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The semiclassical gravity describes gravitational backreactions of the classical spacetime interacting with
quantum matter fields, but the quantum effects on the background are formally defined as higher-derivative
curvatures. These induce catastrophic instabilities and classic solutions become unstable under small
perturbations or their evolutions. In this paper, we discuss validity of the semiclassical gravity from the
perspective of the spacetime instabilities and consider cosmological dynamics of the Universe in this theory.
We clearly show that the homogenous and isotropic flat Universe is unstable and the solutions either grow
exponentially or oscillate even in Planckian time tI ¼ ðα1GNÞ1=2 ≈ α110

−43 sec. The subsequent curvature
evolution leads to Planck-scale spacetime curvature in a short time and causes a catastrophe of the Universe
unless one takes extremely large values of the gravitational couplings. Furthermore, we confirm the above
suggestion by comparing the semiclassical solutions andΛCDMwith the Planck data and it is found that the
semiclassical solutions are not consistent with the cosmological observations. Thus, the standard semi-
classical gravity using quantum energy momentum tensor hTμνi is not appropriate to describe our Universe.
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I. INTRODUCTION

There are many essential difficulties to construct a con-
sistent theory of quantum gravity. Almost certainly, quantum
gravity where metric is also quantized together with matter
fields would change even fundamental concept of the
spacetime and requires a completely different theory from
classical general relativity. However, in the regime where
the curvature is small, one usually regards the gravity as a
classic field andmattersmove on the background. Therefore,
the semiclassical approximation is usually expected to be
sufficient. Based on this assumption, thermal Hawking
radiation around black holes [1] or amplification of primor-
dial quantum fluctuations during inflation is correctly per-
formed by quantum field theory in curved spacetime [2].
However, not only quantum fluctuations of the matter

fields, but also quantum backreaction on the spacetime
must be considered in full semiclassical approximation.
The standard semiclassical gravity replaces energy momen-
tum tensor in Einstein equations by the expectation values
of some quantum state,

Gμν þ Λgμν ≡ 8πGNhΨjTμνjΨi: ð1Þ
The semiclassical gravity naturally includes quantum
effects of the matters on spacetime such as vacuum
polarization or quantum particle creation. This theory is
regarded as a first approximation to quantum gravity [3]
and yields some insight into quantum nature of gravity. For

instance, it describes evaporation of the black holes [1,4–7]
and provides new classes of the cosmological solutions
[8–15]. However, the quantum energy momentum tensor
has nontrivial structures which depend on the curvature
tensor or its derivatives and introduce higher-derivative
corrections. In the semiclassical gravity, these higher-
derivative curvatures always appear and are necessary to
take account of the interaction of the classical gravitational
field with quantum matter fields. Even in quantum gravity
the higher-derivative curvatures are necessary for the
renormalizability of the theory [16]. However, these induce
instabilities of classical spacetime drawn from general
relativity and produce unphysical massive ghosts which
lead to the nonunitary graviton S matrix [17,18]. Although
we usually assume that the semiclassical gravity would be
applicable below the Planck regime, it has several unde-
sired properties and the validity is still unknown.
In fact, Refs. [19–26] have shown that the Minkowski

spacetime in the semiclassical gravity is unstable under
small perturbations and it is not the ground state [21].
The perturbations either grow exponentially or oscillate
even in the Planck time, and the subsequent curvature
evolution leads to the Planck-scale spacetime curvature
[19,20]. By using large N expansion of quantum gravity
[21] or effective action approach [23], it was shown that the
curvature instabilities occur at the frequencies far below the
Planck regime. The quantum de Sitter instability for scalar
fields or graviton has been also discussed by Refs. [27–55].
These facts strongly indicate that the semiclassical gravity
is not a good theory of the gravity, and the instabilities
cannot be easily rescued by full quantum theory of gravity
[21,23]. However, it has not been clearly shown whether
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the quantum instabilities are incompatible with the cos-
mological observations.
In this paper, we will thoroughly investigate the spacetime

instabilities induced by quantumbackreaction and reconsider
cosmological dynamics of the Universe in the semiclassical
equations. Due to the spacetime instabilities, we obtain
exactly nontrivial cosmological constraints on the semi-
classical gravity. We clearly show that Minkowski spacetime
or homogenous and isotropic flat spacetime are unstable, and
the corresponding solutions either grow exponentially or
oscillate even in the Planckian time tI ¼ ðα1GNÞ1=2 ≈
α110

−43 sec where α1 is defined by the quantum energy
momentum tensor or higher-derivative gravitational action.
Furthermore, we confirm the above proposition by compar-
ing the cosmological solutions of the ΛCDM and the semi-
classical Einstein equations with the recent Planck data [56]
and then, we show that the semiclassical gravity is incon-
sistent with the cosmological observations unless one takes
extremal values of the gravitational couplings. Thus, the
standard semiclassical gravity using quantum energy
momentum tensor is not appropriate to describeourUniverse.
The present paper is organized as follows. In Sec. II, we

review the semiclassical gravity and introduce our formu-
lation for this theory. In particular, we explain how the
higher-derivative corrections appear in the semiclassical
gravity. Furthermore, we discuss several problems of the
semiclassical gravity such as violations of gravitational
thermodynamical laws and (averaged) null energy condition.
In Sec. III, we investigate the spacetime instabilities induced
by quantum backreaction. First, we consider some results of
Refs [19,24,25] and investigate the instability of Minkowski
spacetime under small perturbations. Next, we investigate
quantum instabilities of the homogenous and isotropic
FLRW Universe and obtain cosmological constraints on
the semiclassical gravity. Finally, in Sec. IV, we discuss the
validity of this theory and draw the conclusion of our work.

