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We review the covariant canonical formalism initiated by D’Adda, Nelson, and Regge in 1985, and
extend it to include a definition of form-Poisson brackets (FPBs) for geometric theories coupled to p-forms.
The form-Legendre transformation and the form-Hamilton equations are derived from a d-form Lagrangian
with p-form dynamical fields ¢p. Momenta are defined as derivatives of the Lagrangian with respect to the
“velocities” d¢ and no preferred time direction is used. Action invariance under infinitesimal form-
canonical transformations can be studied in this framework, and a generalized Noether theorem is derived,
for both global and local symmetries. We apply the formalism to vielbein gravity in d = 3 and d = 4. In the
d =3 theory we can define form-Dirac brackets, and use an algorithmic procedure to construct the
canonical generators for local Lorentz rotations and diffeomorphisms. In d = 4 the canonical analysis is
carried out using FPBs, since the definition of form-Dirac brackets is problematic. Lorentz generators are
constructed, while diffeomorphisms are generated by the Lie derivative. A “doubly covariant” Hamiltonian
formalism is presented, allowing to maintain manifest Lorentz covariance at every stage of the Legendre

transformation. The idea is to take curvatures as “velocities” in the definition of momenta.

DOI: 10.1103/PhysRevD.101.025015

I. INTRODUCTION

Geometric theories like gravity or supergravity are
conveniently formulated in the language of differential
forms. Because the Lagrangian of a d-dimensional theory is
written as a d-form, it is invariant by construction under
diffeomorphisms (up to a total derivative). This framework
is also well suited to the case of p-form fields coupled to
(super)gravity, and a group-geometric approach has been
developed since the late 1970s based on free differential
algebras [1-8] (for a recent review see, e.g., Ref. [9]). In the
1980s a form-Hamiltonian formalism was proposed in a
series of papers [10-14], where momenta 7 conjugate to
basic p-form fields ¢ are defined as “derivatives” of the
d-form Lagrangian with respect to the “velocities” d¢, and
the d-form Hamiltonian is defined as H = (d¢p)z — L. This
form-Hamiltonian setting is covariant, since no preferred
(time) direction is used to define momenta.
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Other covariant Hamiltonian formalisms have been pro-
posed in the literature, and a very partial list of references
on multimomentum and multisymplectic canonical frame-
works is given in Refs. [15-28]. The essential ideas
appeared in papers by De Donder and Weyl more than
70 years ago [15,16]. Some of these approaches are quite
similar in spirit to the one we discuss here, but to our
knowledge the first proposal of a d-form Hamiltonian,
together with its application to gravity, can be found
in Ref. [10].

In this paper we further develop the form-Hamiltonian
approach of Refs. [10-14], and derive the Hamilton
equations for all p-form degrees of freedom. The form-
Legendre transformation is discussed in detail, keeping
track of all necessary signs due to the presence of forms
of various degrees. A definition of form-Poisson brackets
(FPBs) is introduced, and generalizes the usual Poisson
brackets to arbitrary p-forms. These FPBs satisfy gener-
alized Jacobi identities, and (anti)symmetry and derivation
properties, with signs depending on the form degrees. In
this language we discuss infinitesimal canonical trans-
formations and generators. A form-Noether theorem is
derived, for both global and local invariances of the action.

We apply the formalism to d =4 tetrad gravity, and
complete the analysis of Refs. [10,11] by constructing the
(Hamiltonian) Lorentz gauge generators, acting on the
basic fields via Poisson brackets. Diffeomorphisms are
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discussed, and expressed in the Hamiltonian setting by
means of the Lie derivative.

Vielbein gravity in d = 3 is reformulated in the covariant
Hamiltonian framework, and with the use of form-Dirac
brackets we find the canonical generators for local Lorentz
rotations and diffeomorphisms.

Finally, we discuss a “doubly covariant” Hamiltonian
formalism for gravity (possibly coupled to p-forms), where
the “velocities” d¢ are replaced by their covariant version,
i.e., the curvatures R. Momenta are then defined as the
derivatives of L with respect to R, and all formulas (e.g.,
the Hamilton equations of motion) become automatically
Lorentz covariant, with derivatives being replaced through-
out by covariant derivatives.

