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In the loop quantum gravity context, there have been numerous proposals to quantize the reduced phase
space of a black hole and develop a classical effective description for its interior which eventually resolves
the singularity. However, little progress has been made toward understanding the relation between such
quantum/effective minisuperspace models and what would be the spherically symmetric sector of loop
quantum gravity. In particular, it is not clear whether one can extract the phenomenological predictions
obtained in minisuperspace models, such as the singularity resolution and the spacetime continuation
beyond the singularity, based on results in full loop quantum gravity. In this paper, we present an attempt in
this direction in the context of Kantowski-Sachs spacetime, through the proposal of two new effective
Hamiltonians for the reduced classical model. The first is derived using Thiemann classical identities for
the regularized expressions, while the second is obtained as a first approximation of the expectation value of
a Hamiltonian operator in loop quantum gravity in a semiclassical state peaked on the Kantowski-Sachs
initial data. We then proceed with a detailed analysis of the dynamics they generate and compare them with
the Hamiltonian derived in general relativity and the common effective Hamiltonian proposed in earlier
literature.
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I. INTRODUCTION

It is said that general relativity (GR) predicts its own
inconsistency in the form of singularities: these are
unavoidable features of several GR solutions and are
expected to be cured by a more complete and fundamental
theory of gravity—perhaps a quantum theory. In the case of
loop quantum gravity (LQG) [1–3], the best results we have
are based on models in loop quantum cosmology (LQC)
[4–6]—a LQG-inspired quantization of cosmological
minisuperspaces—in which the big bang singularity is
replaced by a “big bounce” bridging a contracting classical
universe with an expanding one via a region of high (but
finite) curvature in which gravity becomes effectively
repulsive [7–9].
The LQC program has also been directed toward the

study of black hole singularities, due to the fact that the
interior of a spherically symmetric black hole can be
described in terms of a Kantowski-Sachs cosmological
model [10]. Using this observation, several models have
been proposed using Ashtekar variables for the black hole

interior [11–42], and almost all of them find the same
qualitative conclusion: the singularity is resolved, being
replaced by a spacelike transition hypersurface, to the past
of which there is a trapped region (the black hole region)
and to the future of which there is an antitrapped region
(the white hole region). In other words, the singularity is
replaced by a black hole to “white hole” transition. There is
also an alternative approach to construct loop effective
black hole models [43,44], which is based on the polym-
erization of a more general class of inhomogeneous
solutions, then reducing to the homogeneous case while
preserving the covariance, namely the anomaly freedom of
the effective constraints algebra. In the models based on
this alternative approach, a different phenomenology of the
interior of the black hole arises, illustrated in the appear-
ance of an inner horizon (similar to the classical Reissner-
Nordström black hole) and the occurrence of a spacetime
signature change, revealing a Euclidean spacetime region
inside the black hole [43,44].
Inspired from the results in standard LQC for a

homogeneous and isotropic spacetime, the models
from [21,24,36–38,42], although differing in the details
such as the choices of regularization parameters ϵ, all
postulate an effective dynamics for the classical symmetry
reduced system, obtained via replacing the reduced
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Ashtekar-Barbero connection in GR Hamiltonian by a
regularized expression a → sinðϵaÞ=ϵ. However, there
was another proposal to construct a quantum Hamiltonian
for the homogeneous and isotropic LQCmodel which relies
on the construction of the Hamiltonian operator in LQG
[45–49]. Though considered in the early days of LQC
[16,50–53], then proposed in the context of spherically
symmetric quantum model [15], and later on considered in
the context of effective LQC models [54], the idea of
mimicking the construction of the Hamiltonian operator
in LQG for LQC models was put aside. This was due to
the impression that it does not lead to any significant
difference with respect to the symmetry reduction method
applied in standard LQCmodels. Yet, this impression turned
out to not be entirely correct. Indeed, recent works [55,56]
have shown that the standard effective Hamiltonian in the
homogeneous and isotropic LQC model and the effective
Hamiltonian obtained mimicking LQG regularization
present a relative agreement with the standard ones in the
regime of GR, but they also display significant differences,
in particular for the prebounce branch of the universe.
The question therefore arises: what is the situation in the
black hole context and what are the differences which arise,
if at all, with respect to the standard treatment in LQC
effective black hole models? The current work is dedicated
to analyzing this question. In particular, we shall consider
four Hamiltonians and compare the phase space dynamics
they generate for the black hole interior (taking initial
conditions at the black hole horizon): (i) GR reduced
Hamiltonian, Hcl, which gives rise to the singular
Schwarzschild solution; (ii) the Hamiltonian studied in

[22], Hð1Þ
eff , obtained via the aforementioned replacement

in the GR reduced Hamiltonian; (iii) a new proposal Hð2Þ
eff

obtained using Thiemann identities; and (iv) the

Hamiltonian Hð3Þ
eff obtained from the expectation value of

a LQG Hamiltonian [45,46] in a coherent state peaked on
Kantowski-Sacks initial data.
Before we proceed, some observations are in order: first,

while in isotropic and homogeneous cosmology the pro-
posals (iii) and (iv) coincide [55,56] when using a cubic
graph for the coherent state, there is no guarantee that this
remains true in general (in fact, we shall see that it is not the
case for Kantowski-Sachs spacetime). Hence, we treat them
as two separate proposals here. Second, in all our inves-
tigations, we shall adopt the so-called μo scheme for the
choice of regulators. While this is known to lead to
quantum geometry effects at low curvature in all models
considered so far, it remains the simplest testing ground
for conceptual ideas. Our purpose is to identify common
qualitative features (such as singularity resolution and
black hole to white hole transition) that are expected to
survive after a more “physical” μ̄ scheme is adopted. We
also point out that the only known choice within the full
theory of LQG is that of the μo scheme [57].

