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Gravity gradient is known as a serious systematic effect in atomic tests of the universality of free fall,
where the initial central position and velocity of atoms need to be exactly controlled. In this paper, we study
quantum free fall with high-order gravity gradients. It is shown that the cubic terms in the Newtonian
potential shall generate a new phase shift in atom interferometers, which depends on the position and
velocity uncertainties of the incident atoms. We further investigate the nonclassicality of free fall and show
that, due to the cubic potential, the gravitational Wigner equation in phase space of position and velocity is
different from the classical Liouville equation. There exists a mass-dependent correction in the dynamical
equation regardless of initial state. Nevertheless, this is just a quantum mechanical effect of microparticles,
which does not violate equivalence principle that inertia mass is equal to the gravitational mass.
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I. INTRODUCTION

By using some modern techniques, such as neutron
interferometer [1], atom interferometer (AI) [2–4], and the
optical atomic clocks [5–7], gravity near Earth’s surface has
been measured very precisely. Using AI, the gravitational
acceleration was measured in an accuracy of 10−9g, with
g ≈ 9.8 m=s2 [3]. Using optical atomic clocks, the gravi-
tational time dilations due to the height change of less than
1 meter were observed [5]. In addition to interference, the
bound state is also a typical nonclassical effect predicted by
quantum mechanics. Several experiments [8–10] have
demonstrated such phenomena in gravitational potential
via the reflecting neutrons above the solid-material surface.
Equivalence principle (EP), i.e., inertia mass equals the
gravitational mass, is the basis for describing gravitational
interaction. There are still no experimental evidences for EP
violation [11,12]. However, String theories and some
hypothetical experiments of gravity predict EP violation,
see, e.g., [13–15]. Recently, scientists propose to test EP
with unprecedented accuracy by the program of European
Space Agency: the Space-Time Explorer and Quantum
Equivalence Space Test mission (STE-QUEST) [16–21].
The advantages of space experiment are the long freely
falling time of test particles and the small nongravity
noises. Scientists are planning to measure the gravitational
acceleration with a high accuracy of 10−15g [20,21].
In theory, the calculations for AI’s phase shifts are

usually based on the uniform gravity and its first-order
gradient [22–24], the latter is known as a serious systematic
effect in atomic tests of the universality of free fall [25–28].

In this article, we study quantum free fall with high-order
gravity gradients. On one hand, the high-order gravity
gradients may affect AI’s phase shift in the future space
laboratory. On the other hand, there has been considerable
interest in quantum violation of the universality of free fall
[29–33]. Greenberger [29] first introduced this conception
by using the gravitational Bohr atoms. The same as
Coulomb force, Newtonian gravity is also the central force,
so the orbital radius of a particle moving around Earth may
be “discrete,” which depends on the mass of free fall and
therefore contradicts the universality of free fall. However,
this still needs a detailed study as the atomic initial state is
unlike that of classical particles dropped from some local
regimes. In mathematics, it would be very difficult to
construct a local initial wave packet in spatial 3-dimensions
(wherein the test particles were dropped), via the super-
position of “hydrogen atomic eigenstates.” Note that, even
in classical mechanics, analytically solving the trajectory of
free fall as a function of time is not trivial, which refers to
the inverse Kepler problem [34].
In this work, we Taylor-expand gravitational potential to

be the cubic form. With such nonlinear potential, the
positional average of particles couples with its initial
position and velocity uncertainties during the process of
free falling. Then, there exists a phase shift in AI which
depends on the velocity uncertainty of the incident atoms.
The phase shift increases with the time of freely falling as
t4, and decreases with Earth’s radius as R2. Thus, this effect
is negligible in the ground-based laboratory, because of
large R and short t. However, the present systematic effect
may be not negligible in the future space experiment due to
the gravity of the satellites whose sizes are far smaller
than that of Earth, and very long freely falling time of
cold atoms.
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We further investigate the nonclassicality of free fall
based on the Wigner equation which is known as an
effective approach to study the quantum-to-classical tran-
sition [35]. With the nonlinear Newtonian potential, the
Wigner equation in phase space of position and velocity is
different from the classical Liouville equation. There exists
a quantum correction in the dynamical equation which
depends on the mass of free fall. We propose an approach to
solve the multidimensional Wigner equation within the
lowest-order quantum correction, and give a numerical
estimation on the magnitude of the observable nonclassical
effect in real space.
This article is organized as follows. In Sec. II, by using

the Newtonian equation (and Heisenberg equation) we
calculate the time-dependent position (and positional oper-
ator) of a freely falling particle in the gravitational potential
of cubic form. The obtained solution of the positional
operator takes the same form as that of the classical
trajectory in time evolution. In Sec. III., we study the
path-dependent phase of AI with the cubic potential, and
show that there is a phase shift relating to the initial velocity
uncertainty of incident atoms and may be detectable in the
space laboratory. We also suggest using the nonuniform
magnetic field to simulate gravitational field for demon-
strating the predicted effects in the ground-based labora-
tory. In Sec. IV, we solve the gravitational Wigner equation
and discuss the dynamical nonclassicality. Finally, we
present our conclusions in Sec. V.

II. POSITION AND POSITIONAL OPERATOR

A. The classical one-dimensional motion

In the region x; y; z ≪ R of the displaced Cartesian
coordinates (Rþ x; y; z), we expand the Newtonian poten-
tial as

ϕðrÞ ¼ −
GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRþ xÞ2 þ y2 þ z2
p

≈ gx −
g
R
x2 þ g

2R
ðy2 þ z2Þ

þ g
R2

x3 −
3g
2R2

ðy2 þ z2Þxþ � � � ; ð1Þ

by neglecting the terms of higher order than ð1=RÞ2 and the
constant −GM=R, where r ¼ ðx; y; zÞ and g ¼ GM=R2,
with gravitational constant G ≈ 6.67 × 10−11 N · m2 · kg−2

and the mass M of a spherical gravity source. Following
potential (1), the classical motion equation d2x=dt2 ¼
−∂xϕðrÞ along the x-direction reads

d2x
dt2

≈ −g
�
1 −

2x
R

þ 3x2

R2
−
3ðy2 þ z2Þ

2R2

�
: ð2Þ

In the ground-based laboratory, the freely falling time of
atoms is ultimately limited by the sizes of practical vacuum

installation, for example, the freely falling of 2 seconds
needs a height about 20 m. However, the time can be
very long in the microgravity system. For example, the
biggest gravitational acceleration is gs ¼ GM=R2

s ≈ 6.67 ×
10−8 m=s2 at the surface of a sphere of mass M ¼ 103 kg
and radius Rs ¼ 1 m. The initial velocity of cold atoms is
on the order of v0 ¼ 10−3 m=s, and therefore the character-
istic length of motions is x ∼ v0t0 þ gst20=2 ≈ v0t0 ¼
10−2 m with the freely falling time t0 ¼ 10 s. As a
consequence, the acceleration contributed by the high-
order gravity gradients is 3gx2=R2 ≈ 4 × 10−12 m=s2, with
R ¼ 1.5 m. This acceleration seems small but may be
detectable in the future space experiments with high
precision.
Eliminating physical units in the left and right hands of