II. VARIATIONAL PRINCIPLE FOR GEOMETRIC
THEORIES WITH p-FORMS

We consider geometrical theories in d dimensions with
a collection of dynamical fields ¢; that are p;-forms. The
action S is an integral on a manifold M? of a d-form
Lagrangian L that depends on ¢; and d¢;:

S = L(¢;, de;). 2.1
| Lap) @)
The variational principle yields
3L 3L
oS = op; 0 0. 2.2
[ i o) s =0, (22)

All products are exterior products between forms. The
symbol 887%- indicates the right derivative of L with respect to
a p-form ¢;, defined by first bringing ¢; to the left in L
(taking into account the sign changes due to the gradings)
and then canceling it against the derivative. In other words,

we use the graded Leibniz rule, con51der1ng a5, 0 have

the same grading as ¢;. Integrating by parts, "and since the
O¢; variations are arbitrary, we find the Euler-Lagrange
equations:

oL OL
Toagy 7" o

=0. (2.3)

III. FORM HAMILTONIAN

Here we further develop a covariant Hamiltonian for-
malism well adapted to geometrical theories, initiated in
Refs. [10-14]. We start by defining the (d — p; — 1)-form
momenta

'With a trivial boundary of M¢, or appropriate boundary
conditions.

AL
n = , 3.1
o) B
and a d-form Hamiltonian density (sum on i),
H=dpn — L (3.2)

This Hamiltonian density does not depend on the
“velocities” d¢; since

OH oL
_— = ][l —_ = O. 3.3
odg) " aldd) 5

Thus, H depends on the ¢; and 7',
H = H(¢;, "), (3.4)

and the form analogues of the Hamilton equations read

OH . OH
drt = (- pi+l1 .
o’ =) B

The first equation is equivalent to the momentum defini-
tion, and is obtained by taking the right derivative of H as
given in Eq. (3.2) with respect to 7',

dep; = (=)D (3:5)

OH ddp; . 8d¢ oL
= I i _\(d=pi=1)(pi+1) j
o om " + () ai = (d¢j>
(3.6)
and then using Eq. (3.1), and (d—p;—1)(p;+1) =

(d+1)(p; + 1)(mod 2).
The second is equivalent to the Euler-Lagrange form
equations, since

oL ddp; L OL

OH 8d¢j _OL  0d¢; L
o, 0, " 0p, 0, Odb;) O

(3.7)

because of the momenta definitions (3.1). Then, using
Eq. (2.3) yields the form-Hamilton equation for dz'.

IV. EXTERIOR DIFFERENTIAL AND
FORM-POISSON BRACKET

The form-Hamilton equations allow to express the
(on-shell) exterior differential of any p-form F(¢;,n') as

OF OF aH OF
dF = d¢p, — + dn' — = (d+1)(p
¢ O, tar on' =) 871' 0o,
OH OF
_\pitl
+ (=) 96,01 (4.1)

Using left derivatives, this expression simplifies to
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OH OF

‘ _ (<yp OH OF
aﬂ.’l @(ﬁl

F = -
d 3(]5, 877.'l

(4.2)

Note: Left derlvatlves are deﬁned as “acting on the left”

and, for example, 2 really means 0 1t is easy to verify”

b a¢
that the left and right derivatives of a f form F with respect

to a a-form A satisfy

OF OF

= gL (43)

and this relation is used to prove Eq. (4.2).
The expression for the differential (4.2) suggests the
definition of the form-Poisson bracket,

OB A , OB DA
{A,B} = o 0p, (=)rd 26, o' (4.4)
so that
dF = {F,H}. (4.5)

Note 1: The form-Poisson bracket between the a-form A
and the b-form B is a (a + b — d + 1)-form, and canoni-
cally conjugated forms satisfy

{pi,nl} = 5. (4.6)

Note 2: A different definition of the form-Poisson
bracket was given in Ref. [10], based on postulated
properties of the FPB rather than on the Legendre trans-
formation that leads to the evolution Eq. (4.5). In fact, the
properties of the FPB in Ref. [10] differ from the ones given

in the next section, which are deduced from the defini-
tion (4.4).

V. PROPERTIES OF THE
FORM-POISSON BRACKET

Using the definition (4.4), the following relations can be
shown to hold:

{B,A} — —(—)(“+d+1>(b+d+1>{A,B}, (5'1)
{A,BC} = B{A,C} + (-)<ler+){A,B}C, (5.2)
{AB,C} = {A,C}B + (-)t4+VA{B,C},  (5.3)
(=)latdtDletd+) A LB C}} +cyclic=0,  (5.4)

2Suppose that A'is contained in F as F = F\AF. Then, 2F o=

(=)a/1F\F, and 95 = (=)*/2F| F,, so that g—f =
(—)at-a) gfg and Eq. (4.3) follows.

(=)@ a(fi+f2) g_i =

(=)latdtDbrd+frp CY A} +cyclic =0,  (5.5)
i.e., graded antisymmetry, the derivation property, and the
form-Jacobi identities.

