then one can
show that ½P0

m;H12� ¼ 0 and ½P0
m;H1122� ¼ 0. One can

also show that P0
mQ1P0−1

m ¼ ðNc − 1Þ −Q1 þ 2n1∞ and
P0
mQ2P0−1

m ¼ Nc −Q2, so P0
mQtP0−1

m ¼ ð2Nc − 1Þ −Qt þ
2n1∞ always maps to the opposite total parity sector, and it
can only be used to establish the energy spectrum between
opposite total parity sectors in the hybrid model [Eq. (12)].
Here, we summarize several salient features in Fig. 3.

Just from a symmetry point of view, the hybrid model is
always the GOE at a given total parity sector, while the
three GOEs in Table III are at a given parity sector ðQ1; Q2Þ
which is conserved only at the q ¼ 4 SYK limit K=J ¼ 0.
As explained in Table III, dt ¼ 1þ 1 with odd N is in the
enlarged Hilbert space, so the degeneracy cannot be seen
when one is performing exact diagonalization in minimal
Hilbert space, because this basis is the minimal original
Hilbert space without introducing χ1∞ and χ2∞ (see
Appendix A). When N ðmod4Þ¼1;3, the GOE at K=J¼0
is directly connected to the hybrid GOE; this is why the

GOEs in Figs. 3(a) and 3(c) are the two most robust ones
against the H12 term among all the figures in Fig. 3.
In a sharp contrast, the GOE at N ðmod 4Þ ¼ 0 cannot be

seen even at the K=J → 0 limit. The energy levels with
opposite parity are mixed, so both parity sectors combine to
behave like something slightly higher than the Poisson. If
one had performed the exact diagonalization just in the total
parity sector, it may have led to the conclusion that the
q ¼ 4 two-colored SYK satisfies the Poisson, hinting it
might be integrable. In reality, the quantum chaos is hiding
inside the total parity and needs to be dragged out by
splitting it into the two separate parity sectors. When
comparing the knowledge in Sec. II B, one can find that
both hr̃i and hr̃0i indeed match their prediction from a
mixed two GOE. The “fake” Poisson will evolve to the
GOE, and then there is a chaotic-to-nonchaotic transition
from the GOE to the real Poisson. As shown in Fig. 3(c),
the “fake” Poisson shows a nice plateau regime near q ¼ 4,
whose length may be used to quantitatively characterize the
stability of the quantum chaos near the q ¼ 4 side.
Meanwhile, the double degeneracy dt ¼ 2 in the total

parity sector at N ðmod 4Þ ¼ 2 is in the minimal original
Hilbert space; this can be seen in the exact diagonalization.
Any smallK breaks this degeneracy. So, the combination of
hr̃i and the new universal ratio hr̃0i first introduced in
Ref. [27] is needed to describe the evolution of the ELS.
Especially, hr̃0i is needed to quantitatively characterize the
stability of the quantum chaos near the q ¼ 4 side.

V. THE FOUR-COLORED q= 4 SYK

Here, we take four colors a ¼ 1, 2, 3, 4 with
q1 ¼ q2 ¼ q3 ¼ q4 ¼ 1, N1 ¼ N2 ¼ N3 ¼ N4 ¼ N, and
the four-colored q ¼ 4 SYK can be written as

H1234 ¼
XN
i;j;k;l

Ji;j;k;lχ1iχ2jχ3kχ4l; ð17Þ

where Ji;j;k;l are real and satisfy the Gaussian distri-
bution with mean value hJi;j;k;li ¼ 0 and variance
hJ2i;j;k;li ¼ 4J2=N3.
In contrast to the two-colored cases, the separate parity

in each color Qa, a ¼ 1, 2, 3, 4, is not conserved anymore,
but the parities of any sum of two (there are six of these)
are conserved. Only three out of the six are independent.
Without losing any generality, we can just pick the
following three as a set: ðQ12; Q23; Q34Þ. Just like with
the two-colored SYK model discussed in Sec. III, an
intercolor scheme description introduces N complex fer-
mions from the first two colors, 1 and 2, and another N
complex fermions from the other two colors, 3 and 4. As is
shown in Appendix B, this construction using P12 and P34

across two of the four colors is an alternative representation
for discussing the symmetry class of the Hamiltonian. In
the following section, we mainly focus on the intracolor
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scheme, which keeps the conserved parity ðQ12; Q23; Q34Þ
explicitly, so there are eight sectors which can still be
regrouped into two sectors with two different total parities,
Qt ¼ Q12 þQ34. Both approaches have their own advan-
tages, and they are complementary to each other.
Due to a possible spectral mirror symmetry, the four-

colored SYK models will be classified in a tenfold way.
The tenfold-way classification can be viewed as a gener-
alization of Wigner-Dyson’s threefold way, and it is also
known as Altland-Zirnbauer classification theory [47,48].
Thanks to the one-to-one correspondence between each
ensemble and symmetric spaces in Cartan’s classification,
we can label the ten RMT classes by their Cartan names.
The classification needs to consider two antiunitary oper-
ators Tþ, T− and one unitary operatorΛ. Tþ commutes with
the Hamiltonian as well as all compatible conserved quan-
tities, while T− and Λ anticommute with the Hamiltonian
but commute with all compatible conserved quantities.
Notice that if both Tþ and T− exist, then Λ ¼ TþT− always
exists as well, but the converse is not true. Ten RMT classes
can be identified by the following operator algebra:

(i) T− and Λ do not exist: If Tþ exists and T2þ ¼ þ1,
the Hamiltonian belongs to class AI (GOE). If Tþ
exists and T2þ ¼ −1, the Hamiltonian belongs to
class AII (GSE). If Tþ also does not exist, the
Hamiltonian belongs to class AI (GUE). In fact, this
set of classes is reduced toWigner-Dyson’s threefold
way discussed in Sec. III.

(ii) Tþ and T− exist and T2þ ¼ T2
−, or only Λ exists: If

T2þ ¼ T2
− ¼ þ1, the Hamiltonian belongs to class

BDI (chGOE). If T2þ ¼ T2
− ¼ −1, the Hamiltonian

belongs to class CII (chGSE). If only Λ exists, the
Hamiltonian belongs to class AIII (chGUE). As is
written in the parentheses, these are the three chiral
ensembles.

(iii) If Tþ and T− exist and T2þ ≠ T2
−, or only T− exists:

If T2þ ¼ −T2
− ¼ þ1, the Hamiltonian belongs

to class CI (BdG). If T2þ ¼ −T2
− ¼ −1, the Hamil-

tonian belongs to class DIII (BdG). If Tþ does not
exist but T− exists, with T2

− ¼ þ1, the Hamiltonian
belongs to class D (BdG). If Tþ does not exist
but T− exists, with T2

− ¼ −1, the Hamiltonian
belongs to class C (BdG). As is written in the
parentheses, these are the four Bogoliubov–de
Gennes ensembles.

A. N-even case

In the N-even case, just following the two-colored SYK
discussed above, one can split the site i into even and odd
sites [Fig. 4(a)], and then introduce Nc ¼ N=2 complex
fermions for each color: c1i ¼ ðχ1;2i − iχ1;2i−1Þ=

ffiffiffi
2

p
and

c†1i ¼ ðχ1;2i þ iχ1;2i−1Þ=
ffiffiffi
2

p
. The particle-hole symmetry

operator can be defined as P1 ¼ K
QNc

i¼1ðc†1i þ c1iÞ or R1 ¼
K
QNc

i¼1ðc†1i − c1iÞ. It is easy to show that P2
1 ¼ ð−1ÞbNc=2c.

