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We study the consequences of entanglement wedge nesting for conformal field theories (CFTs) with
holographic duals. The CFT is formulated on an arbitrary curved background, and we include the effects of
curvature-squared couplings in the bulk. In this setup we find necessary and sufficient conditions for
entanglement wedge nesting to imply the quantum null energy condition in d ≤ 5, extending its earlier
holographic proofs. We also show that the quantum focusing conjecture yields the quantum null energy
condition as its nongravitational limit under these same conditions.
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I. INTRODUCTION AND SUMMARY

The quantum focusing conjecture (QFC) is a new
principle of semiclassical quantum gravity proposed in
[1]. Its formulation is motivated by classical focusing,
which states that the expansion θ of a null congruence of
geodesics is nonincreasing. Classical focusing is at the
heart of several important results of classical gravity [2–5],
and likewise quantum focusing can be used to prove
quantum generalizations of many of these results [6–9].
One of themost important and surprising consequences of

the QFC is the quantum null energy condition (QNEC),
which was discovered as a particular nongravitational limit
of the QFC [1]. Subsequently the QNECwas proven for free
fields [10] and for holographic conformal field theories
(CFTs) on flat backgrounds [11] (and recently extended in
[12] in a similar way as we do here). The formulation of the
QNEC which naturally comes out of the proofs we provide
here is as follows.
Consider a codimension-two Cauchy-splitting surface Σ,

which we will refer to as the entangling surface. The Von
Neumann entropy S½Σ� of the interior (or exterior) or Σ is a
functional of Σ, and in particular is a functional of the
embedding functions XiðyÞ that define Σ. Choose a one-

parameter family of deformed surfaces ΣðλÞ, with
Σð0Þ ¼ Σ, such that (i) ΣðλÞ is given by flowing along
null geodesics generated by the null vector field ki normal
to Σ for affine time λ, and (ii) ΣðλÞ is either “shrinking” or
“growing” as a function of λ, in the sense that the domain of
dependence of the interior of Σ is either shrinking or
growing. Then for any point on the entangling surface we
can define the combination

TijðyÞkiðyÞkjðyÞ −
1

2π

d
dλ

�
kiðyÞffiffiffiffiffiffiffiffiffi
hðyÞp δSren

δXiðyÞ
�
: ð1:1Þ

Here
ffiffiffiffiffiffiffiffiffi
hðyÞp

is the induced metric determinant on Σ.
Writing this down in a general curved background requires
a renormalization scheme both for the energy-momentum
tensor Tij and the renormalized entropy Sren. Assuming that
this quantity is scheme-independent (and hence well
defined), the QNEC states that it is positive. Our main
task is to determine the necessary and sufficient conditions
we need to impose on Σ and the background spacetime at
the point y in order that the QNEC hold.
In addition to a proof through the QFC, the holographic

proof method of [11] is easily adaptable to answering this
question in full generality. The backbone of that proof is
entanglement wedge nesting (EWN), which is a conse-
quence of subregion duality in AdS/CFT [9]. A given
region on the boundary of AdS is associated with a
particular region of the bulk, called the entanglement
wedge, which is defined as the bulk region spacelike-
related to the extremal surface [13–16] used to compute the
CFT entropy on the side toward the boundary region. This
bulk region is dual to the given boundary region, in the
sense that there is a correspondence between the algebras of
operators in the bulk region and the operators in the
boundary region which are good semiclassical gravity
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operators (i.e., they act within the subspace of semiclassical
states) [17–19]. EWN is the statement that nested boundary
regions must be dual to nested bulk regions, and clearly
follows from the consistency of subregion duality.
While the QNEC can be derived from both the QFC and

EWN, there has been no clear connection between these
derivations.1 As it stands, there are apparently two QNECs,
the QNEC-from-QFC and the QNEC-from-EWN. We will
show in full generality that these two QNECs are in fact the
same, at least in d ≤ 5 dimensions.
Here is a summary of our results:
(i) The holographic proof of the QNEC from EWN is

extended to CFTs on arbitrary curved backgrounds.
In d ¼ 5 we find necessary that the necessary and
sufficient conditions for the ordinary QNEC to hold
at a point are that2

θðkÞ ¼ σðkÞab ¼ DaθðkÞ ¼ Daσ
ðkÞ
bc ¼ Rka ¼ 0 ð1:2Þ

at that point. For d < 5 only a subset of these
conditions are necessary. This is the subject of
Sec. II C.

(ii) We also show holographically that under the weaker
set of conditions

σðkÞab ¼ DaθðkÞ þ Rka ¼ Daσ
ðkÞ
bc ¼ 0 ð1:3Þ

the Conformal QNEC holds. The Conformal QNEC
was introduced in [11] as a conformally transformed
version of the QNEC. This is the strongest inequality
that we can get out of EWN. This is the subject of
Sec. II E

(iii) By taking the nongravitational limit of the QFC we
are able to derive the QNEC again under the same
set of conditions as we did for EWN. This is the
subject of § III B.

(iv) We argue in Sec. III C that the statement of the
QNEC is scheme-independent whenever the con-
ditions that allow us to prove it hold. This shows that
the two proofs of the QNEC are actually proving the
same, unambiguous field–theoretic bound.

We conclude in Sec. IV with a discussion and suggest
future directions. A number of technical Appendices are
included as part of our analysis.

A. Relation to other work

While this work was in preparation, [12] appeared
which has overlap with our discussion of EWN and the

scheme-independence of the QNEC. The results of [12]
relied on a number of assumptions about the background:
the null curvature condition and a positive energy con-
dition. From this they derive certain sufficient conditions
for the QNEC to hold. We do not assume anything about
our backgrounds a priori, and include all relevant higher
curvature corrections. This gives our results greater gen-
erality, as we are able to find both necessary and sufficient
conditions for the QNEC to hold.

II. ENTANGLEMENT WEDGE NESTING

A. Subregion duality

The statement of AdS/CFT includes a correspondence
between operators in the semiclassical bulk gravitational
theory and CFToperators on the boundary. Moreover, it has
been shown [19,20] that such a correspondence exists
between the operator algebras of subregions in the CFTand
certain associated subregions in the bulk as follows:
Consider a spatial subregion A in the boundary geometry.
The extremal surface anchored to ∂A, which is used to
compute the entropy of A [13,14], bounds the so-called
entanglement wedge of A, EðAÞ, in the bulk. More precisely
EðAÞ is the codimension-zero bulk region spacelike-related
to the extremal surface on the same side of the extremal
surface as A. Subregion duality is the statement that the
operator algebras of DðAÞ and EðAÞ are dual, where DðAÞ
denotes the domain of dependence of A.

1. Entanglement wedge nesting

The results of this section follow from EWN, which we
now describe. Consider two boundary regions A1 and A2

such that DðA1Þ ⊆ DðA2Þ. Then consistency of subregion
duality implies that EðA1Þ ⊆ EðA2Þ as well, and this is the
statement of EWN. In particular, EWN implies that the
extremal surfaces associated to A1 and A2 cannot be
timelike-related.
We will mainly be applying EWN to the case of a one-

parameter family of boundary regions, AðλÞ, where
DðAðλ1ÞÞ ⊆ DðAðλ2ÞÞ whenever λ1 ≤ λ2. Then the union
of the one-parameter family of extremal surfaces associated
to AðλÞ forms a codimension-one surface in the bulk that is
nowhere timelike. We denote this codimension-one surface
by M. See Fig. 1 for a picture of the setup.
Since M is nowhere timelike, every one of its tangent

vectors must have non-negative norm. In particular, con-
sider the embedding functions X̄μ of the extremal surfaces
in some coordinate system. Then the vectors δX̄μ ≡ ∂λX̄μ is
tangent to M, and represents a vector that points from one
extremal surface to another. Hence we have ðδX̄Þ2 ≥ 0 from
EWN, and this is the inequality that we will discuss for
most of the remainder of this section.
Before moving on, we will note that ðδX̄Þ2 ≥ 0 is not

necessarily the strongest inequality we get from EWN. At
each point on M, the vectors which are tangent to the

1In [9] it was shown that the QFC in the bulk implies EWN,
which in turn implies the QNEC. This is not the same as the
connection we are referencing here. The QFC which would imply
the boundary QNEC in the sense that we mean is a boundary
QFC, obtained by coupling the boundary theory to gravity.

2Here σðkÞab and θðkÞ are the shear and expansion in the ki
direction, respectively, and Da is a surface covariant derivative.
Our notation is further explained in Appendix A.
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extremal surface passing through that point are known to be
spacelike. Therefore if δX̄μ contains any components which
are tangent to the extremal surface, they will serve to make
the inequality ðδX̄Þ2 ≥ 0 weaker. We define the vector sμ at
any point of M to be the part of δX̄μ orthogonal to the
extremal surface passing through that point. Then
ðδX̄Þ2 ≥ s2 ≥ 0. We will discuss the s2 ≥ 0 inequality in
Sec. II E after handling the ðδX̄Þ2 ≥ 0 case.

B. Near-boundary EWN

In this section we explain how to calculate the vector δX̄μ

and sμ near the boundary explicitly in terms of CFT data.
Then the EWN inequalities ðδX̄Þ2 > 0 and s2 > 0 can be
given a CFT meaning. The strategy is to use a Fefferman-
Graham expansion of both the metric and extremal surface,
leading to equations for δX̄μ and sμ as power series in the
bulk coordinate z (including possible log terms). In the
following sections we will analyze the inequalities that are
derived in this section.

1. Bulk metric

We work with a bulk theory in AdSdþ1 that consists
of Einstein gravity plus curvature-squared corrections.
For d ≤ 5 this is the complete set of higher curvature
corrections that have an impact on our analysis. The
Lagrangian is3

L ¼ 1

16πGN

�
dðd − 1Þ

L̃2
þRþ l2λ1R2

þ l2λ2R2
μν þ l2λGBLGB

�
; ð2:1Þ

where LGB ¼ R2
μνρσ − 4R2

μν þR2 is the Gauss–Bonnet
Lagrangian, l2 is the cutoff scale, and L̃2 is the scale
of the cosmological constant. The bulk metric has the
following near boundary expansion in Fefferman-Graham
gauge [21]:

ds2 ¼ L2

z2
ðdz2 þ ḡijðx; zÞdxidxjÞ; ð2:2Þ

ḡijðx; zÞ ¼ gð0Þij ðxÞ þ z2gð2Þij ðxÞ þ z4gð4Þij ðxÞ þ � � �
þ zd log zgðd;logÞij ðxÞ þ zdgðdÞij ðxÞ þ oðzdÞ: ð2:3Þ

Note that the length scale L is different from L̃, but the
relationship between them will not be important for us.
Demanding that the above metric solve bulk gravitational

equations of motion gives expressions for all of the gðnÞij for

n < d, including gðd;logÞij ðxÞ, in terms of gð0Þij ðxÞ. This means,
in particular, that these terms are all state-independent. One

finds that gðd;logÞij ðxÞ vanishes unless d is even. We provide
explicit expressions for some of these terms in Appendix C.
The only state-dependent term we have displayed,

gðdÞij ðxÞ, contains information about the expectation value
of the energy-momentum tensor Tij of the field theory. In
odd dimensions we have the simple formula [22]4

gðd¼oddÞ
ij ¼ 16πGN

ηdLd−1 hTiji; ð2:4Þ

with

η ¼ 1 − 2ðdðdþ 1Þλ1 þ dλ2 þ ðd − 2Þðd − 3ÞλGBÞ
l2

L2

ð2:5Þ

In even dimensions the formula is more complicated. For
d ¼ 4 we discuss the form of the metric in Appendix E.

