
 

Explicit examples of probability distributions for the energy density
in two-dimensional conformal field theory
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Measurements of a weighted energy density average taken in the vacuum state of a conformal field
theory in 1þ 1 dimensions are randomly distributed with vanishing expectation value. The probability
distribution is computed in closed form for two infinite families of averaging functions, generalizing
previously known examples. These examples may be further generalized by restriction to a half line. In all
cases, the distribution is that of a shifted gamma distribution.
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I. INTRODUCTION

Repeated measurements of a quantum observable pro-
duce results that are statistically distributed in a manner
determined by the observable and the state of the system.
For example, if the observable is a local weighted average
of the energy density of a quantum field, measured in the
vacuum state, then the distribution has vanishing expect-
ation value, but there are nonzero probabilities for both
positive and negative measurement outcomes due to
quantum fluctuations. Knowledge of the distribution there-
fore provides information about these fluctuations and the
extent to which they may outweigh thermal fluctuations in
certain cases, with potentially observable consequences;
see, e.g., Ref. [1].
There has been recent progress in understanding the

probability distribution for measurements of local averages
of the energy density or related quantities, such as Wick
squares of various operators [2–6] or the “full counting
statistics” of energy transfers in nonequilibrium situations
[7]. In particular, for conformal quantum field theory (CFT)
in 1þ 1 dimensions, it has been possible to determine
the distribution in closed form for various averages of the
stress-energy tensor [2,6] in the vacuum and certain other
states, including thermal and highest-weight states [6].
Two methods have been developed, both of which rely
on the solution to a nontrivial subsidiary problem. The
first calculates the moment generating function using the
solution to a nonlinear integrodifferential equation based
ultimately on the Ward identities [2,6,8]. The second

computes the Fourier transform of the probability distri-
bution using the solution to a conformal welding problem
[6]. The welding method of Ref. [6] has been extended to
the full counting statistics problem in Ref. [7]; here, instead
of welding two discs to produce a Riemann sphere, as in
Ref. [6], one must weld the boundaries of an annulus to
produce a torus.
Although both methods are general in scope, relatively

few closed-form examples are yet known. The only
example treated in Ref. [2] was Gaussian averaging; this
remained the only known example until quite recently,
when three infinite families of examples were discovered
[6]. In this paper, we document some further examples in
which closed-form results may be obtained using the
moment generating function approach. To be precise, let
TðuÞ be a chiral component of the stress-energy tensor of a
unitary positive energy CFT in 1þ 1 dimensions, with
central charge c. (Relevant background on CFT may be
found in Refs. [6,9] and references therein.) Then we will
determine the probability distribution for measurements of
the local average

TðfÞ ≔
Z

∞

−∞
TðuÞfðuÞdu ð1Þ

made in the vacuum state, for test functions f belonging to
two infinite families. One family is based on the Gaussian
function

fa;bðuÞ ¼ γu2ae−bu
2

; a ∈ N0; b > 0; ð2Þ

where γ is a normalization factor, while the other is based
on the Lorentzian function

gn;a;bðuÞ¼
Cu2a

ðb2þu2Þn ; a;n∈N0; 0≤a<n; b>0; ð3Þ
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where C is again a normalization constant. The case a ¼ 0
of each family is known from previous work [2,6]. We
also study half-line variants of these test functions in the
cases a ≥ 1. Remarkably, in all these cases, the probability
distribution takes the same general form, namely a shifted
gamma distribution with the probability density function

PðωÞ ¼ Θðωþ σÞ β
αðωþ σÞα−1

ΓðαÞ e−βðωþσÞ; ð4Þ

where Θ is the Heaviside function, and the parameters α, β,
σ are determined by the central charge and the parameters
of the averaging function. Owing to the Heaviside function,
the distribution is supported in ½−σ;∞Þ where −σ is known
on general grounds [2] to equal the optimal quantum energy
inequality (QEI) bound [9] that constrains the expectation
value of TðfÞ in (precisely delineated) general states:

hTðfÞiψ ≥ −σ ¼ −
c

12π

Z �
d
du

ffiffiffiffiffiffiffiffiffi
fðuÞ

p �
2

du: ð5Þ

The other main features of the distribution function
[Eq. (4)] are the exponential tail and the power-law
behavior as ω → −σþ, which is an integrable singularity
if α ∈ ð0; 1Þ and is regular for α ≥ 1.
We proceed as follows: in Sec. II, we briefly describe the

method ofRef. [2], then turn to the families inEqs. (2) and (3)
inSecs. III and IV, respectively.An indirect argument is given
in Sec. V to read off the distributions for half-line variants.
Given the probability distribution for a single chiral

component of the stress-energy tensor, the distribution for
timelike and spacetime averages of the full stress-energy
tensor may be computed easily. We refer to Refs. [2,10] for
discussion.