One can also show that P1c1iP1 ¼ ηc†1i, P1c
†
1iP1 ¼ ηc1i,

and P1χ1iP1 ¼ ηχ1i, where η ¼ ð−1ÞbðNc−1Þ=2c. Neither the
number operator of color-1 fermions Q1 ¼

PNc
i¼1 c

†
1ic1i nor

its parity ð−1ÞQ1 is conserved. Very similarly, one can
construct P2, P3, P4 and R2, R3, R4. So Pa, Ra, and a ¼ 1,
2, 3, 4, can be used as the building blocks to construct all
the possible operators.
Similarly to the antiunitary operator [Eq. (8)] introduced

in the two-colored case, we define

P ¼ K
YNc

i¼1

ðc†1i þ c1iÞðc†2i þ c2iÞðc†3i þ c3iÞðc†4i þ c4iÞ

¼ KP1P2P3P4: ð18Þ
It is easy to show that

PχaiP ¼ ð−1ÞbNc
2
cþNcηχai ¼ −χai; a ¼ 1; 2; 3; 4; ð19Þ

which leads to ½P;H1234� ¼ 0. It is also easy to check that
P2 ¼ 1 and PQaP−1 ¼ Nc −Qa, a ¼ 1, 2, 3, 4, which
automatically leads to PQ12P−1 ¼ 2Nc −Q12, PQ23P−1 ¼
2Nc −Q23, and PQ34P−1 ¼ 2Nc −Q34. Obviously, oper-
ator P always maps ðQ12; Q23; Q34Þ to the same parity
sector.
In fact, we can identify another antiunitary operator:

Pm ¼ K
YNc

i¼1

ðc†1i þ c1iÞðc†2i þ c2iÞðc†3i þ c3iÞðc†4i − c4iÞ

¼ KP1P2P3R4; ð20Þ

1 2 3 4 N-1 N

N-1 N1 2 3 4

N-1 N1 2 3 4

N-1 N1 2 3 4

(a)

1 2 3 4 N

N1 2 3 4

(b)

1 2 3 4 N

N1 2 3 4

FIG. 4. The four-colored SYK with (a) N even and (b) N odd.
In (b), the long vertical dashed line separates the system from the
four Majorana fermions added at infinity. The dashed box
encloses the additional conserved quantityQ0t. The Hilbert space
is enlarged 22 ¼ 4 times. Simultaneously, there are also two more
conserved parities.
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which simply replaces P4 in Eq. (18) with the R4 operator.
It can be contrasted with the similar operator in the two-
colored case [Eq. (13)]. It is easy to show that

PmχaiPm ¼ ð−1ÞbNc
2
cηχai ¼ ð−1ÞNc−1χai; a ¼ 1; 2; 3;

Pmχ4iPm ¼ −ð−1ÞbNc
2
cηχ4i ¼ ð−1ÞNcχ4i; ð21Þ

which indicates that χ4i has an opposite sign from the other
three colors, and this opposite sign leads to fPm;H1234g¼0.
It is also easy to check that P2

m ¼ ð−1ÞNc and PmQaP−1
m ¼

Nc −Qa, a ¼ 1, 2, 3, 4, which automatically leads
to PmQ12P−1

m ¼ 2Nc −Q12, PmQ23P−1
m ¼ 2Nc −Q23,

PmQ34P−1
m ¼ 2Nc −Q34. Obviously, Pm also maps

ðQ12; Q23; Q34Þ to the same parity sector.
Now we find two antiunitary operators—one commut-

ing, and another anticommuting with H1234. From the two
antiunitary operators, one can define the chirality operator
Λ ¼ PPm ¼ P4R4 ¼ ð−1ÞQ4 , which is a unitary operator
anticommuting with the Hamiltonian fΛ; H1234g ¼ 0. Of
course, any ð−1ÞQa, a ¼ 1, 2, 3, 4 works equally well as the
unitary chirality operator. This is clearly intuitive, because
H1234 in Eq. (17) contains one color each, so it anticom-
mutes with ð−1ÞQa , a ¼ 1, 2, 3, 4.
Overall, when combining P with P2 ¼ 1 and Pm with

P2
m ¼ ð−1ÞNc , one can see that when N ðmod 4Þ ¼ 0; 2,

Nc ¼ N=2 is even or odd, so H1234 belongs to class BDI or
class CI, respectively. These cases have the RMT indices
β ¼ 1, α ¼ 0 and β ¼ 1, α ¼ 1, respectively. Both show
the GOE bulk statistics, but with different edge exponents
with α ¼ 0 and α ¼ 1, respectively. The fact that P2 ¼ 1
also leads to no level degeneracy in the parity sector
ðQ12; Q23; Q34Þ. Since there is no operator that can make
connections between different parity sectors, the level
degeneracy is dt ¼ 1 in the total parity sector Qt.

B. N-odd case

1. Incomplete classification with a
missing conserved quantity

When N ðmod 4Þ ¼ 1; 3, the above procedures for even
N need to be modified. In fact, one can still take advantage
of the above representation with the N-even case by adding
decoupled Majorana fermions χa;Nþ1 ¼ χa;∞, a¼1, 2, 3, 4,
to make the parity conservations in ðQ12; Q23; Q34Þ explic-
itly [see Fig. 4(b)]. Then one can still define Pa, a ¼ 1, 2, 3,
4 and Ra, a ¼ 1, 2, 3, 4, P, and Pm [and therefore also the
chirality operator Λa ¼ ð−1ÞQa ] with Nc ¼ ðN þ 1Þ=2 as
before. When N ðmod 4Þ ¼ 3, Nc is even, and P2 ¼ 1;
P2
m ¼ 1, it is in class BDI; when N ðmod 4Þ ¼ 1, Nc is odd,

and P2 ¼ 1, P2
m ¼ −1, it is in class CI. Unfortunately, this

conclusion is incorrect. It could be expected that the Hilbert
space is enlarged 4 times. Simultaneously, there should also
two more conserved parities when comparing with the total
number of conserved quantities in intercolor scheme, which

is 2. We only have three as ðQ12; Q23; Q34Þ, so one
conserved quantity is still missing, and we will find this
missing parity in Sec. V B 2.
WhenN is odd, one may also use the following operator:

Pz ¼ KZ1P2Z3P4; ð22Þ

which simply replaces P1, P3 in Eq. (18) with the Z1, Z2

operator. So it will play a complementary role to P, which
will be analyzed in the following. One can show that

PzχaiPz ¼ −ð−1ÞbNc
2
cþNcηχai ¼ χai; a ¼ 1; 2; 3; 4; ð23Þ

where, as usual, i ¼ ∞ is always excluded. It is also easy to
check that ½Pz;H1234� ¼ 0, P2

z ¼ −1, that PzQaP−1
z ¼

Nc − 1 −Qa þ 2na∞, a ¼ 1, 3, and that PzQaP−1
z ¼

Nc −Qa, a ¼ 2, 4, which automatically leads to
PzQ12P−1

z ¼ 2Nc − 1 −Q12 þ 2n1∞, PzQ23P−1
z ¼ 2Nc−

1 −Q23 þ 2n3∞, and PzQ34P−1
z ¼2Nc−1−Q34þ2n3∞.

Obviously, operator Pz maps ðQ12; Q23; Q34Þ to a different
parity sector ðQ12 þ 1; Q23 þ 1; Q34 þ 1Þ. However, both
sets have the same total parity, Qt ¼ Q12 þQ34.