VL. INFINITESIMAL CANONICAL
TRANSFORMATIONS

We can define the action of infinitesimal form-canonical
transformations on any a-form A as follows:

5A = e{A. G}, (6.1)

where G is a (d — 1)-form, the generator of the canonical
transformation, and ¢ is an infinitesimal parameter depend-
ing only on the M coordinates. Then, {A, G} is a a-form
like A. We now prove that these transformations preserve
the canonical FPB relations (4.6), thus deserving the name
form-canonical transformations. As in the usual case, the
proof involves the Jacobi identities applied to ¢;, 7/, and G:

{{¢i.77}. G} + (=) {a), G ¢}
+{{G.¢;}.7'} =0.

Using the graded antisymmetry of the FPB, this reduces to

{#:{2).G}}+{{0:.G}.2'} = {{¢1.7'}.G} =0,

(6.2)

(6.3)
since {¢;, 7/} = 5{ is a number. Then,

{p). 77} = {¢; + e{;. G}. 7/ + e{a! . G}}
={pi. 7'} + e{¢i. {7’ G}} + e{{:. G}. 7'}
+ 0(&?)
= {¢;, 7'} + O(&?). (6.4)
Q.E.D.

VII. FORM-CANONICAL ALGEBRAS

The commutator of two infinitesimal canonical trans-
formations generated by the (d — 1)-forms G; and G, is
again an infinitesimal canonical transformation, generated
by the (d — 1)-form {G,, G,}. This is due to the fact that

{G1,G,} = —{G,, Gy} (7.1)

for (d — 1)-form entries, and the form-Jacobi identity

{{A.G1}.G} - {{A.G2}. G} = {A.{G\. G, }}

holds for any p-form A. Therefore, the form-canonical
transformations close an algebra. This algebra is finite
dimensional if all fundamental fields (“positions and
momenta”) are p-forms with p > 1, since there is only a
finite number of (d — 1)-form polynomials made out of

(7.2)
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the fundamental fields. On the other hand, if there are
fundamental 0-forms, the algebra becomes infinite dimen-
sional because there are infinitely many (d — 1)-form
polynomials.

Consider as an example a collection of 1-form funda-
mental fields ¢; (i =1,...n) in d =4. Their conjugate
momenta are 2-form fields z’. There are only two types of
3-form polynomials in these fields:

Gijx = ¢:i9;dr G{ = ;7. (7.3)
Their (finite) Poisson bracket algebra reads
{Gijis Ginn} =0, {Gije, GT'} = 353G,
(G, G} = 5G] - 8]G., (7.4)

with m = (3) generators G, closing on a U(1)" sub-
algebra and n? generators G{ closing on a U(n) subalgebra.

The whole algebra is then a semidirect sum of U(n)
with U(1)™.

VIII. ACTION INVARIANCE AND
NOETHER’S THEOREM

A. Global invariances

Consider the action

S = / dpin’ —H.
Md

Its variation under an infinitesimal form-canonical trans-
formation generated by a (d — 1)-form G is

(8.1)

35~ [ (. GYx'+ il G} - {H.G)

= [ d.G15) + (51 (4. Ghas
+d¢{n',G} - {H.G}
i Pi+15_G i (=\Pi 5G
= [ 4 Gy + (2 et ()
~ {H.G}

:/ ld({¢i9G}ﬂi) + (_)p;+1(_)pidﬂi§
. n

-

oG
Rt

- ()=

. 9G dG
= [ d.G)) — dn' - a5~ (1.

_ /M d({.G}w) - dG - {H.G)
- [ {1 -6)- | .6y

oM

(8.2)

Thus, the action is invariant (up to a boundary term) under
the infinitesimal canonical-form transformation generated
by G if and only if

{H,G} =0 (8.3)
up to a total derivative. This result reproduces Noether’s
theorem in form language.

Note: Here G is a polynomial in the ¢; and z'. In this
case,

oG oG
dp &
o 9 5y

dG = dr' (8.4)

has been used in the sixth line of Eq. (8.2). Generators
containing spacetime functions f(x) (“external fields”) are
considered in the next paragraph. On shell, we have

dG = {G,H}. (8.5)
Thus, if G generates an invariance of the action, on

shell its exterior derivative vanishes. Consider then the
d-dimensional integral
/ dG

between two (d — 1)-dimensional spacelike slices S; and
S,, of the M¢ manifold corresponding to the times ¢, and
t,. By Stokes’ theorem this integral is equal to the differ-
ence between the integrals of G on the S, and S, slices,
and since dG = 0, this difference vanishes, implying that

the O-form quantity
Gg(r) = / G
S

is conserved in time on the shell of the equations of
motion.’