2. Extremal surface

EWN is a statement about the causal relation between
entanglement wedges. To study this, we need to calculate
the position of the extremal surface. We parametrize our
extremal surface by the coordinate ðya; zÞ, and the position

FIG. 1. Here we show the holographic setup which illustrates
entanglement wedge nesting. A spatial region A1 on the boundary
is deformed into the spatial region A2 by the null vector δXi. The
extremal surfaces of A1 and A2 are connected by a codimension-
one bulk surface M (shaded blue) that is nowhere timelike by
EWN. Then the vectors δX̄μ and sμ, which lie in M, have non-
negative norm.

3For simplicity we will not include matter fields explicitly in
the bulk, but their presence should not alter any of our
conclusions.

4Even though [22] worked with a flat boundary theory, one can
check that this formula remains unchanged when the boundary is
curved.
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of the surface is determined by the embedding functions
X̄μðya; zÞ. The intrinsic metric of the extremal surface is
denoted by h̄αβ, where α ¼ ða; zÞ. For convenience we will
impose the gauge conditions X̄z ¼ z and h̄az ¼ 0.
The functions X̄ðya; zÞ are determined by extremizing

the generalized entropy [15,16] of the entanglement
wedge. This generalized entropy consists of geometric
terms integrated over the surface as well as bulk entropy
terms. We defer a discussion of the bulk entropy terms to
Sec. IVA and write only the geometric terms, which are
determined by the bulk action:

Sgen¼
1

4GN

Z ffiffiffī
h

p �
1þ2λ1l2Rþλ2l2

�
RμνN μν−

1

2
KμKμ

�

þ2λGBl2r̄

�
: ð2:6Þ

We discuss this entropy functional in more detail in
Appendix C 2. The Euler-Lagrange equations for Sgen
are the equations of motion for X̄μ. Like the bulk metric,
the extremal surface equations can be solved at small-zwith
a Fefferman–Graham-like expansion:

X̄iðy;zÞ¼Xi
ð0ÞðyÞþ z2Xi

ð2ÞðyÞþ z4Xi
ð4ÞðyÞþ �� �

þ zd logzXi
ðd;logÞðyÞþ zdXi

ðdÞðyÞþoðzdÞ: ð2:7Þ

As with the metric, the coefficient functions Xi
ðnÞ for n < d,

including the log term, can be solved for in terms of Xi
ð0Þ

and gð0Þij , and again the log term vanishes unless d is even.
The state-dependent term Xi

ðdÞ contains information about

variations of the CFT entropy, as we explain below.

3. The z-expansion of EWN

By taking the derivative of (2.7) with respect to λ, we
find the z-expansion of δX̄i. We will discuss how to take
those derivatives momentarily. But given the z-expansion
of δX̄i, we can combine this with the z-expansion of ḡij in
(2.3) to get the z-expansion of ðδX̄Þ2:

z2

L2
ðδX̄Þ2 ¼ gð0Þij δX

i
ð0ÞδX

j
ð0Þ þ z2ð2gð0Þij δX

i
ð0ÞδX

j
ð2Þ

þgð2Þij δXi
ð0ÞδX

j
ð0Þ þXm

ð2Þ∂mg
ð0Þ
ij δXi

ð0ÞδX
j
ð0ÞÞþ �� �

ð2:8Þ

EWN implies that ðδX̄Þ2 ≥ 0, and we will spend the next
few sections examining this inequality using the expansion
(2.8). From the general arguments given above, we can get
a stronger inequality by considering the vector sμ and its
norm rather than δX̄μ. The construction of sμ is more
involved, but we would similarly construct an equation for
s2 at small z. We defer further discussion of sμ to Sec. II E.

Now we return to the question of calculating δX̄i. Since
all of the Xi

ðnÞ for n < d are known explicitly from solving

the equation of motion, the λ-derivatives of those terms can
be taken and the results expressed in terms of the boundary
conditions for the extremal surface. The variation of the
state-dependent term, δXi

ðdÞ, is also determined by the

boundary conditions in principle, but in a horribly nonlocal
way. However, we will now show that Xi

ðdÞ (and hence

δXi
ðdÞ) can be reexpressed in terms of variations of the CFT

entropy.

4. Variations of the entropy

The CFTentropy SCFT is equal to the generalized entropy
Sgen of the entanglement wedge in the bulk. To be precise,
we need to introduce a cutoff at z ¼ ϵ and use holographic
renormalization to properly define the entropy. Then we
can use the calculus of variations to determine variations of
the entropy with respect to the boundary conditions at
z ¼ ϵ. There will be terms which diverge as ϵ → 0, as well
as a finite term, which is the only one we are interested in at
the moment. In odd dimensions, the finite term is given by a
simple integral over the entangling surface in the CFT:

δSCFTjfinite ¼ ηdLd−1
Z

dd−2y
ffiffiffi
h

p
gijXi

ðdÞδX
j: ð2:9Þ

This finite part of SCFT is the renormalized entropy, Sren, in
holographic renormalization. Eventually we will want to
assure ourselves that our results are scheme-independent.
This question was studied in [23], and we will discuss it
further in Sec. III C. For now, the important take-away from
(2.9) is

1ffiffiffi
h

p δSren
δXiðyÞ ¼ −

ηdLd−1

4GN
Xi
ðd;oddÞ: ð2:10Þ

The case of even d is more complicated, and we will cover
the d ¼ 4 case in Appendix E.

C. State-independent inequalities

The basic EWN inequality is ðδX̄Þ2 ≥ 0. The challenge is
to write this in terms of boundary quantities. In this section
wewill look at the state-independent terms in the expansion
of (2.8). The boundary conditions at z ¼ 0 are given by the
CFT entangling surface and background geometry, which
we denote by Xi and gij without a (0) subscript. The
variation vector of the entangling surface is the null vector
ki ¼ δXi. We can use the formulas of Appendix D to
express the other Xi

ðnÞ for n < d in terms of Xi and gij. This

allows us to express the state-independent parts of ðδX̄Þ2 ≥
0 in terms of CFT data. In this subsection we will look at
the leading and subleading state-independent parts. These
will be sufficient to fully cover the cases d ≤ 5.
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1. Leading inequality

From (2.8), we see that the first term is actually kiki ¼ 0.
The next term is the one we call the leading term, which is

L−2ðδX̄Þ2jz0 ¼ 2kiδXi
ð2Þ þgð2Þij k

ikjþXm
ð2Þ∂mgijkikj: ð2:11Þ

From (C10), we easily see that this is equivalent to

L−2ðδX̄iÞ2jz0 ¼
1

ðd − 2Þ2 θ
2
ðkÞ þ

1

d − 2
σ2ðkÞ; ð2:12Þ

where σðkÞab and θðkÞ are the shear and expansion of the null
congruence generated by ki, and are given by the trace and
trace-free parts of kiKi

ab, withK
i
ab the extrinsic curvature of

the entangling surface. This leading inequality is always
non-negative, as required by EWN. Since we are in the
small-z limit, the subleading inequality is only relevant
when this leading inequality is saturated. So in our analysis

below we will focus on the θðkÞ ¼ σðkÞab ¼ 0 case, which can
always be achieved by choosing the entangling surface
appropriately. Note that in d ¼ 3 this is the only state-
independent term in ðδX̄Þ2, and furthermore we always

have σðkÞab ¼ 0 in d ¼ 3.

2. Subleading inequality

The subleading term in ðδX̄Þ2 is order z2 in d ≥ 5, and
order z2 log z in d ¼ 4. These two cases are similar, but it
will be easiest to focus first on d ≥ 5 and then explain what
changes in d ¼ 4. The terms we are looking for are

L−2ðδX̄Þ2jz2 ¼2kiδXi
ð4Þþ2gð2Þij k

iδXj
ð2ÞþgijδXi

ð2ÞδX
j
ð2Þ

þgð4Þij kikjþXm
ð4Þ∂mgijkikjþ2Xm

ð2Þ∂mgijkiδX
j
ð2Þ

þXm
ð2Þ∂mg

ð2Þ
ij k

ikjþ1

2
Xm
ð2ÞX

n
ð2Þ∂m∂ngijkikj:

ð2:13Þ

This inequality is significantly more complicated than the
previous one. The details of its evaluation are left to

Appendix D. The result, assuming θðkÞ ¼ σðkÞab ¼ 0, is

L−2ðδX̄Þ2jz2 ¼
1

4ðd − 2Þ2 ðDaθðkÞ þ 2RkaÞ2

þ 1

ðd − 2Þ2ðd − 4Þ ðDaθðkÞ þ RkaÞ2

þ 1

2ðd − 2Þðd − 4Þ ðDaσ
ðkÞ
bc Þ2

þ κ

d − 4
ðCkabcCabc

k − 2Cc
kcaC

ba
kbÞ: ð2:14Þ

where κ is proportional to λGBl2=L2 and is defined in
Appendix D. Aside from the Gauss–Bonnet term we have a

sum of squares, which is good because EWN requires this
to be positive when θðkÞ and σðkÞ vanish. Since κ ≪ 1, it
cannot possibly interfere with positivity unless the other

terms were zero. This would require DaθðkÞ ¼ Daσ
ðkÞ
bc ¼

Rka ¼ 0 in addition to our other conditions. But, following
the arguments of [24], this cannot happen unless the
components Ckabc of the Weyl tensor also vanish at the
point in question. Thus EWN is always satisfied. Also
note, the last two terms in middle line of (2.14) are each

conformally invariant when θðkÞ ¼ σðkÞab ¼ 0, which we have
assumed. This will become important later.
Finally, though we have assumed d ≥ 5 to arrive

at this result, we can use it to derive the expression
for L−2ðδX̄Þ2jz2 log z in d ¼ 4. The rule, explained in
Appendix E, is to multiply the right-hand side (RHS) by
4 − d and then set d ¼ 4. This has the effect of killing the
conformally noninvariant term, leaving us with

L−2ðδX̄Þ2jz2 log z;d¼4 ¼ −
1

4
ðDaθðkÞ þ RkaÞ2 −

1

4
ðDaσ

ðkÞ
bc Þ2:
ð2:15Þ

TheGauss–Bonnet term also disappears because of a special
Weyl tensor identity in d ¼ 4 [23]. The overall minus sign is
required since log z < 0 in the small z limit. In addition, we
no longer require that Rka andDaθðkÞ vanish individually to
saturate the inequality: only their sumhas to vanish. This still
requires that Ckabc ¼ 0, though.

D. The quantum null energy condition

The previous section dealt with the two leading state-
independent inequalities that EWN implies. Here we deal
with the leading state-dependent inequality, which turns out
to be the QNEC.
At all orders lower than zd−2, ðδX̄Þ2 is purely geometric.