The structure of the paper is the following. In Sec. II, we
start by briefly reviewing the Hamiltonian formulation of
Kantowski-Sachs metrics in terms of Ashtekar-Barbero
variables, identifying the canonical variables of this system
and obtaining the form of the classical Hamiltonian Hcl.
This Hamiltonian is then regularized following the
approach of standard LQC models, thereby obtaining the

form of Hð1Þ
eff . We finally follow the alternative construction

based on [55,56,58] to find the new proposal Hð2Þ
eff , which

takes into account Thiemann identities at the minisuper-
space level [45,46]. Section III is dedicated to the derivation

ofHð3Þ
eff , that is, the effective Hamiltonian obtained from full

LQG. First, we present the choice of graph, whose
parameters are the inverse of the number of nodes in each
of the three spatial directions, μjij (with i ¼ 1, 2, 3). Then,
we observe that the leading order in the semiclassical
expansion of the expectation value of the LQGHamiltonian
coincides with the GR Hamiltonian as regularized on the
graph, Hμ

eff . Subsequently, we identify the fundamental
variables (i.e., holonomies and fluxes) that describe the
discrete Kantowski-Sachs geometry, and finally approx-
imately evaluate Hμ

eff in this case. In Sec. IV we solve
numerically the dynamics of the four Hamiltonians under
consideration, starting with initial conditions at the black
hole horizon. We numerically solve the dynamics in all the
cases and make a detailed comparison of the induced
evolutions, finding that all the effective Hamiltonians
produce a black hole to white hole transition. We also
evaluate the mass associated with the white hole horizon
as a function of the initial black hole mass and compare
the different cases. Section V concludes the paper with a
discussion of the results.

II. EFFECTIVE KANTOWSKI-SACHS Á LA LQC

The interior of a spherically symmetric black hole is
characterized by the fact that Schwarzschild radial coor-
dinate r becomes timelike. The topology of the spatial
slices (i.e., the surfaces of constant r) in the interior is
therefore ½0; 1� × S2, and the line element reads (in natural
units, G ¼ 1 ¼ c)

ds2 ¼ −
�
2Mbh

r
− 1

�
−1
dr2 þ

�
2Mbh

r
− 1

�
dt2 þ r2dΩ2:

ð1Þ

By changing coordinates ðr; tÞ → ðT; RÞ, with R ¼ t=LR
and T ¼ TðrÞ (LR is a constant with dimension of length),
we can express the metric in the form

ds2 ¼ −NðTÞ2dT2 þ L2
RfðTÞ2dR2 þ L2

SgðTÞ2dΩ2; ð2Þ

where f, g, and the coordinates are dimensionless (the
latter ranging in R ∈ ½0; 1�, θ ∈ ½0; π�, and φ ∈ ½0; 2π�,
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respectively), N is the lapse function, and LS is a constant
with dimension of length. Comparison with (1) reveals
that

fðTÞ2 ¼ 2Mbh

r
− 1; gðTÞ2 ¼ r2

L2
S
;

NðTÞ2dT2 ¼
�
2Mbh

r
− 1

�
−1
dr2: ð3Þ

Let us consider (2) in its generality, that is, keeping f, g,
and N general functions of T. Then, we have what is called
a Kantowski-Sachs model. This model can be described as
a Hamiltonian system using the Ashtekar-Barbero formu-
lation of GR [59–61]. In this formulation, the system is
described via a phase space coordinatized by dynamical
variables ða; b; pa; pbÞ and a Hamiltonian constraint
Hclða; b; pa; pbÞ generating their evolution with respect
to T. The relation between the dynamical variables and the
metric components are set as

jpaj ¼ L2
Sg

2; jpbj ¼ 2LRLSjfgj; ð4Þ

while the conjugated variables a and b satisfy the Poisson
algebra

fa; pag ¼ κβ

8π
; fb; pbg ¼ κβ

8π
; ð5Þ

where κ ¼ 16πG=c3. The explicit form of Ashtekar-
Barbero variables is

A1
1 ¼ −a; A2

2 ¼ −b;

A3
3 ¼ −b sin θ; A1

3 ¼ − cos θ;

E1
1 ¼ jpaj sin θ; E2

2 ¼
pb

2
sin θ; E3

3 ¼
pb

2
; ð6Þ

where β is the Barbero-Immirzi parameter of LQG. It
follows that the Hamiltonian reads

Hcl ¼ −N
8π

κβ2
sgnðpbÞffiffiffiffiffiffiffiffijpaj
p �

2abjpaj þ ðb2 þ β2Þpb

2

�
: ð7Þ

The equations of motion generated by this Hcl can be
solved analytically for a clever choice of lapse function
[namely, N ¼ sgnðpbÞ

ffiffiffiffiffiffiffiffijpaj
p

] and give

aðTÞ ¼ a0 cos

�
T − T0

2

�
−4sgnðp0

aÞ
;

paðTÞ ¼ p0
a cos

�
T − T0

2

�
4sgnðp0

aÞ
;

bðTÞ ¼ −β tan
�
T − T0

2

�
;

pbðTÞ ¼
2

β
a0p0

a sinðT − T0Þ; ð8Þ

where aðT0Þ ¼ a0 and paðT0Þ ¼ p0
a are integration con-

stants, while bðT0Þ ¼ 0 ¼ pbðT0Þ identify T ¼ T0 with the
black hole horizon. Also, the singularity is identified by the
condition pa ¼ 0, occurring at the point T ¼ π þ T0, and it
translates into a diverging spatial curvature.
To give physical meaning to the integration constants, we

plug (8) into the metric components of the Kantowski-
Sachs line element. Using the equations for pa in (4)
and (8), and imposing the second condition in (3), we
identify r ¼

ffiffiffiffiffiffiffiffi
jp0

aj
p

cos½ðT − T0Þ=2�2sgnðp0
aÞ. At this point,

note that since r decreases as we go further inside the
black hole, the sign of p0

a must be positive and therefore
sgnðp0

aÞ ¼ þ1. It follows that

L2
Rf

2 ¼ p2
b

4jpaj
¼ ða0Þ2p0

a

β2
4 sin

�
T − T0

2

�
2

cos

�
T − T0

2

�
−2

¼ 4
ða0Þ2p0

a

β2

� ffiffiffiffiffiffi
p0
a

p
r

− 1

�
: ð9Þ

The first condition in (3) then implies
ffiffiffiffiffiffi
p0
a

p
¼ 2Mbh and

a0 ¼ �βLR=ð4MbhÞ. In other words, if we want to obtain
dynamically the line element in Schwarzchild coordinates
(with the choice R ¼ t=LR), we must choose initial con-
ditions at the black hole horizon1 as