II. SEMICLASSICAL GRAVITY

In this section, we review how quantum matter fields
interact with the spacetime and introduce our formulation
for the semiclassical gravity. At the quantum level, the
classical action of gravity is replaced by the effective action
Γeff ½gμν�, that is a functional of quantum matter fields ϕ in
the classical background metric,1

eiΓeff ½gμν� ¼ eiSG½gμν�
Z

DϕeiSM½ϕ;gμν�; ð2Þ

where SG½gμν� is the gravitational action and SM½gμν� is the
classical action ofmatter. This procedure also corresponds to

the large N approximation of quantum gravity [21]. When
quantum corrections of graviton are smaller than the
corrections of large number of matter fields, one can neglect
the graviton loops. In particular, if one considers the early
Universe, there were certainly a large number of matter
fields. Thus, the large N approximation is applicable and
semiclassical gravity is valid. For the current Universe, the
corresponding energy scale is much smaller than the Planck
scale and the semiclassical approximation should be valid.
The gravitational action is constructed by the Einstein-

Hilbert term and the cosmological constant

SEH½gμν�≡ −
1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 2ΛÞ ð3Þ

and the fourth-derivative curvature terms

SHD½gμν�≡
Z

d4x
ffiffiffiffiffiffi
−g

p ðc1R2 þ c2RμνRμν

þ c3RμνκλRμνκλ þ c4□RÞ: ð4Þ
The fourth-derivative terms are indispensable for renorm-
alization to eliminate one-loop divergences in curved
spacetime. Without the higher-derivative terms, the semi-
classical gravity becomes nonrenormalizable and is not
consistent as fundamental (not effective) quantum field
theory. If one regards the semiclassical gravity as the
fundamental, higher-derivative curvatures always exist at
the classical level. Even if these terms are not included into
the classical action, they will emerge from quantum energy
momentum tensors. The effective action of Eq. (2) derives
the semiclassical Einstein’s equations [2],

1

8πGN

�
Rμν−

1

2
RgμνþΛgμν

�
þa1H

ð1Þ
μν þa2H

ð2Þ
μν þa3Hμν

¼hTμνi; ð5Þ
where hTμνi is the vacuum expectation value of the
quantum energy momentum tensor,

hTμνi ¼ −
2ffiffiffiffiffiffi−gp δΓeff ½gμν�

δgμν
; ð6Þ

and the geometric tensors Hð1;2Þ
μν are defined as

Hð1Þ
μν ≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
R2

¼ 2∇ν∇μR−2gμν□R−
1

2
gμνR2þ2RRμν;

Hð2Þ
μν ≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
RμνRμν

¼ 2∇α∇νRα
μ−□Rμν−

1

2
gμν□R−

1

2
gμνRαβRαβþ2Rρ

μRρν;

Hμν≡ 1ffiffiffiffiffiffi−gp δ

δgμν

Z
d4x

ffiffiffiffiffiffi
−g

p
RμνκλRμνκλ ¼−Hð1Þ

μν þ4Hð2Þ
μν :

ð7Þ

1In theory involving gravitational fields, anomalies may exist
and break general covariance or local Lorentz invariance. These
are called gravitational anomalies and generally exist when the
spacetime dimension is D¼4kþ2, k ¼ 0; 1; 2… [57]. For four-
dimensional semiclassical gravity, they do not appear in general.
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For the flat Friedmann-Lemaitre-Robertson-Walker (FLRW)

Universe, the geometrical tensors Hð1Þ
μν and Hð2Þ

μν have a

relation Hð1Þ
μν ¼ 3Hð2Þ

μν , and we get

a1H
ð1Þ
μν þ a2H

ð2Þ
μν þ a3Hμν

¼
�
a1 þ

1

3
a2 þ

1

3
a3

�
Hð1Þ

μν ¼ α1H
ð1Þ
μν ; ð8Þ

where we note α1 ¼ a1 þ 1
3
a2 þ 1

3
a3. Furthermore, the

quantum energy momentum tensor hTμνi introduces
more additional geometric tensors (for the detailed
discussion, see Ref. [2]). For instance, the renormalized
vacuum energy momentum tensor for a massless con-
formally coupled scalar field is given by the conformal
anomaly

hTμνiconformal ¼
1

2880π2

�
−
1

6
Hð1Þ

μν þHð3Þ
μν

�
; ð9Þ

where

Hð3Þ
μν ≡ 1

12
R2gμν − RρσRρμσν

¼ Rρ
μRρν −

2

3
RRμν −

1

2
RρσRρσgμν þ

1

4
R2gμν:

The semiclassical gravity introduces more additional
geometric tensor which depends on quantum states [2].
In fact, the renormalized energy momentum tensor for
a massless minimally coupled scalar field in Bunch-
Davies vacuum state is given by [58]

hTμνiren¼
ð−1

6
Hð1Þ

μν þHð3Þ
μν Þ

2880π2
−
Hð1Þ

μν logðRμ2Þ
1152π2

þð−32∇ν∇μRþ56□Rgμν−8RRμνþ11R2gμνÞ
13824π2

;

ð10Þ

which have higher-derivative corrections.
In the next subsection, we review the renormalization

of the quantum energy momentum tensor and see how
the higher-derivative curvatures appear in semiclassical
gravity.

A. Quantum backreaction

First, we consider adiabatic (Wentzel-Kramers-
Brillouin) approximation for the conformally massless
fields and derive the renormalized quantum energy momen-
tum tensors in this method. It is found that the derivation
of adiabatic (WKB) approximation reduces the ambiguity
of the UV divergences in renormalization, and it is
more significant than any other regularization in curved
spacetime.

In this paper, we consider a spatially flat FLRW
spacetime,

ds2 ¼ dt2 − a2ðtÞδijdxidxj; ð11Þ

where aðtÞ is the scale factor and t is the cosmic time. We
introduce conformal time η defined by dη ¼ dt=a.
Let us consider the matter action for the conformally

coupled scalar field ϕ with mass m,

SM¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
gμν∂μϕ∂νϕ−

1

2

�
m2þR

6

�
ϕ2

�
;

ð12Þ

which leads to the Klein-Gordon equation given as

□ϕ −
�
m2 þ R

6

�
ϕ ¼ 0: ð13Þ

The operator ϕðη; xÞ can be decomposed as

ϕðη; xÞ ¼
Z

d3k

ð2πÞ3=2
�
ak

eik·xφkðηÞ
aðηÞ þ a†k

e−ik·xφ�
kðηÞ

aðηÞ
�
;

ð14Þ

where ak, a
†
k are the annihilation and creation operators,

respectively. In curved spacetime, quantum states are
determined by the choice of the mode functions. The
mode function φkðηÞ should satisfy the Wronskian
condition