At order zd−2, however, the CFT energy-momentum tensor
enters via the Fefferman–Graham expansion of the metric,
and variations of the entropy enter through Xi

ðdÞ. In odd

dimensions the analysis is simple and we will present it
here, while in general even dimensions it is quite compli-
cated. Since our state-independent analysis is incomplete
for d > 5 anyway, we will be content with analyzing only
d ¼ 4 for the even case. The d ¼ 4 calculation is presented
in Appendix E. Though is it more involved that the odd-
dimensional case, the final result is the same.
Consider first the case where d is odd. Then we have

L−2ðδX̄Þ2jzd−2 ¼ gðdÞij kikj þ 2kiδXi
ðdÞ þ Xm

ðdÞ∂mgijkikj

¼ gðdÞij kikj þ 2δðkiδXi
ðdÞÞ: ð2:16Þ

From (2.4) and (2.10), we find that
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L−2ðδX̄Þ2jzd−2 ¼
16πGN

ηdLd−1

�
hTkki − δ

�
ki

2π
ffiffiffi
h

p δSren
δXi

��
:

ð2:17Þ

The non-negativity of the term in brackets is equivalent to
the QNEC. The case where d is even is more complicated,
and we will go over the d ¼ 4 case in Appendix E.

E. The conformal QNEC

As mentioned in Sec. II A, we can get a stronger
inequality from EWN by considering the norm of the
vector sμ, which is the part of δX̄μ orthogonal to the
extremal surface. Our gauge choice X̄z ¼ z means that
sμ ≠ δX̄μ, and so we get a nontrivial improvement by
considering s2 ≥ 0 instead of ðδX̄Þ2 ≥ 0.
We can actually use the results already derived above to

compute s2 with the following trick. We would have had
δX̄μ ¼ sμ if the surfaces of constant z were already
orthogonal to the extremal surfaces. But we can change
our definition of the constant-z surfaces with a coordinate
transformation in the bulk to make this the case, apply the
above results to ðδX̄Þ2 in the new coordinate system, and
then transform back to the original coordinates. The
coordinate transformation we are interested in performing
is a PBH transformation [25], since it leaves the metric in
Fefferman–Graham form, and so induces a Weyl trans-
formation on the boundary.
So from the field theory point of view, we will just be

calculating the consequences of EWN in a different
conformal frame, which is fine because we are working
with a CFT. With that in mind it is easy to guess the
outcome: the best conformal frame to pick is one in which
all of the nonconformally invariant parts of the state-
independent terms in ðδX̄Þ2 are set to zero, and when
we transform the state-dependent term in the new frame
back to the original frame we get the so-called conformal
QNEC first defined in [11]. This is indeed what happens, as
we will now see.

1. Orthogonality conditions

First, we will examine in detail the conditions necessary
for δX̄μ ¼ sμ, and their consequences on the inequalities
derived above. We must check that

ḡij∂αX̄iδX̄j ¼ 0: ð2:18Þ
for both α ¼ z and α ¼ a. As above, we will expand these
conditions in z. When α ¼ z, at lowest order in z we find
the condition

0 ¼ kiXi
ð2Þ; ð2:19Þ

which is equivalent to θðkÞ ¼ 0. When α ¼ a, the lowest-
order in z inequality is automatically satisfied because
ki is defined to be orthogonal to the entangling surface on

the boundary. But at next-to-lowest order we find the
condition

0 ¼ ki∂aXi
ð2Þ þ eaiδXi

ð2Þ þ gð2Þij e
i
akj þ Xm

ð2Þ∂mgijeiakj

ð2:20Þ

¼ −
1

2ðd − 2Þ ½ðDa − 2waÞθðkÞ þ 2Rka�: ð2:21Þ

Combined with the θðkÞ ¼ 0 condition, this tells us that
DaθðkÞ ¼ −2Rka is required. When these conditions are
satisfied, the state-dependent terms of ðδX̄Þ2 analyzed
above become5

L−2ðδX̄Þ2 ¼ 1

d−2
σ2ðkÞ þ

�
1

ðd−2Þ2ðd−4ÞðRkaÞ2

þ 1

2ðd−2Þðd−4ÞðDaσ
ðkÞ
bc Þ2

�
z2þ��� ð2:22Þ

Next we will demonstrate that θðkÞ ¼ 0 and DaθðkÞ ¼
−2Rka can be achieved by a Weyl transformation, and
then use that fact to write down the s2 ≥ 0 inequality that
we are after.

2. Achieving δX̄μ = sμ with a Weyl transformation

Our goal now is to begin with a generic situation in
which δX̄μ ≠ sμ and use a Weyl transformation to set
δX̄μ → sμ. This means finding a new conformal frame with
ĝij ¼ e2ϕðxÞgij such that θ̂ðkÞ ¼ 0 and D̂aθ̂ðkÞ ¼ −2R̂ka,
which would then imply that δX̂μ ¼ sμ (we omit the bar
on δX̂μ to avoid cluttering the notation, but logically it

would be δ ˆ̄Xμ).
Computing the transformation properties of the geo-

metric quantities involved is a standard exercise, but there is
one extra twist involved here compared to the usual
prescription. Ordinarily a vector such as ki would be
invariant under the Weyl transformation. However, for
our setup is it is important that ki generate an affine-
parametrized null geodesic. Even though the null geodesic
itself is invariant under Weyl transformation, ki will no
longer be the correct generator. Instead, we have to use
k̂i ¼ e−2ϕki. Another way of saying this is that ki ¼ k̂i is
invariant under the Weyl transformation. With this in mind,
we have

e2ϕR̂ka ¼ Rka − ðd − 2Þ½Da∂kϕ − wa∂kϕ

− kjK
j
ab∂bϕ − ∂kϕ∂aϕ�; ð2:23Þ

5We have not included some terms at order z2 which are
proportional to σðkÞab because they never play a role in the EWN
inequalities.
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e2ϕθ̂ðkÞ ¼ θðkÞ þ ðd − 2Þ∂kϕ; ð2:24Þ

e2ϕD̂aθ̂ðkÞ ¼ DaθðkÞ þ ðd − 2ÞDa∂kϕ − 2θðkÞ∂aϕ

− 2ðd − 2Þ∂kϕ∂aϕ; ð2:25Þ

σ̂ðkÞab ¼ σðkÞab ; ð2:26Þ

D̂cσ̂
ðkÞ
ab ¼ Dcσ

ðkÞ
ab − 2½σðkÞcðb∂aÞϕþ σðkÞab ∂cϕ − gcðaσ

ðkÞ
bÞd∇dϕ�;

ð2:27Þ

ŵa ¼ wa − ∂aϕ: ð2:28Þ

So we may arrange θ̂ðkÞ ¼ 0 at a given point on the
entangling surface by choosing ∂kϕ ¼ −θðkÞ=ðd − 2Þ at

that point. Having chosen that, and assuming σðkÞab ¼ 0 at the
same point, one can check that

e2ϕðD̂aθ̂ðkÞ þ 2R̂kaÞ
¼ DaθðkÞ − 2waθðkÞ þ 2Rka − ðd − 2ÞDa∂kϕ ð2:29Þ

So we can choose Da∂kϕ to make the combination
D̂aθ̂ðkÞ þ 2R̂ka vanish. Then in the new frame we have
δX̂μ ¼ sμ.

3. The s2 ≥ inequality

Based on the discussion above, we were able to find a
conformal frame that allows us to compute the s2. For the
state-independent parts we have

L−2s2 ¼ 1

d − 2
σ̂2ðkÞ þ

�
1

ðd − 2Þ2ðd − 4Þ ðR̂kaÞ2

þ 1

2ðd − 2Þðd − 4Þ ðD̂aσ̂
ðkÞ
bc Þ2

�
ẑ2 þ � � � ð2:30Þ

Here we also have a new bulk coordinate ẑ ¼ zeϕ asso-
ciated with the bulk PBH transformation. All we have to do
now is transform back into the original frame to find s2.
Since θ̂ðkÞ ¼ D̂aθ̂ðkÞ þ 2R̂ka ¼ 0, we actually have that

R̂ka ¼ D̂aθ̂ðkÞ − ŵaθ̂ðkÞ − R̂ka; ð2:31Þ

which transforms homogeneously under Weyl transforma-

tions when σðkÞab ¼ 0. Thus, up to an overall scaling factor,
we have

L−2s2¼ 1

d−2
σ2ðkÞþ

�
1

ðd−2Þ2ðd−4ÞðDaθðkÞ−waθðkÞ−RkaÞ2

þ 1

2ðd−2Þðd−4ÞðDaσ
ðkÞ
bc Þ2

�
z2þ���; ð2:32Þ

where we have dropped terms of order z2 which vanish

when σðkÞab ¼ 0. As predicted, these terms are the confor-
mally invariant contributions to ðδX̄Þ2.
In order to access the state-dependent part of s2weneed the

terms in (2.32) to vanish. Note that in d ¼ 3 this always

happens. In that case there is no z2 term, and σðkÞab ¼ 0 always.
Though our expression is singular in d ¼ 4, comparing to
(2.22) shows that actually the term in brackets above is
essentially the same as the z2 log z term in δX̄. We already
noted that this term was conformally invariant, so this is
expected. The difference now is thatwe no longer needθðkÞ ¼
0 in order to get to the QNEC in d ¼ 4. In d ¼ 5 the
geometric conditions for the state-independent parts of s2 to
vanish are identical to those for d ¼ 4, whereas in the ðδX̄Þ2
analysiswe found that extra conditionswere necessary. These
were relics of the choice of conformal frame. Finally, for
d > 5 therewill be additional state-independent terms thatwe
have not analyzed, but the results we have will still hold.

4. Conformal QNEC

Now we analyze the state-dependent part of s2 at order
zd−2. When all of the state-independent parts vanish, the
state-dependent part is given by the conformal transforma-
tion of the QNEC. This is easily computed as follows:

L−2s2jzd−2 ¼
16πGN

ηdLd−1

�
2πhT̂ijikikj − δ

�
kiffiffiffi
h

p δŜren
δXiðyÞ

�

−
d
2
θðkÞ

�
kiffiffiffi
h

p δŜren
δXiðyÞ

��
: ð2:33Þ

Of course, one would like to replace T̂ij with Tij and Ŝren
with Sren. When d is odd this is straightforward, as these
quantities are conformally invariant. However, when d is
even there are anomalies that will contribute, leading to
extra geometric terms in the conformal QNEC [11,26].