2. Complete classification by finding the
missing conserved quantity Q0t

Unfortunately, the above classification disagrees with
our exact diagonalization results, especially on edge
exponents. It is important to resolve the discrepancy. It
turns out that it missed the additional conserved quantity
Q0t, which is the parity in the square box in Fig. 4(b). In the
two-colored cases discussed in Secs. III and IV, it is also a
conserved quantity, but it does not commute with parity Q1

and parityQ2, so it cannot be used in the complete set of the
conserved quantities. Here, it commutes with the parities
Q12, Q23, Q34. So Q0t is the (so far missing) additional
member of the complete set of the conserved quantities
ðQ12; Q23; Q34; Q0tÞ. From Fig. 4(b), it is easy to see that

Qt ¼ Q12 þQ34 ¼ Q0t þ n12∞ þ n34∞; ð24Þ

where n12∞, n34∞ may not be able to be conveniently
expressed in terms of complex fermions ci, i ¼ 1, 2, 3, 4,
but it can always be concisely expressed in terms of
Majorana fermions n12∞ ¼ 1

2
− iχ1∞χ2∞, n34∞ ¼ 1

2
−

iχ3∞χ4∞. Then one can show that

PQ0tP−1 ¼ 4Nc þ 2 −Q0t − 2ðn12∞ þ n34∞Þ;
PmQ0tP−1

m ¼ 4Nc þ 1 −Q0t − 2n12∞: ð25Þ

So, one can see that the Pm operator changes the parity of
Q0t. This fact eliminates Pm as the valid operator and leaves
P as the only valid one, so there is no spectral mirror
symmetry in the given parities sector ðQ12; Q23; Q34; Q0tÞ.
Because of P2 ¼ 1 and the lack of spectral mirror
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symmetry, the ELS is class AI (GOE), and no edge
exponent can be defined for GOE.
One can also show that

PzQ0tP−1
z ¼ 4Nc −Q0t þ 2ðn1∞ þ n3∞ − n12∞ − n34∞Þ;

ð26Þ

which shows that Pz conserves ðQt;Q0tÞ. This fact shows
that in a given total parity sector ðQt;Q0tÞ, the energy level
has twofold degeneracy dt ¼ 2. This result could be useful
with a quadratic term like in Eq. (27), which breaks the
parities, but still keeps the total parity.
In summary, when N ðmod 4Þ ¼ 0, it is in class BDI;

when N ðmod 4Þ ¼ 2, it is in class CI. In addition to the
bulk, they also have the edge exponents. When N
ðmod 2Þ ¼ 1; 3, it is in class AI (GOE) with dt ¼ 2, and
no edge exponent can be defined. These theoretical results
are confirmed by the exact diagonalization shown in Fig. 5
for the bulk and in Fig. 6 for the hard-edge behavior.

VI. THE HYBRID FOUR-COLORED q= 2
AND q= 4 SYK MODEL

Similarly to the two-colored cases, in the following
section, we will discuss the parity ðQ12; Q23; Q34; Q0tÞ-
violating hybrid four-colored SYK model [Eq. (27)]. It still
conserves the total parity, ðQt;Q0tÞ. It can be used to study
the stability of quantum chaos and the Kolmogorov-
Arnold-Moser theorem in the f ¼ 4 colored SYK [27].
Furthermore, one can demonstrate the importance of
identifying the maximal symmetry, the largest conserved
quantities, and the smallest Hilbert space in order to
perform the correct classifications in the RMT. A small-
perturbation K=J → 0 limit which breaks ðQ12; Q23; Q34Þ
but conserves Qt ¼ Q12 þQ34 may also be used to drag
out the rich and novel physics encoded in Table IV. This
kind of small perturbation may also be used to probe the
interior of a dual black hole in the bulk [45].
A hybrid four-colored q ¼ 2 and q ¼ 4 SYK model is

HHb
1234 ¼

XN
i;j;k;l

Ji;j;k;lχ1iχ2jχ3kχ4l þ i
XN

i;j;a<b

Ki;jχaiχbj: ð27Þ

Of course, other hybrid four-colored models can also be
constructed, but Eq. (27) is the most democratic one
among all four colors. In fact, shown in Fig. 7 is our exact
diagonalization in a slightly generalized model HHb0

1234 ¼P
i;j;k;l Jijklχ1iχ2jχ3kχ4l þ i

P
i;j;a<b K

ab
ij χaiχbj, where Kab

ij

also depends on colors but satisfies the same distribution.
Our exact diagonalization on Eq. (27) leads to similar
results with slightly more noise on a given distribution.
Now, we can apply the particle-hole transformation P

and Pm to it. Although the ðQ12; Q23; Q34Þ parities are not
conserved anymore, the total parity, ð−1ÞQt [and ð−1ÞQ0t

when N is odd], remains conserved. It is also easy to
see that fPm;H12g ¼ fPm;H13g ¼ fPm;H23g ¼ 0 and
½Pm;H14� ¼ ½Pm;H24� ¼ ½Pm;H34� ¼ 0. So Pm neither
commutes nor anticommutes with HHb

1234. Because
½P;H1234� ¼ ½Pz;H1234� ¼ 0 and fP;Pab Habg ¼ fPz;P

ab Habg ¼ 0, the hybrid four-colored SYK does not
have any symmetry anymore. This is in sharp contrast to
the hybrid two-colored SYK [Eq. (12)], where one can still
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FIG. 5. Distribution of the ratio of consecutive level spacings
PðrÞ for the four-colored SYK model with various N ¼ 5, 6, 7, 8.
When N ðmod 4Þ ¼ 1, 2, 3, 0, all the bulk ELS show GOEs,
which agrees with the symmetry analysis summarized in Table IV.
However, they can be distinguished by different edge behaviors,
as shown in Fig. 6. The four background curves are the PðrÞ’s of
the Poisson (red), GOE (blue), GUE (green), and GSE (purple),
respectively.
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FIG. 6. Distributions of the eigenvalues of the four-colored
SYK model with a few of the smallest absolute values. For the
N ¼ 6 and N ¼ 8 cases, each parity sector has mirror symmetry;
thus, we calculate the three smallest absolute values and compare
them with predictions (solid lines) from RMT classes BDI and CI
and find the RMT indices α ¼ 0, 1, respectively. For the N ¼ 5
and N ¼ 7 cases, each parity sector has no mirror symmetry;
thus, we have no well-defined α index. To show the absence of
the mirror symmetry in the odd-N cases, we plot a few of the
smallest absolute eigenvalues in the ðQ12; Q34Þ ¼ ðþ;þÞ or
ðþ;−Þ sector for a single random realization.

SUN, YI-XIANG, YE, and LIU PHYS. REV. D 101, 026009 (2020)

026009-12



identify a conserved quantity Pm [Eq. (13)]. Just from a
symmetry point of view, the hybrid four-colored SYK
belongs to the class A (GUE), so the ELS may satisfy GUE
for any ratio of K=J. When performing the exact diago-
nalization, we need to look at a given total parity ð−1ÞQt.
However, the Kolmogorov-Arnold-Moser theorem shows
that as K=J increases to ðK=JÞc, there may be a chaotic-to-
nonchaotic transition from the GUE to the Poisson. Our
exact diagonalization studies shown in Fig. 7 confirm this
picture.

