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We examine the quantum loop effects on the single-field inflationary models in a spatially flat
Friedmann-Robertson-Walker cosmological space-time with a general self-interacting scalar field potential,
which is modeled in terms of the Hubble flow parameters in the effective field theory approach. In
particular, we focus on the scenarios in both slow-roll (SR) to ultra-slow-roll (USR) and SR-USR-SR
inflation, in which it is shown that density perturbations originating from quantum vacuum fluctuations can
be enhanced at small scales and then potentially collapse into primordial black holes. Here, our estimates
indicate significant one-loop corrections around the peak of the density power spectrum in both scenarios.
The induced large quantum loop effects should be confirmed by a more formal quantum field theory and, if
so, should be treated in a self-consistent manner that will be discussed.
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I. INTRODUCTION

Primordial black holes (PBHs) have recently received
renewed attention since the discovery of the gravitational
waves emitted by the merging of two 30 M⊙ black holes,
speculated to be PBHs resulting in LIGO coalescences [1].
In addition, the focus has been on the possibility that if
PBHs are abundant enough they could comprise a consid-
erable fraction of the dark matter and thus leave imprints
throughout the history of the Universe [2–4] (see Ref. [5]
for a review).
Large-scale structures of the Universe are seeded by

quantum vacuum fluctuations during the very early evo-
lution of the Universe and then stretched to cosmological
scales by the rapidly exponential expansion of the inflation.
During such a stage of primordial acceleration, the curva-
ture perturbation originating from quantum vacuum fluc-
tuations may be enhanced at small scales with respect to the
large-scale perturbations, which are ultimately responsible
for the cosmic microwave background anisotropies. At
cosmological horizon reentry, the small-scale fluctuations
in the overdense region might collapse into a PBH if they
are large enough to overcome the pressure gradients.
Nevertheless, such an enhancement on small-scale fluctua-
tions can occur either within single field of models of
inflation or through some spectator field. The models of

extensive studies include critical Higgs inflation [6], double
inflation [7], radiative plateau inflation [8], and some string
realizations [9–11], to cite a few. Generally speaking, for
having sufficiently large fluctuations, the inflationary
dynamics has to deviate from slow-roll (SR) [12,13].
Ultra-slow-roll (USR) inflation has been proposed as a
transient phase of single-field inflation to generate large
small-scale perturbations [14–17]. The idea of USR is to
consider a very flat potential of the inflaton field when its
equation of motion, given by the Klein-Gordon equation, in
a Friedmann-Robertson-Walker (FRW) cosmological space
time, is dominated by the cosmological friction term rather
than the slope of the potential in the SR inflation case.
Although the slope of the potential is very small, we still
have potential domination in the Friedmann equations, so
inflation continues. If so, the time derivative of the inflaton
field becomes exponentially small in time, thus enhancing
the produced curvature perturbations, which are inversely
proportional to the inflaton velocity. However, in this
scenario for very small inflaton velocity, small quantum
kicks due to quantum loop effects might become compa-
rable to its mean value. A natural framework to involve
quantum kicks is through the stochastic inflation [18].
Several works [19–22] have been devoted to the study of
this quantum noise effects and have found a significant
boost of PBH production, whereas the work in Ref. [23] has
claimed that quantum diffusion effects in the USR inflation
are insignificant by keeping the formalism in its regime of
validity.
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To see the quantum loop effects on the curvature
perturbations, perhaps giving some implications to the
above controversy, in this article, we will perform the loop
quantum field theory calculations by mainly following the
work of Ref. [24] and consider the loop effects from the
quantum fluctuations of the inflaton field itself. In particu-
lar, the quantum field fluctuations of hφ2i not only have the
usual ultraviolet divergence in its one-loop momentum
integral that can be removed by a proper procedure of
regularization/renormalization by defining its renormalized
counterpart, but also in the case of minimally coupled
massless inflaton fluctuations in de Sitter space-time, they
suffer from the infrared divergence [25]. In Ref. [24], its
infrared enhancement that gives sizable effects to modify
the slow roll parameters was studied. Here, we will extend
the study to the USR inflation.
Our paper is organized as follows. In next section, we

introduce single-field inflationary models in a metric of the
perturbed spatially flat FRW cosmological space-time in
the Arnowitt-Deser-Misner (ADM) form and then model
the general self-interacting scalar field potential VðϕÞ in
terms of the Hubble flow parameters in the effective field
theory approach. We then separate the classical homo-
geneous background field (Φ0) from the quantum field
fluctuations (φ). In a spatially flat gauge, the background
field in the FRW metric with the one-loop corrections is
derived, whereas the scale factor follows the modified
Friedmann equations also including the one-loop contri-
butions. The equation of motion for mode functions of the
quantum field fluctuations is derived, and the solution of
the Hankel function of order ν is found. Later, the Bunch-
Davies vacuum state is chosen to compute the one-loop
effects of hφ2i that will backreact the dynamics of the
background field. In Sec. III, we introduce the power
spectrum of primordial perturbations described by the
density perturbations in a spatially flat gauge. We obtain
the one-loop expressions of the density perturbations as
well as the energy density and pressure of the inflaton field
and consider their loop corrections given by the potentially
dominated hφ2i term due to its infrared enhancement as the
order of the Hankel function ν → 3=2 during the infla-
tionary epoch. In Sec. IV, we first adopt the SR step model
proposed in Ref. [13] to numerically study the SR to USR
inflation and then modify the model to consider the SR-
USR-SR inflation. We show that both scenarios can
produce large density perturbations. We then study the
effects from the one-loop contributions. Concluding
remarks and discussions are in Sec. V.

II. EFFECTIVE FIELD THEORY AND HUBBLE
FLOW PARAMETERS

The single-field inflationary model that we would like to
explore is described by a general self-interacting scalar
field theory in a curved space-time. The corresponding

Einstein-Hilbert action with a minimally coupled scalar
field is given by

S¼ SgþSϕ

¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
1

2
∂μϕ∂μϕ−VðϕÞ

�
;

ð1Þ

where M−2
Pl ¼ 8πGN has been set to M−2

Pl ¼ 1, which will
be recovered for clarity. The generic potential VðϕÞ will be
parametrized later in terms of the Hubble flow parameters
in an effective field theory approach by following the work
of Ref. [24] and generalizing it to the USR inflation
relevant to PBHs production. The metric for convenience
is chosen in the ADM form in the 3þ 1 decomposition as

ds2 ¼ gμνdxμdxν

¼ −N 2dt2 þ hijðdxi þN idtÞðdxj þN jdtÞ: ð2Þ

N is the lapse function, and N i is the shift vector, which
are not dynamical but are Lagrangian multipliers. The
action (1) while substituting the metric (2) and dropping out
the boundary terms then becomes