III. CONNECTION TO QUANTUM FOCUSING

A. The quantum focusing conjecture

We start by reviewing the statement of the QFC [1,24]
before moving on to its connection to EWN and the QNEC.
Consider a codimension-two Cauchy-splitting (i.e., entan-
gling) surface Σ and a null vector field ki normal to Σ.
Denote by N the null surface generated by ki. The
generalized entropy, Sgen, associated to Σ is given by

Sgen ¼ hSgravi þ Sren ð3:1Þ

whereSgrav is a state-independent local integral onΣ andSren
is the renormalized von Neumann entropy of the interior (or
exterior of Σ. The terms in Sgrav are determined by the low-
energy effective action of the theory in a well-known way
[27]. Even though hSgravi and Sren individually depend on
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the renormalization scheme, that dependence cancels out
between them so that Sgen is scheme-independent.
The generalized entropy is a functional of the entangling

surface Σ, and the QFC is a statement about what happens
when we vary the shape of Σ be deforming it within the
surface N . Specifically, consider a one-parameter family
ΣðλÞ of cuts of N generated by deforming the original
surface using the vector field ki. Here λ is the affine
parameter along the geodesic generated by ki and
Σð0Þ≡ Σ. To be more precise, let ya denote a set of
intrinsic coordinates for Σ, let hab be the induced metric on
Σ, and let Xiðy; λÞ be the embedding functions for ΣðλÞ.
With this notation, ki ¼ ∂λXi. The change in the general-
ized entropy is given by

dSgen
dλ

����
λ¼0

¼
Z
Σ
dd−2y

δSgen
δXiðyÞ ∂λXiðyÞ

≡ 1

4GN

Z
Σ
dd−2y

ffiffiffi
h

p
Θ½Σ; y� ð3:2Þ

This defines the quantum expansion Θ½Σ; y� in terms of the
functional derivative of the generalized entropy:

Θ½Σ; y� ¼ 4GN
kiðyÞffiffiffi

h
p δSgen

δXiðyÞ : ð3:3Þ

Note that we have suppressed the dependence of Θ
on ki in the notation, but the dependence is very simple:
if kiðyÞ → fðyÞkiðyÞ, then Θ½Σ; y� → fðyÞΘ½Σ; y�.
The QFC is simple to state in terms of Θ. It says that Θ is

nonincreasing along the flow generated by ki:

0 ≥
dΘ
dλ

¼
Z
Σ
dd−2y

δΘ½Σ; y�
δXiðy0Þ k

iðy0Þ: ð3:4Þ

Before moving on, let us make two remarks about the QFC.
First, the functional derivative δΘ½Σ; y�=δXiðy0Þ will

contain local terms (i.e., terms proportional to δ-functions
or derivatives of δ-functions with support at y ¼ y0) as well
as nonlocal terms that have support even when y ≠ y0. Sgrav,
being a local integral, will only contribute to the local terms
of δΘ½Σ; y�=δXiðy0Þ. The renormalized entropy Sren will
contribute both local and nonlocal terms. The nonlocal terms
can be shown to be nonpositive using strong subadditivity of
the entropy [1], while the local terms coming from Sren are in
general extremely difficult to compute.
Second, and more importantly for us here, the QFC as

written in (3.4) does not quite make sense. We have to
remember that Sgrav is really an operator, and its expectation
value hSgravi is really the thing that contributes to Θ. In
order to be well-defined in the low-energy effective theory
of gravity, this expectation value must be smeared over a
scale large compared to the cutoff scale of the theory. Thus
when we write an inequality like (3.4), we are implicitly
smearing in y against some profile. The profile we use is
arbitrary as long as it is slowly-varying on the cutoff scale.

This extra smearing step is necessary to avoid certain
violations of (3.4), as we will see below [24].

B. QNEC from QFC

In this section we will explicitly evaluate the QFC
inequality, (3.4), and derive the QNEC in curved space
from it as a nongravitational limit. We consider theories
with a gravitational action of the form

Igrav¼
1

16πGN

Z ffiffiffi
g

p ðRþl2λ1R2þl2λ2RijRijþl2λGBLGBÞ

ð3:5Þ

where LGB ¼ R2
ijmn − 4R2

ij þ R2 is the Gauss-Bonnet
Lagrangian. Here l is the cutoff length scale of the effective
field theory, and the dimensionless couplings λ1, λ2, and
λGB are assumed to be renormalized.
The generalized entropy functional for these theories can

be computed using standard replica methods [27] and takes
the form

Sgen ¼
A½Σ�
4GN

þ l2

4GN

Z
Σ

ffiffiffi
h

p �
2λ1Rþ λ2

�
RijNij −

1

2
KiKi

�

þ 2λGBr

�
þ Sren: ð3:6Þ

Here A½Σ� is the area of the entangling surface, Nij is the
projector onto the normal space of Σ, Ki is the trace of the
extrinsic curvature of Σ, and r is the intrinsic Ricci scalar
of Σ.
We can easily compute Θ by taking a functional

derivative of (3.6), taking care to integrate by parts so that
the result is proportional to kiðyÞ and not derivatives of
kiðyÞ. One finds

Θ ¼ θðkÞ þ l2½2λ1ðθðkÞRþ∇kRÞ þ λ2ððDa − waÞ2θðkÞ
þ KiKiabKk

ab ð3:7Þ

þθðkÞRklklþ∇kR−2∇lRkkþθðkÞRkl−θðlÞRkkþ2KkabRabÞ

−4λGB

�
rabKk

ab−
1

2
rθðkÞ

��
þ4GN

kiffiffiffi
h

p δSren
δXi : ð3:8Þ

Now we must compute the λ-derivative of Θ. When we do
this, the leading term comes from the derivative of θðkÞ,
which by Raychaudhuri’s equation contains the terms θ2ðkÞ
and σ2ðkÞ. Since we are ultimately interested in deriving the

QNEC as the nongravitational limit of the QFC, we need to

set θðkÞ ¼ σðkÞab ¼ 0 so that the nongravitational limit is not
dominated by those terms. So for the rest of this section we

will set θðkÞ ¼ σðkÞab ¼ 0 at the point of evaluation (but not
globally). Then we find
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dΘ
dλ

¼ −Rkk þ 2λ1l2ð∇2
kR − RRkkÞ þ λ2l2

�
2DaðwaRkkÞ þ∇2

kR −DaDaRkk −
d

d − 2
ðDaθðkÞÞ2 − 2RkbDbθðkÞ − 2ðDaσbcÞ2

− 2∇k∇lRkk − 2RkakbRab − θðlÞ∇kRkk

�
− 2λGBl2

�
dðd − 3Þðd − 4Þ
ðd − 1Þðd − 2Þ2 RRkk − 4

ðd − 4Þðd − 3Þ
ðd − 2Þ2 RkkRkl

−
2ðd − 4Þ
d − 2

CklklRkk −
2ðd − 4Þ
d − 2

RabCakbk þ 4CkalbCkakb

�
þ 4GN

d
dλ

�
kiffiffiffi
h

p δSren
δXi

�
ð3:9Þ

This expression is quite complicated, but it simplifies dramatically if we make use of the equation of motion coming from
(3.5) plus the action of the matter sector. Then we have Rkk ¼ 8πGTkk −Hkk where [28]

Hkk ¼ 2λ1ðRRkk −∇2
kRÞ þ λ2ð2RkikjRij −∇2

kRþ 2∇k∇lRkk − 2RklkiRi
k þDcDcRkk − 2DcðwcRkkÞ

− 2ðDbθðkÞ þ RbmkjPmjÞRb
k þ θðlÞ∇kRkkÞ

þ 2λGB

�
dðd − 3Þðd − 4Þ
ðd − 1Þðd − 2Þ2 RRkk − 4

ðd − 4Þðd − 3Þ
ðd − 2Þ2 RkkRkl − 2

d − 4

d − 2
RijCkikj þ CkijmCk

ijm

�
ð3:10Þ

For the Gauss-Bonnet term we have used the standard decomposition of the Riemann tensor in terms of the Weyl and Ricci
tensors. Using similar methods to those in Appendix D, we have also exchanged kikj▫Rij in the R2

ij equation of motion for
surface quantities and ambient curvatures.
After using the equation of motion we have the relatively simple formula

dΘ
dλ

¼ −λ2l2

�
d

d − 2
ðDaθðkÞÞ2 þ 4Rb

kDbθðkÞ þ 2RbkRb
k þ 2ðDaσ

ðkÞ
bc Þ2

�

þ 2λGBl2ðCkabcCk
abc − 2Ckba

bCkc
acÞ þ 4GN

d
dλ

�
kiffiffiffi
h

p δSren
δXi

�
− 8πGNhTkki ð3:11Þ

The Gauss-Bonnet term agrees with the expression derived
in [23]. However unlike [23] we have not made any
perturbative assumptions about the background curvature.
At first glance it seems like (3.11) does not have definite

sign, even in the nongravitational limit, due to the geometric
terms proportional to λ2 and λGB. The difficulty posed by the
Gauss-Bonnet term, in particular, was first pointed out in
[12]. However, this is where we have to remember the
smearing prescription mentioned in Sec. III A. We must

integrate (3.11) over a region of size larger than l before
testing its nonpositivity. The crucial point, used in [24], is
that we must also remember to integrate the terms θ2ðkÞ and
σ2ðkÞ that we dropped earlier over the same region. When we

integrate θ2ðkÞ over a region of sizel centered at a point where
θðkÞ ¼ 0, the result is ξl2ðDaθðkÞÞ2 þ oðl2Þ, where ξ≳ 10 is
a parameter associated with the smearing profile. A similar
result holds for σðkÞab . Thus we arrive at

dΘ
dλ

¼ −
ξ

d − 2
l2ðDaθðkÞÞ2 − ξl2ðDaσ

ðkÞ
bc Þ2 − λ2l2

�
d

d − 2
ðDaθðkÞÞ2 þ 4Rb

kDbθðkÞ þ 2RbkRb
k þ 2ðDaσ

ðkÞ
bc Þ2

�

þ 2λGBl2ðCkabcCk
abc − 2Ckba

bCkc
acÞ þ 4GN

d
dλ

�
kiffiffiffi
h

p δSren
δXi

�
− 8πGNhTkki þ oðl2Þ ð3:12Þ

Since the size of ξ is determined by the validity of the
effective field theory, by construction the terms propor-
tional to ξ in (3.12) dominate over the others. Thus in order
to take the nongravitational limit, we must eliminate these
smeared terms.
Clearly we need to be able to choose a surface such that

DaθðkÞ ¼ Daσ
ðkÞ
bc ¼ 0. Then smearing θ2ðkÞ and σ2ðkÞ would

only produce terms of order l4 (terms of that order would
also show up from smearing the operators proportional to
λ2 and λGB). As explained in [24], this is only possible
given certain conditions on the background spacetime at the
point of evaluation. We must have

Ckabc ¼
1

d − 2
habRkc −

1

d − 2
hacRkb: ð3:13Þ
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This can be seen by using the Codazzi equation for Σ.
Imposing this condition, which allows us to set

DaθðkÞ ¼ Daσ
ðkÞ
bc ¼ 0, we then have.

dΘ
dλ

¼−2l2

�
λ2þ2

ðd−3Þðd−4Þ
ðd−2Þ2 λGB

�
RbkRb

k

þ4GN
d
dλ

�
kiffiffiffi
h

p δSren
δXi

�
−8πGNhTkkiþoðl3Þ: ð3:14Þ

This is the quantity which must be negative according to the
QFC. In deriving it, we had to assume that θðkÞ ¼ σðkÞ ¼
DaθðkÞ ¼ Daσ

ðkÞ
bc ¼ 0.

We make two observations about (3.14). First, if we
assume that Rka ¼ 0 as an additional assumption and take
l → 0, then we arrive at the QNEC as long as GN > oðl3Þ.
This is the case when l scales with the Planck length and
d ≤ 5. These conditions are similar to the ones we found
previously from EWN, and below in Sec. III D we will
discuss that in more detail.
The second observation has to do with the lingering

possibility of a violation of the QFC due to the terms
involving the couplings. In order to have a violation, one
would need the linear combination

λ2 þ 2
ðd − 3Þðd − 4Þ

ðd − 2Þ2 λGB ð3:15Þ

to be negative. Then if one could find a situation where the
first line of (3.14) dominated over the second, there would
be a violation. It would be interesting to interpret this as a
bound on the above linear combination of couplings
coming from the QFC, but it is difficult to find a situation
where the first line of (3.14) dominates. The only way for
Rka to be large compared to the cutoff scale is if Tka is
nonzero, in which case we would have Rka ∼ GNTka. Then
in order for the first line of (3.14) to dominate we would
need

GNl2TkaTa
k ≫ Tkk: ð3:16Þ

As an example, for a scalar fieldΦ this condition would say

GNl2ð∂aΦÞ2 ≫ 1: ð3:17Þ

This is not achievable within effective field theory, as it
would require the field to have super-Planckian gradients.
We leave a detailed and complete discussion of this issue to
future work.