Eq. (2), all quantities in the equation can be temporarily
regarded as dimensionless. In terms of small 1=R, we
expand the solution of Eq. (2) as

xðtÞ ¼ x0ðtÞ þ
1

R
x1ðtÞ þ

1

R2
x2ðtÞ: ð3Þ

Inserting this series back into Eq. (2) results in

d2x0
dt2

¼ −g; ð4Þ

d2x1
dt2

¼ 2gx0; ð5Þ

d2x2
dt2

¼ 2gx1 − 3gx20 þ
3

2
gðy2 þ z2Þ: ð6Þ

The solution of Eq. (4) is well known:

x0ðtÞ ¼ xi þ vxit −
1

2
gt2; ð7Þ

with xi and vxi being the initial position and initial velocity
along the x-direction. Inserting Eq. (7) into Eq. (5), we have

x1ðtÞ ¼ gt2
�
xi þ

1

3
vxit −

1

12
gt2

�
: ð8Þ

For Eq. (6), we must find the solutions of y- and z-
directional motions. In those directions, ∂yϕðrÞ ¼ 0 and
∂zϕðrÞ ¼ 0, by neglecting the terms of 1=R in potential (1).
Therefore, we can use the simplest forms yðtÞ ¼ yi þ vyit
and zðtÞ ¼ zi þ vzit to solve Eq. (6), because x2ðtÞ=R2 is
considered the highest-order correction of nonlinear grav-
ity. Here, ðyi; ziÞ and ðvyi; vziÞ are the initial position and
initial velocity in the (y; z) plane. Then the solution of
Eq. (6) is given by
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x2ðtÞ ¼
5g2t4

12
xi þ

11g2t5

60
vxi −

11g3t6

360

−
3gt2

4
ð2x2i − y2i − z2i Þ −

gt4

8
ð2v2xi − v2yi − v2ziÞ

−
gt3

2
ð2xivxi − yivyi − zivziÞ: ð9Þ

Finally, the solution of Eq. (3) is shortly written as

xðri; vi; tÞ ¼ αxi þ βvxi − γ

− α̃ð2x2i − y2i − z2i Þ − β̃ð2v2xi − v2yi − v2ziÞ
− γ̃ð2xivxi − yivyi − zivziÞ; ð10Þ

with

α ¼ 1þ gt2

R
þ 5g2t4

12R2
; ð11Þ

β ¼ t

�
1þ gt2

3R
þ 11g2t4

60R2

�
; ð12Þ

γ ¼ 1

2
gt2

�
1þ gt2

6R
þ 11g2t4

180R2

�
; ð13Þ

α̃ ¼ 3gt2

4R2
; β̃ ¼ gt4

8R2
; γ̃ ¼ gt3

2R2
: ð14Þ

The above parameters are rather tedious, but can be verified
by numerically solving the exact Newtonian equation (three
coupled differential equations):

d2r
dt2

¼ ∇r
GMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðRþ xÞ2 þ y2 þ z2
p ; ð15Þ

with ∇r ¼ ð∂x; ∂y; ∂zÞ, whose solution in the x-direction is
denoted by xnum. Correspondingly, we temporarily denote
the approximate solution (10) as xapp, wherein the second-
order correction xð2Þ ¼ xapp − x0 − ðx1=RÞ ¼ x2=R2 is the
feature in the present work. So, one may compare it with
the numerical counterpart xnum − x0 − ðx1=RÞ, based on the
given x0 and x1 by Eqs. (7) and (8) respectively. Using our
estimated parameters in the paragraph below Eq. (2), we
found that the analytical solution in short duration is in
good agreement with the numerical one, see Fig. 1.

B. Heisenberg equation for positional operator

We now generalize the above perturbation theory into
quantum mechanics for computing the time-dependent
positional operator of free fall. The quantized Hamiltonian
reads Ĥ ¼ p̂2=ð2mÞ þmϕðr̂Þ, where the momentum oper-
ator p̂ ¼ ðp̂x; p̂y; p̂zÞ and position operator r̂ ¼ ðx̂; ŷ; ẑÞ
obey the canonical quantization. According to the
Schrödinger equation, the time-dependent state can be

written as jψi ¼ expð−itĤ=ℏÞjii with an initial state jii.
Therefore, the time evolution of any observable quantity
hijÔðtÞjii is determined by

ÔðtÞ ¼ e
it
ℏĤÔe

−it
ℏ Ĥ: ð16Þ

The Heisenberg equation of ÔðtÞ is
dÔðtÞ
dt

¼ i
ℏ
e
it
ℏĤ½Ĥ; Ô�e−it

ℏ Ĥ ¼ i
ℏ
½Ĥ; Ô�ðtÞ: ð17Þ

According to canonical quantization ½x̂;p̂x�¼ iℏ, we have
½p̂2

x; x̂� ¼ −i2ℏp̂x and ½ϕðr̂Þ; p̂x� ¼ iℏ∂ x̂ϕðr̂Þ along the
x-direction, and consequently the quantized canonical equa-
tions: dx̂ðtÞ=dt ¼ p̂xðtÞ=m, dp̂xðtÞ=dt ¼ −m½∂ x̂ϕðr̂Þ�ðtÞ,
and d2x̂ðtÞ=dt2 ¼ −½∂ x̂ϕðr̂Þ�ðtÞ. These equations can be
easily generalized into three spatial dimensions, dr̂ðtÞ=dt ¼
p̂ðtÞ=m, dp̂ðtÞ=dt ¼ −m½∇r̂ϕðr̂Þ�ðtÞ, and d2r̂ðtÞ=dt2 ¼
−½∇r̂ϕðr̂Þ�ðtÞ, with ∇r̂ ¼ ð∂ x̂; ∂ ŷ; ∂ ẑÞ. Consequently, using
the approximate potential (1), the Heisenberg equation of
x̂ðtÞ reads
d2x̂ðtÞ
dt2