(8.6)

(8.7)

B. Gauge invariances generated by £(x)G

Here we consider generators of the type &(x)G, generating
x-dependent infinitesimal form-canonical transformations:
op; = e(x){¢i.G}.  on' =e(x){x'.G}. (8.8
The variation of the action is computed along the same lines
as in the preceding subsection, with an additional term due to
the infinitesimal parameter & being nonconstant:

If {G. H} = dW, then d(G — W) = O on shell and [ G — W
is conserved in time.
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5S = AMde({qﬁi,G}fri—G)—&— /M (deG — e{H.GY).
(8.9)

Thus, &(x)G is a gauge generator, leaving the action
invariant (up to boundary terms) if and only if

G=0, {H,G} =0 (8.10)
since &(x) is an arbitrary function. Thus, G and {H, G} must
be constraints.

If there is a collection of (d — 1)-forms G, generating
local invariances of the action,4 the commutator of two
transformations generated by G; and G, must leave the
action invariant. This commutator is generated by {G, G, }
because of the Jacobi identities. Therefore, {G4, G} is a
gauge generator. The gauge algebra can involve structure
constants

{GA»GB} — CgBGc, (811)
as in ordinary finite Lie algebras, or structure functions, as
is the case for diffeomorphisms in gravity theories.

Finally, the infinitesimal transformations generated by
€(x)G must preserve the constraints, and therefore

{constraints, G} = 0, (8.12)
where &~ means a weak equality, i.e., it holds on the
constraint surface.

C. Gauge invariances generated by €(x)G + (de)F

In gauge and gravity theories the infinitesimal symmetry
transformations on the fields also contain derivatives
of the x-dependent parameter. Therefore, we need to
consider generators of the form &(x)G + (de)F, where F
is a (d — 2)-form, and investigate how they transform the
action. The answer is

55 = / e({¢r.G)x' = G) + de({gh. F}ai — F)
omd

+ / [de(G ~ {H. F}) - e{H,G}]. (8.13)
M

Thus, €(x)G + (de)F is a gauge generator leaving the
action invariant if and only if
G-{H.Fy=0, {H.G}=0. (8.14)
Moreover, the infinitesimal transformation generated by
e(x)G + (de)F must preserve the constraints, implying

“Here and in the following, the invariance of the action will be
understood up to surface terms.

{constraints, G} = 0, {constraints, F} ~ 0. (8.15)
The conditions (8.14) and (8.15) generalize the conditions
for gauge generators found in Ref. [29] to the case of
geometric theories with fundamental p-form fields, and
provide the basis for a constructive algorithm yielding all of
the gauge generators. We illustrate the procedure in the next
sections.

Note 1: F and G must be first-class quantities, i.e., have
weakly vanishing FPBs with all the constraints, but they do
not necessarily have to be constraints.

Note 2: This section reproduces the results of Ref. [29],
in the present context of geometric theories with funda-
mental p-forms.

Note 3: In the form setting the time derivatives of the
usual canonical formalism become exterior derivatives, and
due to d*> = 0 gauge generators cannot contain second or
higher derivatives of €. Thus, geometric theories do not give
rise to tertiary constraints, since these would multiply
second derivatives of the gauge parameter in the gauge
generator chains [29].

IX. GRAVITY IN d=4

A. Form Hamiltonian and constraints

The fields ¢; in this case are 1-forms: the vierbein V¢ and
the spin connection @“®. Torsion and Lorentz curvature are
defined as usual,

R¢ = dV* — 0, Vb, R = dw™ — 0,0, (9.1)
and the Einstein-Hilbert 4-form Lagrangian is
L(¢7 d¢) = Rabvcvdeabcd = dwabvcvdgabcd
— 0, 0PVVieyy. (9.2)

The 2-form momenta conjugate to V¢ and w,, are,
respectively,5

= =0, 9.3
e B(ave) 53)
OL
— =VVie pou. 9.4
Tab a(da)“b) Eabed ( )
Both momenta definitions are primary constraints,
@a =T, = O, (I)ab =Ty — chdgabcd = O, (95)

since they do not involve the “velocities” dV¢ and dw®.
The form Hamiltonian is

SUnless stated otherwise, all partial derivatives act from the left
in the following.
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H=dVen, + do®n,, — do®®VVie,.q
+ 0%, 0PVViey .y

= dViD, + dw™ D, + 0,0V V ey (9.6)

The “velocities” dV¢ and dw® are undetermined at this
stage. Indeed, the Hamilton equations of motion for dV*
and do® are just identities (dV¢ = dV¢, do® = dw“®),
whereas for the momenta they read

_oH

dﬂ'u = ava = _2Rhcvd€abcd’ (97)
OH
dﬂab = W = waanVeeb]cde. (98)

Requiring the “conservation” of ®, and ®,, i.e., their
closure in the present formalism, leads to the conditions

dd, = {®, H} =0 = R*Vi%,.,=0, (9.9)

d®,, = {@y, H} =0 = RV9eyq = 0. (9.10)