C. Scheme-independence of the QNEC

We take a brief interlude to discuss the issue of the
scheme-dependence of the QNEC, which will be important
in the following section. It was shown in [23], under some

slightly stronger assumptions than the ones we have been
using, that the QNEC is scheme-independent under the
same conditions where we expect it to hold true. Here we
will present our own proof of this fact, which actually
follows from the manipulations we performed above
involving the QFC.
In this section we will take the point of view of field

theory on curved spacetime without dynamical gravity.
Then each of the terms in Igrav, defined above in (3.5), are
completely arbitrary, nondynamical terms we can add to the
Lagrangian at will.6 Dialing the values of those various
couplings corresponds to a choice of scheme, as even
though those couplings are nondynamical they will still
contribute to the definitions of quantities like the renor-
malized energy-momentum tensor and the renormalized
entropy (as defined through the replica trick). The QNEC is
scheme-independent if it is insensitive to the values of these
couplings.
To show the scheme-independence of the QNEC, wewill

begin with the statement that Sgen is scheme-independent.
We remarked on this above, when our context was a theory
with dynamical gravity. But the scheme-independence of
Sgen does not require use of the equations of motion, so it is
valid even in a nongravitational theory on a fixed back-
ground. In fact, only once in the above discussion did we
make use of the gravitational equations of motion, and that
was in deriving (3.11). Following the same steps up to that
point, but without imposing the gravitational equations of
motion, we find instead

dΘ
dλ

¼ −λ2l2

�
d

d − 2
ðDaθðkÞÞ2 þ 4Rb

kDbθðkÞ

þ 2RbkRb
k þ 2ðDaσbcÞ2

�

þ 2λGBl2ðCkabcCk
abc − 2Ckba

bCkc
acÞ

þ 4GN
d
dλ

�
kiffiffiffi
h

p δSren
δXi

�
− kikj

16πGNffiffiffi
g

p δIgrav
δgij

: ð3:18Þ

Since the theory is not gravitational, we would not claim
that this quantity has a sign. However, it is still scheme-
independent.
To proceed, we will impose all of the additional con-

ditions that are necessary to prove the QNEC. That is, we
imposeDbθðkÞ¼Rb

k¼Daσbc¼0, as well as θðkÞ ¼ σðkÞab ¼ 0,
which in turn requires Ckabc ¼ 0. Under these conditions,
we learn that the combination

6We should really be working at the level of the quantum
effective action, or generating functional, for correlation func-
tions of Tij [12]. The geometrical part has the same form as the
classical action Igrav and so does not alter this discussion.
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d
dλ

�
kiffiffiffi
h

p δSren
δXi

�
− kikj

4πffiffiffi
g

p δIgrav
δgij

ð3:19Þ

is scheme-independent. The second term here is one
of the contributions to the renormalized 2πhTkki in the
nongravitational setup, the other contribution being
kikj 4πffiffi

g
p δImatter

δgij
. But Imatter is already scheme-independent in

the sense we are discussing, in that it is independent of the
parameters appearing in Igrav. So adding that to the terms
we have above, we learn that

d
dλ

�
kiffiffiffi
h

p δSren
δXi

�
− 2πhTkki ð3:20Þ

is scheme-independent. This is what we wanted to show.

D. QFC vs EWN

As we have discussed above, by taking the nongravita-
tional limit of (3.14) under the assumptionsDbθðkÞ ¼ Rb

k ¼
Daσbc ¼ θðkÞ ¼ σðkÞab ¼ 0 we find the QNEC as a conse-
quence of the QFC (at least for d ≤ 5). And under the same
set of geometric assumptions, we found the QNEC as a
consequence of EWN in (2.17). The discussion of the
previous section demonstrates that these assumptions also
guarantee that the QNEC is scheme-independent. So even
though these two QNEC inequalities were derived in
different ways, we know that at the end of the day they
are the same QNEC. It is natural to ask if there is a further
relationship between EWN and the QFC, beyond the fact
that they give the same QNEC. We will begin to investigate
that question in this section.
The natural thing to ask about is the state-independent

terms in the QFC and in ðδX̄Þ2. We begin by writing down
all of the terms of ðδX̄Þ2 in odd dimensions that we have
computed:

ðd−2ÞL−2ðδX̄iÞ2

¼ 1

ðd−2Þθ
2
ðkÞþσ2ðkÞþz2

1

4ðd−2ÞðDaθðkÞþ2RkaÞ2

þz2
1

ðd−2Þðd−4ÞðDaθðkÞþRkaÞ2þz2
1

2ðd−4ÞðDaσ
ðkÞ
bc Þ2

þz2
κ

d−4
ðCkabcCk

abc−2Ck
c
caCk

b
b
aÞþ���

þzd−2
16πðd−2ÞGN

ηdLd−1

�
hTkki−δ

�
ki

2π
ffiffiffi
h

p δSren
δXi

��
: ð3:21Þ

The first line looks like −_θ, which would be the leading
term in dΘ=dλ, except it is missing an Rkk. Of course, we
eventually got rid of the Rkk in the QFC by using the

equations of motion. Suppose we set θðkÞ ¼ 0 and σðkÞab ¼ 0

to eliminate those terms, as we did with the QFC. Then we
can write ðδX̄Þ2 suggestively as

ðd − 2ÞL−2ðδX̄iÞ2

¼ z2λ̃2

�
d

ðd − 2Þ ðDaθkÞ2 þ 4Ra
kDaθ þ

4ðd − 3Þ
ðd − 2Þ RkaRa

k

þ 2ðDaσ
ðkÞ
bc Þ2

�
− 2z2λ̃GBðCkabcCk

abc − 2Ck
c
caCk

b
b
aÞ

þ � � � þ 8πG̃NhTkki − 4G̃Nδ

�
kiffiffiffi
h

p δSren
δXi

�
; ð3:22Þ

where

G̃N ¼ GN
2ðd − 2Þzd−2

ηdLd−1 ; ð3:23Þ

λ̃2 ¼
1

4ðd − 4Þ ; ð3:24Þ

λ̃GB ¼ −
κ

2ðd − 4Þ : ð3:25Þ

Written this way, it almost seems like ðd − 2ÞL−2ðδX̄iÞ2 ∼
−dΘ=dλ in some kind of model gravitational theory. One
discrepancy is in the coefficient of the RkaRka term, unless
d ¼ 4. It is also intriguing that the effective coefficients G̃N ,
λ̃2, and λ̃GB are close to, but not exactly the same as, the
effective braneworld induced gravity coefficients found in
[29]. This is clearly something that deserves further study.

IV. DISCUSSION

We have displayed a strong similarity between the
state-independent inequalities in the QFC and the state-
independent inequalities from EWN. We now discuss
several possible future directions and open questions that
follow naturally from these results.

A. Bulk entropy contributions

We ignored the bulk entropy Sbulk in this work, but we
know that it produces a contribution to CFT entropy [30]
and plays a role in the position of the extremal surface
[15,16]. The bulk entropy contributions to the entropy are
subleading in N2 and do not interfere with the gravitational
terms in the entropy. We could include the bulk entropy as a
source term in the equations determining X̄, which could
lead to extra contributions to the XðnÞ coefficients.
However, it does not seem possible for the bulk entropy
to have an effect on the state-independent parts of the
extremal surface, namely on XðnÞ for n < d, which means
the bulk entropy would not affect the conditions we derived
for when the QNEC should hold.
Another logical possibility is that the bulk entropy term

could affect the statement of the QNEC itself, meaning that
the schematic form Tkk − S″ would be altered. This would
be problematic, especially given that the QFC always
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produces a QNEC of that same form. It was argued in [9]
that this does not happen, and that argument holds here
as well.

B. Smearing of EWN

We were careful to include a smearing prescription for
defining the QFC, and it was an important ingredient in the
analysis of Sec. III B. But what about smearing of EWN?
Of course, the answer is that we should smear EWN
appropriately, but as we will see now it would not make a
difference to our analysis,
The issue is that the bulk theory is a low-energy effective

theory of gravity with a cutoff scale l, and the quantities
that we use to probe EWN, like ðδX̄Þ2, are operators in that
theory. As such, these operators need to be smeared over a
region of proper size l on the extremal surface. Of course,
due to the warp factor, such a region has coordinate size
zl=L. We can ask what effect such a smearing would have
on the inequality ðδX̄Þ2.
When we performed our QNEC derivation, we assumed

that θðkÞ ¼ 0 at the point of evaluation, so that the θ2ðkÞ
term in ðδX̄Þ2jz0 would not contribute. However, after
smearing this term would contribute a term of the form
l2ðDaθðkÞÞ2=L2 to ðδX̄Þ2jz2 . But we already had such a term
at this order, so all this does is shift the coefficient.
Furthermore, the coefficient is shifted only by an amount
of order l2=L2. If the cutoff l is of order the Planck scale,
then this is suppressed in powers of N2. In other words, this
effect is negligible for the analysis. A similar statement

applies for σðkÞab . So in summary, EWN should be smeared,
but the analysis we performed was insensitive to it.

C. Future work

There are a number of topics that merit investigation in
future work. We will touch on a few of them to finish our
discussion.

1. Relevant deformations

Perhaps the first natural extension of our work is to
include relevant deformations in the EWN calculation.
There are a few reasons why this is interesting. First, one
would like to test the continued correspondence between
the QFC and EWN when it comes to the QNEC. The QFC
arguments do not care whether relevant deformations are
turned on, so one would expect that the same is true in
EWN. This is indeed the case when the boundary theory is
formulated on flat space [11], and one would expect similar
results to hold when the boundary is curved.
Another reason to add in relevant deformations is to test

the status of the conformal QNEC when the theory is not a
CFT. To be more precise, the ðδX̄Þ2 and s2 calculations we
performed differed by a Weyl transformation on the
boundary, and since our boundary theory was a CFT this

was a natural thing to do. When the boundary theory is not
a CFT, what is the relationship between ðδX̄Þ2 and s2? One
possibility, perhaps the most likely one, is that they simply
reduce to the same inequality, and the conformal QNEC no
longer holds. It would be good to know the answer.
Finally, and more speculatively, having a relevant defor-

mation turned on when the background is curved allows for
interesting state-independent inequalities from EWN. We
saw that for a CFT the state-independent terms in both
ðδX̄Þ2 and s2 were trivially positive. Perhaps when a
relevant deformation is turned on then more nontrivial
things might happen, such as the possibility of a c-theorem
hiding inside of EWN. We are encouraged by the similarity
of inequalities used in recent proofs of the c-theorems to
inequalities obtained from EWN [31].

2. Higher dimensions

Another pressing issue is extending our results to d ¼ 6
and beyond. This is an algebraically daunting task using the
methods we have used for d ≤ 5. Considering the ultimate
simplicity of our final expressions, especially compared to
the intermediate steps in the calculations, it is likely that
there are better ways of formulating and performing the
analyses we performed here. It is hard to imagine perform-
ing the full d ¼ 6 analysis without such a simplification.