φ0�
k ðηÞφkðηÞ − φ0

kðηÞφ�
kðηÞ ¼ i; ð15Þ

which ensures the canonical commutation relations.
We adopt adiabatic (WKB) approximation to the mode
function ϕðη; xÞ, which is written by [59]

φkðηÞ¼
1

aðηÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WkðηÞ

p ðαk ·e−i
R
WkðηÞdηþβk ·e

i
R
WkðηÞdηÞ;

ð16Þ

where the background changes slowly and must satisfy
the adiabatic (WKB) conditions (ω2

k >0 and jω0
k=ω2

kj≪1

where ω2
kðηÞ ¼ k2 þ a2ðηÞm2). The coefficients αk and βk

satisfy the following conditions:

jαkj2 − jβkj2 ¼ 1: ð17Þ

The adiabatic function WkðηÞ is given by
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WkðηÞ ≃ ωk −
m2C
8ω3

k

ðD0 þD2Þ þ 5m4C2D2

32ω5
þ m2C
32ω5

k

ðD000 þ 4D0Dþ 3D02 þ 6D0D2 þD4Þ

−
m4C2

128ω7
k
ð28D00Dþ 19D02 þ 122D02 þ 47D4Þ þ 221m6C3

256ω9
k

ðD0D2 þD4Þ − 1105m8C4D4

2048ω11
k

þ � � � ; ð18Þ

where CðηÞ ¼ a2ðηÞ and D ¼ C0=C. The mode function φkðηÞ with αk ¼ 1 and βk ¼ 0 is a reasonable choice for a
sufficiently slow and smooth background [59],

φkðηÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðηÞCðηÞ
p · e−i

R
WkðηÞdη; ð19Þ

which defines the adiabatic vacuum state jΨAi which is annihilated by all the operators ak. Here, we assume that the
adiabatic vacuum state jΨAi is adequate initial vacuum in flat FLRW spacetime.
Let us consider the quantum energy momentum tensor. The classical energy momentum tensor is given by [60]

Tμν ¼
−2ffiffiffiffiffiffi−gp δS

δgμν
¼ 2

3
∂μϕ∂νϕ −

1

6
gμνgρσ∂ρϕ∂σϕ −

1

3
ϕ∇μ∇νϕþ 1

3
gμνϕ□ϕ −

1

6
Gμνϕ

2 þ 1

2
m2gμνϕ2 ð20Þ

and the corresponding trace

Tμ
μ ¼ m2ϕ2; ð21Þ

which is exactly zero when m → 0. Thus, the conformally massless scalar field has the vanishing trace of the stress tensor
classically. It is found that the conformal invariance is broken in quantum field theory. The vacuum expectation values of the
energy momentum tensor hTμνi for φkðηÞ are given by

hT00i ¼
1

4π2CðηÞ
Z

dkk2½jφ0
kðηÞj2 þ ω2

kjφkðηÞj2�;

hTμ
μi ¼

1

2π2C2ðηÞ
Z

dkk2½Cm2jφkðηÞj2�; ð22Þ

where hT00i is the time component of the energy momentum tensor and hTμ
μi is the trace. These quantum energy

momentum tensors have UV divergences and one must proceed the renormalization.
Next, we rewrite the vacuum expectation values hTμνi of the energy momentum tensor by the adiabatic approximation

[60] and renormalize the quantum energy momentum tensors as follows:

hT00i ¼
1

8π2CðηÞ
Z

dkk2
�
2ωk þ

C2m4D2

16ω5
k

−
C2m4

64ω7
k
ð2D00D−D02 þ 4D0D2 þD4Þ þ 7C3m6

64ω9
k

ðD0D2 þD4Þ− 105C4m8D4

1024ω11
k

�
;

hTμ
μi ¼

1

4π2C2ðηÞ
Z

dkk2
�
Cm2

ωk
þC2m4

8ω5
k

ðD0 þD2Þ− 5C3m6D2

32ω7
k

−
C2m4

32ω7
k
ðD000 þ 4D00Dþ 3D02 þ 6D0D2 þD4Þ

þ C3m6

128ω9
k

ð28D00Dþ 21D02 þ 126D0D2 þ 49D4Þ− 231C4m8

256ω11
k

ðD0D2 þD4Þ þ 1155C5m10D4

2048ω13
k

�
; ð23Þ

where the lowest-order term of the quantum energy momentum tensor hTμνi actually diverges,

hT00idiverge ¼
1

4π2CðηÞ
Z

dkk2ωk → ∞: ð24Þ

By adopting the dimensional regularization, the quantum energy momentum tensor hTμνi can be regularized as
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hT00ireg ¼−
m4C
64π2

�
1

ϵ
þ3

2
− γþ ln4πþ ln

μ2

m2

�
þm2D2

384π2

−
1

2880π2C

�
3

2
D00D−

3

4
D02−

3

8
D4

�
;

hTμ
μireg ¼−

m4

32π2C

�
1

ϵ
þ1− γþ ln4πþ ln

μ2

m2

�

þ m2D2

192π2C
ð2D0 þD2Þ− 1

960π2C2
ðD000−D0D2Þ;

ð25Þ

where μ is the renormalization parameter and γ is the Euler-
Mascheroni constant. The 1=ϵ terms represent the UV
divergences, and they must be absorbed by the counter-
terms of the gravitational action.
Hence, the renormalized energy momentum tensor for

flat spacetime is

hT00iren ¼
m4C
64π2

�
ln
m2

μ2
−
3

2

�
þ m2D2

384π2

−
1

2880π2C

�
3

2
D00D −

3

4
D02 −

3

8
D4

�
;

hTμ
μiren ¼

m4

32π2C

�
ln
m2

μ2
− 1

�
þ m2D2

192π2C
ð2D0 þD2Þ

−
1

960π2C2
ðD000 −D0D2Þ; ð26Þ

where the first terms are the running cosmological constant
corrections which originate from the lowest adiabatic
term. On the other hand, the latter parts express vacuum
polarization or quantum particle creation in curved space-
time. The anomaly term of Eq. (26) is consistent with
using dimensional regularization [61,62] and it is equal to
a2ðxÞ=16π2 [3], where a2ðxÞ is a coefficient of the DeWitt-
Schwinger formalism. The conformal anomaly is given by
the massless limit of Eq. (26),