To derive Eq. (9.10) we also made use of the identity

F[eagbcd]g = 0, (91 1)
which holds for any antisymmetric F'. The conditions (9.9)
and (9.10) are, respectively, equivalent to the Einstein field
equations and the zero-torsion condition R* = 0, which
enables to express the spin connection in terms of the
vierbein. Note that we cannot call them secondary con-
straints, since they contain the “velocities” dV* and dw®.
In fact, they determine dV* as
dve = @, VP (9.12)
and determine some (combinations of) components of dw®
by constraining R*’ via the Einstein equations.
Using the form bracket, we find the constraint algebra

{®a’ q)b} = {q)ah’ (Dcd} =0 {q>av (Dbc} = _zeabcdvdv

(9.13)

showing that the constraints are not all first class. This is
consistent with the fact that some of the undetermined
“velocities” get fixed by requiring conservation of
the primary constraints. Classical works on constrained
Hamiltonian systems can be found in Refs. [30-32], while
the (usual) canonical treatment of vierbein first-order
gravity in Dirac’s formalism was first given in Ref. [33].

Note: The action variations (8.9) and (8.13) have been
deduced assuming that H depends only on basic fields and
momenta. This is not the case in constrained systems,
where some of the velocities remain undetermined, and
therefore appear in the Hamiltonian. However, they always

appear multiplied by primary constraints, and the variation
of these terms always vanishes weakly.

B. Gauge generators

1. Lorentz gauge transformations

We start from the first-class 2-forms z,,, which have
vanishing FPBs with the constraints @, and ®,;,. They will
play the role of the (d — 2)-forms F of Sec. VIII C, with two
antisymmetric indices, and thus F,, = z,,. To find the
corresponding (d — 1)-form G, that completes the gauge
generators one uses the first condition in Eq. (8.14),
yielding G,;, as the PB of H with F;,, up to constraints.
Since

{H. 7} =201, VV 9 oca. (9.14)

we find that

Gap = 201, VV ey p0q + a5, @ + foID 4, (9.15)

where o, and ﬂ% are 1-form coefficients to be determined
by the second condition in Eq. (8.14), i.e., the weak
vanishing of the PB between H and G,,. This yields

aly, = O,V ify = 200,83, (9.16)

la la
so that G,;, becomes

Gab = 2wc[a7rb]c - V[aﬂb]- (917)

It is easy to check that this G,;, has weakly vanishing PBs
with the constraints ®, and @, and is therefore a first-class
3-form. We have thus constructed the gauge generator
G= SabGab + dgabFah = gab (za)ca”hc - Va”b) + (dgab)”uh
:Dé'abﬂab—gabvaﬂ'h. (918)

It generates the Lorentz gauge rotations on all canonical
variables. Indeed,

Ve = {Vve G} = &, VP, ™ = {w", G} = De,

(9.19)

on, = {n,,G} = ¢e,’m,, Oy = {Zap, G} = €0 7p)c,

(9.20)

and it satisfies all of the conditions required to be a
symmetry generator of the action.
X. LIE DERIVATIVE AND DIFFEOMORPHISMS

Infinitesimal diffeomorphisms on p-forms A are
expressed by means of the Lie derivative Z,:

025015-6
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6A = ¢.A = (1,d + di,)A, (10.1)

where 1, is the contraction along the tangent vector
e(x) = &"(x)d,. Geometric theories are by construction
invariant under diffeomorphisms, since the action is an
integral of a d-form on a d-dimensional manifold.

The variations under infinitesimal diffs of the basic fields
of d = 4 first-order tetrad gravity are

SV4=1.dV* +d(1,V*) = De® + 2R%,.e"VC + (¢"wf?) V),
(10.2)

S0 = 1,dw® + d(1,0) = 2R .4e°V? + 2(£”a)f,[a)a)b]c,

(10.3)

where ¢’ = ¢"Vy, D is the Lorentz covariant derivative
De® = de® — w”,e?, and RY, are the flat components of the
torsion 2-form R“, and thus R* = R} VPVe and similarly

for the Lorentz curvature R?.
The infinitesimal diffs on the momenta 2-forms are
given by

57Ta = ledﬂa + d(ls”a) - le(D”a) +D(leﬂa) + (gﬂwaby)”b’
(10.4)

5”ab = ledﬂab + d(’s”ab) = le(Dﬂab) + D(leﬂ-ab)

+ 2(8ﬂa)c[aﬂ)ﬂ'b]c. (105)

We see that in all of these variations the last term is really
a Lorentz rotation with parameter 7’ = e¢*w@’. As the
action is invariant under Lorentz transformations, the
variations

SV = De 4 2R%,.e" V¢, (10.6)
S = 2R ey, (10.7)
on, = 1,(Dn,) + D(1.7,), (10.8)
0nap = 1:(Dryp) + D(1e7ap) (10.9)

generate the symmetries of the action by themselves. In
fact, Egs. (10.6) and (10.7) are the diff transformations
deduced from the group manifold approach to first-order
tetrad gravity; see, e.g., Refs. [5,9].