II. MOMENT GENERATING FUNCTIONS

We begin by briefly summarizing the method of Ref. [2].
With TðfÞ as above, the nth moment of TðfÞ in the vacuum
state is

Gn½f� ≔ hΩjTðfÞnΩi; ð6Þ

and the moment generating function is defined by

M½μf� ¼
X∞
n¼0

μnGn½f�
n!

; ð7Þ

and the connected moment generating function is

W½μf� ¼ logM½μf�: ð8Þ

In any CFT, one has G0½f� ¼ 1 and G1½f� ¼ 0. Values of
Gn½f� for n ≥ 2 may be determined using the Ward
identities in CFT. In particular, one has

G2½f� ¼
c
8π2

Z
R2

fðu1Þfðu2Þ
ðu2 − u1 − i0Þ4 du1du2

¼ c
48π2

Z
∞

0

ω3jf̂ðωÞj2dω; ð9Þ

where f̂ is the Fourier transform

f̂ðωÞ ¼
Z

∞

−∞
fðtÞe−iωtdt: ð10Þ

In Ref. [2] (see also Ref. [8]), it was shown that the Ward
identities allow one to write the connected moment-
generating function as

W½μf� ¼
Z

μ

0

ðμ − λÞG2½fλ�dλ; ð11Þ

where fλ is a one-parameter family of functions solving the
flow equation

dfλ
dλ

¼ fλ⋆fλ; f0 ¼ f; ð12Þ

where

ðf⋆fÞðuÞ ¼
Z

fðwÞf0ðuÞ − f0ðwÞfðuÞ
2πðw − uÞ dw: ð13Þ

Equation (12) is a nonlinear integrodifferential equation.
The only known closed-form solutions require f0 to be a
Gaussian [2] or a member of one of two infinite families
[6]. This paper will provide infinitely many further exact
solutions.
Once the moment generating function is found, the

probability density function is obtained as an inverse
Laplace transform, because

M½μf� ¼
Z

∞

−∞
PðωÞeμωdω: ð14Þ

This may be performed by inspection in certain cases. In
particular, the shifted gamma distribution [Eq. (4)] has the
moment generating function

MðμÞ ¼
�
1 −

μ

β

�
−α
e−μσ ð15Þ

and the connected moment generating function

WðμÞ ¼ α log

�
β

β − μ

�
− μσ: ð16Þ

The moment generating function is of this form if and
only if
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G2½fλ� ¼
α

ðβ − λÞ2 ð17Þ

and σ ¼ α=β.
It is important to note that themoments of a shifted gamma

distribution grow sufficiently slowly that the moment gen-
erating function uniquely determines the probability distri-
bution, as a consequence of theHamburger moment theorem.
See Ref. [2] for discussion and references.

III. MODIFIED GAUSSIAN FUNCTIONS

We now apply the method described in Sec. II to the
modified Gaussian functions [Eq. (2)], fixing the normali-
zation parameter γ so that fa has a unit integral:

γ ¼ baþ1
2

Γðaþ 1
2
Þ : ð18Þ

For the most part in this section, we fix a ∈ N0 and b > 0
and drop the subscripts from fa;b to lighten the notation.
Starting with the derivative

f0ðxÞ ¼ 2γx2ae−bx
2

�
a − bx2

x

�
¼ 2

�
a − bx2

x

�
fðxÞ; ð19Þ

we calculate ðf⋆fÞðuÞ, beginning with the integrand

f0ðuÞfðwÞ − f0ðwÞfðuÞ
2πðw − uÞ ¼ aþ buw

πuw
fðuÞfðwÞ: ð20Þ

Noting that the term proportional to a is odd in w,
integration over R yields

ðf⋆fÞðuÞ¼ u2ae−bu
2

bγ2

π

Z
∞

−∞
w2ae−bw

2

dw¼ bfðuÞ
π

; ð21Þ

where we have used the definition of f and the fact that it
has a unit integral. To solve the flow equation (12), we now
make the ansatz

fλðuÞ ¼ AðλÞfðuÞ; ð22Þ

as used in Ref. [2], whereupon the flow equation reduces to
the differential equation

dAðλÞ
dλ

¼ AðλÞ2b
π

; Að0Þ ¼ 1: ð23Þ

Solving, we find

AðλÞ ¼ π

π − bλ
: ð24Þ

Now that we have solved the flow equation, W½μf� may
be calculated easily, because G2½fλ� ¼ AðλÞ2G2½f� has the

general form (17). Restoring the subscripts a, b, the
moment generating function is a shifted gamma distribution
with parameters