hTμ
μianomaly ¼ lim

m→0
hTμ

μiren ¼ −
1

960π2C2
ðD000 −D0D2Þ

¼ −
1

2880π2

��
RμνRμν −

1

3
R2

�
þ□R

�

¼ 1

360ð4πÞ2 E −
1

180ð4πÞ2□R: ð27Þ

By using the adiabatic approximation, we obtain the
following expression for a massless fermion [63,64]:

hTμ
μifermion

anomaly ¼ −
1

2880π2

�
11

�
RμνRμν −

1

3
R2

�
þ 6□R

�

¼ 11

360ð4πÞ2 E −
6

180ð4πÞ2□R: ð28Þ

The conformal anomaly for the gauge field in adiabatic
expansion is given by [65]

hTμ
μigauge bosonanomaly ¼−

1

2880π2

�
62

�
RμνRμν−

1

3
R2

�

− ð18þ15 logξÞ□R

�

¼ 62

360ð4πÞ2Eþð18þ15 logξÞ
180ð4πÞ2 □R; ð29Þ

where ξ is a gauge fixing parameter defined by the
covariant gauge fixing term [65]

Lgf ¼ −
ffiffiffiffiffiffi−gp
2ξ

ð∇μAμÞ2: ð30Þ

The gauge dependence of Eq. (29) also exists in the
DeWitt-Schwinger expansion formalism [66–68]. The
adiabatic approximation reproduces the gauge depend-
ence of the □R term which has also the regularization-
scheme dependence. However, the gauge fixing parameter
can be removed by the gravitational coupling constants
in the Einstein equation and we can drop the gauge
fixing parameter ξ. It is found out that the adiabatic
expressions for the conformal anomaly precisely match
the expression derived by effective action using the
dimensional regularization [3].
The renormalized energy momentum tensor hTμνiren is

generally given as follows:

hTμνiren ¼ α1H
ð1Þ
μν þ α3H

ð3Þ
μν þ α4H

ð4Þ
μν ; ð31Þ

where the geometric tensor Hð4Þ
μν depends on quantum

states [2], and the above equations are defined as fourth-
order derivative equations. The dimensionless parameters
α1;3 for massless fields are given by [2]

α1 ¼
−1

2880π2

�
NS

6
þ NF − 3NG

�
; ð32aÞ

α3 ¼
1

2880π2

�
NS þ

11

2
NF þ 62NG

�
; ð32bÞ

where we consider NS scalars (spin-0), NF Dirac fermions
(spin-1=2), and NG abelian gauge fields (spin-1). For
instance, the minimal supersymmetric Standard Model
takes the following values: NS ¼ 104, NF ¼ 32, and
NG ¼ 12. On the other hand, the Standard Model takes
the following values: NS ¼ 4, NF ¼ 24, and NG ¼ 12
where the right-handed neutrinos are assumed. Finally,
the current Universe has only photon,NS ¼ 0,NF ¼ 0, and
NG ¼ 1. It is found that the large number of the scalar fields
or fermions lead to the negative α1 and induce the runaway
solutions.
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B. Covariant conservation laws

Briefly, we comment covariant conservation laws for
the quantum energy momentum tensor [8]. The energy
momentum tensor in both classical and quantum cases must
satisfy the covariant conservation laws,

∇μhTμνiren ¼ 0; ð33Þ

which means energy and momentum conservations. We
rewrite the trace of Eq. (31) for massless conformally
invariant fields in terms of the scale factor aðtÞ,

hTμ
μiren ¼ −36αa−3½a2að4Þ þ 3a _aað3Þ þ aä2 − 5 _a2ä�

þ 12βa−3ä _a2; ð34Þ

where the dots and bracketed superscripts denote differ-
entiation with respect to t. Using the above expression,
Eq. (33) derives the renormalized vacuum energy density,

ρren ¼ −36αa−4
�
a2 _aað3Þ þ a _a2ä −

1

2
a2ä2 −

3

2
_a4
�

þ 3βa−4 _a4 þ Ca−4; ð35Þ

where C is a constant from integration and the last term
corresponds to the thermal radiation ρ ∝ a−4. Hence, the
renormalized expression of the energy momentum tensor of
Eq. (31) satisfies the covariant conservation laws. From
here, we drop the constant C for simplicity.

C. Gravitational thermodynamics and
averaged null energy condition

In this section, let us briefly discuss several problems of
the semiclassical gravity such as violations of the gravi-
tational thermodynamical law which is characterized by
thermodynamical entropy S and the averaged null energy
condition. Famously, the black hole thermodynamics
assumes that black holes have the entropy, quantified by
the area of the event horizon,

SBH ¼ A
4GN

; ð36Þ

where the horizon area A is quantified by the surface
gravity κ and the mass MBH of stationary black holes,

dMBH ¼ κdA
8πGN

þ ðrotation and charge termsÞ: ð37Þ

Classically, the black holes acquire mass from other
massive objects and SBH always increases. This fact
matches the thermodynamical interpretation of the entropy.
However, the black holes may lose its mass due to the
Hawking radiation with the temperature,

TH ¼ κ

2π
; ð38Þ

and thus SBH decreases. On the other hand, thermal
character of the event horizon in de Sitter space formally
defines de Sitter entropy,

SdS ¼ πH−2

GN
; ð39Þ

where the horizon area is given by A ¼ 4πH−2 and the time
evolution is written as follows:

dSdS
dt

¼ −
2πH−3 _H

GN
: ð40Þ

By using the de Sitter entropy SdS, one can get interesting
consequences such as a no-go theorem for slow-roll eternal
inflation. Let us consider slow-roll inflation driven by an
inflaton field ϕ. For the slow-roll inflation, we have

_H ¼ −4πGN
_ϕ2: ð41Þ

Hence, the de Sitter entropy SdS is rewritten as

dSdS
dN

¼ −
2π _H
GNH4

¼ 8π2 _ϕ2

H4
∼
�
δρ

ρ

�
−2 ≳ 1; ð42Þ

where N is the number of e-foldings defined by dN ¼ Hdt,
ρ is the energy density, and δρ is the energy density
perturbation satisfying jδρ=ρj≲ 1. The total number of
e-folding Ntot is bounded as follows [69]:

Ntot ≲ ΔS ¼ Send − Sini; ð43Þ

where Send and Sini are the de Sitter entropy at the end
and the beginning of the inflation, respectively. For the
large field inflation, the entropy at the beginning is much
smaller than that at the end, and then one get ΔS ∼ Send but
ΔS ≪ Send for the small field inflation. In any case, the total
e-folding number Ntot is strictly restricted.
Let us discuss a more general case. For flat FLRW

Universe, the Friedmann equations yield a simple equation

_H ¼ −4πGNðρþ PÞ: ð44Þ

Hence, the de Sitter entropy can be written as follows:

dSdS
dt

¼ 8π2H−3ðρþ PÞ ≥ 0; ð45Þ

which always increases and matches gravitational thermo-
dynamical laws when the null energy condition (NEC) is
satisfied,
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Tμνkμkν ≥ 0 ⇒ ρþ P ≥ 0; ð46Þ

where kμ is the null (lightlike) vector. It is known that the
NEC and the gravitational thermodynamical laws are
closely related with each other [69]. In general relativity,
the NEC is a necessary condition to eliminate any patho-
logical spacetime or unphysical consequences such as
wormhole, geometric instability, and superluminal propa-
gation. It is well known that the classical matters always
satisfy the NEC, and in this sense the classical general
relativity does not violate any gravitational principles.
However, these classical conditions can be easily violated
in quantum field theory (QFT) and the NEC is broken even
for quantum fields in Minkowski spacetime [70] (e.g.,
squeezed vacuum states [71]). More generally, the averaged
null energy condition (ANEC) [72], which is satisfied in
Minkowski spacetime [73] and prohibits a traversable
wormhole [74], has been proposed,

Z
γ
Tμνkμkνdl ≥ 0 ⇒

Z
∞

−∞

1

a
ðρþ PÞdt ≥ 0; ð47Þ

where the integral is taken over a null geodesic γ, kμ is the
parameterized tangent vector to the geodesic, and l is the
affine parameter [75]. However, it has been known that
curved spacetime, i.e., semiclassical gravity violates the
NEC or ANEC [76–79] and the de Sitter entropy decreases
[80]. This seems very plausible because the energy density
undergoes quantum vacuum fluctuations and the variances
of the energy density would be allowed to be both negative
and positive in QFT. Although the so-called quantum
inequalities [81] have been proposed, in principle, there
is no lower limit for the negative vacuum energy and one
can take any nonphysical spacetime. In a nutshell, such
quantum effects on gravity require careful discussion and
theory should not break these basic gravitational principles.
Finally, let us briefly see the violations of the NEC,

ANEC, and gravitational thermodynamical laws in semi-
classical gravity and simply consider conformal anomaly
hTμ

μianomaly in Eq. (67). For the semiclassical gravity, the
NEC, ANEC, and de Sitter entropy can be violated with
various conditions as follows:

ρþ P ¼ 12α1ð6 _H2 þ 3HḦ þH
…Þ − 4α3H2 _H ≱ 0; ð48Þ

Z
∞

−∞

1

a
ðρþ PÞdt ¼

Z
∞

−∞

�
12α1
a

ð6 _H2 þ 3HḦ þH
…Þ

−
4α3
a

H2 _H

�
dt ≱ 0; ð49Þ

dSdS
dt

¼ 96π2α1ð6H−3 _H2 þ 3H−2Ḧ þH−3H
…Þ

− 32π2α3H−1 _H ≱ 0; ð50Þ

which suggests that semiclassical gravity is incompatible
with basic gravitational principles [69].

III. QUANTUM SPACETIME INSTABILITY

We now turn to a more quantitative discussion of the
validity of the semiclassical gravity. The quantum energy
momentum tensor holding higher-derivative terms modifies
the Einstein’s equations and destabilizes the classical
solutions. In this section, we investigate the quantum
spacetime instabilities in semiclassical gravity and consider
the cosmological dynamics of the Universe.
First, we will revisit some results of Refs. [19,24,25] and

discuss the instability of the Minkowski spacetime under
small perturbations. Next, we discuss the instabilities of the
homogenous and isotropic FLRW Universe, and consider
the cosmological dynamics. Our results suggest that the
corresponding solutions of the semiclassical gravity cannot
be incompatible with the cosmological observations.
For simplicity, we consider the semiclassical Einstein’s

equations for the massless conformally invariant fields and
the classical radiation or nonrelativistic matters,

1

8πGN

�
Rμν−

1

2
RgμνþΛgμν

�
¼hTμνirenþTc

μν

¼ α1H
ð1Þ
μν þα3H

ð3Þ
μν þTc

μν;

ð51Þ

where Tc
μν is the energy momentum tensor for ordinary

radiation or nonrelativistic matters.

A. Instability of Minkowski spacetime under
conformally flat perturbations

Let us consider the Minkowski spacetime with no matter
fields and investigate whether the spacetime is stable under
the perturbations. Although in classical general relativity,
the Minkowski spacetime should be completely stable,
semiclassical gravity does not ensure this important fact.
References [19–26] have shown that the Minkowski
spacetime is unstable under small perturbations, and the
perturbations either grow exponentially or oscillate even
in Planck time. This leads to disaster. Before studying
the FRLW instabilities and considering the influence on the
current Universe, let us reconsider some results of the
Minkowski instability of Refs. [19,24,25].
In the Minkowski spacetime, the geometric tensors in

semiclassical Einstein’s equations satisfy

Gμν ¼ Hð1Þ
μν ¼ Hð3Þ

μν ¼ 0: ð52Þ

Now, we consider only conformally flat perturbations and
write the metric as follows:

gμν ¼ Ω2ημν; ð53Þ
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where ημν is the Minkowski metric (þ − −− convention)
and Ω is the conformal parameter.
The corresponding Ricci tensor Rμν is given by

Rμν ¼ 4Ω−2ð∂μΩÞð∂νΩÞ − 2Ω−1∂μ∂νΩ

−Ω−1ημνð∂α∂αΩÞ − Ω−2ημνð∂αΩ∂αΩÞ; ð54Þ

where Ω ¼ 1 reproduces the Minkowski spacetime solu-
tion. Now, we rewrite Eq. (51) using this expression with
the conformally flat perturbations Ω ¼ 1þ γ and one can
obtain [19]