A. N-even case

It is instructive to look at the K=J → 0 limit in Figs. 7(b)
and 7(d). If one just focuses on the total parity sector ð−1ÞQt,

then as shown in Table IV, there is no level degeneracy and
dt ¼ 1. When N ðmod 4Þ ¼ 0; 2, the exact diagonalization
is performed in the total parity sector Qt. There are four
separate parities in ðQ12; Q23; Q34Þ falling within the same
total parity sector Qt, and these four sectors are completely
independent of each other. Since there is no level repulsion
among the four sets of energy levels, the ELS may start to
show something similar to (in fact, very slightly above) the
Poisson [41]. This is indeed the case shown in Figs. 7(b) and
7(d). Naively, this could mislead one to the conclusion that
H1234 may be integrable when N ðmod 4Þ ¼ 0; 2. Note that
here it is four sectors that are mixed together in the same total
parity sectorQt, while only two sectors are mixed in the two-
colored case, so the four-colored case is expected to be more
close to the Poisson than the two-colored case. Indeed,
in Sec. II B and Table II, we show that the mixed four
UCID GOE, GUE, and GSE, all lead to hr̃i ≈ 0.39 and
hr̃0i ≈ 0.535, which agree with Figs. 7(b) and 7(d). So the
values of hr̃i and hr̃0i in Figs. 7(b) and 7(d) at small K=J
mean that four uncorrelated GOEs are mixed together.
However, as shown in Fig. 5, if one performs the ELS on
separate parities ðQ12; Q23; Q34Þ, then the ELS shows its real
face: class BDI and class CI.
As K=J increases to ðK=JÞc, there is a crossover from

the “fake” Poisson to the GUE, then followed by a chaotic-
to-nonchaotic transition from the GUE to the real Poisson
near q ¼ 2. As shown in Figs. 7(b) and 7(d), the “fake”
Poisson shows a nice plateau regime in both values of hr̃i
and hr̃0i near q ¼ 4, whose length may be used to
quantitatively characterize the stability of the quantum
chaos near the q ¼ 4 side.

B. N-odd case

Similarly, one can first look at the K=J → 0 limit in
Figs. 7(a) and 7(c). As shown in Table IV, when N
ðmod 4Þ ¼ 1; 3, due to the existence of the Pz operator,
which maps ðQ12; Q23; Q34; Q0tÞ to ðQ12 þ 1; Q23 þ 1;
Q34 þ 1; Q0tÞ, there is a double degeneracy dt ¼ 2. The
degeneracy is broken by any nonzero K=J. However, as
shown in the previous section, when performing the ELS
on separate parities ðQ12; Q23; Q34; Q0tÞ, the ELS shows
the GOE [Figs. 5(b) and 5(d)]. The evolution and fine
structures characterized by the NN ratio hr̃i and NNN ratio
hr̃0i are shown in Figs. 7(a) and 7(c). Especially, hr̃0i is
needed to quantitatively characterize the stability of the
quantum chaos near the q ¼ 4 side. As K=J increases to
ðK=JÞc, there is a crossover from the GOE to the GUE, then
followed by a chaotic-to-nonchaotic transition from the
GUE to the real Poisson near q ¼ 2.

VII. PERSPECTIVES AND DISCUSSIONS

As mentioned in the Introduction, during the last decade,
since the discovery of the topological insulators [1,2], there
have also been extensive research activities on the classi-
fication of topological phases of matter which break no

=

=

=

=

(a)

(c) (d)

(b)

FIG. 7. The mean value of the r̃ and r̃0 parameters for the four-
colored hybrid SYK models with N ¼ 5, 6, 7, 8. All data are
taken at a given total parity sector Qt ¼ Q1 þQ2 and averaged
over 400, 200, 10, and 6 samples, respectively. For N ðmod 4Þ ¼
1; 3 in (a) and (c), the H1234 (namely, at K ¼ 0) has twofold
degeneracy dt ¼ 2 in the total parity sector. hr̃i (black curve) for
NN ELS is rapidly changing, but hr̃0i (orange curve) for NNN
ELS shows a nice GOE plateau near K ¼ 0. The hybrid SYK is in
the GUE within some range near K=J ¼ 1, and there is a chaotic-
to-nonchaotic transition from the GUE to the Poisson as K=J
increases. As shown in Ref. [27], when hr̃i is at the GUE (β ¼ 2)
value 0.6027, hr̃0i would be close to the value 0.7344. When hr̃i
is at the Poisson value 0.3863, hr̃0i would be close to 1=2, which
is slightly below the hr̃i’s GOE value of 0.5359. For N
ðmod 4Þ ¼ 2, 0 in (b) and (d), as explained in Sec. II B and
the text, the section very slightly above the Poisson values on the
left near the q ¼ 4 side is due to the mixing of four uncorrelated
parity sectors. The quantum chaos in the GOE is hidden in this
“fake” Poisson and can be dragged out by doing ELS on a given
parity sector ðQ12; Q23; Q34Þ, while the Poisson on the right near
the q ¼ 2 side is a true one. As listed in Table II, the NNN ELS of
the four mixed uncorrelated sectors lead to hr̃0i ≈ 0.535, which is
quite close to the GOE value of hr̃i ¼ 0.5359. Indeed, r̃0 shows a
plateau for the GOE at small K=J.
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symmetries [3,4]. These phases also split into two classes:
interacting symmetry protected topological (SPT) phases
with trivial bulk order (short-range entanglement) and
symmetry enriched topological (SET) phases with non-
trivial bulk topological order (long-range entanglement)
[3,4]. In some special cases, the Hamiltonian whose
exact ground states show such SPT or SET orders can
be constructed, but these Hamiltonians, in general, involve
highly nonlocal interactions which are needed to stabilize
such states. In most cases, the Hamiltonians which may
host these phases are not known; the classifications are
purely symmetry based. For a general, simple experimental
accessible Hamiltonian, these states may have much higher
energy than conventional symmetry-broken states.
A dual vortex method (DVM) was developed in

Refs. [49–52] to classify all the possible Mott insulating
phases of interacting bosons hopping in various 2D lattices
at generic commensurate filling factors f ¼ p=q (p, q are
relative prime numbers). The DVM is a magnetic space
group (MSG) symmetry-based approach which, in princi-
ple, can be used to classify all the possible phases and
phase transitions in a extended boson Hubbard (EBHM)
model. But whether a particular phase identified by the
DVM will become a stable ground state or not depends on
the specific values of all the possible parameters in the
EBHM. This kind of question can only be addressed by
a microscopic approach such as quantum Monte Carlo
simulations on a specific Hamiltonian. The combination
of both methods is needed to completely understand
quantum phases and phase transitions in the EBHM.
A similar approach was extended to 3D (called a vortex
condensation approach) to classify SPT phases in
ð3þ 1ÞD [3,4,53].
The possible organization patterns of matter can also be

classified from a different perspective: they can also be
classified by how quantum information is scrambled in the
system. So, in this paper, we took a different route and
achieved different goals: we classify different types of
quantum chaos and quantum information scramblings in
the colored SYK models instead of their topologically
equivalent classes by using the RMT. Here, we have already
written down a realistic colored SYK Hamiltonian and
identified its maximal symmetries, the largest number of
conserved quantities (which are various fermion parities),
and the smallest (irreducible) Hilbert space. In particular, one
must also exhaust all the possible antiunitary operators
which commute or anticommute with the Hamiltonian.
There are also two kinds of such antiunitary operators—
the first kind keep all the conserved quantities in the
same sector, and the second kind map out of the sector.
The former leads to the RMT classification, while the latter
establishes the connections between different sectors, and
therefore the degeneracy of the energy levels. If any
symmetry or conserved quantity or any operator is missed,
it can lead to misleading results in both classification and