aðT0Þ ¼ a0 ≔ � βLR

4Mbh
; bðT0Þ ¼ b0 ≔ 0;

paðT0Þ ¼ p0
a ≔ 4M2

bh; pbðT0Þ ¼ p0
b ≔ 0: ð10Þ

We observe that the expression for a0 depends on the length
scale LR, which means that a0 is not physical and can be set
arbitrarily. Different values of a0 correspond to different
rescalings of the coordinate R. In the following, we shall
choose a0 to be a fixed constant, positive so as to ensure
that the flow of Hcl is parametrized by an increasing T
(i.e., T ≥ T0), and independent of the mass parameter Mbh.
In the context of LQC, several quantizations of this

model have been proposed [17–24]. It has been conjectured
[22] that the qualitative description of the semiclassical

1One can check that with these values the last condition in (3)
is also satisfied.
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dynamics in these quantum models can be reproduced by
classical effective models. These effective models are
defined on the classical phase space with a dynamics
generated by an effective Hamiltonian obtained by appro-
priately modifying the classical Hamiltonian (7). The
common choice of effective Hamiltonian is obtained by
the replacements

a →
sinðμaaÞ

μa
; b →

sinðμbbÞ
μb

; ð11Þ

where μa and μb are phase space functions determined by
the quantum model. The effective Hamiltonian therefore
reads

Hð1Þ
eff ¼ −N

8π

κβ2
sgnðpbÞffiffiffiffiffiffiffiffijpaj
p �

2
sinðμaaÞ

μa

sinðμbbÞ
μb

jpaj

þ
�
sinðμbbÞ2

μ2b
þ β2

�
pb

2

�
: ð12Þ

It was shown in [22] that in the case where μa and μb are
chosen to depend on the initial conditions, 2 the solutions to

the equations of motion with Hð1Þ
eff display a resolution of

the singularity and a transition from a black hole interior
to a white hole–like interior with a second horizon at an
instant Twh. We will display more details about this
effective model in Sec. IV.
An alternative effective Hamiltonian can be obtained

following the approach which was advocated in [54,58] in
the context of LQC, and which relies on the regularization
of the classical Hamiltonian used in the LQG approach. In
the context of LQC [55,56] the alternative regularization
gave rise to a dynamics significantly different from the
standard one. It is based on the classical relations referred
to as Thiemann identities, which are used to define the
Hamiltonian constraint in the full theory. This procedure
starts by decomposing the GR Hamiltonian into
“Euclidean” and “Lorentzian” parts,

H ¼
Z
σ
dx3NðxÞðHEðxÞ þHLðxÞÞ; ð13Þ

where

HE ¼ 4

κ2β
FJ
abϵ

abcfV; AJ
cg;

HL ¼ −
1þ β2

β7
16

κ4
ϵJMNKM

a KN
b ϵ

abcfV; AJ
cg ð14Þ

with FJ
ab the curvature of the connection, V the volume of

the whole spatial manifold, and the extrinsic curvature KI
a

given by

KI
aðyÞ ¼

2

κβ3

�
AI
aðyÞ;

�Z
σ
dx3HEðxÞ; V

��
: ð15Þ

However, in general symplectic reduction and regulariza-
tion do not commute, in particular when the considered
phase space function involves Poisson brackets. Indeed,
consider the symplectic reduction ω∶ðA;EÞ ↦ ða; pa;
b; pbÞ defined in (6). Then, there exist (at least) three
inequivalent regularizations of the continuous expression
ωðKI

aðyÞÞ:
(i) One possibility is to regularize the object at the

level of the full theory: introducing the regulariza-
tion map ιA;E based on (30), the expression (15) is
regularized as

ιA;E½KI
xðyÞ� ¼ −

4

κβ3μx
Tr

�
τIhðey;xÞ†

�
hðey;xÞ;�

ιA;E

�Z
σ
dx3HEðxÞ

�
; ιA;E½V�

���
;

ð16Þ

where hðey;xÞ is the holonomy along the edge ewith
a boundary point y and direction x, and the reduction
is performed at the end, obtaining ω ∘ ιA;E½KI

xðyÞ�.
(ii) Another option is to perform the reduction first

and afterwards regularize the resulting expression
at the reduced level, by a map ι1 based purely
on regularization (11), which acts on reduced
phase space functions fða; b; pa; pbÞ and gives
fðsinðaμaÞ=μa; sinðbμbÞ=μb; pa; pbÞ. In this case,
one first computes the Poisson brackets in (15) at
the continuum reduced level: from

ωðHEÞ ¼
8π

κ

sgnðpbÞffiffiffiffiffiffiffiffijpaj
p �

2jpajabþ pb

2
ðb2 − 1Þ

�

ð17Þ

and using ωðVÞ ¼ 2πjpbj
ffiffiffiffiffiffiffiffijpaj

p
, it follows that

fωðHEÞ;ωðVÞg ¼ 4βπðajpaj þ bpbÞ: ð18Þ

At this point, computing the Poisson bracket with
ωðAI

xÞ gives for the nonvanishing components of KI
x

K1
1 ¼ −a=β; K2

2 ¼ −b=β;

K3
3 ¼ −b sinðθÞ=β; ð19Þ

2This choice is referred to as the generalized μo scheme [25],
as opposed to the standard μo scheme where the μ parameters are
fixed positive numbers (which we use in this article), and the μ̄
schemewhere the μ parameters are chosen to depend explicitly on
the phase space variables.
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which are finally regularized to obtain

ι1½K1
1� ¼ −

1

β

sinðμaaÞ
μa

; ι1½K2
2� ¼ −

1

β
;