− ∂μ∂νγ þ ð□γÞημν þ 48πα1GN ½−∂μ∂νð□γÞ þ□ð□γÞημν�
¼ 0; ð55Þ

where □≡ ηαβ∂α∂β ¼ ∂α∂α. This perturbation equation
for γ can be rewritten by a simple equation

ð∂μ∂ν − ημν□Þf ¼ 0; ð56Þ

where we define f ≡ ðγ þ 48πα1GN□γÞ and the general
solution is clearly

f ¼ kαxα þ const:; ð57Þ

where kα expresses a constant vector field and xα is a
position vector field in the Minkowski spacetime. Hence,
we can get the following equation:

ð1þ 48πα1GN□Þγ ¼ kαxα þ const: ð58Þ

The most general solution to the above equation is

γ ¼ kαxα þ χ þ const:; ð59Þ

where inhomogeneous solution γ ¼ kαxα þ const: is pure
gauge in the Minkowski spacetime and the metric pertur-
bation χ satisfies the Klein-Gordon equation

□χ þ 1

48πα1GN
χ ¼ 0; ð60Þ

which admits the spatially homogeneous solutions

χ ¼ C1 sin ðωtÞ þ C2 cos ðωtÞ; C3et=τ; ð61Þ

where ω ¼ ð48πα1GNÞ1=2 andC1;2;3 are constants. The first
solution is forα1 > 0 and consistentwith the ordinaryKlein-
Gordon equation. However, if one takes 48πα1 ∼Oð1Þ, the
perturbations oscillate in the Planck time tP ¼ ðGNÞ1=2 ¼
10−43 sec and they emit the Planck energy photons, E ∼
1019 GeV [19], which is unreasonable for the observed
Universe. The last possible solution is given for α1 < 0.
We denote τ ¼ ð48πα1GNÞ1=2. This corresponds to the

Klein-Gordon equation with a negative mass and suggests
that the perturbations exponentially grow even in the
Planck time.
Once the Minkowski spacetime is perturbed, the pertur-

bations lead to a catastrophe. For α1 < 0, the instability
timescale can be summarized as

tI ¼ ð48πα1GNÞ1=2 ¼ ð48πα1Þ1=2 · 10−43 sec

¼ ð48πα1=10118Þ1=2 Gyr: ð62Þ

The instability time tI must be as large as the age of
the observed Universe, tAge ¼ 13.787� 0.020 Gyr [56]
(Planck 2018, TT;TE;EEþ lowEþ lensingþ BAO 68%
limits). Otherwise, the perturbations or scale factor expo-
nentially grows and our Universe is seriously destabilized.
Hence, we obtain the stable condition against quantum
backreaction

α1 ≳ 10118; ð63Þ
which requires a large value of the gravitational curvature
coupling or a large number of the particle species N ∼
10118 for the high energy theory. Hence, the α1 < 0 case is
trouble for the homogenous and isotropic flat Universe.
We will confirm these results in different methods in the
next subsection.2

B. Numerical analysis for Minkowski spacetime
instability under perturbations

Let us consider the FLRW spacetime with matter fields
and study the spacetime insatiabilities from the quantum
backreaction.3 For the Minkowski spacetime, we have no
classical matter and no cosmological constant.
By using Eq. (51), we obtain the following semiclassical

equation [82]:

dR
dt

¼ 1

12H
R2 −HR −

H
16πGNα1

þ α3
α1

H3: ð64Þ

If we assume that the third term of Eq. (64) can dominate
due to the smallness of 16πGNα1, we can approximately
rewrite

d2H
dt2

≈ −
1

16πGNα1
H; ð65Þ

where we consider Hð0Þ ≈ 0, Rð0Þ ≈ 0. This admits the
exponential or oscillating solutions for the Planck time tP

2Taking the following conformal parameter,

gμν ¼ Ω2ημν ¼ a2ðηÞημν;

one can get a similar consequence for the scale factor aðηÞ.
3The similar analysis was given recently by one of the

authors [80].
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for 16πα1 ∼Oð1Þ. Thus, these are consistent with the
previous discussion. Next, we numerically confirm the
above analytical estimations. Let us assume the Minkowski
spacetime perturbed by the small Hubble variations. Using
Eq. (64) and R ¼ 6ð _H þ 2H2Þ, we obtain the differential
equation. We investigate the system of equations starting at
t ¼ 0 with various conditions and perturbations. It is found
that the numerical solutions of the system show that the
Minkowski spacetime is unstable and they are consistent
with the above analytical estimation.
In Fig. 1, we demonstrate numerical results for the

Hubble perturbation HðtÞ determined by Eq. (72) with the
following conditions and couplings:

Fig: 1∶ H0 ¼ 10−43;−45;−48; _H0 ¼ 0;

48πα1GN ¼ �10−86; 8πGNα3 ¼ 0; 10−86; ð66Þ

where we set these parameters with respect to the Planck
time tP ¼ 10−43 and it is found that magnitudes of the
perturbation ϒðtÞ and values of α3 are irreverent for the

dynamics. We found that the Hubble oscillations with the
Planck frequency occur for α1 > 0, whereas for α1 < 0,
the Hubble perturbations exponentially grow even in the
Planck time tP. The small values of α1 lead to faster
destabilization, and the stability of the Minkowski space-
time requires a large value of jα1j.