3. Further connections between EWN and QFC

Despite the issues outlined in Sec. III D, we are still
intrigued by the similarities between EWN and the QFC. It
is extremely natural to couple the boundary theory in AdS/
CFT to gravity using a braneworld setup [29,32–34]. Upon
doing this, one can formulate the QFC on the braneworld.
However, at the same time near-boundary EWN becomes
lost, or at least changes form: extremal surfaces anchored to
a branewill in general not be orthogonal to the brane, and in
that case a null deformation on the brane will induce a
timelike deformation of the extremal surface in the vicinity
of the brane. Of course, one has to be careful to take into
account the uncertainty in the position of the brane, which
complicates things. We hope that such an analysis could
serve to unify the QFC with EWN, or at least illustrate their
relationship with each other.

4. Conformal QNEC from QFC

While we emphasized the apparent similarity between
the EWN-derived inequality ðδX̄Þ2 ≥ 0 and the QFC, the
stronger EWN inequality s2 ≥ 0 is nowhere to be found in
the QFC discussion. It would be interesting to see if there
was some direct QFC-like way to derive the conformal
QNEC (rather than first deriving the ordinary QNEC and
then performing a Weyl transformation). In particular, the
conformal QNEC applies even in cases where θðkÞ is
nonzero, while in those cases the QFC is dominated by
classical effects. Perhaps there is a useful change of
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variables that one can do in the semiclassical gravity when
the matter sector is a CFT which makes the conformal
QNEC manifest from the QFC point of view. This is worth
exploring.
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APPENDIX A: NOTATION AND DEFINITIONS

1. Basic notation

a. Notation for basic bulk and boundary quantities

(i) Bulk indices are μ; ν;….
(ii) Boundary indices are i; j;…. Then μ ¼ ðz; iÞ.
(iii) We assume a Fefferman–Graham form for the

metric: ds2 ¼ L2

z2 ðdz2 þ ḡijdxidxjÞ.
(iv) The expansion for ḡijðx; zÞ at fixed x is

ḡij¼ gð0Þij þ z2gð2Þij þ z4gð4Þij þ���þ zd logzgðd;logÞij

þ zdgðdÞij þ��� : ðA1Þ

The coefficients gðnÞij for n < d and gðd;logÞij are

determined in terms of gð0Þij , while gðdÞij is state-
dependent and contains the energy-momentum ten-

sor of the CFT. If d is even, then gðd;logÞij ¼ 0. To

avoid clutter we will often write gð0Þij simply as gij.
Unless otherwise indicated, i; j indices are raised

and lowered by gð0Þij .
(v) We use R, Rμν, Rμνρσ to denote bulk curvature

tensors, and R, Rij, Rijmn to denote boundary
curvature tensors.

b. Notation for extremal surface and entangling
surface quantities

(i) Extremal surface indices are α; β;….
(ii) Boundary indices are a; b;…. Then α ¼ ðz; aÞ.
(iii) The extremal surface is parametrized by functions

X̄μðz; yaÞ. We choose a gauge such that Xz ¼ z, and
expand the remaining coordinates as

X̄i ¼ Xi
ð0Þ þ z2Xi

ð2Þ þ z4Xi
ð4Þ þ � � � þ zd log zXi

ðd;logÞ
þ zdXi

ðdÞ þ � � � : ðA2Þ

The coefficients Xi
ðnÞ for n < d and Xi

ðd;logÞ are

determined in terms of Xi
ð0Þ and gð0Þij , while Xi

ðdÞ is

state-dependent and is related to the renormalized
entropy of the CFT region.

(iv) The extremal surface induced metric will be denoted
h̄αβ and gauge-fixed so that h̄za ¼ 0.

(v) The entangling surface induced metric will be
denoted hab.

(vi) Note that we will often want to expand bulk
quantities in z at fixed y instead of fixed x. For
instance, the bulk metric at fixed y is

ḡijðy;zÞ¼ ḡijðX̄ðz;yÞ;zÞ
¼ ḡijðXð0ÞðyÞþ z2Xð2ÞðyÞþ �� � ;zÞ
¼ gð0Þij þ z2ðgð2Þij þXm

ð2Þ∂mg
ð0Þ
ij Þþ �� � ðA3Þ

Similar remarks apply for things like Christoffel
symbols. The prescription is to always compute the
given quantity as a function of x first, the plug in
X̄ðy; zÞ and expand in a Taylor series.

2. Intrinsic and extrinsic geometry

Now will introduce several geometric quantities, and
their notations, which we will need. First, we define a basis
of surface tangent vectors by

eia ¼ ∂aXi: ðA4Þ

We will also make use of the convention that ambient
tensors which are not inherently defined on the surface but
are written with surface indices (a, b, etc.) are defined by
contracting with eia. For instance:

gð2Þaj ¼ eiag
ð2Þ
ij : ðA5Þ

We can form the surface projector by contracting the
surface indices on two copies of eia:

Pij ¼ habeiae
j
b ¼ eiaeja: ðA6Þ

We introduces a surface covariant derivative Da that acts as
the covariant derivative on both surface and ambient
indices. So it is compatible with both metrics:

Dahbc ¼ 0 ¼ Dagij: ðA7Þ

Note also that when acting on objects with only ambient
indices, we have the relationship

DaV
ij���
pq��� ¼ ema∇mV

ij���
pq���; ðA8Þ

where ∇i is the ambient covariant derivative compatible
with gij.
The extrinsic curvature is computed by taking the Da

derivative of a surface basis vector:
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Ki
ab ¼ −Daeib ¼ −∂aeib þ γcabe

i
b − Γi

ab: ðA9Þ

Note the overall sign we have chosen. Here γcab is the
Christoffel symbol of the metric hab, and the lower indices
on the Γ symbol were contracted with two basis tangent
vectors to turn them into surface indices. Note that Ki

ab is
symmetric in its lower indices. It is an exercise to check that
it is normal to the surface in its upper index:

eicKi
ab ¼ 0: ðA10Þ

The trace of the extrinsic curvature is denoted by Ki:

Ki ¼ habKi
ab: ðA11Þ

Below we will introduce the null basis of normal vectors ki

and li. Then we can define expansion θðkÞ (θðlÞ) and shear

σðkÞab (σðlÞab) as the trace and traceless parts of kiKi
ab (liKi

ab),
respectively.
There are a couple of important formulas involving the

extrinsic curvature. First is the Codazzi equation, which can
be computed from the commutator of covariant derivatives:

DcKi
ab −DbKi

ac ¼ ðDbDc −DcDbÞeia
¼ Ri

abc − rdabceid: ðA12Þ

Here Ri
abc is the ambient curvature (appropriately con-

tracted with surface basis vectors), while rdabc is the
surface curvature. We can take traces of this equation to
get others. Another useful thing to do is contract this
equation with eid and differentiate by parts, which yields the
Gauss–Codazzi equation:

KcdiKi
ab − KbdiKi

ac ¼ Rdabc − rdabc: ðA13Þ

Various traces of this equation are also useful.

3. Null normals k and l

A primary object in our analysis is the bull vector ki,
which is orthogonal to the entangling surface and gives the
direction of the surface deformation. It will be convenient
to also introduce the null normal li, which is defined so that
liki ¼ þ1. This choice of sign is different from the one
that is usually made in these sorts of analysis, but it is
necessary to avoid a proliferation of minus signs. With this
convention, the projector onto the normal space of the
surface is

Nij ≡ gij − Pij ¼ kilj þ kjli ¼ 2kðiljÞ: ðA14Þ

As we did with the tangent vectors eia, we will introduce
a shorthand notation to denote contraction with ki or li: any
tensor with k or l index means it has been contracted with ki

or li. As such we will avoid using the letters k and l as
dummy indices. For instance.

Rkl ≡ kiljRij: ðA15Þ

Another quantity associated with ki and li is the normal
connection wa, defined through

wa ≡ liDaki: ðA16Þ

With this definition, the tangent derivative of ki can be
shown to be

Daki ¼ waki þ Kk
abe

bi; ðA17Þ

which is a formula that is used repeatedly in our analysis.
At certain intermediate stages of our calculations it will

be convenient to define extensions of ki and li off of the
entangling surface, so here we will define such an exten-
sion. Surface deformations in both the QNEC and QFC
follow geodesics generated by ki, so it makes sense to
define ki to satisfy the geodesic equation:

∇kki ¼ 0: ðA18Þ

However, we will not define li by parallel transport along
ki. It is conceptually cleaner to maintain the orthogonality
of li to the surface even as the surface is deformed along the
geodesics generated by ki. This means that li satisfies the
equation

∇kli ¼ −waeia: ðA19Þ

These equations are enough to specify li and ki on the null
surface formed by the geodesics generated by ki. To extend
ki and li off of this surface, we specify that they are both
parallel-transported along li. In other words, the null
surface generated by ki forms the initial condition surface
for the vector fields ki and li which satisfy the differential
equations

∇lki ¼ 0; ∇lli ¼ 0: ðA20Þ

This suffices to specify ki an li completely in a neighbor-
hood of the original entangling surface. Now that we have
done that, we record the commutator of the two fields for
future use:

½k; l�i ¼ ∇kli −∇lki ¼ −wceic: ðA21Þ

APPENDIX B: SURFACE VARIATIONS

Most of the technical parts of our analysis have to do
with variations of surface quantities under the deformation
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Xi → Xi þ δXi of the surface embedding coordinates. Here
δXi should be interpreted a vector field defined on the
surface. In principle it can include both normal and
tangential components, but since tangential components
do not actually correspond to physical deformations of the
surface we will assume that δXi is normal. The operator δ
denotes the change in a quantity under the variation. In the
case where δXi ¼ ∂λXi, which is the case we are primarily
interested in, δ can be identified with ∂λ. With this in mind,
we will always impose the geodesic equation on ki

whenever convenient. In terms of the notation we are
introducing here, this is

δki ¼ −Γi
kk: ðB1Þ

To make contact with the main text, we will use the
notation ki ≡ δXi, and assume that ki is null since that is
ultimately the case we care about. Some of the formulas we
discuss below will not depend on the fact that ki is null, but
we will not make an attempt to distinguish them.

1. Ambient quantities

For ambient quantities, like curvature tensors, the varia-
tion δ can be interpreted straightforwardly as ki∂i with no
other qualification. Thus we can freely use, for instance, the
ambient covariant derivative∇k to simplify the calculations
of these quantities. Note that δ itself is not the covariant
derivative. As defined, δ is a coordinate dependent operator.
This may be less-than-optimal from a geometric point of
view, but it has the most conceptually straightforward
interpretation in terms of the calculus of variations. In
all of the variational formulas below, then, we will see
explicit Christoffel symbols appear. Of course, ultimately
these noncovariant terms must cancel out of physical
quantities. That they do serves as a nice check on our
algebra.

2. Tangent vectors

The most fundamental formula is that of the variation of
the tangent vectors eia ≡ ∂aXi. Directly from the definition,
we have

δeia ¼ ∂aki ¼ Daki − Γi
ak ¼ waki þ Kk

abe
bi − Γi

ak: ðB2Þ

This formula, together with the discussion of how ambient
quantities transform, can be used together to compute the
variations of many other quantities.