We may wonder whether the infinitesimal diffs could be
expressed as canonical transformations via the FPB. In the
present form-canonical scheme this seems impossible. The
reason is that the would-be generator of the diffs, of the type

G = e(x)G + (de)F, (10.10)
should be such that the 2-form F is a first-class quantity.
However, there is only one such quantity, namely, 7z,

which we have already used in the construction of the
Lorentz canonical generators. Indeed, 7, does not have
weakly vanishing FPBs with the constraints ®,,. We can
write down a canonical generator that reproduces the
correct infinitesimal diffs on V¢ and w?,

G=¢(2R",.Vem, +2R" ., Vimp )+ (De)m,,  (10.11)
but this G does not generate the correct diffs on the

momenta 7z, and ., and does not satisfy all of the
conditions of Sec. VIII for a gauge generator.

XI. GRAVITY INd=3

A. Form Hamiltonian and constraints

The fields ¢, are the d = 3 vierbein V¢ and the spin
connection w?’. The torsion R and Lorentz curvature R%®
are defined as in Eq. (9.1), and the Einstein-Hilbert 3-form
Lagrangian is

L(¢’ d¢) = Rabvc‘gabc = da)abvc‘gabc - waewEbvcgabC'
(11.1)

The 1-form momenta conjugate to V¢ and w,, are,
respectively,

OL
=——=0, 11.2
OL
=———=V° . 11.3
Tab G(dw“b) Eabe ( )
Both momenta definitions are primary constraints,
o, =7,=0, D, =7y — Ve =0 (11.4)

since they do not involve the “velocities” dV¢ and dw“.
The 3-form Hamiltonian is

H=dVen, + do®r,, — do® Ve, + 0,0Vt =

(11.5)
= dV®, + do™®,, + o , 0" VEe,p,. (11.6)

The Hamilton equations of motion for dV¢ and dw® are
identities, while for the momenta they read

OH
dr, = Sya = —Rb¢e .., (11.7)
OH
dﬂ’-ab == W == 2wc[an€b]Cd. (118)

Requiring the “conservation” of ®, and ®,, leads to the
conditions
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d®, = {®, H} =0 = R, =0, (11.9)

d®,, = {®,,,H} =0 = R, =0, (11.10)
implying the vanishing of both curvatures: R“ =0,
R = 0. These are the equations of motion of d =3
first-order vielbein gravity. These equations completely
determine the “velocities” dV¢ and dw®:

dve = o, VP, do’, = o° 0. (11.11)

Using the form bracket, we find the constraint algebra

{(Da’ q)b} = {(I)ah’ (I)cd} = O’ {(I)uv q)bc} = —E€abe>»

(11.12)

and all other FPBs vanish. Thus, constraints are second
class, which is consistent with the fact that all of the
“velocities” are fixed by requiring conservation of the
primary constraints. The three constraints ®,, (ab = 12,
13, 23) are equivalent to the three linear combinations
8¢ =1le®®,,, and we find

{®,, EP} =55, (11.13)
We will use the Z in the definition of Dirac brackets of
next section. Note that form-Poisson brackets between
1-forms are symmetric in d = 3, and in all odd dimensions;
see Eq. (5.1). Also, the FPBs between constraints yield
numbers in d = 3 gravity, and this allows a definition of
form-Dirac brackets (see next section). A similar definition
is not available in d = 4, since the FPBs between con-
straints yield 1-forms, and the corresponding FPB matrix
has no obvious inverse.

B. Form-Dirac brackets

We define form-Dirac brackets as follows:

{f.9y ={f.g9} —{f, P HE" g} = {f.E*H{P,, g}
(11.14)

These brackets vanish strongly if any entry is a constraint
(®, or E%). With the help of the general formulas (5.1)-
(5.5), with d = 3 it is straightforward to show that the
Dirac brackets inherit the same properties as the Poisson
brackets, i.e.,

{B.A}* = —(=)"{A,B}", (11.15)

{A,BC}* = B{A,C}" + (=)*{A,B}*C,  (11.16)
{AB,C}* = {A,C}'B + (-)“A{B,C}*,  (11.17)
(—)ee{A,{B,C}*}* +cyclic =0,  (11.18)

(=) {{B,C}*,A}* +cyclic=0.  (11.19)
Using Dirac brackets, the second-class constraints (i.e., all
of the constraints of the d = 3 theory) disappear, and we
can use the 3-form Hamiltonian

H = o ,0Ve,,,. (11.20)