S ¼ 1

2

Z
dtd3x

ffiffiffi
h

p
½N ðRð3Þ − 2V − hij∂iϕ∂jϕÞ

þN −1ðEijEij − E2 þ ð _ϕ −N i∂iϕÞ2Þ�; ð3Þ

where the extrinsic curvature can be obtained as Kij ¼
Eij=N withEij¼ð _hij−∇iN j−∇jN iÞ=2. The scalarE is the
trace ofE ¼ Ei

i, while raising or lowering the spatial indices
is via themetrichij. The overdotmeans the time derivative of
the cosmic time t, and∇i is the covariant derivative alsowith
respect to the metric hij. Rð3Þ is the three-dimensional Ricci
scalar giving the intrinsic curvature. The equation of motion
for N and N i are the Hamiltonian and momentum con-
straints given, respectively, by

Rð3Þ − 2V −
1

N 2
ðEijEij − E2Þ − 1

N 2
ð _ϕ −N i∂iϕÞ2

− hij∂iϕ∂jϕ ¼ 0;

∇i

�
1

N
ðEi

j − δijEÞ
�
−

1

N
ð _ϕ − Ni∂iϕÞ∂jϕ ¼ 0; ð4Þ

through which we can solve for N and N i by choosing a
particular gauge and plug their solutions back to the action.
Moreover, we consider that the inflaton field is obtained
from the homogeneous expectation value of the quantum
scalar field

Φ0ðtÞ ¼ hϕðx⃗; tÞi ð5Þ
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in a spatially flat FRW cosmological space-time with
N ¼ 1, N i ¼ 0, and hij ¼ a2ðtÞδij, where a is a scale
factor. The expectation value is given by the nonequilibrium
quantum state that later will be specified to be the
Bunch-Davies state often studied in the literature. As such,
the above momentum constraint is automatically
satisfied. Nevertheless, the Hamiltonian constraint gives
the Friedmann equation

H2
0 ¼

ρΦ0

3 M2
Pl

ð6Þ

with the Hubble parameter H0 ¼ _a=a. The corresponding
energy density and pressure for the spatially homogeneous
part of the inflaton field are expressed as

ρΦ0
¼ 1

2
ð _Φ0Þ2 þ VðΦ0Þ;

pΦ0
¼ 1

2
ð _Φ0Þ2 − VðΦ0Þ: ð7Þ

Apart from the dynamics of the scalar factor a, in the
spatially flat FRW cosmology, the classical equation of
motion for Φ0 can be derived from the action as

Φ̈0 þ 3H0
_Φ0 þ V 0ðΦ0Þ ¼ 0: ð8Þ

Here, we consider the perturbations about the above back-
ground fields of Φ0 and H0 ¼ _a=a. It is found more
convenient to work in the spatially flat gauge by writing
N ¼ 1þ δN and

ϕðx⃗; tÞ ¼ Φ0ðtÞ þ φðx⃗; tÞ; ð9Þ

with

hφðx⃗; tÞi ¼ 0; ð10Þ

where δN , N i, and φ are perturbed fields.
According to Ref. [26], in order to expand the action (3)

to quadratic and cubic order in the perturbed field φ, we
only need to plug in the solution for the first-order
perturbation in N and N i and do the expansion since
the higher-order terms inN andN i will be multiplying the
Hamiltonian constraint or the variation of the Lagrangian
with respect to N and N i, respectively, to zeroth order,
which all vanish. We then expand out the Lagrangian
density S (3) up to the linear order in N and N i as well as
the cubic order in φ with necessary integration by parts as
[26–28]

S ¼
Z

d4xa3ðtÞL½Φ0ðtÞ;φðx⃗; tÞ; δN ;N i�; ð11Þ

with

L¼ 1

2
_Φ2
0−VðΦ0Þ−φ½Φ̈0þ3H _Φ0þV 0ðΦ0Þ�−δNVðΦ0Þ

þ1

2
_φ2−

∂iφ∂iφ

2a2
−
1

2
V 00ðΦ0Þφ2−V 0ðΦ0ÞδNφ

− _Φ0δN _φ−
1

6
V 000ðΦ0Þφ3−

1

2
V 00ðΦ0Þφ2δN

−
1

2
_φ2δN − _φN i∂iφ−

1

2a2
∂iφ∂iφδN

þhigher-order terms: ð12Þ

The first-order solutions are found as [27,28]

δN ¼ 1

H0M2
Pl

�
_Φ0

2
φ

�
;

N i ¼ ∂iχ; ∂2χ ¼
_Φ2
0

2H2
0M

2
Pl

d
dt

�
−
H0

_Φ0

φ

�
; ð13Þ

where the Planck mass MPl is put back to the expressions
and is the largest energy scale in the framework of semi-
classical gravity. Notice that δN and N i are all suppressed
not only by 1=M2

Pl but also due to the smallness of _Φ0

during both SR and USR inflations, and they are

δN ∝
ffiffiffiffiffi
ϵ1

p
; N i ∝

ffiffiffiffiffi
ϵ1

p ð14Þ

with the small value of ϵ1 ¼
_Φ2
0

2M2
PlH

2
0

to be defined together

with other Hubble flow parameters later. Henceforth, δN
and N i can be ignored as compared with loop effects from
quantum field fluctuations of the scalar field of the order of
H0=ðMPl

ffiffiffiffiffi
ϵ1

p Þ during the USR inflation to be seen later.
To explore the effects of the quantum fluctuations of the

scalar field, the tadpole method (see Ref. [29] and refer-
ences therein) is implemented to derive the equation of
motion with the one-loop corrections for the homogeneous
expectation value of the inflaton field from the action (12)
by requiring the condition hφðx⃗; tÞi ¼ 0,

Φ̈0 þ 3H _Φ0 þ V 0ðΦ0Þ þ
1

2
V 000ðΦ0Þhφ2ðx⃗; tÞi ¼ 0; ð15Þ

where H obtained from the Hamiltonian constraint with
N ¼ 1, N i ¼ 0, and hij ¼ a2δij again becomes

H2 ¼ 1

3M2
Pl

�
1

2
_ϕ2 þ ∂iϕ∂iϕ

2a2
þ VðϕÞ

�

¼ 1

3M2
Pl

�
1

2
_Φ2
0 þ VðΦ0Þ

�

þ 1

3M2
Pl

�
1

2
_φ2 þ ∂iφ∂iφ

2a2
þ 1

2
V 00ðΦ0Þφ2 þ · · ·

�

¼ H2
0 þ δH2; ð16Þ

QUANTUM LOOP EFFECTS TO THE POWER SPECTRUM OF … PHYS. REV. D 101, 025013 (2020)