≈ −gþ 2gx̂ðtÞ
R

−
3g½x̂ðtÞ�2

R2
þ 3g½ŷðtÞ�2 þ 3g½ẑðtÞ�2

2R2
;

ð18Þ
which takes the same form to the classical Eq. (2). Thus, the
previous approach for solving Eq. (2) is also effective for the
present equation.
We also expand the Heisenberg operator as

x̂ðtÞ ¼ x̂0ðtÞ þ
1

R
x̂1ðtÞ þ

1

R2
x̂2ðtÞ: ð19Þ

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1
x 10

−5

t (s)

x (2
)  (

m
)

 

 

Approximate solution, initial velocity (1,1,1) mm/s

Numerical solution, initial velocity (1,1,1) mm/s

Approximate solution, initial velocity (2,1,1) mm/s

Numerical solution, initial velocity (2,1,1) mm/s

Approximate solution, initial velocity (1,2,1) mm/s

Numerical solution, initial velocity (1,2,1) mm/s

FIG. 1. The solutions of xð2Þ, assuming a free fall was dropped
from the initial position ðRþ x; y; zÞ ¼ ð1.5þ 0; 0; 0Þ m, near a
sphere of massM ¼ 103 kg and radius Rs ¼ 1 m. The solid lines
are obtained from the analytical solution (10) and the dashed lines
are the results from the numerical solution of Newtonian
Eq. (15). Three initial velocities are considered: ð1; 1; 1Þ mm=s,
ð2; 1; 1Þ mm=s, and ð1; 2; 1Þ mm=s.
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Inserting this series into Eq. (18), and using the approxi-
mate solutions ŷðtÞ ¼ ŷþ v̂yt, ẑðtÞ ¼ ẑþ v̂zt in the y- and
z-directions, we find

x̂0ðtÞ ¼ x̂þ v̂xt −
1

2
gt2; ð20Þ

x̂1ðtÞ ¼ gt2
�
x̂þ 1

3
v̂xt −

1

12
gt2

�
; ð21Þ

and

x̂2ðtÞ ¼
5g2t4

12
x̂þ 11g2t5

60
v̂x −

11g3t6

360

−
3gt2

4
ð2x̂2 − ŷ2 − ẑ2Þ − gt4

8
ð2v̂2x − v̂2y − v̂2zÞ

−
gt3

2
ðx̂v̂x þ v̂xx̂Þ þ

gt3

4
ðŷv̂y þ v̂yŷþ ẑv̂z þ v̂zẑÞ;

ð22Þ

where v̂ ¼ p̂=m ¼ ðp̂x; p̂y; p̂zÞ=m is the velocity operator.
Such a definition is nothing but shows very obvious
correspondence between classical and quantum mechanics.
Indeed, if one replaces r̂ ¼ ðx̂; ŷ; ẑÞ and v̂ ¼ ðv̂x; v̂y; v̂zÞ by
the classical initial position ri ¼ ðxi; yi; ziÞ and initial
velocity vi ¼ ðvxi; vyi; vziÞ respectively, Eqs. (20)–(22) will
exactly reduce to the classical solutions (7)–(9). Inversely,
one can directly quantize the classical solutions by ri → r̂
and vi → v̂. In such a way, the product between position
and velocity in classical formulas should be rewritten
as ri · vi ¼ ðri · vi þ vi · riÞ=2.
There are two purposes for listing out Eqs. (19)–(22).

First, they are needed in Sec. III for computing AI’s phase
in the orders of ð1=RÞ0, ð1=RÞ1 and ð1=RÞ2. Second, they
show very obvious correspondence between classical and
quantum mechanics. Following these equations, the posi-
tional average is given as

hijx̂ðtÞjii ¼ αhijx̂jii þ βhijv̂xjii− γ

− α̃hijð2x̂2 − ŷ2 − ẑ2Þjii− β̃hijð2v̂2x − v̂2y − v̂2zÞjii
− γ̃hijðv̂xx̂þ x̂v̂xÞjii
þ γ̃

2
hijðŷv̂y þ v̂yŷþ ẑv̂z þ v̂zẑÞjii: ð23Þ

It depends on initial uncertainties of position and velocity,
and the position-velocity correlation of the prepared par-
ticles ensemble. In any case, compared to the classical
statistics based on solution (10), the time-dependent
parameters α, β, etc. are not changed. Thus, if the initial
state is given by a classical interpretation, for example the
Gaussian distribution in Wigner representation [36], then
the above time-dependent expectation value is also

classical. In Sec. IV, we will continue to discuss this issue
based on the Wigner equation.

III. ATOM INTERFEROMETER

In experiments, the gravitational acceleration of atom is
usually measured by AI. In such a device, the atom is
manipulated by laser pulses and moves simultaneously
along two separate paths to arrive at the detector. In the
uniform gravitational field, the path-dependent interfero-
metric phase is independent on the initial position, initial
velocity, and the mass of atom. This allows scientists to test
EP with very high precision based on the Hamiltonian
Ĥ0 ¼ p̂2=ð2mÞ þmgx̂, where the inertia mass is equal to
the gravitational mass, mI ¼ mG ¼ m. However, the inter-
ferometric phase will become very complicated when the
nonlinear gravity is present. In principle, the atomic initial
motions cannot be completely eliminated. Usually, the
mathematical derivations for AI’s interferometric phase
are based on the Feynman path integral [37–39]. In this
work, we derive the interferometric phase by using the
well-known Zassenhaus formula:

eÂþB̂ ¼ eÂeB̂e−
1
2
½Â;B̂�e

1
6
½Â;½Â;B̂��þ1

3
½B̂;½Â;B̂�� � � � : ð24Þ

It includes an infinite nested commutator of operators Â and
B̂, but can be exactly (or approximately) solved within
some special cases, for example, ½Â; ½Â; B̂�� and ½B̂; ½Â; B̂��
equal to the c-numbers. In the following, we also frequently
use the Baker-Campbell-Hausdorff (BCH) formula [40,41],

eÂB̂e−Â¼ B̂þ½Â; B̂�þ 1

2!
½Â; ½Â; B̂��þ 1

3!
½Â; ½Â; ½Â; B̂���þ � � � :