The Dirac brackets between the basic fields and their
momenta are given by

{Va’ Vb}* — 0’ {a)ab’a)cd}* — 07
1
(v, be}r = = gabe, (11.21)
{any,z,}* =0, {V4, 7y} =0,
{w, m.q}" = 5%, {7y, g} = 0. (11.22)

Thus, V¢ and Q, = €40 become canonically conjugate
variables:

{ve,Q,} = 5. (11.23)

The Hamilton equations expressed via the Dirac bracket
become

dve ={V* H} = {V9 0, 0®Vey.4}*

= ", V" = R* =0, (11.24)
do™ = {0 H}" = {0 o, 0 Verq}*
—= a)e[“a)h]e :> Ruh B 01 (11.25)

i.e., the field equations of d = 3 first-order vielbein gravity.
For the “evolution” of the momenta we find

dr, = {rn, H}* =0, (11.26)
drtgy = {Tap HY* = 20,V €})cq
= €0 gV = dD,, = 0, (11.27)
where in the last line we used the identity
o[, €peja = 0. (11.28)

The momenta evolutions reexpress the fact that the con-
straints are conserved, or equivalently, that the exterior
derivative of the momenta is in agreement with their
expression given by the second-class constraints.
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C. Gauge generators

Now we apply our procedure to find the gauge gen-
erators. Here, besides the Lorentz generators, we will also
find the canonical generators for diffeomorphisms.

1. Lorentz gauge transformations

We start from the first-class 1-forms z,,. They are first
class in the sense that they have vanishing Dirac brackets
with all of the constraints. Actually, as the constraints
are all second class, they have been effectively eliminated
from the theory by the use of Dirac brackets. We take these
1-forms 7., as the (d — 2)-forms F in Eq. (8.14), and find
the (d — 1)-forms G that complete the gauge generator:
Gab = {H7 Fab}* = {H7 ”ab}* = 2wc[avd€b]cd7 (1129)
Next, we have to check that {H, G, } = 0. Notice that here
it is useless to add any combination of constraints to G,
since second-class constraints have no effect in a generator
when using Dirac brackets. So {H, G, }* = 0 must hold,
with the G, as given in Eq. (11.29), and indeed this is the
case: the bracket yields terms w@V that sum to zero when
using the {V,w}* bracket and the properties (11.16)—
(11.17). Thus,

G = de®™F,, + € Gy, = de®br,y, + 2€“ha)c[queb]cd
(11.30)
generates gauge transformations via the Dirac bracket.

Using the (second-class) constraint z,, = €,,.V¢ in the
second term of the generator yields
G = de®myp 4 2¢P 0 1y = (De®)my,.  (11.31)

It generates local Lorentz transformations with parameter
€4 (x), since

oVe={ve. Gy =2{wl,, V' }*eVim, =€, VP,  (11.32)
S = {w, G}* = De, (11.33)

o, = {7, G}* =0, (11.34)

gy = {ap. G} = {€ap. V. G} = € aTp)c- (11.35)

Note that oz, = 0 since G has no effect on second-class
constraints.

2. Diffeomorphisms

The procedure of the preceding paragraph can be started
with any 1-form; indeed, here any 1-form has vanishing
Dirac brackets with the constraints. We choose F, to be
€45c0"¢, since this 1-form is conjugate to V¢ and therefore
a good candidate to multiply the de* term in the generator

of the diffeomorphisms. Then, G, is found in the
usual way:

G,=1{H,F,} = ey’ 0%. (11.36)

Now we have to check that the second condition in
Eq. (8.14) is satisfied, i.e., that
{H’ Ga}* = {H’ €abcwbdwdc}* = eabcwbdwdewec =0.

(11.37)

This is indeed so, as we can verify by specializing indices
(for example, choose @ = 1 and explicitly perform the sum
on the other indices; the result vanishes because in each
term wow two ®’s always have the same indices).
Therefore,

G = de"F, + G, = (de®)€ 40" + £%€ 4" ;0%

= (De*)e gy’ (11.38)

generates a symmetry. Its action on the basic fields is
given by

sVt ={Vv4 G}* = De?, (11.39)

5w = {w™, G} =0, (11.40)

o, = {1,,G)" =0, (11.41)

07y, = {7, G} = {€we VS, G} = €, De. (11.42)

This infinitesimal transformation has to be compared with
the infinitesimal diffeomorphisms discussed in Sec. X. In
the second-order formalism, i.e., when R* = O holds, the
above transformations of V¢ and w“’ are indeed diffeo-
morphisms, since the R* term of Eq. (10.6) vanishes, and
the variation of the spin connection can be taken equal to
zero since it multiplies its own field equation when varying
the action (this is the essence of the so-called 1.5 order
formalism used to prove the invariance of the d =4
supergravity action under local supersymmetry variations
[34]). Since the w“? field equation is equivalent to R = 0,
any variation of @ has no effect on the action when using
R* =0. Thus, we can consider Eq. (11.38) to be the
diffeomorphism generator of d = 3 gravity in the second-
order formalism.