exact diagonalization results. We achieved such a goal in
classifying the quantum chaos in colored SYK with two and
with four colors and a balanced number of Majorana
fermions among different colors. The color degrees of
freedom (d.o.f.) may also be promoted to a global symmetry
G, and then the parities are promoted to various conserved
quantities, so it is also interesting to see how the color d.o.f.
compared to the SYKmodel with globalG ¼ OðMÞ orG ¼
UðMÞ symmetries [54]. As shown in Ref. [31], there are
some still unknown relations between colored SYK and the
colored (Gurau-Witten) tensor model. The method can also
be applied in order to perform the RMT classifications of
colored tensor models [33].
It is interesting to note that the RMT was originally

proposed to study the many-body energy level correlations
of a nuclei with a large atomic number to hold a large
number of electrons [55,56]. Then it was also used to
classify the quantum chaos of noninteracting electrons
moving in a random potential which may show a metal-
to-Anderson-insulator transition (MIT) [57]. There is a
corresponding chaotic-to-nonchaotic transition, where the
single-particle ELS satisfies the Wigner-Dyson distribution
in the metal, while it satisfies the Poisson in the Anderson
insulator. RMT was first applied to QCD in Ref. [58] and
was classified in Ref. [59]. In the presence of pairing such
as colored superconductivity in QCD, fermion numbers are
no longer conserved; only the fermion parities are con-
served. So our method may also be applied to perform the
RMT descriptions of colored superconductivity in QCD
[60,61]. On the other hand, the topologically equivalent
classes of the SPT phases of noninteracting electrons such
as topological insulators or superconductors can be clas-
sified with the same symbols as the tenfold way of the RMT
[1,2] in terms of the two possible antiunitary operators.
However, for many-body interacting electron systems, the
antiunitary operators are not enough; the SPT or SET
phases may be classified by using more advanced math-
ematical tools such as cohomology, cobordism, and tensor
categories [3,4], which were already used in rational
conformal field theory (RCFT) and also in topological
quantum computing.
As shown in this paper, the color d.o.f. make a dramatic

difference. This is due to the fact that the color d.o.f. lead to
more conserved parities and also more antiunitary or
unitary operators. As shown in the text, an even or odd
number of Majorana fermions seems to make a lot of
difference. Whether the number is even or odd also leads to
a different number of mutually conserved parities and
different antiunitary or unitary operator contents. In retro-
spect, the multichannel Kondo models lead to dramatic
differences from single-channel Kondo models [62–65],
with the channel index playing a similar role to the color
index here. Furthermore, only the boundary conditions
changing with an odd number of fermions lead to non-
Fermi liquid behaviors, and therefore the absence of any
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quasiparticles, and we expect that it leads to chaotic
behaviors. Meanwhile, the boundary conditions changing
with even number of fermions leads to Fermi liquid
behaviors with well-defined quasiparticle excitations, and
we expect that it leads to nonchaotic behaviors. Of course,
an odd number of Majorana fermions leads to nontrivial
topology and plays a dramatic role in the classification of
topological phases of matter [3,4], while usually an even
number of Majorana fermions does not.
As presented in the Introduction, there are at least

two different ways to characterize the quantum chaos or
quantum information scramblings. One way is to use the
Lyapunov exponent (or spectrum) to characterize the
quantum information scramblings; they can be extracted
by evaluating OTOC functions at an early time, td < t <
td logN ¼ ts (namely, between dissipation time and
Ehrenfest time), by a large N expansion. It is insensitive
to N ðmod 8Þ Bott periodicity and also the ground-state
degeneracy. Another way is to use RMT to characterize
energy level statistics or spectral form factors in a tenfold
way at a finite and large enough N which shows N ðmod 8Þ
Bott periodicity and also the ground-state degeneracy. The
many-body energy level spacing ΔE ∼ e−N , so the RMT
describes the energy level correlations at the Heisenberg
timescale, tH ∼ 1=ΔE ∼ eN . Because of the wide separation
of the two timescales ts and tH, it remains an open problem
to explore the relations between the two schemes. It was
believed that the two schemes are complementary to each
other to characterize the quantum chaos of a system
from different perspectives. So, it remains an outstanding
problem to investigate the connections between the results
achieved by RMT here with those achieved by the OTOC
in Ref. [12].
The colored SYK models may also be experimentally

realized in various cold atom [66], cavity QED [35], or
solid-state systems [67–69] where there may always be
color d.o.f. They naturally stand for different band indices
in a material. This could achieve the lofty goal of inves-
tigating various exotic properties of quantum black holes in
just a conventional lab on Earth.
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Note added.—Recently, two of the authors found that the
two-colored SYK models may find an application in
traversable wormholes with an attractive interaction [70].

APPENDIX A: TWO-COLORED SYK MODEL:
THREEFOLD WAY AND OPERATOR P12

ACROSS THE TWO COLORS

In the three appendixes, we will give an alternative
intercolor pairing presentation to classify the quantum
chaos in the two-colored (Fig. 8) and four-colored cases
(Fig. 9), and also the corresponding hybrid colored SYK
models. It may be a quite natural approach at first sight. It
may also be the most convenient and economic basis for
doing exact diagonalization, because by pairing across
different colors, one can construct the minimal Hilbert
space to perform the exact diagonalization no matter if N is
even or odd.
However, if N is even, due to the hidden of the separate

parity conservations in ðQ1; Q2Þ in the two-colored case
and ðQ12; Q23; Q34Þ in the four-colored case, special care is
needed to identify the complete set of conserved quantities,
select the relevant operators to perform the classification,
and derive the degeneracy.
If N is odd, one may do the classification in the

minimum Hilbert space with a given Q12 in the two-
colored case or with a given ðQ12; Q34Þ in the four-colored
case. To be compared to the results achieved in the main
text with the intracolor representation, by adding Majorana
fermions at ∞, one may also perform the classification in
the twice enlarged Hilbert space ðQ12; Q̃12Þ in the two-
colored case and in the 4-times enlarged Hilbert space
ðQ12; Q̃12; Q34; Q̃34Þ in the four-colored case.
Obviously, the intercolor scheme is specialized to the

balanced case only and cannot be generalized to the
imbalanced case, while the approach used in the main text
can be easily generalized to the imbalanced case. It is
constructive to compare the two (when N is even) or three
(when N is odd) different classification schemes, which not
only lead to the same conclusions, but also bring consid-
erable additional insights into the physical picture and may
have broad impacts on other problems.

1 2 3 4 N-1 N

N-1 N1 2 3 4
(a)

1 2 3 4 N

N1 2 3 4
(b)

FIG. 8. The two colors with intercolor pairings with (a) N even
and (b) N odd, in contrast to the intracolor pairings in the main
text. The color-1 fermions are all real, while the color-2 fermions
are all imaginary. In (b), the long vertical dashed line separates
the system from the two Majorana fermions added at infinity. The
Hilbert space in (b) is doubled. Simultaneously, there is also one
more conserved parity. Compare with Fig. 1.
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When N is even, the two schemes are as follows:
(a) For the two-colored case, the ðQ1; Q2Þ intracolor

scheme in the main text and the ðQ1; Q2Þ intercolor
scheme in the appendixes.

(b) For the four-colored case, the ðQ12; Q23; Q34Þ intra-
color scheme in the main text and the ðQ12; Q23; Q34Þ
intercolor scheme in the appendixes.

When N is odd, the three schemes are as follows:
(a) For the two-colored case, the ðQ̃1; Q̃2Þ intracolor

scheme in the main text, the Q12 minimum Hilbert
intercolor space in the appendixes, and the ðQ12; Q̃12Þ
intercolor scheme in the appendixes.

(b) For the four-colored case, the ðQ̃12; Q̃23; Q̃34; QtÞ intra-
color scheme in the main text, the ðQ12; Q34Þminimum
Hilbert intercolor space in the appendixes, and the ðQ12;
Q̃12; Q34; Q̃34Þ intercolor scheme in the appendixes.