ð25Þ

A. Zassenhaus approach for atom interferometer

In a typical AI, see Fig. 2, three laser pulses are applied
to probabilistically change atomic momentum by ℏk⃗, with k⃗
being the wave vector of the applied laser pulses. For
simplicity, we assume that the y- and z-directional compo-
nents of k⃗ are negligible. In Fig. 2, the atom moving along
the “up”-path undergos four changes: (a) momentum
instantaneously increasing due to the laser scattering at
time ti, (b) freely falling with a duration of t ¼ tj − ti,
(c) momentum suddenly decreasing by the second laser
pulse at tj, and (d) the freely falling in stage t ¼ tf − tj. So,
the state evolution of the up-atom is written as

j↑i ¼ ÛðtÞe−ikx̂ÛðtÞeikx̂jii: ð26Þ

The operator expð�ikx̂Þ describes the momentum changes
due to the laser scattering, and ÛðtÞ ¼ expð−itĤ=ℏÞ is the
evolution operator of free fall. There also exists a proba-
bility that the atom moves along the “down”-path, i.e., the
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laser induced momentum increasing and decreasing occur
at the times tj and tf, respectively. Thus, we write the state
evolution for the down-path atom as

j↓i ¼ e−ikx̂ÛðtÞeikx̂ÛðtÞjii: ð27Þ

The j↑i-atomand j↓i-atommove both toward to the detector,
resulting in an interferometric signal of h↓j↑i þ c:c., where

h↓j↑i ¼ hijÛ†ðtÞe−ikx̂Û†ðtÞeikx̂ÛðtÞe−ikx̂ÛðtÞeikx̂jii: ð28Þ

Using the relation ÛðtÞÛ†ðtÞ ¼ Û†ðtÞÛðtÞ ¼ 1 and the
solution Û†ðtÞx̂ ÛðtÞ ¼ x̂ðtÞ in Sec. II, we further write
(28) as

h↓j↑i ¼ hije−ikx̂ðtÞeikx̂ð2tÞe−ikx̂ðtÞeikx̂jii: ð29Þ

In terms of 1=R, the positional operator was perturbatively
expanded as x̂ðtÞ ¼ x̂0ðtÞ þ x̂1ðtÞ=Rþ x̂2ðtÞ=R2. As a con-
sequence, the exponent is expanded as

e−ikx̂ðtÞ ≈ e−ikx̂0ðtÞL̂ðt; k; r̂; v̂Þ ð30Þ

by using the Zassenhaus formula. Here,

L̂ðt; k; r̂; v̂Þ ¼ e−i
kx̂1
R e

k2
2R½x̂0;x̂1� × e−i

kx̂2
R2 e

k2

2R2
½x̂0;x̂2�

× ei
k3

6R2
½x̂0;½x̂0;x̂2��; ð31Þ

with

½x̂0; x̂1� ¼ −
2gt3

3

iℏ
m
;

½x̂0; x̂2� ¼
�
2gt3x̂þ gt4

2
v̂x −

7g2t5

30

�
iℏ
m
;

½x̂0; ½x̂0; x̂2�� ¼
3gt4

2

ℏ2

m2
: ð32Þ

In the above Zassenhaus formula, the terms with the
higher orders than 1=R2 have been neglected, as well as
that in Sec. II.
Using formula (30), the exponents product in for-

mula (29) is written as

K̂ ¼ e−ikx̂ðtÞeikx̂ð2tÞe−ikx̂ðtÞeikx̂

¼ e−ikx̂0ðtÞL̂ðt; k; r̂; v̂Þeikx̂0ð2tÞ
× L̂ð2t;−k; r̂; v̂Þe−ikx̂0ðtÞL̂ðt; k; r̂; v̂Þeikx̂

¼ L̂ðt; k; r̂ − r̂d; v̂ þ v̂dÞL̂ð2t;−k; r̂þ r̂d; v̂Þ
× L̂ðt; k; r̂; v̂ þ v̂dÞe−igkt2 : ð33Þ

In the last line of the above equation, we have used the
identities

e−ikx̂0ðtÞv̂eikx̂0ðtÞ ¼ v̂ þ v̂d; v̂d ¼
ℏk
m

ð1; 0; 0Þ; ð34Þ

e−ikx̂0ðtÞr̂eikx̂0ðtÞ ¼ r̂ − r̂d; r̂d ¼ tv̂d: ð35Þ

The first result from Eq. (33) is θ0 ¼ gkt2, the well-
known phase of AI generated by the uniform gravity. If one
neglects the corrections from the order 1=R2, Eq. (31)
reduces to

L̂1 ¼ e−i
θ0
R ðx̂þ1

3
v̂xtÞei

θ0gt
2

12R e−i
θ0ℏkt
3mR : ð36Þ

As a consequence, the operator K̂ reduces to

K̂1 ¼ e−i
θ0
R ðx̂þv̂xt

3
Þei

4θ0
R ðx̂þ2v̂xt

3
Þe−i

θ0
R ðx̂þv̂xt

3
Þe−iðθ0þθ0Þ

¼ ei
2θ0
R ðx̂þv̂xtÞe−iðθ0þθ0Þ; ð37Þ

with

θ0 ¼ 7θ0gt2

6R
−
θ0ℏkt
mR

: ð38Þ

The phase θ0 is due to the gravity gradient 2g=R,
and independent on the initial state jii of the atom. In
Refs. [23,24], there still exists a phase relating to the
initial velocity of the atom. For that, we Taylor expand
exp½i2θ0ðx̂þ v̂xtÞ=R�, and consequently,

FIG. 2. Sketch for atom interferometer. Three short laser pulses
are applied to split and recombine the paths of the traveling atom.
The durations for freely falling in each stage are equal, i.e.,
tj − ti ¼ tf − tj ¼ t. Due to the second-order gravity gradient,
the interferometric phase can be shifted by changing the initial
momentum uncertainty of the incident atom.
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hijK̂1jii ≈
�
1þ i

2θ0
R

ðhijx̂jii þ thijv̂xjiiÞ
�
e−iðθ0þθ0Þ: ð39Þ

Indeed, there is a phase θvx ¼ 2θ0thijv̂xjii=R referring to
the atomic initial central velocity vxi ¼ hijv̂xjii along the
x-direction.