025013-3



with the one-loop corrections to the Hubble parameter δH2

given by

δH2 ¼ 1

3M2
Pl

�
1

2
_φ2 þ ∂iφ∂iφ

2a2
þ 1

2
V 00ðΦ0Þφ2

�
: ð17Þ

Their quantum corrections will be estimated later after the
proper renormalization to remove the UV divergence
is done.
Next, all the evolution of the Hubble parameter H0 and

the field Φ0 can be described by the Hubble flow
parameters defined as

ϵ1 ¼ −
∂
∂N lnH0; ϵnþ1 ¼

∂
∂N ln ϵn; ð18Þ

where N ¼ ln a ¼ R
H0dt is the number of e-folds. Here,

we will adopt the effective field theory approach by directly
modeling the effective potential VðϕÞ with the Hubble flow
parameters [13]. The ϵn of relevance in this work involves
ϵ1 up to ϵ4, with their respective expression obtained as

ϵ1¼
_Φ2
0

2M2
PlH

2
0

;

ϵ2¼−6
�
1−

ϵ1
3
þV 0ðΦ0Þ
3H0

_Φ0

�
;

ϵ3¼
1

ϵ2

�
5ϵ1ϵ2−4ϵ22−3ϵ2þ12ϵ1−

ϵ22
2
−
2V 00ðΦ0Þ

H2
0

�
;

ϵ4¼−ϵ3þ
1

ϵ2ϵ3

�
6ϵ1ϵ

2
2þ7ϵ1ϵ2ϵ3−18ϵ21ϵ2−3ϵ2ϵ3

þ18ϵ1ϵ2− ϵ22ϵ3þ8ϵ31−24ϵ21−
2V 000ðΦ0Þ _Φ0

H3
0

�
: ð19Þ

Given the Hubble flow parameters for undergoing the USR
inflation to be shown in the figures later, we can choose
jϵ2j ∼Oð1Þ and jϵ2ϵ3j < 1, but jϵ2ϵ3j > ϵ1 for extremely
small ϵ1, say, ϵ1 ∼ 10−9, to be seen later. Additionally, all
other ϵ’s can be ignored. Then, the general effective
potential VðΦ0Þ and _Φ0 can be approximately recon-
structed as

_Φ0 ¼
ffiffiffiffiffiffiffi
2ϵ1

p
MplH0;

V 0ðΦ0Þ ≃ −3
ffiffiffi
2

p
MPlH2

0

ffiffiffiffiffi
ϵ1

p �
1þ ϵ2

6

�
;

V 00ðΦ0Þ ≃ −
H2

0

2

�
ϵ2ϵ3 þ

ϵ22
2
þ 3ϵ2

�
;

V 000ðΦ0Þ ≃ −
H2

0ffiffiffiffiffiffiffi
2ϵ1

p
MPl

�
3

2
ϵ2ϵ3 þ

1

2
ϵ22ϵ3

�
: ð20Þ

We retain the terms up to the order ϵ2ϵ3 in the expressions
of V 00ðΦ0Þ and V 000ðΦ0Þ and the leading-order terms of

V 0ðΦ0Þ. V 0ðΦ0Þ is small as compared with _Φ0H0 as long as
1þ ϵ2

6
< 1, whereas ϵ2 → −6 is an extreme case. The

approximate form of V 000ðΦ0Þ surely results in the one-
loop corrections in Eq. (15) of order OðH2

0=ðM2
Plϵ1ÞÞ.

However, δH2=H2
0 in Eq. (17) is of order OðH2

0=M
2
PlÞ

instead to be also ignored as compared with the loop
corrections given by V 000ðΦ0Þ for extremely small ϵ1. It is
anticipated that the effective field theory approach relies on
the separation between the energy scale of inflation
determined by the Hubble parameter and the cutoff scale
of the Planck scale. The expected dimensionless ratio of the
effective field theory approximation is the ratio H0=MPl,
which has to be small for safely ignoring the quantum
gravity effects. Phenomenologically, the smallest H0=MPl
gives a consistent constraint on the amplitudes of tensor
and scalar perturbations inferred from the Planck data [30],
thus leading to strong observational support to the validity
of an effective field theory for inflation well below the
Planck scale. Now, we find it more convenient to work in
conformal time with the metric background as

ds2 ¼ dt2 − a2ðtÞdx⃗2 ¼ C2ðηÞ½dη2 − dx⃗2�;

where η is the conformal time and the scale factor in a
quasi-de Sitter space-time is CðηÞ≡aðtðηÞÞ¼− 1

H0ηð1−ϵ1Þ≃
− 1

H0η
ð1þ ϵ1Þ during the inflation for small ϵ1. The con-

formally rescaled field is defined as

φðx⃗; tÞ ¼ χðx⃗; ηÞ
CðηÞ ; ð21Þ

CðηÞ being the scale factor in conformal time. The spatial
Fourier transform of the free-field Heisenberg operator
χðx⃗; ηÞ obeys the equation, which can be read off from the
quadratic terms in φ in the Lagrangian density (12) as

χ00
k⃗
ðηÞ þ

�
k2 þ ½V 00ðΦ0Þ þ 2V 0ðΦ0ÞδN =φ�C2ðηÞ

−
C00ðηÞ
CðηÞ

�
χk⃗ðηÞ ¼ 0: ð22Þ

Here, the prime means the derivative with respect to the
conformal time η. Using the Hubble flow parameters to
express V 00ðΦ0Þ, V 0ðΦ0Þ, and δN in Eq. (20), the mode
equation becomes

χ00
k⃗
ðηÞ þ

�
k2 −

ν2 − 1
4

η2

�
χ k⃗ðηÞ ¼ 0; ð23Þ

where the index ν can be approximated by
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ν2 ≃
9

4
þ
�
3

2
ϵ2 þ

1

4
ϵ22

�
ð1þ 2ϵ1Þ þ

1

2
ϵ2ϵ3 þ 3ϵ1

þ ϵ1ϵ2 þ 6ϵ1

�
1þ ϵ2

6

�
ð24Þ

while retaining all terms in ϵ2 and the linear terms in ϵ3. The
terms of ϵ1 dependence give very small contributions in the
USR inflationary epoch that can certainly be ignored, but,
in our work, we will explore the SR-USR and SR-USR-SR
inflation and find that the evolution of quantum corrections
is sensitive to ν. However, during SR, the parameters we
choose are ϵ1 > jϵ2j where ϵ1, jϵ2j ≪ 1. Thus, to accom-
modate the epoch of SR inflation in the models below, we
also include the linear ϵ1 terms in the expression of ν above.
However, it can be checked that keeping the linear terms in
ϵ1 in the approximate forms of V 00ðΦ0Þ and V 000ðΦ0Þ in
Eq. (20) will not have a sizable change in the numerical
studies we perform later. The scale-invariant case ν ¼ 3