At first sight, for both N even and odd, one can always
introduce N complex fermions by combining the two
colors ci ¼ ðχ1i − iχ2iÞ=

ffiffiffi
2

p
and c†i ¼ ðχ1i þ iχ2iÞ=

ffiffiffi
2

p
,

and define the particle-hole symmetry operator to be
P12 ¼ K

Q
N
i¼1ðc†i þ ciÞ ¼ Kχ1;1χ1;2…χ1;N , involving only

the color 1. In fact, R12¼P12ð−1ÞQ12 ¼K
Q

N
i¼1ðc†i −ciÞ¼

Kiχ2;1iχ2;2…iχ2;N , involving only the color 2, works
equally well, but it will not lead to new symmetry. It is
easy to show that P2

12 ¼ ð−1ÞbN=2c. One can also show that
P12ciP12¼ηc†i ,P12c

†
i P12¼ηci, andP12χaiP12¼ηχai, a¼1,

2, where η ¼ ð−1ÞbðN−1Þ=2c. The total number of fermions
Qt ¼

P
N
i¼1 c

†
i ci is not a conserved quantity, but the parity

ð−1ÞQt is in H1234. Then P12QtP−1
12 ¼ N −Qt, which

justifies P12 as an antiunitary particle-hole transformation.
And P12 also commutes with the Hamiltonian

½P12; H1234� ¼ 0. It seems to indicate that the ELS is the
same as the complex fermion SYK case discussed previ-
ously [21,22,27]: (i) IfNðmod 4Þ ¼ 1, 3 it is GUEwith dt ¼
1 in a given parity Qt; (ii) if N ðmod 4Þ ¼ 0, it is GOE with
dt ¼ 1 in a given parity Qt; and (iii) If N ðmod 4Þ ¼ 2, it is
GSE with dt ¼ 2 in a given parity Qt. Unfortunately, these
results are inconsistent with those listed in Table III. In the
following, we study how to remedy these problems.

1. N is even

Obviously, the total parity Q12 ¼ Q1 þQ2 is not
enough, because ðQ1; Q2Þ are separately conserved. It
may not be convenient to express ðQ1; Q2Þ in terms of
the complex fermions ci, c

†
i in this basis, but it can be most

conveniently expressed in terms of the Majorana fermions,
as shown below.
To fix this problem, we may still take Q1 ¼PNc
i¼1 c

†
i1ci1 ¼

PNc
i¼1ð12 − iχ1;2iχ1;2i−1Þ, where Nc ¼ N=2

as defined in Sec. III A. Note that in the intercolor scheme
[Fig. 8(a)],Q1 becomes complex but remains Hermitian, so
its eigenvalue remains positive. This is the price one must
pay in this interacolor representation, which makes the
Hamiltonian real (namely, ½K;H� ¼ 0), but many other
operators, such as Q1, are complex. Similar results hold
for Q2. Then one can show that P12Q1P−1

12 ¼ Nc −Q1

and P12Q1P−1
12 ¼ Nc −Q2, which recovers P12QtP−1

12 ¼
N −Qt. When N ðmod 4Þ ¼ 0, P12 maps ðQ1; Q2Þ to the
same sector, P2

12 ¼ 1; it is in the GOE. When N
ðmod 4Þ ¼ 2, P12 maps ðQ1; Q2Þ to ðQ1 þ 1; Q2 þ 1Þ with
the same total parity; it is in the GUE with dt ¼ 2 in the
total parity sector. So we have recovered the results listed in
Table III for even N in this intercolor scheme.
Note that if one performs the exact diagonalization in the

Q12 basis, then it mixes the two completely unrelated parity
sectors ðQ1; Q2Þ and ðQ1 þ 1; Q2 þ 1Þ, so one will find
that the ELS may be something similar to the Poisson
statistics shown in Fig. 3(d). So, only when doing exact
diagonalization in a given parity sector ðQ1; Q2Þ will the
ELS show its real face: the GOE.
In fact, there is a more straightforward way to perform

the classification and also find the degeneracy. The parity
of the number operator Qa, a ¼ 1, 2 can be written as
ð−1ÞQa ¼ ðiχa;1χa;2Þðiχa;3χa;4Þ � � � ðiχa;N−1χa;NÞ. Because
the color 1 χ1;i is completely real and color 2 χ2;i is
completely imaginary, we have Kð−1ÞQaK ¼ iN=2ð−1ÞQa ,
a ¼ 1, 2. When N ðmod 4Þ ¼ 0, the antiunitary operator K
keeps both parities and K2 ¼ 1, which tells us that the
ESL is the GOE. However, when N ðmod 4Þ ¼ 2, K maps
ðQ1; Q2Þ to ðQ1 þ 1; Q2 þ 1Þ with the same total parity.
So it is in the GUEwith dt ¼ 2 in the total parity sectorQ12.

2. N is odd

When N is odd, the exact diagonalization is most
conveniently and economically done without adding any

1 2 3 4 N-1 N

N-1 N1 2 3 4

N-1 N1 2 3 4

N-1 N1 2 3 4

(a)

1 2 3 4 N

N1 2 3 4

(b)

1 2 3 4 N

N1 2 3 4

FIG. 9. The four colors with (a) N even and (b) N odd with the
intercolor pairings across colors 1 and 2, and across colors 3 and
4. In (b), the long vertical dashed line separates the system from
the four Majorana fermions added at infinity. The Hilbert space is
enlarged by 2 × 2 ¼ 4 times. Simultaneously, there are also two
more conserved parities. The two dashed boxes enclose the two
conserved parities Q12 and Q34.
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Majorana fermions at ∞. The classifications can be done
either with or without adding. So the two theoretical
approaches are complementary to each other and should
lead to the same answers when the degeneracy is counted
carefully and correctly.

a. Classification in the minimum Hilbert space
without adding Majorana fermions at ∞

Even in this case, there is no need to add extra decoupled
Majorana fermions at∞. Although Q1, Q2 makes no sense
anymore, Q12 is still well defined, and one can perform
the exact diagonalization in the minimal Hilbert space
with just one conserved quantity Q12. Because ð−1ÞQ12 ¼
ðiχ1;1χ2;1Þðiχ1;2χ2;2Þ � � � ðiχ1;Nχ2;NÞ is always real, K keeps
the parity and K2 ¼ 1, which tells us that the ESL is the
GOE. Since P12Q12P−1

12 ¼ N −Qt, P12 maps Q12 to
Q12 þ 1, so dt ¼ 1þ 1.

b. Classification in the enlarged Hilbert space
by adding Majorana fermions at ∞

In the following, we will perform the classification and
also find the degeneracy in the enlarged Hilbert space by
adding decoupled Majorana fermions at ∞. In fact, as
shown in Sec. 2 a above, this is not necessary in the
intercolor scheme and in the balanced case. However, it is
constructive to do it here to compare with the intracolor
scheme used in the main text.
As shown in Sec. III B, one can add χ1;Nþ1 ¼ χ1∞ and

χ2;Nþ1 ¼ χ2∞ to explicitly make the parity Q̃1 conserva-
tion in color 1 and color 2, respectively. By adding the
two Majorana fermions at ∞, one doubles the Hilbert
space and also generates one more conserved parity. In
this intercolor scheme, it is convenient to take ðQ12; Q̃12Þ
as a complete set, where Q12 is the total parity without
adding the two Majorana fermions, and Q̃12 ¼ Q12 þ
n12∞ is the total parity including the two added Majorana
fermions.
There are also two corresponding operators P12, P2