B. Phase shift due to the initial velocity uncertainty

In terms of 1=R and 1=R2, we write formula (31) as
L̂ ¼ L̂1L̂2, with

L̂2ðt; k; r̂; v̂Þ ¼ e−i
kx̂2
R2 e

k2

2R2
½x̂0;x̂2�ei

k3

6R2
½x̂0;½x̂0;x̂2��: ð40Þ

Note that ½L̂1; L̂2� ≈ 0 and ½L̂2ðt; kÞ; L̂2ð2t;−kÞ� ≈ 0,
because the outcomes of such commutators are on the
order of 1=R3. As a consequence, K̂ ≈ K̂1K̂2, with

K̂2 ¼ L̂2ðt; k; r̂ − r̂d; v̂ þ v̂dÞL̂2ð2t;−k; r̂þ r̂d; v̂Þ
× L̂2ðt; k; r̂; v̂ þ v̂dÞ

≈ ei
k
R2
½x̂2ð2tÞ−2x̂2ðtÞ�eiðμx̂þνv̂xtÞeiθ00 : ð41Þ

Above, θ00 is a real number and independent on the initial
state of the atom, as well as the standard phase shift θ0 and
θ0 from the first-order gravity gradient. The μ and ν are
the coefficients for the linear operators x̂ and v̂x in
exp½iðμx̂þ νv̂xtÞ�. This term generates a phase that
depends on the central position and the central velocity
of incident atoms, see Eq. (39).
In K̂2, the operator x̂2ðtÞ has been already solved in

Sec. II, which contains the quadratic operators, such as v̂2x.
Thus, Taylor expanding the exponential operator in
hijK̂1K̂2jii, one can find that there exists a phase depending
on the velocity uncertainty of incident state jii. This is one
of the new systematic effects different from that of the first-
order gravity gradient. For demonstrating such effect, one
can apply an additional manipulation (before the standard
AI) to change the initial momentum uncertainty of incident
atoms but not change the central momentum and central
position of the atomic wave packet. This manipulation can
be realized by a pulse of standing-wave light which
generates the atomic Kapitza-Dirac scattering [42–44].
The phase shift due to such an additional laser pulse along
the x-direction is

θv2x ¼
7gkt4

2R2
hijv̂2xjii: ð42Þ

Numerically, assuming
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hijv̂2xjii

p
¼0.1ℏk=m≈10−3m=s

with k ¼ 2π=ð500 nmÞ and m ¼ 10−25 kg, we have θv2x ≈
5.9π × 10−12 with t ¼ 1 s. Here, R ≈ 6.4 × 106 m and g ¼
GM=R2 ≈ 9.8 m=s2 are respectively Earth’s radius and the
gravitational acceleration at Earth’s surface. Compared to

the standard phase shift θ0 and the θvx of gravity gradient,
the present phase shift is very small,

θv2x
θ0

¼ 7t2hijv̂2xjii
2R2

≪
θv2x
θvx

¼ 7thijv̂2xjii
4Rhijv̂xjii

≪ 1; ð43Þ

because of large R and short t in the ground-based
laboratory. However, the situation would be different in
microgravity environments, for example, the gravity of a
satellite in the space laboratory. Using the data
M ¼ 103 kg, R ¼ 1.5 m, and t ¼ 10 s in the paragraph
below Eq. (2), we have g ¼ GM=R2 ≈ 3 × 10−8 m=s2,
θ0 ≈ 12π, and θv2x ≈ 3.2π × 10−3. The phase shifts get
smaller linearly with decreasing M, for example, θ0 ≈
1.2π and θv2x ≈ 3.2π × 10−4 with M ¼ 100 kg. The back-
ground noises in space laboratory, such as the blackbody
radiation and the seismic noise (the vibration of exper-
imental platform) are much smaller than those in the
ground-based laboratory. Therefore, the atomic coherent
time t ¼ 10 s or longer is possible [20,21].

C. Gravity simulation

For experimentally demonstrating the above effects in
the ground-based laboratory, one can use electromagnetic
force to simulate gravity. Consider a magnetic field,
B⃗ ¼ e⃗nμ0I=½2πðRþ xÞ�, that is generated by a dc current
I⃗ along the vertical direction. Here, μ0 is the permeability of
vacuum, e⃗n is the unit vector normal to the plane of I and
Rþ x. Here, Rþ x is the distance between the atom and
current, and x is the dynamical position of the atom. Within
the limitation x ≪ R, the potential energy of the atom in the
nonuniform magnetic field can be expanded as

ϕb ¼ −
μ0IMb

2πðRþ xÞ ≈mgbx −
mgb
R

x2 þmgb
R2

x3; ð44Þ

with Mb being the effective magnetic moment of the atom,
and acceleration gb ¼ μ0IMb=ð2πR2mÞ. The present equa-
tion is very like the gravitational (1). The advantage is that
the value of gb=R2 can be much larger than the gravitational
counterpart. Numerically, supposing R ¼ 0.1 m, gb ¼
0.1 m=s2, and t ¼ 0.1 s, we have θ0 ≈ 4π × 103 and
θv2x ≈ 0.025π, with the same values of m, k, and hijv̂2xjii
as before.

IV. NONCLASSICALITY IN TERMS
OF WIGNER EQUATION

In Sec. III, quantum interference was obtained by
applying several laser pulses to create a superposition state
of atomic momentum via the help of atomic internal bound
states. One might ask whether gravity itself generates the
genuine nonclassicality regardless of laser manipulations.
In this section, we discuss this issue based on the Wigner
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equation, which was introduced first by Wigner in 1932
[35]. This equation is equivalent to the Schrödinger
equation for the dynamical evolution of a pure state, and
thus sometimes called Wigner equivalent formalism [45].
At the same time, this equation also works for the mix
state [46,47]. The Wigner equation looks similar to the
Newtonian equation in phase space and allows us to make
an intuitive comparison between classical and quantum
mechanics [48]. In terms of the Wigner equation, the
quantum correction is on the order of ℏ2=m2, and the
arose gravitational quantum effects are too weak to be
experimentally demonstrated so far.