ι1½K3
3� ¼ −

sinðθÞ
β

sinðμbbÞ
μb

: ð20Þ

(iii) The third option consists of a mixture of the previous
two: we regularize the expression (15) at the reduced
level, but take inspiration on the full theory regu-
larization (16). Explicitly, this regularization map ι2
gives

ι2½KI
xðyÞ� ¼ −

4

κβ3μx
Tr

�
τIh̃ðey;xÞ†

�
h̃ðey;xÞ;�Z

σ
dx3ι1½ωðHEðxÞÞ�; ι1½ωðVÞ�

���
;

ð21Þ

where h̃ðey;xÞ are chosen as3

h̃ðey;1Þ ¼ e−aτ1μa ; h̃ðey;2Þ ¼ e−bτ2μb ;

h̃ðey;3Þ ¼ e−bτ3μb ð22Þ

with τI ¼ −iσI=2 the generators of the Lie algebra
of SUð2Þ, and μ1 ¼ μa; μ2 ¼ μ3 ¼ μb. Following
this scheme, instead of (18) we have

fι1½ωðHEÞ�; ι1½ωðVÞ�g

¼ 4βπ

�
jpaj

sinðμaaÞ
μa

cosðμbbÞ

þ pb
sinðμbbÞ

μb

cosðaμaÞ þ cosðbμbÞ
2

�
; ð23Þ

which, plugged into (21) and carrying out the last
Poisson bracket, gives finally

ι2½K1
1� ¼ −

1

β

sinðμaaÞ
μa

cosðμbbÞ; ð24Þ

ι2½K2
2� ¼ ι2½K3

3� ¼ −
1

β

sinðμbbÞ
μb

cosðaμaÞ þ cosðbμbÞ
2

:

ð25Þ

It is clear that these three expressions are different as long
as the regulators are kept finite:

ι1½KI
xðyÞ� ≠ ι2½KI

xðyÞ� ≠ ω ∘ ιA;E½KI
xðyÞ�: ð26Þ

This in turn implies that the corresponding regularized
Hamiltonians will be different. As it can be checked by

direct computation,Hð1Þ
eff is obtained using the map ι1½KI

x� in
(14). Similarly, from ι2½KI

x� one finds

Hð2Þ
eff ¼ N

8πsgnðpbÞ
κ

ffiffiffiffiffiffiffiffijpaj
p �

2
sinðμaaÞ

μa

sinðμbbÞ
μb

jpaj

þ
�
sinðμbbÞ2

μ2b
− 1

�
pb

2
−
1þ β2

β2
sinðμbbÞ

μb
ðcosðμaaÞ

þ cosðμbbÞÞ
�
jpaj

sinðμaaÞ
μa

cosðμbbÞ þ
pb

8

sinðμbbÞ
μb

× ðcosðμaaÞ þ cosðμbbÞÞ
��

: ð27Þ

Both effective Hamiltonians (12) and (27) converge to Hcl
in the limit μa, μb → 0, ensuring the recovery of the
continuum limit.
The use of map ω∘ιA;E—which gives rise to what we

later call Hð3Þ
eff—requires some more technology and will be

developed in the next section. Here, we observe that this
avenue to obtain a loop-effective model corresponds to an
attempt to derive the effective Hamiltonian from the full
quantum theory.

III. EFFECTIVE KANTOWSKI-SACHS FROM LQG

Our approach in the case of the interior region of a black
hole is the same as the one adopted for flat homogeneous
and isotropic cosmology [55,58]. Namely, the starting point
is to consider a semiclassical coherent state on the Hilbert
space of loop quantum gravity H, peaked on the classical
configuration of interest (for more details on coherent states
in LQG, see [62–71]). Then, one computes the leading
order, in a semiclassical expansion, of the expectation value
of the LQG Hamiltonian operator originally proposed by
Thiemann in its graph nonchanging version [45,46,72,73]
on the chosen semiclassical state. The obtained leading
order is what one considers as the Hamiltonian in the
effective theory.4 Such methodology has been realized for
instance in the case of homogeneous cosmology [within
quantum reduced loop gravity (QRLG) [76] and LQG
[58,77]]. In fact, in homogeneous isotropic LQC such an
expectation value coincides with the effective Hamiltonian
obtained by rule (11), thereby motivating the replacement
method [78].

3Note that these holonomies h̃ correspond to the full theory
holonomies evaluated at θ ¼ π=2 (see Sec. III).

4For example, one could use the complexifier coherent states
from [62–64]. This has been done in [66], however, in contrast
with the discretization considered here, with a different choice of
coordinates and discretized phase space functions, i.e., gauge
covariant fluxes. For further implications on these different fluxes
see [74,75].

PERSPECTIVES ON THE DYNAMICS IN A LOOP QUANTUM … PHYS. REV. D 101, 026002 (2020)

026002-5



The calculation of the expectation value of the LQG
Hamiltonian operator on a semiclassical state is in general
involved. However, the calculation of the leading order of
the expectation value is easier thanks to the properties
of the semiclassical state. Indeed, the computations reduce
to the replacement in the Hamiltonian of holonomy and
flux operators by their classical, discretized expressions
ιA;EðAÞ; ιA;EðEÞ. The commutators are replaced by Poisson
brackets on the discretized phase space. As explained in the
third bullet point of the previous section, these Poisson
brackets are then computed at the level of the full theory,
and only afterwards do we perform the symplectic reduc-
tion with respect to the discretized geometry on which the
semiclassical state is peaked.
The first step is therefore to perform a discretization of

the spacetime manifold using a choice of graph and its dual
2-complex. Since we are interested in a spacetime of the
Kantowski-Sachs type, we choose the graph Γ to be
adapted to the cylindrical coordinates in which the
Kantowski-Sachs metric is expressed (2). Such a choice
of graph simplifies considerably the calculations. Thus, we
are interested in a fixed graph Γ, which is chosen to be a
compact subset of the cubic lattice Z3 embedded in
½0; 1� × S2. We choose a graph Γ which has a finite number
of vertices equal to the product N1N2N3 where N1, N2,
N3 ∈ N are the numbers of vertices in the directions R, θ,
and φ, respectively. Finally, the cubic lattice Γ is oriented
the following way: at each vertex v there are six edges ev;i
(i ¼ �1;�2;�3 such that 1,2,3 correspond to the direc-
tions R, θ, and φ, respectively, while þ is for outgoing
edges and − for incoming edges) starting at v and going
along the directions i (with constant coordinates along the
remaining directions). The coordinate lengths of these
edges are μ1LR, μ2LS, and μ3LS, where we define