Note: The invariance of the action under the trans-
formations (11.39)—(11.42) can be checked directly using
integration by parts and the Bianchi identity DR = 0.

XII. A “DOUBLY COVARIANT” HAMILTONIAN
FOR GRAVITY

Exploiting Lorentz symmetry, we can reformulate the
form-canonical scheme for gravity in an even more
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covariant way. We call this scheme “doubly covariant,” in
the sense that not only is there no preferred time direction in
the definition of the form-momenta, but all tensors appear-
ing in the Hamiltonian and the equations of motion are
Lorentz-covariant tensors.

To achieve this, it is sufficient to take as “velocities” not
the exterior derivatives of V¢ and @, but rather their
Lorentz-covariant versions, i.e., the curvatures R% and R%’.
The momenta are then defined as

oL
= opi =0 (12.1)

oL
Tap = 8R“b

T

=V Vdguhcd .

(12.2)

Both momenta definitions coincide with those of Sec. IX
and yield the same primary constraints,

®,=7,=0, D, =y —VV9eyu =0, (12.3)

since they do not involve the “velocities” R* and R?’. The
doubly covariant form Hamiltonian is

H =R, + R*x,, — R*VVie, .0 = R, + R?*®,,,
(12.4)
and it is a sum of primary constraints. It differs from the

Hamiltonian of Sec. IX, which was not a sum of primary
constraints. The Hamilton equations of motion are

R* = {V H} = R, (12.5)

R = {0 H} = R, (12.6)
Dr, = {n,, H} = =2R*V¢ .. (12.7)
Dry, = {7y . H} = 0. (12.8)

The FPBs here are defined so as to leave the “velocities” R4
and R’ untouched.

Requiring the “covariant conservation” of ®, and ®,,
leads to the conditions

Do, = {®,,H} =0 = R*Vie, ., =0, (12.9)

D®,, = {®,,,H} =0 = RVé,.,=0. (12.10)
Note that to derive Eq. (12.10) we did not need the
identity (9.11).

The conditions (12.9)—(12.10) are the same as those
derived in Sec. IX, and likewise the constraint algebra is
the same.

The doubly covariant formalism can be applied to geo-
metric theories with a Lagrangian d-form L = L(¢, R)

invariant under local gauge tangent-space symmetries,
and where the variation of the “velocities” (i.e., curvatures)
R is given by SR = D(6¢), where D is the (Lorentz)
covariant derivative. Indeed, consider the variational
principle applied to the action

Md
yielding
oL oL
oS = Op; — +D(6¢p;)) = =10 12.12
| o055+ Do) (12.12)
and leading to the Euler-Lagrange equations
oL oL
— (=) =0. 12.13
x5 (12.13)
Defining the momenta
oL
P = , 12.14
" = oR, (12.14)
the d-form Hamiltonian density
H=Ria' - L (12.15)
does not depend on the “velocities” R; since
H . OL
=r - =0. 12.1
o, " "or,~° (12.16)
Thus, H depends on the ¢; and 7',
H = H(¢;, "), (12.17)

and the form analogues of the Hamilton equations read
OH . OH
) = Drt = (=)pitl )
aﬂ'l ’ d ( ) 845,
(12.18)

R, = (=1)(+Dpit1

1

These equations are derived using the same reasoning as
for Eq. (3.5).

XIII. CONCLUSIONS

We have extended the covariant Hamiltonian approach
of Refs. [10-14] with a form-Legendre transformation that
leads to a consistent definition of form-Poisson brackets. In
the d = 3 vielbein gravity case, form-Dirac brackets can be
defined. The algorithmic procedure of Ref. [29] can be
generalized in this formalism, and was applied to find
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gauge generators for gravity in d = 3 and d = 4. Finally, a
“doubly covariant” Hamiltonian was used in d = 4 gravity.

The formalism proposed here can be applied as it stands
to supergravity theories, where p-forms abound. It could be
worthwhile to use it for superspace Lagrangians with
integral forms; see, e.g., Refs. [35,36]. Also, it appears
to be particularly suited to noncommutative generalizations
of gravity along the lines of Refs. [37,38], where the twist is
defined in form language.

Finally, the form-Hamiltonian setting could be used in
the quantization of geometric theories, replacing form-

Poisson (or Dirac) brackets with commutators between
operator-valued p-forms. The built-in Lorentz covariance
would lead to a covariant quantization procedure, thus
improving on conventional Hamiltonian methods where a
time direction is singled out. This investigation is left to
future work.
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