A. Wigner function

Without generality, we start with the Wigner function in
spatial 3-dimensions. It is defined as [35]

Wðr;p; tÞ ¼ 1

ð2πℏÞ3
Z

∞

−∞
eip·r

0=ℏψ�ðrþ r0=2; tÞ

× ψðr − r0=2; tÞd3r0; ð45Þ

with ψðr; tÞ being the time-dependent state of a quantum
system, and where r ¼ ðx; y; zÞ and p ¼ ðpx; py; pzÞ.
Following this definition, any observable quantity of the
system can be formally written as [48]

hψ jÔjψi ¼
Z

∞

−∞
ÕWðr;p; tÞd3rd3p; ð46Þ

with

Õ ¼
Z

∞

−∞
e−ip·r

0=ℏhrþ r0=2jÔjr − r0=2id3r0 ð47Þ

being the so-called Weyl transform of a Hermitian operator
Ô. In this representation, the observable quantity Õ is a
function of r and p, not the function of operators r̂ and p̂.
It has been well known:

R∞
−∞ Wðr;p; tÞd3pd3r ¼ 1,

jψðr; tÞj2 ¼ R∞
−∞ Wðr;p; tÞd3p, and jφðp; tÞj2 ¼R∞

−∞ Wðr;p; tÞd3r with φðp; tÞ being the wave function
in momentum Hilbert space of state ψðr; tÞ. Moreover,
if Ô is purely a function of x̂ or p̂x, then its Weyl transform
is just the original function [48], i.e., exn ¼ xn andfpn
x ¼ pn

x , with n ¼ 0; 1; 2;…. Consequently, hxi ¼R∞
−∞ xWðr;p; tÞd3rd3p, hx2i ¼ R∞

−∞ x2Wðr;p; tÞd3rd3p,
etc. The y- and z-directional formulas take the similar
forms. Because these representations are the same as the
classical statistics in phase space, the Wigner function is
also called Wigner quasiprobability distribution. Note that
the Weyl transform of x̂p̂x þ p̂xx̂ is also its original
function, i.e., gxpx þ gpxx ¼ 2xpx. Hence, the position or
momentum average with the given Heisenberg operator
(19) in Sec. II can be regarded as a classical measurement to
the initial Wigner functionWðr;p; 0Þ. However, the results

would be different for some other measurable quantities,
such as the distribution function jψðr; tÞj2 in real space.
Thus, it is necessary to study the time-dependent Wigner
function Wðr;p; tÞ.

B. Wigner equation with lowest-order
quantum correction

The time evolution of wave function ψðr; tÞ obeys the
Schrödinger equation, and thus one can establish a dynami-
cal equation for the Wigner function, with definition (45)
and the Hamiltonian Ĥ ¼ p̂2=ð2mÞ þ VðrÞ. Solving the
original (6þ 1)-dimensional Wigner equation is a huge
challenge [46,47], especially with the present central force
problem. Nevertheless, it is resolvable within the classical
limitation ℏ2 → 0 [49–51]. In such a limitation, the Wigner
equation reads [46]

∂tWðr;p; tÞþ p
m
·∇rWðr;p; tÞ−∇rVðrÞ ·∇pWðr;p; tÞ¼Q;

ð48Þ

with

Q ¼ −ℏ2

24
∇3

rVðrÞ ·∇3
pWðr;p; tÞ þOðℏ2Þ; ð49Þ

where ∇r ¼ ð∂x; ∂y; ∂zÞ and ∇p ¼ ð∂px
; ∂py

; ∂pz
Þ. The ℏ2-

dependent Q can be regarded as a quantum mechanical
correction to the dynamical system, because if Q ¼ 0,
Eq. (48) is exactly the classical Liouville equation. In
Eq. (49), the high orders of ℏ2 have been neglected. This
approximation was numerically verified by many previous
references for the one-dimensional questions, see, e.g.,
[49–51]. In terms of velocity v ¼ p=m and acceleration
gðrÞ ¼ −∇rVðrÞ=m ¼ −∇rϕðrÞ, the Wigner equation can
be further written as

∂tfðr;v;tÞþv ·∇rfðr;v;tÞþgðrÞ ·∇vfðr;v;tÞ¼Q; ð50Þ

with ∇v ¼ ð∂vx ; ∂vy ; ∂vzÞ. Using our approximate potential
(1), the quantum correction reads

Q ≈ εq

�
3

2
∂2
vy þ

3

2
∂2
vz − ∂2

vx

�
∂vxfðr; v; tÞ; ð51Þ

with

εq ¼
gℏ2

4R2m2
¼ GMℏ2

4R4m2
: ð52Þ

Correspondingly, the function fðr; v; tÞ can be regarded
as a quasiprobability distribution in the phase space
of position and velocity, with Pðr; tÞ ¼ R∞

−∞ fðr; v; tÞd3v
being a measurable probability distribution in real space.
With the given acceleration gðrÞ, the distribution function
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fðr; v; tÞ and its consequence Pðr; tÞ depend on mass m of
test particles. This is obviously a nonclassical phenomenon.
Note that Q decreases with increasing mass, the corre-
sponding principle holds. This guarantees the validity of
the above semiclassical approximation. One can find that
the neglected terms in the original Wigner equation are
relating to the high orders of small-quantity ℏ2=m2. The
nonzeroQ requires that third and higher derivatives of VðrÞ
are nonzero. Thus, for the linear or quadratic potential, the
Wigner equation takes the same form as the classical
Liouville equation. Nevertheless, we cannot conclude
that the states within linear or quadratic potential are
classical, because the initial states can be prepared in
nonclassical states whose Wigner functions have negative
values, for example, the well-known Fock state jni (with
n ≥ 1) of harmonic oscillator [52,53]. Finally, we would
like to emphasize that the Wigner equation (50) holds
also for the two-body motion, where the variables r
and v are respectively the relative position and relative
velocity between two gravitationally interacting objects
(of masses m1 and m2). The quantum correction is εdq ¼
ℏ2GM3=ð4R4m2

1m
2
2Þ with total mass M ¼ m1 þm2 and

the reduced mass m1m2=ðm1 þm2Þ. The εdq can reduce
to (52) with m1 ≫ m2.

C. The perturbation solution

In short, we rewrite the Wigner equation (50) as

∂tf ¼ −ðL̂ − εqL̂qÞf; ð53Þ

with the classical Liouville operator

L̂ ¼ v · ∇r þ gðrÞ ·∇v; ð54Þ

and a quantum correction

L̂q ¼
�
3

2
∂2
vy þ

3

2
∂2
vz − ∂2

vx

�
∂vx : ð55Þ

Similar to the solution of the Schrödinger equation in
an interacting picture, we formally write the solution of
Eq. (53) as

f ¼ e−tL̂f0; ð56Þ

with

∂tf0 ¼ εqetL̂L̂qe−tL̂f0

≈ εqetL̂0L̂qe−tL̂0f0; ð57Þ

and where

L̂0 ¼ vx∂x þ vy∂y þ vz∂z − g∂vx ð58Þ

is just the Liouville operator with constant gravitational
acceleration g. For deriving the first line in (57), we have
used the relation expðtL̂Þ expð−tL̂Þ ¼ 1, which can be
easily proved by the Zassenhaus formula (24) in
Sec. III. In the second line of (57), the gradient gravity
in the exponential operator has been neglected, because εq
is already a small quantity. This approximation will greatly
simplify our subsequent derivations.
Integrating Eq. (57) and neglecting the high orders of ε2q,