12 ¼
ð−1ÞNc−1 and P̃12 ¼ P12χ1∞, P̃2

12 ¼ ð−1ÞNc , where Nc ¼
ðN þ 1Þ=2 as defined in Sec. III B. One can work out how
the two operators act on the two conserved quantities:
P12Q12P−1

12 ¼N−Q12, P12Q̃12P−1
12 ¼N−Q̃12þ2n12∞ and

P̃12Q12P̃−1
12 ¼ N −Q12, P̃12Q̃12P̃−1

12 ¼Nþ1−Q̃12. Unfor-
tunately, neither of the two keeps the parity ðQ12; Q̃12Þ. One
may try to use any combinations of P12, P̃12 and R12, R̃12 to
construct relevant operators. For example, one can try P ¼
KP12P̃12 ¼ Kχ1∞, but then PQ12P−1 ¼ Q12, PQ̃12P−1 ¼
1 − Q̃12, so it still does not work. However, if one removes
χ1∞ from P, then just K ¼ Pχ1∞ alone does the job.
Because K2 ¼ 1, it is in the GOE.
In fact, more straightforwardly, because both ð−1ÞQ12

and ð−1ÞQ̃12 are real, K keeps both parities and K2 ¼ 1,
which tells us that the ESL is the GOE.

Note also that P̃12 maps ðQ12; Q̃12Þ to ðQ12 þ 1; Q̃12Þ, so
d ¼ 1 in the minimal Hilbert space with just one conserved
quantity Q12, but dt ¼ 1þ 1 in the enlarged Hilbert space
with a given parity of Q̃12, so it cannot be observed in the
exact diagonalization performed in the minimal Hilbert
space Q12.
For N odd, using this intercolor ðQ12; Q̃12Þ scheme, we

recover the results in Table III achieved in the main text in
the intracolor ðQ̃1; Q̃2Þ scheme.

APPENDIX B: FOUR-COLORED SYK MODELS:
TENFOLD WAY AND OPERATOR P12 (P34)

ACROSS THE FIRST TWO (THE OTHER TWO)
COLORS AND P=KP12P34.

Just like the two-colored SYK model discussed
above, one can introduce N complex fermions from the
first two colors ci¼ðχ1i− iχ2iÞ=

ffiffiffi
2

p
, c†i ¼ ðχ1i þ iχ2iÞ=

ffiffiffi
2

p

and their number operator Qc ¼
P

i c
†
i ci. One defines

the antiunitary particle-hole symmetry operator to be
P12 ¼ K

Q
N
i¼1ðc†i þ ciÞ. In fact, R12 ¼ K

Q
N
i¼1ðc†i − ciÞ

works equally well, but it will not lead to new symmetry.
It is easy to show that P2

12 ¼ ð−1ÞbN=2c. One can also show
that P12ciP12¼ηc†i , P12c

†
i P12¼ηci, and P12χaiP12¼ηχai,

a ¼ 1, 2, where η ¼ ð−1ÞbðN−1Þ=2c.
One can also introduce N complex fermions from the

other two colors di¼ðχ3i− iχ4iÞ=
ffiffiffi
2

p
, d†i ¼ðχ3iþ iχ4iÞ=

ffiffiffi
2

p

and their number operator Qd ¼
P

i d
†
i di. One can also

define the similar antiunitary operator P34 (or R34). It is
easy to see that P34 or R34 can do the same job, but they
cannot provide new information. Of course, one can group
them differently such as P13, P24 or P14, P23, and they
should lead to the same answers.
It can be shown that P12 (also P34) anticommutes

with the Hamiltonian fP12; H1234g ¼ 0. The total number
of fermions Qt ¼

P
iðc†i ci þ d†i diÞ ¼ Qc þQd is not a

conserved quantity, but its parity ð−1ÞQt is. In fact, the
parities ð−1ÞQc and ð−1ÞQd are separately conserved.
We have P12QcP−1

12 ¼ N −Qc, P12QdP−1
12 ¼ Qd, so it

maps to the same (opposite) parity in the Qc sector
when N is even (odd). Similarly, P34QcP−1

34 ¼ Qc and
P34QdP−1

34 ¼ N −Qd.
One can also define another antiunitary operator as

P ¼ K
YN
i¼1

ðc†i þ ciÞðd†i þ diÞ ¼ P12P34K; ðB1Þ

which can be contrasted with the similar operator in
the two-colored case [Eq. (8)]. It is easy to show that
P2 ¼ ð−1ÞN and ½P;H1234� ¼ 0. It is also easy to see
that PQcP−1 ¼ N −Qc and PQdP−1 ¼ N −Qd. Then
PQtP−1

12 ¼ N −Qc þ N −Qd ¼ 2N −Qt, so it always
maps to the same total parity.
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1. N is even

When combining P with P2 ¼ ð−1ÞN and P12 with
P2
12 ¼ ð−1ÞbN=2c, paying special attention to their action on

the Hilbert space with given parities in ð−1ÞQc and ð−1ÞQd ,
one can see that when N ðmod 4Þ ¼ 0; 2, ðQc;QdÞ maps to
the same sector, so H1234 belongs to class BDI (chGOE) or
class CI (BdG), respectively. The degeneracy d ¼ 1. These
facts completely agree with theNðmod 4Þ ¼ 0, 2 case listed
in Table IV. Note that one can also combine P in Eq. (B1)
with any other Pij or Rij without affecting the results [71].
Namely, one needs to pick up just one representation,
ðP;PijÞ or ðP;RijÞ.
As alerted earlier, one can introduceN complex fermions

from colors 2 and 3, with fi ¼ ðχ3i − iχ2iÞ=
ffiffiffi
2

p
, f†i ¼

ðχ3i þ iχ2iÞ=
ffiffiffi
2

p
and their number operator Q23 ¼ Qf ¼P

i f
†
i fi. One can also define the similar antiunitary

operator P23 (or R23). Of course, Q23 enclosed in the
box in Fig. 9(a) is also a conserved parity. When N is even,
it also commutes with ðQ12; Q34Þ. Although it may not be
conveniently expressed in terms of the two groups of
complex fermions ci and di, they can be conveniently
expressed in terms of Majorana fermions of colors 2 and 3.
One can show that acting on them with P and P12 does not
affect the results above achieved with ðQ12; Q34Þ only.
Now we find two antiunitary operators, one commuting

and another anticommuting with H1234. From the two
antiunitary operators, one can define the chirality operator
Λ ¼ P12P ¼ P34K ¼ χ3;1χ3;2…χ3;N , which is nothing but
proportional to the parity operator i−N=2ð−1ÞQ3 of the
color 3. It is a unitary operator anticommuting with the
Hamiltonian fΛ; H1234g ¼ 0 and also keeps all the parities
ðQ12; Q23; Q34Þ. Of course, Λ ¼ P12K ¼ χ1;1χ1;2…χ1;N ¼
i−N=2ð−1ÞQ1 works equally well as the unitary chirality
operator.
In fact, there is a more straightforward way to do the

classification and also find the degeneracy. Because all
three parities ðQ12; Q23; Q34Þ are real, Tþ ¼ K keeps
them all, and K2 ¼ 1. Because the Hamiltonian is real,
½K;H� ¼ 0. Note that we also have the chiral (mirror)
symmetry fð−1ÞQa;Hg¼0, where ð−1ÞQa ¼ ðiχa;1χa;2Þ � � �
ðiχa;N−1χa;NÞ and a ¼ 1, 2, 3, 4. Thus, we can construct the
other antiunitary operator as T− ¼ Kð−1ÞQa , which anti-
commutes with the Hamiltonian. From the fact that ½ð−1ÞQa;
ð−1ÞQb � ¼ 0, one can see that T− keeps all three parities.
Since ð−1ÞQa has the same sign as iN=2, it is easy to see
that T2

− ¼ ð−1ÞN=2. Combining Tþ ¼ K, T2þ ¼ 1 and T− ¼
Kð−1ÞQa , T2

−¼ð−1ÞN=2, we conclude that when N
ðmod4Þ¼0, it is class BDI, and when N ðmod 4Þ ¼ 2, it
is class CI.