2

corresponds to massless inflaton fluctuations in the de
Sitter background. We then introduce the quantity

Δ ¼ 3

2
− ν ð25Þ

that measures the departure from scale invariance. The free
Heisenberg field operators χ k⃗ðηÞ can be written in terms of
annihilation and creation operators as

χk⃗ðηÞ ¼ ak⃗Sνðk; ηÞ þ a†
−k⃗
S�νðk; ηÞ; ð26Þ

where the mode functions Sνðk; ηÞ are solutions of Eq. (23).
The vacuum state from which to build up the Fock space by
acting the creation operator on it is the the Bunch-Davies
vacuum defined as

ak⃗j0iBD ¼ 0: ð27Þ

Then, these mode functions are given by

Sνðk; ηÞ ¼
1

2

ffiffiffiffiffiffiffiffiffi
−πη

p
ei

π
2
ðνþ1

2
ÞHð1Þ

ν ð−kηÞ: ð28Þ

For large momenta jkηj ≫ 1, the mode functions behave
the same as free-field modes in the Minkowski space-
time, i.e.,

Sνðk; ηÞ ¼
1ffiffiffiffiffi
2k

p e−ikη for jkηj ≫ 1: ð29Þ

In fact, in the theory of quantum fields in curved space,
there is no unique choice of a vacuum state. In this article,
we focus on the standard choice often adopted in the
literature, which allows us to include the quantum correc-
tions into the standard results in the literature. A study of
quantum loop corrections with different initial states is an

important aspect that deserves further study. The index ν in
the mode functions (28) depends on the expectation value
of the scalar field, via the Hubble flow parameters; hence, it
slowly varies in time. Therefore, it is consistent to treat this
time dependence of ν as an adiabatic approximation. This is
well known and standard in the SR or USR expansion.
Considering the Bunch-Davies vacuum state, the quan-

tum correction hφ2i is given by

hφ2ðx⃗; tÞi ¼
Z

d3k
ð2πÞ3

jSνðk; ηÞj2
C2ðηÞ

¼ H2

8π

Z
Λ

0

dk
k
ð−kηÞ3jHð1Þ

ν ð−kηÞj2

¼ H2

8π

Z
Λp

0

dz
z
z3jHð1Þ

ν ðzÞj2: ð30Þ

With the large k behavior of the Hankel function in
Eq. (29), the quantum correction hφ2i has UV divergence,
which will be discussed in Appendix, and thus can be dealt
with by the proper regularization/renormalization pro-
cedure in Ref. [24]. Note that in the case of ν ¼ 3=2 the
integrand in Eq. (30) becomes

z3jHð1Þ
3=2ðzÞj2 ¼

2

π
½1þ z2�: ð31Þ

It is known that the integral of hφ2i has an additional
infrared logarithmic divergence [25]. As long as the index ν
is slightly different from 3=2, this slight departure from
scale invariance introduces a natural infrared regularization.
To see this, we split the integral as in Ref. [24] as

Z
Λp

0

dz
z
z3jHð1Þ

ν ðzÞj2 ¼
Z

μp

0

dz
z
z3jHð1Þ

ν ðzÞj2

þ
Z

Λp

μp

dz
z
z3jHð1Þ

ν ðzÞj2; ð32Þ

where μp serves as the cutoff for the integral in the infrared
regime to give the dominant contribution, whereas the
second integral can be absorbed by the counterterm by
defining the renormalized hφ2iR in the renormalization
scheme we choose. In the limit of Δ → 0 for ν ¼ 3=2 − Δ,
we can obtain the leading-order contributions from the pole
[24], by using the small argument limit of the Hankel
functions. This yields

1

2
h½φðx⃗; tÞ�2iR ¼

�
H0

4π

�
2
�
1

Δ
þ 2γ − 4þOðΔÞ

�
; ð33Þ

where γ is the Euler-Mascheroni constant. While the UV
divergences are regularization/renormalization scheme
dependent, the pole in Δ arises from the infrared behavior
and is independent of the regularization/renormalization
scheme. Later, the Hubble flow parameters will be

QUANTUM LOOP EFFECTS TO THE POWER SPECTRUM OF … PHYS. REV. D 101, 025013 (2020)

025013-5



parametrized based upon the work in Ref. [13], which in
some regime of interest here gives Δ small, so as to have
large enhancement from hφ2iR in the power spectrum of
primordial perturbations during inflation. With the same
renormalization prescription to hφ2iR, we can define the
renormalized time derivatives and gradient terms with their
leading-order results in the limit of the small Δ obtained as

h _φ2iR¼
H4

0

8π

Z
Λp

0

dz
z
z2
				 ddz½z

3
2Hð1Þ

ν ðzÞ�
				
2

¼ H4
0

16π2
½2Δð1þΔðlnμp− ln4−4þ2γþ2ln4Þ

þOðΔ2ÞÞ�;��∇φ

aðtÞ
�

2
�

R
¼H4

0

8π

Z
μp

0

dz
z
z5jHð1Þ

ν ðzÞj2

¼ H4
0

8π2
½μ2pð1þΔð2lnμp−5þ2γþ ln4Þ

þOðΔ2ÞÞ�: ð34Þ

They do not have infrared divergences for ν ¼ 3=2 due to
the two additional powers of the loop momentum in the
integral.
The backreaction effects from the one-loop contribution

in Eq. (15) after the proper renormalization [24] can be
written in terms of the renormalized hφ2iR as

Φ̈0 þ 3H _Φ0

�
1 −

H2
0

12M2
Plϵ1

�
3

2
ϵ2ϵ3 þ ϵ22ϵ3

� hφ2iR
H2

0

�

þ V 0ðΦ0Þ ¼ 0; ð35Þ

allowing us to define the effective ϵ1ð1−loopÞ to be

ϵ1ð1−loopÞ ¼ ϵ1

�
1 −

H2
0

6M2
Plϵ1

�
3

2
ϵ2ϵ3 þ ϵ22ϵ3

� hφ2iR
H2

0

�
ð36Þ

with one-loop contributions given by V 000ðΦ0Þ that will be
taken into account while computing the power spectrum of
primordial perturbations that also include the one-loop
effects of the same order of magnitude.

III. POWER SPECTRUM OF PRIMORDIAL
PERTURBATIONS

The power spectrum of primordial perturbations is
described by the density perturbations with this gauge-
invariant quantity

ζk ¼
δρk

ρϕ þ pϕ

				
jkj≤aH

ð37Þ

evaluated in a spatially flat gauge [31]. The density
fluctuations δρ originated from the field fluctuations φ

can be derived with the energy density in the Friedmann
equation (16) subtracting its classical counterpart (7),
which is given by

δρ ¼ _Φ0 _φþ V 0ðΦ0Þφþ 1

2
_φ2 þ 1

2

ð∂iφ∂iφÞ
a2

þ V 00ðΦ0Þ
2!