C. Numerical analysis for FLRW spacetime instability

Let us consider the de Sitter spacetime under the Hubble
perturbation and discuss the cosmological evolution. Now
using Eq. (51) for the FLRW metric, we obtain the
semiclassical Friedmann equations

H2 ¼ Λ
3
− 48πGNα1ð6H2 _H þ 2HḦ − _H2Þ

þ 8πGNα3H4 þ 8πGN

3
ρm; ð67Þ

where ρm is the energy density of the classical matter and
satisfies the covariant conservation law

_ρm ¼ −3Hðρm þ PmÞ ¼ −3Hð1þ ωÞρm; ð68Þ

where w ¼ P=ρ is an equation-of-state parameter. For
the nonrelativistic matter, radiation, and cosmological
constant, one takes w ¼ 0; 1=3;−1, respectively.
We rewrite the above semiclassical equations in terms of

the dimensionless parameters

h2 ¼ −xð6h2h0 þ 2hh00 − h02Þ þ yh4 þ z;

z0 ¼ −3hð1þ ωÞz; ð69Þ

where these parameters are given by

τ ¼ H0t; h ¼ H=H0;

x ¼ 48πGNα1H2
0; y ¼ 8πGNα3H2

0;

z ¼ Λ=3H2
0 þ 8πGNρm=3H2

0; ð70Þ

where H0 is the initial Hubble parameter. We note the
following relations of these parameters:

H0 ∼ 1014 GeV; MP ∼ 1018 GeV; α1;3 ∼ 10−2

⇒ x; y∼ 10−10;

H0 ∼ 10−42 GeV; MP ∼ 1018 GeV; α1;3 ∼ 10−2

⇒ x; y∼ 10−122; ð71Þ

where the former and latter Hubble parameters correspond
to an example consistent with typical inflation and current
Universe, respectively [56]. The dynamics of the dimen-
sionless Hubble parameter hwithw ¼ −1 for the spacetime
is determined by

1. 10–44 5. 10–441. 10–43 5. 10–431. 10–42 5. 10–421. 10–41

10–54

10–52

10–50

10–48

10–46

10–44

t [sec]

H

1. 10–44 5. 10–441. 10–43 5. 10–431. 10–42 5. 10–421. 10–41
10–49

10–39

10–29

10–19

10–9

10

t [sec]

H

FIG. 1. We consider the instability of the Minkowski spacetime
under perturbations and show that the dynamics of the Hubble
perturbation HðtÞ around the Planck time tP ¼ 10−43 sec. We
assume the initial conditions and the couplings of Eq. (66). The
top figure assumes α1 ¼ 10−86, whereas the bottom figure takes
α1 ¼ −10−86. The top-to-bottom lines correspond to
H0 ¼ 10−43;−45;−48, respectively.
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h2 ¼ −xð6h2h0 þ 2hh00 − h02Þ þ yh4 þ z; ð72Þ

where z is constant and prime expresses the derivative with
respect to the dimensionless time τ. The suitable de Sitter
initial conditions for Eq. (72) are

τ0 ¼ 1; h0 ¼ 1; h00 ¼ 0; z0 ¼ 1: ð73Þ
In order to investigate the de Sitter spacetime instabil-

ities, we consider the numerical solutions of the de Sitter
system starting at τ0 ¼ 1 with various initial conditions and
perturbations. In Fig. 2, we present the numerical results for
the dimensionless parameter hðτÞ from Eq. (72) with the
following conditions:

Fig: 2∶ h0 ¼ 1þ 10−1.0; h00 ¼ 0;

x ¼ 10−10.0;−12.0;−14.0; y ¼ 0; 10−10.0;

h0 ¼ 1; h00 ¼ 0;

x ¼ −10−9.8;−10.0;−10.2; y ¼ 0; 10−10.0; ð74Þ
where we compare these results with the de Sitter solution
hðτÞ ¼ 1 from the general relativity. The top panels show
that the Hubble perturbations in the de Sitter spacetime

oscillate, and the oscillation timescale becomes shorter for
the small values of jxj. On the other hand, the bottom panels
show that the de Sitter spacetime is destabilized in τ ≈
jxj1=2 and the smallness of jxj amplifies the instabilities.
The dynamics for y > 0 and y < 0 shows the similar
results, and it is found that y is irreverent for the dynamics.
Next,we considermatter-dominated stage of theUniverse

with w ¼ 0. The natural initial conditions for the system are
given by

τ0¼ 2=3; h0 ¼ 1; h00 ¼−3=2; z0¼ 1; ð75Þ

where we take z ¼ 8πGNρm=3H2
0 and Λ ¼ 0. In Fig. 3,

we investigate the system of equations starting at τ0 ¼ 2=3
with the following conditions:

Fig: 3∶ h0 ¼ 1þ 0.3; h00 ¼ −3=2;

x ¼ 10−1.0;−3.0;−5.0 y ¼ 10−1.0;

h0 ¼ 1; h00 ¼ −3=2;

x ¼ −10−1.0;−1.5;−2;0; y ¼ 10−1.0; ð76Þ
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FIG. 2. We show the numerical solution of Eq. (72) with the initial conditions and the higher-derivative couplings of Eq. (74). These
figures show that the dynamics of the dimensionless Hubble parameter hðτÞ in a few normalization time τ. The dashed line shows the
de Sitter solution hðτÞ ¼ 1 from the general relativity. The right panel is y ¼ 0, whereas the tight panel is y ¼ 0. The top panels show
that the solutions oscillate where the top-to-bottom lines correspond to x ¼ 10−10.0;−12.0;−14.0. The bottom panels on the other hand
show the solutions exponentially grow where the top-to-bottom lines correspond to x ¼ −10−9.8;−10.0;−10.2. We found out that the
timescale τI is τI ≈ jxj1=2 ≈ 10−5.
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where we compare them with the standard cosmic solu-
tion hðτÞ ¼ 2=3τ. The top panels show that the matter-
dominated Universe is unstable for the small perturbations
but the solutions converge the general relativity. The bottom
panels show that the matter-dominated Universe is unstable
for τ ≈ jxj1=2 and inconsistent with the usual general
relativity. In this case, the instability timescale τI should
be larger than of order unity,

τI ≈ jxj1=2 ≳Oð1Þ; ð77Þ

and thus using the current value of the Hubble parameter
H0 ∼ 10−42 GeV, we obtain the following constraint:

jα1j≳ 10118; ð78Þ

which is consistent with Eq. (63). Now, we confirmed the
results of the previous subsection and found out that the
FLRW spacetime is unstable under the perturbations for
α1 > 0 or the evolution for α1 < 0. Since the theoretically
expected value of α1 is given by Eq. (32), the above
constraint is unacceptably large.