3. Intrinsic geometry and normal vectors

The intrinsic metric variation is easily computed from the
above formula as

δhab ¼ 2Kk
ab: ðB3Þ

From here we can find the variation of the tangent projector,
for instance:

δPij ¼ δhabeiae
j
b þ 2habeðia ∂bkjÞ

¼ −2Kab
k eiae

j
b þ 2habeðia DbkjÞ − 2habeðiaΓjÞ

bk

¼ 2waeðia kjÞ − 2habeðiaΓjÞ
bk: ðB4Þ

Notice that the second line features a derivative of ki ¼ δXi.
In a context where we are taking functional derivatives,
such as when computing equations of motion, this term
would require integration by parts. We can write the last
line covariantly as

∇kPij ¼ 2waeðia kjÞ: ðB5Þ

Earlier we saw that li satisfied the equation ∇kli ¼
−waeia as a result of keeping li orthogonal to the surface
even as the surface is deformed. In the language of this
section, this is seen by the following manipulation:

eiaδli ¼ −li∂aki ¼ −wa − Γl
ak: ðB6Þ

Again, note the derivative of ki. It is easy to confirm that
represents the only nonzero component of ∇kli.
The normal connection wa ¼ liDaki makes frequent

appearances in our calculations, and we will need to know
its variation. We can calculate that as follows:

δwa ¼ δliDaki þ li∂aδki − liδΓn
jie

j
akn

− liΓn
ji∂akjkn − liΓn

jie
j
aδkn

¼ ∇kliDaki þRklak

¼ −wcKac þRklak: ðB7Þ

4. Extrinsic curvatures

The simplest extrinsic curvature variation is that of the
trace of the extrinsic curvature

δKi ¼ −KmΓi
mk −DaDaki − Ri

mkjP
mj

þ ð2DaðKk
adÞ −DdðKkÞÞedi − 2Kab

k Ki
ab ðB8Þ

Note that the combination δKi þ KkΓi
kmk

m is covariant, so
it makes sense to write

∇kKi ¼ −DaDaki − Ri
mkjP

mj þ ð2DaðKk
adÞ −DdðKkÞÞedi

− 2Kab
k Ki

ab ðB9Þ

This formula is noteworthy because of the first term, which
features derivatives of ki ¼ δXi. This is important because
when Ki occurs inside of an integral and we want to
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compute the functional derivative then we have to first
integrate by parts to move those derivatives off of ki. This
issue arises when computing Θ as in the QFC, for instance.
We can contract the previous formulas with li and ki to

produce other useful formulas. For instance, contracting
with ki leads to

δKk ¼ −KkabKk
ab − Rkk; ðB10Þ

which is nothing but the Raychaudhuri equation.
The variation of the full extrinsic curvature Ki

ab is quite
complicated, but we will not needed. However, its con-
traction with ki will be useful and so we record it here:

kiδKi
ab ¼ −Kj

abΓm
jnkmk

n − kiDaDbki − Rkakb: ðB11Þ

APPENDIX C: z-EXPANSIONS

1. Bulk metric

We are focusing on bulk theories with gravitational
Lagrangians

L ¼ 1

16πGN

�
dðd − 1Þ

L̃2
þRþ l2λ1R2

þ l2λ2R2
μν þ l2λGBLGB

�
: ðC1Þ

where LGB ¼ R2
μνρσ − 4R2

μν þR2 is the Gauss-Bonnet
Lagrangian, l is the cutoff length scale of the bulk effective
field theory, and the couplings λ1, λ2, and λGB are defined to
be dimensionless. We have decided to include LGB as part
of our basis of interactions rather than R2

μνρσ because of
certain nice properties that the Gauss-Bonnet term has, but
this is not important.
We recall that the Fefferman–Graham form of the metric

is defined by

ds2 ¼ 1

z2
ðdz2 þ ḡijdxidxjÞ; ðC2Þ

where ḡijðx; zÞ is expanded as a series in z:

ḡij ¼ gð0Þij þ z2gð2Þij þ z4gð4Þij þ � � � þ zd log zgðd;logÞij

þ zdgðdÞij þ � � � : ðC3Þ

In principle, one would evaluate the equation of motion
from the above Lagrangian using the Fefferman–Graham
metric form as an ansatz to compute these coefficients. The
results of this calculation are largely in the literature, and
we quote them here. To save notational clutter, in this

section we will set gij ¼ gð0Þij .
The first nontrivial term in the metric expansion is

independent of the higher-derivative couplings, and in fact
is completely determined by symmetry [25]:

gð2Þij ¼ −
1

d − 2

�
Rij −

1

2ðd − 1ÞRgij
�
: ðC4Þ

The next term is also largely determined by symmetry,
except for a pair of coefficients [25]. We are only interested
in the kk-component of gð4Þij , and where one of the
coefficients drops out. The result is

gð4Þkk ¼ 1

d − 4

�
κCkijmCk

ijm þ 1

8ðd − 1Þ∇
2
kR

−
1

4ðd − 2Þ k
ikj▫Rij −

1

2ðd − 2ÞR
ijRkikj

þ d − 4

2ðd − 2Þ2 RkiRi
k þ

1

ðd − 1Þðd − 2Þ2 RRkk

�
; ðC5Þ

where Cijmn is the Weyl tensor and

κ ¼ −λGB
l2

L2

�
1þO

�
l2

L2

��
: ðC6Þ

In d ¼ 4 we will need an expression for gð4;logÞkk as well.

One can check that this is obtainable from gð4Þkk by first
multiplying by 4 − d and then setting d → 4. We record the
answer for future reference:

gð4;logÞkk ¼ −
�
κCkijmCk

ijm þ 1

24
∇2

kR −
1

8
kikj▫Rij

−
1

4
RijRkikj þ

1

12
RRkk

�
: ðC7Þ

2. Extremal surface coordinates

The extremal surface position is determined by extrem-
izing the generalized entropy functional [15,16]:

Sgen¼
1

4GN

Z ffiffiffī
h

p �
1þ2λ1l2Rþλ2l2

�
RμνN μν−

1

2
KμKμ

�

þ2λGBl2r̄

�
þSbulk: ðC8Þ

Here we are usingKi to denote the extrinsic curvature and r̄
the intrinsic Ricci scalar of the surface.
The equation of motion comes from varying Sgen and is

(ignoring the Sbulk term for simplicity)

0¼Kμ

�
1þ2λ1l2Rþλ2l2

�
RρνN ρν−

1

2
KρKρ

�
þ2λGBl2r̄

�

þ2λ1l2∇μRþλ2l2ðN ρν∇μRρνþ2Pρν∇ρR
μ
ν

−2Rμ
ρKρþ2KμαβRαβþDαDαKμþKρRμσρνPνσ

þ2KμαβKνKν
αβÞ−4λGBl2r̄αβKμ

αβ: ðC9Þ
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This equation is very complicated, but since we are
working in d ≤ 5 dimensions we only need to solve
perturbatively in z for Xi

ð2Þ and Xi
ð4Þ.

7 Furthermore, Xi
ð2Þ

is fully determined by symmetry to be [35]

Xi
ð2Þ ¼

1

2ðd − 2ÞD
a∂aXi

ð0Þ ¼ −
1

2ðd − 2ÞK
i; ðC10Þ

whereKi denotes the extrinsic curvature of the Xi
ð0Þ surface,

but we are leaving off the (0) in our notation to save space.
The computation of Xi

ð4Þ is straightforward but
tedious. We will only need to know kiXi

ð4Þ (where indices

are being raised and lowered with gð0Þij ), and the answer
turns out to be

4ðd−4ÞXk
ð4Þ ¼2Xk

ð2ÞðPjmgð2Þjm−4ðXð2ÞÞ2ÞþKk
abg

ab
ð2Þ

þ4gð2ÞkmX
m
ð2Þþ2Xð2Þ

j Kj
abK

kabþkiDaDaXi
ð2Þ

þkj
�
∇ng

ð2Þ
jm−

1

2
∇jg

ð2Þ
mn

�
PmnþXn

ð2ÞRkmnjPjm

þ8κσabðkÞCkalb−2ðd−4ÞΓk
jmX

j
ð2ÞX

m
ð2Þ: ðC11Þ

Here κ depends on λGB as in (C6). Notice that the last term
in this expression is the only source of noncovariantness.
One can confirm that this noncovariant piece is required
from the definition of Xi

ð4Þ—despite its index, Xi
ð4Þ does not

transform like a vector under boundary diffeomorphisms.
We also note that the terms in Xk

ð4Þ with covariant

derivatives of gð2Þij can be simplified using the extended
ki and li fields described Sec. A 3 and the Bianchi identity:

kj
�
∇ng

ð2Þ
jm −

1

2
∇jg

ð2Þ
mn

�
Pmn

¼ −
1

4ðd − 1Þ∇kRþ 1

d − 2
∇lRkk: ðC12Þ

Finally, we record here the formula for Xk
ð4;logÞ which is

obtained from Xk
ð4Þ by multiplying by 4 − d and sending

d → 4:

−4Xk
ð4;logÞ ¼ 2Xk

ð2ÞðPjmgð2Þjm − 4ðXð2ÞÞ2Þ þ Kk
abg

ab
ð2Þ

þ 4gð2ÞkmX
m
ð2Þ þ 2Xð2Þ

j Kj
abK

kab þ kiDaDaXi
ð2Þ

þ kj
�
∇ng

ð2Þ
jm −

1

2
∇jg

ð2Þ
mn

�
Pmn þ Xn

ð2ÞRkmnjPjm

þ 8κσabðkÞCkalb: ðC13Þ

We will not bother unpacking all of the definitions, but the
main things to notice is that the noncovariant part
disappears.

APPENDIX D: DETAILS OF THE EWN
CALCULATIONS

In this section we provide some insight into the algebra
necessary to complete the calculations of the main text,
primarily regarding the calculation of the subleading part of
ðδX̄Þ2 in Sec. II C. The task is to simplify (2.13),

L−2ðδX̄Þ2jz2 ¼ 2kiδXi
ð4Þ þ 2gð2Þij k

iδXj
ð2Þ þ gijδXi

ð2ÞδX
j
ð2Þ

þ gð4Þij k
ikj þ Xm

ð4Þ∂mgijkikj

þ 2Xm
ð2Þ∂mgijkiδX

j
ð2Þ þ Xm

ð2Þ∂mg
ð2Þ
ij k

ikj

þ 1

2
Xm
ð2ÞX

n
ð2Þ∂m∂ngijkikj: ðD1Þ

After some algebra, we can write this as

L−2ðδX̄Þ2jz2 ¼ gð4Þkk þ2δðXk
ð4;covÞÞþ2gð2Þik ∇kXi

ð2Þ

þ∇kX
ð2Þ
j ∇kX

j
ð2Þ−

1

d−2
ðXl

ð2ÞÞ∇kRkk: ðD2Þ

Here we have defined

Xi
ð4;covÞ ¼ Xi

ð4Þ þ
1

2
Γi
lmX

l
ð2ÞX

m
ð2Þ; ðD3Þ

which transforms like a vector (unlike Xi
ð4Þ). From here, the

algebra leading to (2.14) is mostly straightforward, though
tedious. The two main tasks which require further explan-

ation are the simplification of one of the terms in gð4Þkk and
one of the terms in δXk

ð4;covÞ. We will explain those now.