φ2

þ V 000ðΦ0Þ
3!

φ3 þ higher orders in φ: ð38Þ

In addition, summing up the energy density and the
pressure, ρþ p, gives

ρϕ þ pϕ ¼ _Φ2
0 þ h _φ2i þ 1

a2
h∂iφ∂iφi: ð39Þ

Apparently, the first term _Φ2
0 in Eq. (39) comes from the

background inflaton field. The other terms, however, are
the contributions from the quantum corrections.
Later, all the derivatives of VðΦ0Þ as a function ofΦ0 can

be expressed in terms of the Hubble flow parameters via
Eq. (19). Finally, the power spectrum can be computed
from the variable ζ as

Δ2
ζðkÞ ¼

k3

2π
hζ−kζki ¼ ðζ2Þk: ð40Þ

In the USR inflation with a very flat inflaton potential such
that _Φ0 ≫ V 0ðΦ0Þ=3H0, ignoring the quantum corrections
can approximate the energy density fluctuations and the
sum of the energy density and the pressure as δρ ≈ _Φ0 _φ and
ρϕ þ pϕ ≈ _Φ2

0, respectively. Then, the power spectrum (40)
becomes

Δ2
ζ;USRðkÞ ¼

ð _φ2Þk
_Φ2
0

: ð41Þ

Also, in the limit of ν ¼ 3=2, the mode functions are given
by the Hankel function with order ν ¼ 3=2 as

Sν¼3=2ðk; ηÞ ¼
H0ffiffiffiffiffiffi
2π

p i

k3=2
ð−i − kjηjÞe−ikjηj: ð42Þ

Substituting the solutions of the mode function into
Eq. (41) and using Eq. (20) to replace _Φ0 by the Hubble
flow parameter ϵ1, it is straightforward to achieve the
standard result of the power spectrum in the USR approxi-
mation, given by

Δ2
ζ;USR ¼ H2

0

8π2M2
Plϵ1

: ð43Þ

Since the order of the Hankel function ν can be slightly
deviated from ν ¼ 3=2, here we provide a more involved
expression that takes the deviation into account. To do so,
we approximate δρ ≈ _Φ0 _φþ V 0ðΦ0Þφ in Eq. (38), and also
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ρϕ þ pϕ ≈ _Φ2
0 as above. The Hankel function of order ν in

Eq. (28) is applied to compute the power spectrum (40)
instead, which is explicitly given by

Δ2
ζ;νUSR¼

H2
0

8π2M2
Plϵ1


				ð−kηÞ d
dð−kηÞ½ð−kηÞ

3=2Hð1Þ
ν ð−kηÞ�

				
2

þ3

�
1þϵ2

6

��
ð−kηÞ d

dð−kηÞjð−kηÞ
3=2Hð1Þ

ν ð−kηÞj2
�

þ9

�
1þϵ2

6

�
2

ð−kηÞ3jHð1Þ
ν ð−kηÞj2

�
; ð44Þ

where _Φ0 and the derivatives of VðΦ0Þ have been replaced
by the Hubble flow parameters via Eq. (20). In the next
section, the values of the Hubble flow parameters will be
chosen as exemplified in a toy model in Ref. [13]. We can
then use the above expression (44) with a best chosen value
of the horizon crossing time, jkηj≲ 1, to compare with the
power spectrum obtained by numerically solving the
Mukhanov-Sasaki (MS) equation for the curvature mode
functions also with the boundary conditions defined by the
Bunch-Davies vacuum at jkηj ≪ 1.
In this article, we will also explore the one-loop effects

from quantum fluctuations of the inflaton field itself to the
power spectrum Δ2

ζ during the USR inflation. Nevertheless,
the one-loop contributions can be obtained by Wick
contraction to simply factorize φ3 as

φ3 → 3hφ2iφ; ð45Þ

where hφ2i is computed from the free-field equations in
(22) with the result in (30) [29]. Then, the Fourier transform
of δρ in terms of the Fourier transform of φ can be given by

δρk ¼ _Φ0 _φk þ
�
V 0ðΦ0Þ þ

1

2
V 000ðΦ0Þhφ2i

�
φk

þ 1

2

Z
d3k1
ð2πÞ3

�
_φk1 _φk1−k þ

k⃗1 · ðk⃗ − k⃗1Þ
2a2

φk1φk−k1

þ V 00ðΦ0Þ
2!

φk1φk−k1

�
: ð46Þ

In particular, usingWick contraction again, the contribution
of the V 00ðΦ0Þ term to the power spectrum givesZ

d3k1
ð2πÞ3

Z
d3k2
ð2πÞ3 hφk1φk−k1φk2φ−k−k2i

¼ 2

Z
d3k1
ð2πÞ3 hφk1φ−k1ihφk−k1φ−kþk1i≃2hφ2ihφkφ−ki:

ð47Þ
The momentum integral is found to be dominated in the
regime of small jk⃗1j in the case of smallΔ as in Eq. (32), and
thus it can be further approximated by involving hφ2i with
large infrared effects encoded in the renormalized hφ2iR
shown in (33). However, due to the lack of infrared enhance-
ment from the time derivative and gradient terms as seen in
Eq. (34), they will be ignored as compared with hφ2iR.
With the definition of

ðδρ2Þk ¼
k3

2π
hδρ−kδρki;

ðφ2Þk ¼
k3

2π
hφ−kφki; ð48Þ

involving the one-loop quantum corrections to ðδρ2Þk given
by (46) leads to

ðδρ2Þk ¼ _Φ2
0ð _φ2Þkþ _Φ0

�
V 0ðΦ0Þþ

V 000ðΦ0Þ
2

hφ2iR
�
d
dt
ðφ2Þkþ

�
V 02ðΦ0Þþ

�
V 0ðΦ0ÞV 000ðΦ0Þþ

1

2
V 002ðΦ0Þ

�
hφ2iR

�
ðφ2Þk;

ð49Þ

where the renormalized hφ2iR is included only. Thus, the one-loop power spectrum with the effects from the infrared
enhanced hφ2iR can be obtained from Eqs. (49) and (39) with ρϕ þ pϕ ≈ _Φ2

0 and also together with the one-loop modified ϵ1
in Eq. (36) due to the backreaction to the equation of motion for the inflaton field Φ0, giving