we have

f0ðr; v; tÞ ¼ f0ðr; v; 0Þ þ εq

Z
t

0

eτL̂0L̂qe−τL̂0f0ðr; v; τÞdτ

≈ f0ðr; v; 0Þ þ εq

Z
t

0

eτL̂0L̂qe−τL̂0dτf0ðr; v; 0Þ

þOðε2qÞ: ð59Þ

As a consequence, the Wigner function is solved as

fðr; v; tÞ ≈ e−tL̂f0ðr; v; 0Þ þ εqD̂e−tL̂0f0ðr; v; 0Þ
¼ fcðr; v; tÞ þ εqD̂fuðr; v; tÞ
¼ fcðr; v; tÞ þ fqðr; v; tÞ; ð60Þ

with

D̂ðtÞ ¼
Z

t

0

eðτ−tÞL̂0L̂qe−ðτ−tÞL̂0dτ

¼
Z

0

−t
eτL̂0L̂qe−τL̂0dτ

¼
Z

0

−t
ŜðτÞdτ: ð61Þ

In Eq. (60), fcðr;v;tÞ¼expð−tL̂Þfðr;v;0Þ and fuðr; v; tÞ ¼
expð−tL̂0Þfðr; v; 0Þ are the solutions of classical Liouville
equations with nonuniform and the uniform gravitational
accelerations, respectively. The quantum mechanical cor-
rection fqðr; v; tÞ ¼ εqD̂fuðr; v; tÞ is equal to zero at the
initial time t ¼ 0, so that fqðr; v; tÞ is not the correction for
the initial state but a dynamical one.
The integral kernel ŜðτÞ ¼ expðτL̂0ÞL̂q expð−τL̂0Þ in

(61) can be computed by using BCH formula (25) in
Sec. III. We have

eτL̂0∂vxe
−τL̂0 ¼ ∂vx þ τ½L̂0; ∂vx � ¼ ∂vx − τ∂x; ð62Þ

and consequently

eτL̂0∂2
vxe

−τL̂0 ¼ eτL̂0∂vxe
−τL̂0eτL̂0∂vxe

−τL̂0

¼ ð∂vx − τ∂xÞ2: ð63Þ

These formulas can be directly generalized into y- and
z-directions, and thus
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ŜðτÞ ¼ 3

2
ð∂vy − τ∂yÞ2ð∂vx − τ∂xÞ

þ 3

2
ð∂vz − τ∂zÞ2ð∂vx − τ∂xÞ − ð∂vx − τ∂xÞ3: ð64Þ

Operator (64) includes many terms, so that solving the
quantum correction fqðr; v; tÞ ¼ εq

R
0
−t ŜðτÞfuðr; v; tÞdτ is

still very complex. However, it is easy to solve the quantum
correction in one-dimensional real space, for example,

Pqðx; tÞ ¼
Z

∞

−∞
fqðr; v; tÞd3vdydz

¼ εq

Z
0

−t

Z
∞

−∞
ŜðτÞfuðr; v; tÞd3vdydzdτ

¼ −
εqt4

4
∂3
x

Z
∞

−∞
fuðr; v; tÞd3vdydz

¼ −
εqt4

4
∂3
xPuðx; tÞ: ð65Þ

In the third line of the above equation, we have used the
locality of classical particles ensemble,

lim
η→�∞

fuðr; v; tÞ ¼ lim
η→�∞

½∂ηfuðr; v; tÞ�

¼ lim
η→�∞

½∂2
ηfuðr; v; tÞ� ¼ 0; ð66Þ

with η being one of the variables ðx; y; z; vx; vy; vzÞ, and
thus

R
∞
−∞ð∂ηfuÞdη¼

R
∞
−∞ð∂2

ηfuÞdη¼
R
∞
−∞ð∂3

ηfuÞdη¼0. In
the last line of Eq. (65), Puðx;tÞ¼

R
∞
−∞fuðr;v;tÞd3vdydz

is the one-dimensional probability distribution with con-
stant acceleration. For the same reason,

R∞
−∞Pqðx;tÞdx¼0,

so that the total probability is conserved [the classical
distribution fc in Eq. (60) is already normalized].
Note that Eq. (65) can be proved by directly applying the

Weyl transform to the already obtained Heisenberg oper-
ator x̂ðtÞ in Sec. II. The Weyl transforms of x̂ðtÞ and x̂ðtÞ2
are their original functions, so that hijx̂ðtÞjii and hijx̂ðtÞ2jii
evolve classically. This means that the above Pqðx; tÞ does
not contribute to the average values of position and its
square, i.e.,

R
∞
−∞ x∂3

xPudx ¼ R
∞
−∞ x2∂3

xPudx ¼ 0. This can
be proved by expanding the integrands as the forms of first-
order derivation: x∂3

xPu ¼ ∂xðx∂2
xPu − ∂xPuÞ, x2∂3

xPu ¼
∂xðx2∂2

xPu − 2x∂xPu þ 2PuÞ. The functions in the round
brackets are convergent at x → �∞ for any local distri-
bution Pu. In fact, the above zero result can be also proved
by using the Dirac delta function. Writing Puðx; tÞ ¼R∞
−∞ Puðx0; tÞδðx − x0Þdx0, we have

R∞
−∞ xn∂3

xPuðx; tÞdx ¼R
∞
−∞

R
∞
−∞ Puðx0; tÞxn∂3

xδðx − x0Þdxdx0 ¼ −
R
∞
−∞ Puðx0; tÞ×

ð∂3
x0x

0nÞdx0, with n ¼ 0, 1, 2, 3. Immediately, we seeR
∞
−∞ x3∂3

xPudx ¼ −6, i.e., the quantum correction should
contribute the average value of x3. This is true, and can be
also proved by the Weyl transform of cubic operator x̂ðtÞ3.

Using formula (19) in Sec. II, one can find x̂ðtÞ3 containing
x̂2v̂2x þ v̂2xx̂2, x̂v̂2xx̂, v̂xx̂2v̂x, and ðx̂v̂x þ v̂xx̂Þ2, whose Weyl
transforms are not their original functions [48].