μ1 ¼
1

N1

; μ2 ¼
π

N2 þ 1
; μ3 ¼

2π

N3

: ð28Þ

Therefore, the coordinates ðRv; θv;φvÞ≕ v of a generic
vertex v in the graph take values in

Rv ∈ fμ1; 2μ1;…; 1g;
θv ∈ fμ2; 2μ2;…; π − μ2g;
φv ∈ fμ3; 2μ3;…; 2πg: ð29Þ

In the following, we present the discrete version of the
Kantowski-Sachs system on the graph Γ and the corre-
sponding holonomies and fluxes.

A. Discretization of Kantowski-Sachs

The discrete model of the Kantowski-Sachs solution is
obtained by introducing the holonomy-flux algebra as
discrete objects associated with the edges of the graph
Γ, given by the semiclassical state we chose and described
above, and surfaces of the dual 2-complex. These surfaces
are obtained in the following way: at each edge ev;i we
consider the surface Sev;i orthogonal to it at the midpoint
and oriented in the direction i, such that it has sides of
coordinate lengths μjjj and μjkj (j; k ≠ �i) parallel to the
edges of the graph Γ. Then, we define the holonomies h and
the fluxes EI as

hðev;iÞ ≔ P exp

�Z
1

0

ds_eav;iðsÞAI
aðev;iðsÞÞτI

�
;

EIðev;iÞ ≔
Z
Sev;i

dxa ∧ dxbϵabcEc
I ðx⃗Þ; ð30Þ

where _ev;i is the normalized tangent vector to the edge ev;i
at v and we choose the explicit basis τI ¼ −iσI=2 of suð2Þ,
i.e., ½τI; τJ� ¼ ϵIJKτK .
The leading order of the expectation value of the

Thiemann Hamiltonian operator, which we denote Hμ
eff ,

takes the form

Hμ
eff ≔ NðHμ

E þHμ
LÞ; ð31Þ

where

Hμ
E ≔

−4
κ2β

X
v∈VðΓÞ

1

Tv

X
i;j;k

ϵðev;i; ev;j; ev;kÞtrððhð□v
ijÞ

− hð□v
ijÞ†Þhðev;kÞ†fhðev;kÞ; VμgÞ ð32Þ

and

Hμ
L ≔

64ð1þ β2Þ
κ4β7

X
v∈VðΓÞ

1

Tv

X
i;j;k

ϵðev;i; ev;j; ev;kÞtrðhðev;iÞ†fhðev;iÞ; Kghðev;jÞ†fhðev;jÞ; Kghðev;kÞ†fhðev;kÞ; VμgÞ ð33Þ

with Tv being an averaging factor which depends on the valence of the vertex v and Vμ being the discrete volume
given as

Vμ ≔
X

v∈VðΓÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Tv
jQvj

s
; Qv ¼

X
i;j;k

ϵðev;i; ev;j; ev;kÞϵIJKEIðev;iÞEJðev;jÞEKðev;kÞ; ð34Þ
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and K ≔ fVμ; Hμ
Eg. The factor ϵðev;i; ev;j; ev;kÞ ¼ sgnðdetð_ev;i; _ev;j; _ev;kÞÞ and VðΓÞ is the set of all vertices of the graph.

Note that the six-valent vertices have Tv ¼ 48, while the five-valent vertices with Rv ¼ μ1; 1 or θv ¼ μ2; π − μ2 have
Tv ¼ 24. The symbol hð□v

ijÞ corresponds to the holonomy, along the oriented loop □
v
ij, defined as

hð□v
ijÞ ≔ hðevþμjjj _ev;j;−jÞhðevþμjij _ev;iþμjjj _ev;j;−iÞhðevþμjij _ev;i;jÞhðev;iÞ: ð35Þ

The final expressions for the quantities Hμ
E and Hμ

L in terms of the phase space variables fa; b; pa; pbg are obtained by
first performing the calculation of the Poisson brackets involved on the level of the general holonomy-flux algebra, and then
evaluating the holonomies and fluxes for the Kantowski-Sachs metric. These are

EIðev;�1Þ ¼ �δI12jpaj sinðθvÞ sin
�
μ2
2

�
μ3; hðev;�1Þ ¼ expð∓ aτ1μ1Þ;

EIðev;�2Þ ¼ �δI2
pb

2
sin

�
θv �

μ2
2

�
μ1μ3; hðev;�2Þ ¼ expð∓ bτ2μ2Þ;

EIðev;�3Þ ¼ �δI3
pb

2
μ2μ1; hðev;�3Þ ¼ expð∓ μ3ðb sinðθvÞτ3 − cosðθvÞτ1ÞÞ: ð36Þ

These computations produce an analytic expression for Hμ
eff which is too lengthy to fit in an article, due to the lengthy

expression of Hμ
L. For the sake of the argument, we display the expression of Hμ

E:

Hμ
E ¼ sgnðpbÞ

2π

κ
ffiffiffiffiffiffiffiffijpaj

p XN2μ2

θ¼μ2

μ2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanðμ2=2Þ
μ2=2

s
2jpaj sinðθÞ

sinðaμ1Þ
μ1

×

�
b
sinð2μ3χðθÞÞ
2μ3χðθÞ

þ cos

�
μ2
2

�
sinðbμ2Þ

μ2

b2 sinðθÞ2 þ cosðθÞ2 cosðμ3χðθÞÞ
b2 sinðθÞ2 þ cosðθÞ2

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2
2
cot

�
μ2
2

�s
pb

2

�
cosðθÞ sinðμ3χðθÞÞ

μ3χðθÞ
cosðμ3χðθ − μ2ÞÞ − cosðμ3χðθ þ μ2ÞÞ

μ2

þ cosðμ3χðθÞÞ
1

μ2

X
s¼�1

s
sinðμ3χðθ þ sμ2ÞÞ
μ3χðθ þ sμ2Þ

ðcosðθ þ sμ2Þ cosðbμ2Þ þ b sinðθ þ sμ2Þ sinðbμ2ÞÞ
��

; ð37Þ

where χðθÞ ≔ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 sinðθÞ2 þ cosðθÞ2

p
. Unfortunately, the complexity of the expression of Hμ

eff makes it at the moment
impossible to solve the equations of motion either analytically or numerically. However, since conceptually we are
interested in large graphs, the values of the parameters μjij are considered to be very small compared to unity [see (28)].
Hence, we take the power series expansion ofHμ

eff in μjij. In particular, we evaluate the expansion up to second order in μjij,
giving the following expression:

Hð3Þ
eff ≔ −N

8πsgnðpbÞ
κβ2

ffiffiffiffiffiffiffiffijpaj
p �

2abjpaj þ ðb2 þ β2Þpb

2

�

þ N
πsgnðpbÞ

144κβ2
ffiffiffiffiffiffiffiffijpaj

p ½96μ21a2bð2að3β2 þ 5Þjpaj þ 3bðβ2 þ 1ÞpbÞ

þ 24μ22ð2abjpajð18b2β2 þ 2ð11b2 þ 6β2Þ þ 17Þ þ pbð2ð3β2 þ 5Þb4 þ 3b2 þ 7β2ÞÞ
þ μ23ð2abjpajð288b2β2 þ ð352b2 þ 3β2Þ þ 59Þ þ b2pbð96b2β2 þ 5ð32b2 þ 9β2Þ − 19ÞÞ�: ð38Þ

IV. COMPARATIVE ANALYSIS OF THE
EFFECTIVE DYNAMICS

In this section we expose the analysis of the dynamics
in the effective Kantowski-Sachs models described by

the three Hamiltonians Hð1Þ
eff , H

ð2Þ
eff , and Hð3Þ

eff presented in
the previous sections. Specifically, we compare the

solutions to the equations of motion induced by the
aforementioned Hamiltonians, and we discuss the quali-
tative aspects featured in each case: in particular, the
resolution of the singularity and the white hole–like
region.
The equations of motion that we are solving for the

variables a, b, pa, and pb are of the form
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_aðTÞ¼faðTÞ; HðiÞ
effg; _bðTÞ¼fbðTÞ; HðiÞ

effg;
_paðTÞ¼fpaðTÞ; HðiÞ

effg; _pbðTÞ¼fpbðTÞ; HðiÞ
effg; ð39Þ

where i ranges from 1 to 3. With a suitable choice of lapse
function, these equations can be solved analytically in the

case of the Hamiltonian Hð1Þ
eff [17,22], but this is so far not

the case for the other two Hamiltonians. However, one can
proceed with solving the equations of motion numerically
with a lapse function fixed as earlier N ¼ sgnðpbÞ

ffiffiffiffiffiffiffiffijpaj
p

and with initial conditions taken as discussed in Sec. II,
namely

a0 ¼ const; b0 ¼ 0; p0
a ¼ 4M2

bh; p0
b ¼ 0;

ð40Þ

and then compare the solutions for the various dynamics
considered. As already discussed, the initial conditions (40)
are set to reproduce the Schwarzschild solution at the
horizon, allowing us to interpret the resulting dynamics as
the (effective) evolution of the interior of a Schwarzschild
black hole. It is important to remember that the value of a0

is in principle free, and we will discuss the relevance of the
choice of a0 in the effective models later in this section.
The other important element of our analysis is the choice

of μa and μb. While it might be argued that a μ̄ scheme (in
which these regulators are phase space functions) is more
physical, there is currently no agreement on the correct
choice, though there have been promising results in the
direction of restricting the choice using the anomaly free-
dom of the effective constraints algebra [79–82]. Moreover,
as pointed out in [25], the choice of μ’s as dependent on the
initial conditions (that is the generalized μ0 scheme, for
example μb ¼

ffiffiffiffiffiffiffiffiffiffiffi
Δ=p0

a

p
adopted in [22]), implicitly assumes

that μ’s are constants of motion; however, the fact that the
regulator is a phase space function (albeit conserved by
the dynamics) implies that the equations of motion for
the fundamental variables ða; b; pa; pbÞ are different from
those computed in the μ0 scheme (i.e., with μ’s constant on
the whole phase space). While it might be possible to
circumvent these issues by relying on an extended phase
space (where the regulators become themselves new phase
space coordinates), we prefer to refrain from introducing
these complications, and thus stick to the original μ0
scheme. From the point of view of the full theory, this

is so far the only choice, since in Hð3Þ
eff the regulators μ1, μ2,

and μ3 are given in terms of the numbers of nodes (28). For
our analysis, we use the identification

μ1 ¼ μa ¼ μoa; μ2 ¼ μ3 ¼ μb ¼ μob; ð41Þ

where μoa and μob are fixed positive numbers. Now, we can
proceed with the analysis of the effective evolution. In
Fig. 1 we display the evolution trajectories of pb as a

function of logðpaÞ, obtained for an initial mass Mbh ¼ 10
in Planck units and with the initial conditions (40) set at the
instant T0 ¼ 0where all effective and GR trajectories meet.