Δ2
ζ;1−loop≃

H2
0

8π2M2
Plϵ1½1− H2

0

6M2
Plϵ1

ð3
2
ϵ2ϵ3þ 1

2
ϵ22ϵ3Þ hφ

2iR
H2

0

�


				ð−kηÞ d
dð−kηÞ ½ð−kηÞ

3=2Hð1Þ
ν ð−kηÞ�

				
2

þ
�
3

�
1þ ϵ2

6

�
þ H2

0

8M2
Plϵ1

ð3ϵ2ϵ3þ ϵ22ϵ3Þ
hφ2iR
H2

0

��
ð−kηÞ d

dð−kηÞ jð−kηÞ
3=2Hð1Þ

ν ð−kηÞj2
�

þ
�
9

�
1þ ϵ2

6

�
2

þ H2
0

M2
Plϵ1

�
3

4

�
1þ ϵ2

6

�
ð3ϵ2ϵ3þ ϵ22ϵ3Þþ

1

8

�
ϵ2ϵ3þ

ϵ22
2
þ3ϵ2

�
2
�hφ2iR

H2
0

�
½ð−kηÞ3jHð1Þ

ν ð−kηÞj2�
�
:

ð50Þ
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Assuming that ν ¼ 3=2 − Δ and 0 < Δ < 1 during the
whole course of the inflation, the renormalized hφ2iR (33)
in the small Δ approximation can be applied. Also, notice
that the quantum corrections are of orderH2

0=ðM2
Plϵ1Þ. With

the fine-tuning of the Hubble flow parameters, H2
0=ðM2

Plϵ1Þ
can be of order H2

0=ðM2
Plϵ1Þ ∼ 10−9, which is consistent

with the Planck observations during the early stage of
inflation, and then blows up to H2

0=ðM2
Plϵ1Þ ∼ 10−2 in the

late-time inflation, which is large enough to sufficiently
seed PBHs as well as make the quantum corrections
potentially significant.

IV. NUMERICAL EXAMPLES

To perform the numerical study, we adopt the SR step
model proposed in Ref. [13]. In that reference, the choice of
the Hubble flow parameters is chosen in an effective theory
approach given by

ln ϵ1ðNÞ ¼ C1 þ C2N − C3

�
1þ tanh

�
N − Ns

d

��
: ð51Þ

The parameters C1 and C2 are determined to be consistent
with the scalar tilt (ns ≈ 0.968) and the tensor-to-scalar
ratio (r < 0.10) in the early stage of inflation (N < 7).
Then, ln ϵðNÞ undergoes a transition at N ¼ Ns from SR to
USR with its change, namely, δ ln ϵ1 ∼ −2C3 within the
width of d e-folds. The inflation ends, say, at N ¼ 60.
In Fig. 1, the set of the parameters in the step model in
Eq. (51) is given by Ref. [13] as ðC1; C2; C3; Ns; dÞ ¼
ð−5.07; 0.0914; 8.7; 40; 10Þ, which allows us to compute the
power spectrum. As expected, the power spectrum starts
from 10−9 during the small N and increases to 10−2 in the
large N. Also, the more involved approximate expression
of the power spectrum Δ2

ζ;νUSR in Eq. (44) evaluated at
the proper value, say, jkηj ¼ 0.15 < 1, can provide a better
approximation to the power spectrum Δ2

ζMS obtained
from the exact numerical solutions of the MS equation
at jkηj ≪ 1 in Ref. [13] than the standard power spectrum
Δ2

ζ;USR in Eq. (43). Similar comparisons are also made
with the set of the parameters ðC1; C2; C3; Ns; dÞ ¼
ð−5.07; 0.0914; 8.7; 40; 4Þ with a more rapid transition that
certainly violates the SR approximation. Both approximate
expressionsΔ2

ζ;USR in Eq. (43) andΔ2
ζ;νUSR in Eq. (44) show

relatively large discrepancies with Δ2
ζ;MS for such a narrow

width d, as shown in Fig. 2.
Next, we will include the one-loop effects to the power

spectrum Δ2
ζ;1−loop in Eq. (50). Here, we choose the

parameters so that during the whole course of inflation
the order of the Hankel function ν ¼ 3=2 − Δ almost
remains ν ∼ 3=2, namely, 0 < Δ < 1. The large enhance-
ment will be seen to boost the power spectrum. To do so,
we choose ðC1; C2; C3; Ns; dÞ ¼ ð−4.6; 0.0914; 8.7; 40; 7Þ,
where C1 is slightly changed, but the choice of the value

still satisfies the Planck constraints. Also, the width d is
picked for the sake of clear illustration to be d ¼ 7 in the
case of relatively wide width. In Fig. 3, the evolution of the
Hubble parameters with the above choice of the parameters
is plotted. ϵ1 is small in the small N and drops to an
extremely small value at the transition N ¼ Ns ¼ 40,
entering the USR inflation. As a result, ϵ2, as it measures

FIG. 1. The parameter set in the step model in Eq. (51) is
chosen by following Ref. [13] as ðC1; C2; C3; Ns; dÞ ¼
ð−5.07; 0.0914; 8.7; 40; 10Þ. The evolution of the Hubble flow
parameters ϵ1 and ϵ2 is shown in the upper panel. In the bottom
panel, the power spectrum Δ2

ζ;ν;USR is plotted according to
Eq. (44) when jkηj ¼ 0.2. The deviation of the approximate result
Δ2

ζ;ν;USR from the power spectrum Δ2
ζ;MS obtained by numerically

solving the MS equation in Ref. [13] is plotted as the red dotted
line, whereas the deviation fromΔ2

ζ;MS for the standard expression
Δ2

ζ;USR (43) is also shown with the blue dashed line for a
comparison.
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the change of the ϵ1 in Eq. (18), goes to a negative value
with a large absolute value of order jϵ2j ∼Oð1Þ to have the
_Φ term dominated although it is not an extreme case with

ϵ2 → −6 for a very flat potential. When ϵ2 goes from
positive to negative values, in particular, crossing zero, ϵ3
then becomes large, and jϵ2ϵ3j > ϵ1. Notice that, with this
choice of the parameters during the USR regime, the
arguments in Ref. [23], stating that ϵ3 ≃ 2ϵ1 with both
being small, seem not to hold. Whether or not the
conclusions drawn in Ref. [23] are still true deserves
further study. In Fig. 4, we show the order of the
Hankel function ν and the value Δ as a function of N,
lying within 0 < Δ < 1, expected to induce the significant
enhancement from the one-loop contributions. Also,
although the values of ϵ3 have dramatic changes in some
N, ϵ2ϵ3 changes smoothly asN increases, consistentwith the
adiabatic approximation since the dependence of ϵ3 in the
quantities we compute here always appears in a way of ϵ2ϵ3.
Finally, using the result in Eq. (50) and the power spectrum
in Eq. (44) (which is plotted in Fig. 5), the correction to the
power spectrum from the one-loop contributions is shown in
Fig. 6, inwhich all quantumcorrections are given byEq. (33)

FIG. 2. Same as in Fig. 1, but with the parameter set,
ðC1; C2; C3; Ns; dÞ ¼ ð−5.07; 0.0914; 8.7; 40; 4Þ.