D. The tiny quantum fluctuation

The quantum correction Pqðx; tÞ is now resolvable based
on the given classical probability density Puðx; tÞ ¼R
∞
−∞ fuðr; v; tÞd3vdydz in the uniform gravitational field,
where the integrand can be easily computed by the classical
trajectory-dynamics method [54],

fuðx;vx; tÞ ¼
Z

∞

−∞
δ½x− ðxi þ vxit− gt2=2Þ; vx − ðvxi − gtÞ�

× fðxi; vxi;0Þdxidvxi
¼ fuðx− vxt− gt2=2; vx þ gtÞ: ð67Þ

In short, the variables in y- and z-directions are not written,
and fðxi; vxi; 0Þ is the probability of particles that are
initially at position xi and velocity vxi. Supposing the initial
Wigner function takes Gaussian form [36]

fðx; vx; 0Þ ¼
1

2πσxσv
exp

�
−

x2

2σ2x
−

v2x
2σ2v

�
; ð68Þ

with the standard deviations σx and σv. According to
Eq. (67), replacing x by x − vxt − gt2=2, and vx by
vx þ gt, the above initial state becomes the desired time-
dependent state fuðx; vx; tÞ. Consequently, using the
Gaussian integral we have

Puðx; tÞ ¼
Z

∞

−∞
fuðx; vx; tÞdvx

¼ 1ffiffiffiffiffiffi
2π

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2x þ σ2vt2

p exp

�
−
1

2
ξ2ðx; tÞ

�
; ð69Þ

with

ξðx; tÞ ¼ xþ 1
2
gt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2x þ σ2vt2
p : ð70Þ

Finally, quantum probability density (65) is given as

Pqðx;tÞ¼P0

t4½ξ3ðx;tÞ−3ξðx;tÞ�
½ðσx=σvÞ2þ t2�2 ffiffiffiffiffiffi

2π
p exp

�
−
1

2
ξ2ðx;tÞ

�
; ð71Þ

with

P0 ¼
gℏ2

16R2m2σ4v
: ð72Þ

Figure 3 shows that Pqðx; tÞ is positive in some
regions and negative in others. The previous argumentsR∞
−∞ Pqðx; tÞdx ¼ 0 etc. can be also proved by the numeri-
cal integrals of (71). The P0 is the characteristic probability
density, which increases rapidly with the decreasing of
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velocity uncertainty, as 1=σ4v. Thus, the cooled neutral atom
may be appropriate for achieving a relatively large value of
P0. Consider an atom (of massm) is initially confined in an
optical trap as a harmonic oscillator (of frequency ω) and
laser cooled in its vibrational ground state. Removing
instantaneously the optical trapping, the atom is released
as a freely falling body. The position and velocity uncer-
tainties of the initial wave packet are on the orders of σx ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ð2mωÞp

≈ 3 μm and σv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏω=ð2mÞp

≈ 0.3 mm=s, if
m ≈ 10−25 kg and ω ≈ 100 Hz [55,56]. For the term
g=R2 ¼ GM=R4, we still consider R ¼ 1.5 m and M ¼
103 kg as before, and thus P0 ≈ 3.3 × 10−13 per meter. This
is a very small probability density, beyond the experimental
ability. Assuming σv ≈ 2.3 μm=s and σx ≈ 0.23 mm of
ω ¼ 0.01 Hz (not the experimental data), then P0 is
significantly enlarged to P0 ≈ 3.3 × 10−5 per meter.
One may notice P0 ∝ 1=m2 and thus electrons should

have significant quantum effects. This is true and can be
found in the hydrogen atom. If we replace electronic mass
by an atomic mass and retain Coulomb potential unchang-
ing, then the separateness of the Bohr radius is not obvious.
However, using electron as a free fall to measure gravity is
impractical, because it is very sensitive to the electromag-
netic noise. Thus, the key technologies for quantum free
fall experiments are atom cooling and noises shielding.
Finally, we emphasize that Pq is still not the final result.
The true probability density is P ¼ Pc þ Pq, see Eq. (60).
The classical part Pc may be numerically solved by the
computer command of conditional sum: Pcðx;tÞ¼Q

j

P
nj fðrd;vd;0ÞðΔxÞ2ðΔvÞ3, if x≤Xðrd;vd;tÞ≤xþΔx.

Here, fðrd; vd; 0Þ is the initial distribution function with
the discretized position rd ¼ ðn1; n2; n3ÞΔx and velocity
vd ¼ ðn4; n5; n6ÞΔv, and Xðrd; vd; tÞ is the numerical
solution of the Newtonian equation (15), with any initial

position rd and initial velocity vd. As mentioned before, if
one neglects the present term Pq, there still exists quantum
phenomena in Pc (such as the familiar double-slit inter-
ference of matter waves in flat spacetime), because the
initial state fðrd; vd; 0Þ can be nonclassical. Hence, a more
precise statement for Pcðx; tÞ is that it can be solved by the
classical trajectory with any given initial Wigner function.

V. CONCLUSION

We have studied the free fall of microparticles with high-
order gravity gradients. It is shown that the cubic terms in the
Newtonian potential shall generate a new phase shift in AI,
which depends on the position and velocity uncertainties of
the incident atoms. Certainly, this effect is negligible in the
ground-based laboratory, because Earth’s radius is far larger
than atomic freely falling length limited by the practical
vacuum installation. However, the present effect may be
considerable in the space laboratory due to the gravity of the
satellite. On the one hand, the size of the satellite is far
smaller than Earth. On the other hand, the freely falling time
can be very long within the microgravity system. Thus, this
study may be useful for designing the high-precision AIs of
avoidable systematic effects of nonlinear gravity. For the
sake of economy, we also suggested using the force of atom
moving in the nonuniform magnetic field to simulate the
nonlinear gravity in the ground-based laboratory.
Another value of the present study, which is purely

theoretical, refers to the nonclassicality of freely falling
particles. With the presence of high-order gravity gradients,
there exists a quantum correction in the dynamical equation
of the Wigner function. Certainly, its contribution to the
observable value is very tiny and has less feasibility in
the current experiments. Nevertheless, we have learned that
the nonclassicality of free fall refers two aspects. One is the
initial state which can be nonclassical, prepared by the
nongravity interaction. The other is the quantum-corrected
dynamical equation regardless of initial state. The two
aspects are both mass dependent. Thus, the freely falling
microparticles should be mass dependent in general. As
mentioned earlier, this is just a quantum mechanical effect,
not EP violation. On the one hand, the dynamical equations
throughout the paper are built on the principle that inertia
mass is equal to gravitational mass. On the other hand, the
gravitational Wigner equation satisfies the corresponding
principle that the quantum correction vanishes with the
increasing mass of test particles. Hence, the present
violation of the universality of free fall is just a quantum
mechanical effect of microparticles, not macroparticles.
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