1. gð4Þkk simplification

We recall the formula for gð4Þkk from (C5):

gð4Þkk ¼ 1

d − 4

�
κCkijmCk

ijm þ 1

8ðd − 1Þ∇
2
kR

−
1

4ðd − 2Þ k
ikj▫Rij −

1

2ðd − 2ÞR
ijRkikj

þ d − 4

2ðd − 2Þ2 RkiRi
k þ

1

ðd − 1Þðd − 2Þ2 RRkk

�
: ðD4Þ

The main difficulty is with the term kikj▫Rij. We will
rewrite this term by making use of the geometric quantities
introduced in the other appendices, and in particular we
make use of the extended k and l field from Sec. A 3. We
first separate it into two terms:

7It goes without saying that these formulas are only valid for
d > 2 and d > 4, respectively.
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kikj▫Rij ¼ kikjNrs∇r∇sRij þ kikjPrs∇r∇sRij: ðD5Þ

Now we compute each of these terms individually:

kikjNrs∇r∇sRij ¼ 2kikjls∇k∇sRij þ 2RkmlkRm
k ¼ 2∇k∇lRkk þ 2wckikjDcRij þ 2RkmlkRm

k

¼ 2∇k∇lRkk þ 2wcDcRkk − 4wcwcRkk − 4wcKa
ckRka þ 2RkmlkRm

k

¼ 2∇k∇lRkk þ 2wcDcRkk − 4wcwcRkk þ 2RkmlkRm
k : ðD6Þ

In the last line we assumed that σðkÞ ¼ 0 and θðkÞ ¼ 0, which is the only case we will need to worry about. The other term is
slightly messier, becoming

kikjPrs∇r∇sRij ¼ kikjescDc∇sRij ¼ DcðkikjDcRijÞ −DcðkikjescÞ∇sRij

¼ DcðkikjDcRijÞ − 2wcDcRkk þ 4wcwcRkk þ 6wcKca
k Rak

− 2Kca
k DcRka þ 2Kca

k Ki
caRik þ 2Kca

k Kbk
c Rab þ Ks∇sRkk

¼ DcDcRkk − 2DcðwcRkkÞ − 2DcðKcakRkaÞ − 2wcDcRkk þ 4wcwcRkk þ 6wcKca
k Rak

− 2Kca
k DcRka þ 2Kca

k Ki
caRik þ 2Kca

k Kbk
c Rab þ Ks∇sRkk

¼ DcDcRkk − 2DcðwcRkkÞ − 2DcðKcakÞRka − 2wcDcRkk þ 4wcwcRkk þ Ks∇sRkk: ðD7Þ

In the last line we again assumed that σðkÞ ¼ 0 and θðkÞ ¼ 0. Putting the two terms together leads to some cancellations:

kikj▫Rij ¼ 2∇k∇lRkk þ 2RkmlkRm
k þDcDcRkk − 2DcðwcRkkÞ − 2ðDaθðkÞ þ RkcacÞRa

k þ Ks∇sRkk: ðD8Þ

2. δXk
ð4;covÞ simplification

The most difficult term in (C11), which also gives the most interesting results, is

kiDaDaXi
ð2Þ ¼ −

1

2ðd − 2Þ ðDa − waÞ2θðkÞ þ
1

2ðd − 2ÞKabKabiKi: ðD9Þ

The interesting part here is the first term, so we will take the rest of this section to discuss its variation. The underlying
formula is (B7),

δwa ¼ −wcKac þ Rklak: ðD10Þ

From this we can compute the following related variations, assuming that θðkÞ ¼ 0 and σðkÞ ¼ 0:

δðDawaÞ ¼ DaRklak þ wa∂aθðkÞ − 3DaðKab
k wbÞ ðD11Þ

δðwaDaθðkÞÞ ¼ −3Kab
k waDbθðkÞ þ RklakDaθðkÞ þ waDa

_θðkÞ ðD12Þ

δðDaDaθðkÞÞ ¼ DaDa
_θ − ∂aθðkÞ∂aθðkÞ − 2PjmRkjbmDbθðkÞ: ðD13Þ

Here _θðkÞ ≡ δθðkÞ is given by the Raychaudhuri equation. We can combine these equations to get

δððDa − waÞ2θðkÞÞ ¼ δðDaDaθðkÞÞ − 2δðwaDaθðkÞÞ − δððDawaÞθðkÞÞ þ δðwawaθðkÞÞ
¼ −DaDaRkk þ 2waDaRkk þ ðDawaÞRkk − wawaRkk

−
d

d − 2
ðDaθðkÞÞ2 − 2RkbDbθðkÞ − 2ðDσÞ2: ðD14Þ
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APPENDIX E: THE d = 4 CASE

As mentioned in the main text, many of our calculations
are more complicated in even dimensions, though most of
the end results are the same. The only nontrivial even
dimension we study is d ¼ 4, so in this section we record
the formulas and special derivations necessary for under-
standing the d ¼ 4 case. Some of these have been men-
tioned elsewhere already, but we repeat them here so that
they are all in the same place.

1. Log terms

In d ¼ 4 we get log terms in the extremal surface, the
metric, and the EWN inequality. By looking at the structure
of the extremal surface equation, it is easy to see that the log
term in the extremal surface is related to Xi

ð4Þ in d ≠ 4 by
first multiplying by 4 − d and then setting d → 4. The
result was recorded in (C13), and we repeat it here:

−4Xk
ð4;logÞ ¼ 2Xk

ð2ÞðPjmgð2Þjm − 4ðXð2ÞÞ2Þ þ Kk
abg

ab
ð2Þ

þ 4gð2ÞkmX
m
ð2Þ þ 2Xð2Þ

j Kj
abK

kab þ kiDaDaXi
ð2Þ

þ kj
�
∇ng

ð2Þ
jm −

1

2
∇jg

ð2Þ
mn

�
Pmn þ Xn

ð2ÞRkmnjPjm

þ 8κσabðkÞCkalb: ðE1Þ

There is a similar story for gð4;logÞkk , which was recorded
earlier in (C7):

gð4;logÞkk ¼ −
�
κCkijmCk

ijm þ 1

24
∇2

kR −
1

8
kikj▫Rij

−
1

4
RijRkikj þ

1

12
RRkk

�
: ðE2Þ

From these two equations, it is easy to see that the log term
in ðδX̄Þ2 has precisely the same form as the subleading
EWN inequality (2.14) in d ≥ 5, except we first multiply by
4 − d and then set d → 4. This results in

L−2ðδX̄Þ2jz2 log z;d¼4 ¼ −
1

4
ðDaθðkÞ þ RkaÞ2 −

1

4
ðDaσ

ðkÞ
bc Þ2:
ðE3Þ

Note that the Gauss-Bonnet term drops out completely due
to special identities of the Weyl tensor valid in d ¼ 4 [23].
The overall minus sign is important because log z should be
regarded as negative.

2. QNEC in Einstein gravity

For simplicity we will only discuss the case of Einstein
gravity for the QNEC in d ¼ 4, so that the entropy
functional is just given by the extremal surface area divided
by 4GN. At order z2, the norm of δX̄μ is formally the same
as the expression in other dimensions:

L−2ðδX̄Þ2jz2 ¼ gð4Þkk þ 2gð2Þik ∇kXi
ð2Þ þ∇kX

ð2Þ
j ∇kX

j
ð2Þ

−
1

2
Xl
ð2Þ∇kRkk þ 2δðkiXi

ð4ÞcovÞ: ðE4Þ

Now, though, Xk
ð4Þ and g

ð4Þ
kk are state-dependent and must be

related to the entropy and energy-momentum, respectively.
We begin with the entropy. From the calculus of

variations, we know that the variation of the extremal
surface area is given by

δA¼−lim
ϵ→0

L3

ϵ3

Z ffiffiffi
h

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þgnm∂zX̄n∂zX̄m

p gij∂zX̄iδXj: ðE5Þ

A fewwords about this formula are required. The X̄μ factors
appearing here must be expanded in ϵ, but the terms without
any ðnÞ in their notation do not refer to (0), unlike elsewhere
in this paper. The reason is that we have to do holographic
renormalization carefully at this stage, and that means the
boundary conditions are set at z ¼ ϵ. Sowhenwe expand out
X̄μ we will find its coefficients determined by the usual
formulas in terms of Xi

ð0Þ. We need to then solve for Xi
ð0Þ in

term of Xi ≡ X̄iðz ¼ ϵÞ re-express the result in terms of Xi

alone. Since we are not in a high dimension this task is
relatively easy. An intermediate result is

ki

L3
ffiffiffi
h

p δA
δXi

����
ϵ0
¼−2Xk

ð2Þjϵ2 −4ðXk
ð4Þ− ðXð2ÞÞ2Xk

ð2ÞÞ−Xk
ð4;logÞ:

ðE6Þ
The notation on the first term refers to the order ϵ2 part of
Xi
ð2Þ that is generated when Xi

ð2Þ is written in terms of

X̄iðz ¼ ϵÞ. The result of that calculation is

−4Xk
ð2Þjϵ2 ¼ 2Xð2Þ

j KjabKi
abki þ kiDbDbXi

ð2Þ þ KmΓi
mlX

l
ð2Þki

þ gabð2ÞK
i
abki þ PkjRi

jmkX
m
ð2Þki

þ km
�
∇jg

ð2Þ
mk −

1

2
∇mg

ð2Þ
jk

�
Pjk

¼ −4Xk
ð4;logÞ − 2Xk

ð2ÞðPjmgð2Þjm − 4ðXð2ÞÞ2Þ
− 4gð2ÞkmX

m
ð2Þ þ KmΓi

mlX
l
ð2Þki: ðE7Þ

We have dropped terms of higher order in ϵ. Thus we can
write

ki

L3
ffiffiffi
h

p δA
δXi

����
ϵ0
¼ −3Xk

ðlogÞ − Xk
ð2ÞP

jmgð2Þjm þ 8Xk
ð2ÞðXð2ÞÞ2

− 2gð2ÞkmX
m
ð2Þ − 4Xk

ð4Þcov: ðE8Þ

We will want to take one more variation of this formula so
that we can extract δXk

ð4Þcov. We can get some help by

demanding that the z2 log z part of EWNbe saturated, which
states
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gðlogÞkk þ 2δXk
log ¼ 0: ðE9Þ

Then we have

δ

�
ki

L3
ffiffiffi
h

p δA
δXi

���
ϵ0

�
¼3

2
gðlogÞkk −δðXk

ð2ÞP
jmgð2ÞjmÞþ8δðXk

ð2ÞðXð2ÞÞ2Þ

−2δðgð2ÞkmX
m
ð2ÞÞ−4δXk

ð4Þcov: ðE10Þ

Assuming that θðkÞ ¼ σðkÞ ¼ 0, we can simplify this to

δ

�
ki

L3
ffiffiffi
h

p δA
δXi j

ϵ0

�
¼ 3

2
gðlogÞkk −

1

4
RkkPjmgð2Þjm −

1

4
∇kðθðlÞRkkÞ

−
1

2
gð2Þkl Rkk − 4δXk

ð4Þcov: ðE11Þ

We can combine this with the holographic renormalization
formula [36]

gð4Þkk ¼ 4πGNL−3Tkk þ
1

2
ðg2ð2ÞÞkk −

1

4
gð2Þkk g

ijgð2Þij −
3

4
gðlogÞkk

¼ 4πGNL−3Tkk þ
1

8
Ri
kRik −

1

16
RkkR −

3

4
gðlogÞkk ðE12Þ

to get

L−2ðδX̄iÞ2jz2 ¼4πGNL−3Tkk−
1

2
δ

�
ki

L3
ffiffiffi
h

p δA
δXi

����
ϵ0

�
: ðE13Þ

After dividing by 4GN, we recognize the QNEC.
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