0.000
0.005
0.010
0.015

0.5
0.0
0.5
1.0

0 10 20 30 40 50 60

0.0
0.4
0.8
1.2

0 10 20 30 40 50 60

0.2
0.1
0.0
0.1
0.2

1
2

3
2

3

NN

FIG. 3. Evolution of the Hubble parameters (ϵ1, ϵ2, ϵ3, ϵ3ϵ2) for
the set of ðC1; C2; C3; Ns; dÞ ¼ ð−4.6; 0.0914; 8.7; 40; 7Þ.
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FIG. 4. With the same parameters in Fig. 3, we show that the
evolution of the order of the Hankel function ν in Eq. (24) (black
solid line) and the value Δ (red dashed line) defined as ν ¼
3=2 − Δ as a function of N.
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FIG. 5. Evolution of the power spectrum Δζ;νUSR (44) as a
function of N for the parameter set in Fig. 3.
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in their small Δ limit. It is anticipated that, although Δ is
small for thewhole course of inflation, the infrared enhance-
ment is significant whenΔ approaches to zero atN ∼ 60 and
also H2

0=ðM2
Plϵ1Þ grows from ≈10−9 to ≈10−2. In fact, the

evolution of the order of the Hankel function ν in Eq. (24) is
mainly determined by ϵ2 and can be approximated by
ν ≈ ð9=4þ 3ϵ2=2þ ϵ22=4Þ1=2. In particular, during the tran-
sition from SR to USR inflation, ϵ1 is driven to an extremely
small value by a negative value of ϵ2 of which the absolute
value is relatively large. Then, staying in the phase of USR
requires ϵ1 to maintain that small number with very little
change, thus driving ϵ2 from the negative value toward zero
that ends USR inflation and then enters the second SR
inflation, giving ν ¼ 3=2. So, when the power spectrum
reaches a high value, the order of the Hankel function is
driven to ν ¼ 3=2, and at the same time, the infrared
divergence of the one-loop effects given by the minimally
coupled massless scalar field in the de Sitter space-time also
makes significant corrections to the power spectrum.
Finally, we come to study the case in which the Universe

undergoes SR-USR-SR inflation. To model this scenario,
we modify the above parametrization of the Hubble flow
variables by adding three more parameters, Ns̄, d̄, and C4,
specifying the starting N when the transition from USR
back to SR occurs, the width of this transition, and the
amount of the change in ln ϵ1, respectively. The formula
reads

ln ϵ1 ¼ C1 þ C2N − C3

�
1þ tanh

�
N − Ns

d

��

þ C4

�
tan−1

�
N − Ns̄

d̄

�
þ π

2

�
: ð52Þ

For a clear illustration, we fine tune the parameters for
such a transition that happens at N ¼ 60with a very narrow
width d̄, which does not intervene with the rise to the
maximum value of the power spectrum atNs ¼ 40. This set

of parameters is given by C1 ¼ −4.6, C2 ¼ 0.0194,
C3 ¼ 8.7, d ¼ 7, Ns ¼ 40, C4 ¼ 0.00192, d̄ ¼ 7 × 10−7,
and Ns̄ ¼ 55. All parameters relevant to the SR to USR
transition remain the same as in Fig. 3. By adding another
transition from USR to SR, it is seen that the evolution of ϵ1
changes from an extremely small value back to the order of
10−2 after the transition point N ¼ 55. Then, all other
Hubble flow variables end up with small values in the
second SR regime, and the corresponding power spectrum
settles to the small value 10−9 again, as shown in Fig. 9.
However, during the period of the transition back to SR, ϵ2
goes from a negative to a positive value and thus crosses
zero seen in Fig. 7. When ϵ2 is in the regime of ϵ2 → 0−

seen in Fig. 7, giving ν ≃ 3=2 − Δ with Δ → 0þ where
the adiabatic approximations still hold, as in Fig. 6, the
quantum loop effects to hφ2i are enhanced due to the
infrared divergence in its momentum integral in Eq. (33).
One of the main conclusions in this work based upon
the consistent adiabatic approximations is that we find the
significant one-loop corrections around the peak of the
density power spectrum in both scenarios.
Nevertheless, during the USR to SR transition, ϵ2 can

become positive with ν ¼ 3=2 − Δ, where Δ is negative
seen in Fig. 8, although the adiabatic approximations seem
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FIG. 6. Corrections due to the one-loop effects as a function
of N to the full one-loop result Δ2

ζ;1−loop (50) deviated from
Δζ;νUSR (44).
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FIG. 7. Evolution of the Hubble parameters (ϵ1, ϵ2, ϵ3, ϵ2ϵ3) as
a function of N for the set of ðC1;C2;C3;Ns;d;C4; d̄;Ns̄Þ¼
ð−4.6;0.0914;8.7;40;7;0.00192;7×10−7;55Þ in Eq. (52).
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FIG. 8. Evolution of the order of the Hankel function ν in
Eq. (24) as a function of N for the parameter set in Fig. 7.
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to break down, the one-loop effects of hφ2i encounter
a different type of infrared divergence in Eq. (30). We
find that

4π2

H2
hφ2iR ¼ π

2

Z
μp

δ

dz
z
z3jHð1Þ

ν ðzÞj2

≃
Z

μp

δ
dzz−1þ2Δ þ…:

≃
1

2jΔjδ2jΔj þ…; ð53Þ

where special care needs to be taken to resume all important
infrared effects for having a reliable power spectrum
especially around its peak value. We will tackle this
infrared issue beyond the adiabatic approximations in
future work. Here, we give an intuitive way of regularizing
the divergences by introducing physical cutoffs for z [32].
Note that the USR to SR transition occurs in the period of
e-folds from N1 to N2, which is controlled by d̄ in the
above parameters. The one-loop effects of hφ2i can be
roughly estimated by considering the momentum modes,
which are within subhorizon modes at e-folds N1 and leave
out of the horizon at e-folds N2. Thus, we have

4π2

H2
hφ2iR ∼

Z
δ2

δ1

dzz−1−2jΔj þ…

¼ −
1

2jΔj ðδ
−2jΔj
2 − δ−2jΔj1 Þ þ…

≃ ln

�
δ2
δ1

�
þOðjΔjÞ

¼ ðN2 − N1Þ þOðjΔjÞ: ð54Þ

In the limit of Δ → 0, the last equality of the above
equation recovers the linear growth in time since N ∝ t. As
such, in this estimation, the removal of the infrared
divergence would make the one-loop effects of hφ2i

ineffective, thus depending on the detailed model between
USR to SR transition. However, even for a finiteΔ < 0, the
one-loop effects of hφ2i still suffer from infrared diver-
gence as found in the second line of Eq. (53) as the lower
limit of the momentum integral δ → 0. According to
Ref. [33], the negative value of Δ may arise from the
scalar field potential with a negative mass term. It will lead
to the so-called spinodal instabilities, driving the growth of
large quantum fluctuations, which needs to be incorporated
by the nonperturbative method in a self-consistent manner.
Our estimate here just indicates significant one-loop
corrections to the USR to SR transition that should be
confirmed by a formal quantum field theoretical method.