To make the comparison with Hð3Þ
eff (which is an expansion

to second order in μ’s) more meaningful, we considered
also the trajectories generated by the second-order expan-

sions of Hð1Þ
eff and H

ð2Þ
eff . The plots in Fig. 1 show that all the

effective solutions display a nonvanishing minimum for pa

(reached at different times which we denote TðiÞ
b ), implying

an absence of the singularity predicted by classical GR (red

curve) and the occurrence of a bounce at the instants TðiÞ
b . In

particular, the trajectories of the expansion ofHð2Þ
eff andH

ð3Þ
eff

(dashed blue and dashed green curves, respectively) agree
very well, indicating that—at least to second order in μ’s—
the two proposals essentially agree. We also observe that all
the effective trajectories reach a vanishing value for pb

5 10 15 20 25 30 35
Log pa

2000

4000

6000

8000

10 000

pb

5 10 15 20 25 30 35
Log pa

20 000

40 000

60 000

80 000

100 000

pb

(a)

(b)

FIG. 1. A parametric plot displaying the evolution of pbðTÞ
as a function of log½paðTÞ� set at the instant T0 ¼ 0
(log½paðT0Þ� ≈ 6; pbðT0Þ ¼ 0, the red dot), with Mbh ¼ 10 in
Planck units and in (a) a0 ¼ 1 while in (b) a0 ¼ 5. The
continuous red, black, and blue trajectories correspond, respec-

tively, to the solutions obtained using the Hamiltonians Hcl, H
ð1Þ
eff ,

and Hð2Þ
eff . The dashed green trajectory corresponds to the

solutions obtained using Hð3Þ
eff , while the dashed black and

blue trajectories correspond to the solutions obtained using
Hamiltonians defined as the second order expansions in μ’s of

Hð1Þ
eff and Hð2Þ

eff , respectively. The remaining dots correspond to
the white hole horizons obtained for each trajectory. We take
G ¼ c ¼ 1, β ¼ 0.2375, and μa ¼ μb ¼ 1=10.
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(also at different times TðiÞ
wh, other than To), indicating the

presence of a Killing horizon in the effective solutions. In

this, it is interesting to compare the trajectory ofHð2Þ
eff and its

expansion (blue lines, solid and dashed, respectively):
while the two curves are very different, they end up in
the same final value for logðpaÞ (which is also close to the

final value obtained from Hð3Þ
eff ). The same is not true for

Hð1Þ
eff and its expansion (black lines), whose trajectories are

extremely different and end up in different final values.
Through the evaluation of the geodesics expansions5

Θ� ¼ _pa=ð
ffiffiffi
2

p
paNÞ associated with the two future-

oriented null normals to the surfaces of T and R constant,
we observe that Θ� have the same signs throughout the
evolution and correspond to the sign of _pa=N (since pa
remains positive throughout the evolution), which is
independent of the choice of the coordinates. Namely, it
is negative in the region 0 < T < Tb and positive in the
region Tb < T < Twh, while vanishing at Tb. Therefore the
boundary T ¼ Tb is a transition surface from a trapped
region—the black hole interior—to an antitrapped region—
the white hole–like interior.
In Fig. 2 we display the trajectories pb vs logðpaÞ for

various values of μa and μb obtained from (a)Hð1Þ
eff , (b)H

ð2Þ
eff ,

and (c)Hð3Þ
eff . We observe that, while the overall shape of the

trajectories of each effective model does not change
dramatically as one changes the values of μ’s, a common
effect can be detected: the final point of the curve (which
coincides with the white hole horizon) shifts to the left as μa
is smaller (purple lines) and to the right as μb is smaller
(black lines). Comparison of panels (b) and (c) also
confirms the similarity between the trajectories of expanded

Hð2Þ
eff and Hð3Þ

eff , which remains true for different choices
of μ’s.
The presence of a bounce and a second horizon were

already observed in the analysis of the dynamics generated

byHð1Þ
eff in [22]—although we recall that here we are using a

different choice of regulators. While the bounce seems to
be a generic feature, the presence of a second Killing
horizon is more subtle. For example, in the context of
QRLG [83,84] and within a specific μ̄ scheme, no second
horizon was present in the solutions to the effective
dynamics. In the presence of a second horizon, an interest-
ing feature to analyze is the massMwh associated with such
a horizon, and we investigate its possible dependence on
the initial mass of the black holeMbh. The white hole mass
is given by

MðiÞ
wh ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðiÞ
a ðTðiÞ

whÞ
q

2
; ð42Þ

where TðiÞ
wh is the value of T ≠ T0 at which pðiÞ

b vanishes.
From the analysis of the evolution with different initial

masses, the relations between black hole mass and the mass

5 10 15 20 25 30 35
Log pa

1000
2000
3000
4000
5000
6000
7000

pb

4 6 8 10 12 14
Log pa

10 000

20 000

30 000

40 000

50 000
pb

4 6 8 10 12 14
Log pa

2000
4000
6000
8000

10 000
12 000

pb

(a) (b)

(c)

FIG. 2. Parametric plots displaying the evolution of pbðTÞ as a function of log½paðTÞ�, using the initial conditions (40) set at the instant
T0 ¼ 0 (log½paðT0Þ� ≈ 6; pbðT0Þ ¼ 0, the red dot), with a0 ¼ 2 and Mbh ¼ 10 in Planck units, evaluated for different values of μa and

μb: (a) solutions obtained using the Hamiltonian Hð1Þ
eff (continuous curve) and its expansion (dashed curve); (b) solutions obtained using

the Hamiltonian Hð2Þ
eff (continuous curve) and its expansion (dashed curve); (c) solutions obtained using the Hamiltonian Hð3Þ

eff (dashed
curve). The blue trajectories correspond to μa ¼ 1=10 and μb ¼ 1=10, the black trajectories correspond to μa ¼ 1=10 and μb ¼ 1=20,
and the purple trajectories correspond to μa ¼ 1=20 and μb ¼ 1=10. We take G ¼ c ¼ 1, β ¼ 0.2375.