D. Instability of the current Universe

Finally, we consider cosmological evolution of the
Universe with the quantum backreaction and derive a strict
cosmological constraint for the semiclassical gravity.
Before considering the detail, let us review the standard
cosmological history of the Universe based on ΛCDMwith
inflation. First, the Universe proceeds inflation [10,83–86]
(around 10−35–10−32 sec). Second, the inflation ends and
thermal radiation dominates up to the recombination with
the cosmic microwave background radiation (around
379,000 years). After the radiation-dominated stage, the
Universe is dominated by nonrelativistic matters, and then
galaxies and clusters are gradually formed. From about
9.8 Gyr, the expansion of the Universe begins to accelerate
via unknown dark energy. The age of the current Universe
is about 13.8 Gyr and the present value of the Hubble
parameter is H0 ≈ 67.7 km=s:MPc.
We consider the semiclassical Friedmann equations of

Eq. (67) for the conditions of ΛCDM,

H2ðt0Þ ¼ H2
0½ΩΛ;0 þ Ωm;0 þΩr;0�;

ΩΛ;0 þ Ωm;0 þ Ωr;0 ≈ 1; ð79Þ
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FIG. 3. We compare the numerical solution of Eq. (72) with the conditions of Eq. (76) and the standard solution hðτÞ ¼ 1=2τ from the
general relativity is presented by the dashed line. The right panel is y ¼ 0, whereas the tight panel is y ¼ 0. The top panels show that
the solutions oscillate for x ¼ 10−1.0;−3.0;−5.0. The bottom panels where the top-to-bottom lines correspond to x ¼ −10−1.0;−1.5;−2;0 show
the instabilities for the matter-dominated Universe and the solutions are inconsistent with the standard general relativity.
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where ΩΛ;0 is the density parameter for the cosmological
constant and Ωm;0, Ωr;0 are the current density values of
nonrelativistic matters, including dark matter and radiation.
From the recent Planck data [56] (Planck 2018, TT;TE;
EEþ lowEþ lensingþ BAO 68% limits), we have

H0 ≈ 67.66� 0.42 ½km s−1MPc−1�
≈ 7.25 × 10−2 ½Gyr−1�;

ΩΛ;0 ¼ 0.6889� 0.0056;

Ωm;0 ¼ 0.3111� 0.0056; ð80Þ
where ðGNÞ1=2 ¼ 10−59 Gyr. For simplicity, we rewrite the
semiclassical Friedmann equations as follows:

h2 ¼ −xð6h2h0 þ 2hh00 − h02Þ þ yh4 þ λ0 þ z;

z0 ¼ −3hz; ð81Þ
where the dimensionless parameters are given by

τ ¼ H0t; h ¼ H=H0;

x ¼ 48πGNα1H2
0; y ¼ 8πGNα3H2

0;

λ0 ¼ Λ=3H2
0; z ¼ 8πGNρm=3H2

0: ð82Þ
In Fig. 4, we assume the following initial conditions and
various couplings based on the ΛCDM:

Fig: 4∶ x ¼ −10−1.0;−2.0;−3.0;−4.0; y ¼ 0;

h0 ¼ 1; h00 ¼ −3=2Ωm;0;

λ0 ¼ ΩΛ;0 z0 ¼ Ωm;0: ð83Þ
Figure 4 shows the spacetime instabilities for the small jxj
in a short time, and the corresponding spacetime solutions

are inconsistent with the future or current evolution of the
Universe unless one takes jxj1=2 ≈Oð1Þ. However, the
semiclassical gravity expects the extremal small value
jxj1=2 ≈ 10−61 for the current Universe and that is not
consistent with the observations.
The spacetime instability of the semiclassical gravity is

certainly a serious problem and the solutions are not
consistent with the cosmological observation. It has been
argued that the semiclassical solutions must be given by the
truncating perturbative expansions [87,88] and the quantum
higher-derivative corrections can be regarded as small
perturbations from the classical solution. However, this
procedure is ad hoc approach for the semiclassical equa-
tions much below the Planck scale and ineffective near the
Planck regime. That is a problem when one considers large
N expansion where the semiclassical gravity could be
adequate to describe Planckian phenomenon due to the
suppression of the graviton loops [21]. Also, the Euclidean
formulation of quantum gravity imposes the boundary
condition and the curvature instability or runaway solutions
might be removed [89]. However, it is not clear how to
handle the quantum energy momentum tensor hTμνi in
these procedures and the problem of the quantum insta-
bility is still left open.

IV. CONCLUSION

Semiclassical gravity describe the interactions between
classical gravity and quantum matters, and the quantum
backreaction is formally defined as the higher-derivative
curvatures. These induce instabilities of the classic solu-
tions and Refs. [19–26] presented that the Minkowski
spacetime is unstable under small perturbations. The
spacetime instability was seen as a serious problem in
semiclassical gravity. However, it has not been discussed
whether the semiclassical instabilities are inconsistent in
our Universe.
In this paper, we have shown that the homogenous and

isotropic FLRW Universe interacting with quantum matter
fields is unstable under small perturbations or the evolu-
tions. We have analytically and numerically demonstrated
that the homogenous and isotropic cosmological solutions
either grow exponentially or oscillate even in the Planckian
time tI ¼ α110

−43 sec. For α1 > 0, the curvature perturba-
tions oscillate rapidly and would emit the Planck energy
photons [19] which is unacceptable for the observed
Universe. On the other hand, for α1 < 0, the evolution
of the curvature perturbation leads to the Planckian
curvature or singularity. These instabilities induce a catas-
trophe unless one takes extremal values of the gravitational
couplings or fundamental particle species jα1j≳ 10118. We
have also confirmed these results based on the cosmologi-
cal evolution by comparing ΛCDM and the semiclassical
Einstein solutions using the Planck data, and it is found
that these solutions of the semiclassical gravity including
conformal anomaly are not consistent with cosmological
observations.
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FIG. 4. In this figure, we compare standard result of the ΛCDM
and the numerical solutions of Eq. (81) with the conditions of
Eqs. (80) and (83). The dashed line corresponds to the central
value of the Planck data [56], and the green line expresses the
allowed region of the Planck data (Planck 2018, TT;TE;EEþ
lowEþ lensingþ BAO 68% limits). The semiclassical gravity or
conformal anomaly expects jxj ≈ 10−122 and it is not consistent
with the observations.
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