V. CONCLUSIONS

In this work, we examine the quantum loop effects on the
single-field inflationary models in a spatially flat FRW
cosmological space-time in which the general self-interact-
ing scalar field potential VðϕÞ is modeled in terms of the
Hubble flow parameters in the effective field theory
approach. We start from the metric of the perturbed
spatially flat FRW cosmological space-time in the ADM
form and then separate the classical homogeneous back-
ground field (Φ0) from the quantum field fluctuations (φ).
In a spatially flat gauge, the equation of motion for the
background field in the FRW metric and the modified
Friedmann equation of the scale factor with one-loop
corrections are derived. We also derive the equation of
motion for mode functions of the quantum field in which
the solutions are given by the Hankel function with the
order ν. The index ν depends on the potential function of
the scalar field and can be approximately expressed by the
Hubble flow parameters as ν2≃ 9

4
þð3

2
ϵ2þ 1

4
ϵ22Þð1þ2ϵ1Þþ

1
2
ϵ2ϵ3þ3ϵ1þ ϵ1ϵ2þ6ϵ1ð1þ ϵ2

6
Þ up to the order ϵ2ϵ3 in

the parameter regime where ϵ1 is extremely small, ϵ2 is
negative with jϵ2j ∼Oð1Þ, and jϵ2ϵ3j < 1 but jϵ2ϵ3j > ϵ1
during the USR inflationary epoch. To incorporate the SR
epoch in the models we propose with ϵ1 > jϵ2j where ϵ1,
jϵ2j ≪ 1, the linear ϵ1 terms are also included. Later, the
one-loop contribution of hφ2i is computed for a choice of
the Bunch-Davies vacuum state. More importantly, the
renormalized hφ2iR after subtracting the UV-divergence
encounters the infrared divergence in the case of minimally
coupled massless inflaton fluctuations in de Sitter space-
time as ν → 3=2 and thus is infrared enhanced for small Δ
where ν ¼ 3

2
− Δ. In addition, we introduce the power

spectrum of primordial perturbations described by the
density perturbations in a spatially flat gauge. The one-
loop expressions of the density perturbations as well as the
energy density and pressure of the inflaton field are
obtained when the infrared enhanced hφ2iR is considered.
Notice that the backreaction effect of hφ2iR to the dynamics
of the background inflation field also needs to be taken into
account to compute the power spectrum via the one-loop
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FIG. 9. Evolution of the power spectrum Δζ;νUSR (44) as a
function of N for the parameter set in Fig. 7.
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modified ϵ1. Here,we first adopt the SR stepmodel proposed
inRef. [13] to numerically study the SR toUSR inflation.We
find a huge amplification on the power spectrum of order
10−2 during the USR regime, which is large enough to
potentially produce PBHs, by keeping ϵ1 (ϵ1 ∼ 10−9) to be
extremely small. Then, the index ν in the USR regime can be
approximated by ν ≈ ð9=4þ 3ϵ2=2þ ϵ22=4Þ1=2. However,
staying with the small ϵ1 leads to the small ϵ2 that ends USR
inflation and later enters the second SR inflation, driving
ν → 3=2,where the accompanying quantum loop effects also
become significant as well. We then modify the model to
consider the SR-USR-SR inflation and the peak of the power
spectrum occurs in the transition of USR back to SR as ϵ2
goes from negative to positive values, which then drives ϵ1
back to a relatively large value (ϵ1 ∼ 10−2) with the power
spectrum of order 10−9 in the SR regime. Again, when
ν → 3=2, large quantum loop effects can be seen near
the peak of the power spectrum as compared with the
tree-level results. Thus, to model a successful model that
undergoes either SR-USR or SR-USR-SR inflation seems
inevitably to induce large quantum loop effects. Here, our
estimates just indicate significant one-loop corrections that
should be confirmed by a formal quantum field theoretical
method and, if so, further be treated in a self-consistent
manner by following the works of Refs. [31,33] in our
future study.
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APPENDIX: THE ONE-LOOP UV DIVERGENCE

In this Appendix, we summarize the UV divergence in
the one-loop contributions to the relevant quantities to the
density perturbations. The quantum correction hφ2i deter-
mined by the momentum integral in Eq. (30) has both
quadratic and logarithmic divergences. We introduce the
UV cutoff momentum scale ΛpðηÞ determined by the fixed
physical cutoff divided by the scale of inflation in a
comoving frame according to Ref. [32], i.e., ΛpðηÞ≡

Λ
HCðηÞ ≃ −Λη for small ϵ1. For a general ν, the ultraviolet

divergence of hφ2i in Eq. (30) is found to be

hφ2i ¼ H2
0

8π2
½Λ2

p þ lnΛPðν2 − 1=4Þ þ finite parts�: ðA1Þ

Similarly, the time derivatives and the gradient terms of
quantum corrections also suffer from the ultraviolet diver-
gences given, respectively, by

h _φ2i¼H4
0

8π

Z
Λp

0

dz
z
z2
				 ddz ½z

3
2Hð1Þ

ν ðzÞ�
				
2

¼ H4
0

16π2

�
Λ4
p−Λ2

pðν2−9=4Þ− lnΛp

2
ðν4−5ν2=2þ9=16Þþ finite parts

�
;

��∇φ

aðtÞ
�

2
�
¼H4

0

8π

Z
Λp

0

dz
z
z5jHð1Þ

ν ðzÞj2¼ H4
0

16π2

�
Λ4
p−Λ2

pðν2−9=4Þ−3 lnΛp

2
ðν4−5ν2=2þ9=16Þþ finite parts

�
: ðA2Þ

Here, we consider the case of the general ν, and the discussions of the UV divergence above generalize those results in
Ref. [24], in which the case ν ≃ 3=2 is considered. The above integrals have the ultraviolet divergences, which can be
absorbed by the renormalization counterterms within a given renormalization scheme in the effective field theory by
following Ref. [24].
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