2. N is odd

Similarly to the two-colored case, when N is odd, the
exact diagonalization is most conveniently and economi-
cally done without adding any Majorana fermions at ∞.

The classifications can be performed either with or without
adding, so the two theoretical approaches are complemen-
tary to each other and should lead to the same answers.

a. Classification in the minimum Hilbert space
without adding Majorana fermions at ∞

Even in this case, there is no need to add extra Majorana
fermions at ∞. There are still three conserved quantities
Q12, Q23, Q34, but Q23 does not commute with ðQ12; Q34Þ
anymore, so we still perform the exact diagonalization in
the minimal Hilbert space with just two conserved quan-
tities ðQ12; Q34Þ. Because both Q12 and Q34 are real, the
complex conjugate K holds for ðQ12; Q34Þ and K2 ¼ 1.
Again, the Hamiltonian is real, so ½K;H� ¼ 0. These facts
tell us that the ESL is the GOE. Note that ð−1ÞQa is not
defined for odd N. As said above, P maps ðQ12; Q34Þ to
ðQ12 þ 1; Q34 þ 1Þ, so the level degeneracy is d ¼ 1 in the
minimum Hilbert space with given ðQ12; Q34Þ, and the
level degeneracy is dt ¼ 2 in the total parity sector
Qt ¼ Q12 þQ34. This dt ¼ 2 can be seen in the exact
diagonalization in a given total parity Qt. These results
recover those listed in Table IV.

b. Classification in the enlarged Hilbert space
by adding Majorana fermions at ∞

In the following, we will perform the classification and
also find the degeneracy in the enlarged Hilbert space by
adding decoupled Majorana fermions at infinity. In fact, as
shown in Sec. 2 a above, this is not necessary in the
intercolor scheme and in the balanced case. However, it is
constructive to do it here to compare with the scheme used
in the main text.
As shown in Sec. V B, one can add χa;Nþ1 ¼ χa∞, a ¼ 1,

2, 3, 4 to make the parity conservation in ðQ̃12; Q̃23;
Q̃34; QtÞ explicitly [72]. Then one can repeat the proce-
dures as in the N-even case in Sec. I above with
N → N þ 1. In this intercolor scheme, it is more conveni-
ent to take ðQ̃12; Q12; Q̃34; Q34Þ as the complete set, which
is complementary to the set ðQ̃12; Q̃23; Q̃34; QtÞ used in the
main text [72]. In this set, ðQ12; Q34Þ is the parity without
adding the four Majorana fermions [enclosed in the two
boxes in Fig. 9(b)], and Q̃12 ¼ Q12 þ n12∞, Q̃34 ¼ Q34 þ
n34∞ is the parity including the four Majorana fermions.
One can also construct two new operators P̃12 ¼ P12χ1∞
and P̃34 ¼ P34χ3∞ with P̃2

12 ¼ P̃2
34 ¼ ð−1Þ½bðNþ1Þ=2c. They

lead to a new composite operator P̃ ¼ KP̃12P̃34 with
P̃2 ¼ ð−1ÞNþ1 ¼ 1.
Unfortunately, similarly to the two-colored case dis-

cussed above, none of the these operators keep the
complete set of the parities ðQ12; Q̃12; Q34; Q̃34Þ in the
same sector. One can try to use P12, P̃12; R12; R̃12 for colors
1 and 2, and P34, P̃34; R34; R̃34 for colors 3 and 4 to
construct relevant operators in this intercolor scheme.
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Taking the experience from the two-colored case, it turns
out that just K alone does the job. Because K2 ¼ 1, it is in
the GOE.
In fact, more straightforwardly, since all four parities of

ðQ12; Q̃12; Q34; Q̃34Þ are real, K keeps all the parities and
K2 ¼ 1 which tells us the ESL is the GOE. Of course, all
four colors’ individual parities still anticommute with the
Hamiltonian fð−1ÞQ̃a ; Hg ¼ 0, i ¼ 1, 2, 3, 4, but none can
keep all the cross parities. For example, ð−1ÞQ̃1 keeps Q̃12

but changes Q12. Note that ð−1ÞQa is not a chiral operator
for odd N.
Note also that P̃ maps ðQ12;Q34;Q̃12;Q̃34Þ to ðQ12 þ 1;

Q34 þ 1; Q̃12; Q̃34Þ, which has the same total parity Qt ¼
Q12 þQ34, so d ¼ 1 at a given parity ðQ12; Q34Þ and dt ¼
2 with the total parity Qt, consistent with that listed for
N ðmod 4Þ ¼ 1; 3 in Table IV. Obviously, this double
degeneracy can be observed in the exact diagonalization
performed in the total parity Qt sector shown in Figs. 7(a)
and 7(c). Of course, this scheme cannot even be used in the
imbalanced case.
Finally, we conclude that the biggest advantage to using

the intercolor scheme is that the Hamiltonian is made real:
if all the conserved quantities are real, then the bulk ESL
must be the GOE. This is why seven out of eight cases in
Tables III and IV are real. The only exception is that in the
two-colored case withN ðmod 4Þ ¼ 2, as shown in Sec. I of
Appendix A, both Q1 and Q2 are imaginary, so it is in the
GUE. As is shown in Refs. [35–39] in the Dicke model, K
is the only relevant antiunitary operator which commutes
with the Dicke Hamiltonian, so K2 ¼ 1 only leads to the
GOE for the Dicke model.
Unfortunately, as said before, this intercolor scheme

cannot be extended to the imbalanced case. When

generalizing the method used in the main text to all the
possible imbalanced cases with q ¼ 4, we find all ten
classes in the tenfold classifications [70].

APPENDIX C: CLASSIFICATIONS OF THE
HYBRID TWO- AND FOUR-COLORED SYK
MODELS IN THE INTERCOLOR SCHEME

It turns out that the intercolor scheme may be used to
reach the classifications of the hybrid two- and four-colored
SYK models more quickly than the intracolor scheme used
in the main text. The complex conjugate operator K is the
operator that does most of the job.

1. Hybrid two-colored case

For the representation used in Fig. 8, the hybrid
Hamiltonian HHb

1122 in Eq. (12) is real, and the only
conserved quantity is total parity ð−1ÞQt. No matter if N
is even or odd, Qt ¼ Q12 is always real, and thus ð−1ÞQt is
also real. Then ½K;HHb

1122� ¼ 0 and ½K; ð−1ÞQt � ¼ 0. Of
course, K2 ¼ 1, so its ESL is the GOE at any ratio J=K.

2. Hybrid four-colored case

Since the quadratic term i
P

i;j;a<b K
ab
ij χaiχbj contains all

kinds of intercolor couplings, the intercolor scheme shown
in Fig. 9 cannot be used to make it real. In fact, it has no
symmetry, so the ESL of the total Hamiltonian HHb

1234 in
Eq. (27) is in the GUE at J=K ∼ 1. If one changes the
quadratic term to i

P
Kijðχ1iχ2j þ χ3iχ4jÞ, then just like the

hybrid two-colored case, it also becomes real; the modified
hybrid four-colored SYK model must also be in the GOE
at J=K ∼ 1.
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