5Expansion parameters are defined as Θ� ¼ hαβ∇αk�β where
hαβ is the metric induced by gμν on the 2-spheres coordinatized by
(θ;φ) and k� are the vector fields tangent to the congruences
of outgoing and ingoing radial null geodesics—given here by
kþa ¼ 1=

ffiffiffi
2

p ð−N; LRf; 0; 0Þ and k−a ¼ 1=
ffiffiffi
2

p ð−N;−LRf; 0; 0Þ,
respectively.
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associated with the white hole horizon, induced by the
different Hamiltonians we considered, have the same
dependence on Mbh, namely Mwh ∝ Mbh (see Fig. 3). At
this point, it is important to stress again that in general the
relation between the initial black hole mass and the mass
associated with the white hole horizon strongly depends on
the choice of the initial condition a0, which classically is an
irrelevant quantity (due to the fact that, under coordinate
transformation R → λR, the variable a scales as a → λ−1a),
and on the choice of the μ parameters. In particular, the
relationMwh ∝ Mbh is a consequence of the choice (40) for
a0, and the μ parameters are fixed numbers independent of
the phase space.6 But, for instance, if one takes μb to be
dependent on the black hole initial mass as μb ∝ M−1

bh ,
while keeping μa and a0 as above, then in the case of the

Hamiltonian Hð1Þ
eff one obtains Mwh ∝ M5

bh. If one addi-
tionally takes a0 to be proportional to M−1

bh , one obtains

Mð1Þ
wh ∝ M4

bh. However, unlike the case shown in Fig. 3,
the white hole mass dependence on Mbh in case of the

Hamiltonians Hð2Þ
eff and Hð3Þ

eff will significantly differ from

the one obtained with Hð1Þ
eff .

Last, we would like to make a general comment about
such effective models: in standard quantum mechanics and
field theory, the continuum limit is the only physical limit
and the regulator is always taken to zero. In the context of
loop quantum cosmology, the regulator is considered to be

a physical fundamental scale, and therefore the limit of the
regulator going to zero is considered to be unphysical.
If this limit was taken, one simply recovers the classical
general relativity Hamiltonian for all the effective
Hamiltonians. Unfortunately, there is so far no criterion
to select the “right” effective Hamiltonian. From the point
of view of the theory, they are all eligible and on the same
footing. The hope was that these different regularizations
provide rather similar dynamics, but since this is not the
case, this fact then brings to light an important ambiguity
which must be studied and understood further, and other
elements or procedures (such as renormalization in the full
theory [85–87]) need to be introduced in order to try to
restrict it. This question, however, is beyond the scope of
the current article.

V. SUMMARY AND DISCUSSION

In this paper we presented the construction of two new

effective Hamiltonians for Kantowski-Sachs: Hð2Þ
eff is

obtained following the prescription introduced in [55],
namely, regularizing the Euclidean part via (11) and then

using Thiemann identities for the Lorentzian part; Hð3Þ
eff is

derived from the expectation value of Thiemann LQG
Hamiltonian on a semiclassical state peaked on the
Kantowski-Sachs spacetime. We then compared the
dynamics in the μo scheme generated by these effective
Hamiltonians—as well as the one generated by the effective

Hamiltonian Hð1Þ
eff introduced in [22]—with initial condi-

tions at the black hole horizon (T ¼ T0 ¼ 0). However,
since we are able to solve numerically the equations of

motion of Hð3Þ
eff only to quadratic order in an expansion

in the discreteness parameters, to make the comparison
meaningful we have also considered a quadratic expansion

of Hð1Þ
eff and Hð2Þ

eff . The analysis reveals that the integral

curves of Hð2Þ
eff and Hð3Þ

eff are similar, but not identical, while

the curves of expanded Hð2Þ
eff are in good agreement with

those ofHð3Þ
eff . This agreement may suggest thatHð2Þ

eff and the

full nonexpanded form ofHð3Þ
eff agree; but comparison of the

second order terms in the expansions of Hð2Þ
eff with those in

Hð3Þ
eff shows that they are different. We must therefore

conclude that they are indeed two different effective
Hamiltonians, but which generate similar dynamics in
the μo scheme for the initial conditions we considered.
On the other hand, all the aforementioned curves are

qualitatively different from the ones of Hð1Þ
eff . Never-

theless, in all the cases considered, the singularity is
replaced with a black hole to white hole transition, and
the relations between the initial black hole mass Mbh and
the final white hole mass Mwh have the same form, that
is, Mwh ∝ Mbh.

1 2 3 4
Log Mbh

5

10

15

20

Log Mwh

FIG. 3. The logarithm of the mass associated with the
white hole horizon Mwh is plotted versus the logarithm of
the initial black hole mass Mbh, ranging from 1 to 100 in Planck
units. The black, blue, and green dots correspond, respectively, to

the masses obtained using the Hamiltonians Hð1Þ
eff , Hð2Þ

eff , and

Hð3Þ
eff , with the fits given as 15.424þ 1.000 log½Mbh�, 3.171þ

1.000 log½Mbh�, and 3.263þ 1.000 log½Mbh�, respectively. We
take G¼c¼1, β ¼ 0.2375, a0 ¼ 2, μa ¼ 1=10, and μb ¼ 1=10.

6Different values of the μ parameters or a0 do not alter either
the qualitative properties of the evolution or the relation between
the initial black hole mass and the mass associated with the white
hole horizon.
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As mentioned earlier, our analysis is realized in the μo
scheme. This scheme is known to produce unphysical
results in cosmology (such as a bounce at an energy density
much lower than the Planck scale). However, μo-scheme
models are useful in order to extract the qualitative behavior
of such effective models and grasp an understanding of the
modifications with respect to the classical theory. One can
of course develop the models in the μ̄ scheme using
the Hamiltonians we considered above. In fact, recent
proposals [24,25] study models based on the effective

HamiltonianHð1Þ
eff with μ’s being phase space functions. The

authors then reach different conclusions about the relations
between the initial black hole mass and the final white hole
mass. Implementing the μ̄ scheme with the Hamiltonians

Hð2Þ
eff and Hð3Þ

eff will require a more elaborate analysis, and it
is currently under investigation.
Finally, let us mention that our study was limited to

spherically symmetric and static spacetime, namely
Schwarzschild black hole interior. Further studies following
a similar construction could be carried out in the context of

nonstatic solutions, in which case one has to include the
exterior of a black hole where the radial dependence cannot
be ignored. While this is technically more involved, if
successful, it would give us access to modeling physically
realistic black holes, describing for example a spherical
collapse. Itmight also give us away to quantify the transition
time involved in the black hole → white hole process,
which would allow us to make falsifiable predictions.
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