αa;b ¼
π2G2½fa;b�

b2
; βa;b ¼

π

b
; σa;b ¼

α

β
: ð25Þ

It remains for us to compute G2½fa;b�, for which we first
compute the Fourier transform

f̂a;bðωÞ ¼ ð−1Þa e
−ω2=ð4bÞ ffiffiffi

π
p

22aΓðaþ 1
2
ÞH2a

�
ω

2
ffiffiffi
b

p
�
; ð26Þ

using formula 18.10.10 of Ref. [11] and the fact that the
Hermite polynomial H2a is even. With this, we then obtain

G2½fa;b� ¼
c
R∞
0 ω3e−

ω2

2bH2að ω
2
ffiffi
b

p Þ2dω
3 · 24ðaþ1ÞπΓðaþ 1

2
Þ2 : ð27Þ

To evaluate this expression, we use a generating function
argument, using the formula

e−2z
2
X∞
n¼0

ðx=2Þn
n!

HnðzÞ2 ¼
e−2z

2=ð1þxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ; ð28Þ

which follows from formula 10.13(22) of Ref. [12], and
implies

X∞
n¼0

ðx=2Þn
n!

Z
∞

0

ω3e−
ω2

2bHn

�
ω

2
ffiffiffi
b

p
�

2

dω

¼ 2b2ð1þ xÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p

¼ 2b2ð1þ 2xþ x2Þ
X∞
k¼0

ð2k − 1Þ!!
2kk!

x2k: ð29Þ

Comparing coefficients of x2a, we eventually reach the final
expression

G2½fa;b� ¼
cb2ð4a − 1Þ
24π2ð2a − 1Þ : ð30Þ

Using Eq. (25), we conclude that the probability dis-
tribution of measurements of Tðfa;bÞ in the vacuum state
has a shifted gamma probability density function [Eq. (4)]
with parameters

αa;b¼
cð4a−1Þ
24ð2a−1Þ ; βa;b¼

π

b
; σa;b¼

cbð4a−1Þ
24πð2a−1Þ : ð31Þ

As a consistency check, the value of σa;b, the lower bound
of the distribution, can then be compared against the
optimal QEI bound [Eq. (5)]. Noting that
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d
dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fa;bðvÞ

q
¼ ffiffiffi

γ
p

va−1e−
b
2
v2ða − bv2Þ; ð32Þ

consistency requires that

σa;b ¼
cγ
6π

Z
∞

0

v2a−2e−bv
2ða − bv2Þ2dv; ð33Þ

and a routine calculation with gamma functions confirms
that this is indeed the case, as it should be on general
grounds [2]. A further consistency check is that the a ¼ 0
special case reproduces the example given in Ref. [2].

IV. MODIFIED LORENTZIAN

Our second family of test functions is the modified
Lorentzian functions given in Eq. (3). Proceeding as before,
we suppress the subscripts a, b, and n for the most part.
We also make an ansatz similar to that used in Ref. [6],
defining gλ by replacing b with bλ in Eq. (3), with b0 ¼ b,
and leaving C fixed. The derivative of this test function is

g0λðuÞ ¼
2Cu2a−1

ðb2λ þ u2Þnþ1
ðab2λ þ u2ða − nÞÞ; ð34Þ

and a calculation gives

g0λðuÞgλðwÞ − g0λðwÞgλðuÞ
w − u

¼ 2nðCbλÞ2ðuwÞ2a
ðb2λ þ u2Þnþ1ðb2λ þ w2Þnþ1

þ terms odd inw: ð35Þ

Integrating and dividing by ð2πÞ,

ðgλ⋆gλÞðuÞ ¼ C̃nb2ða−nÞþ1
λ gλðuÞ
b2λ þ u2

; ð36Þ

where

C̃¼C
π

Z
∞

−∞

x2a

ð1þx2Þnþ1
dx¼C

π
B
�
aþ1

2
;n−a−

1

2

�
ð37Þ

using identity (formula 3.251 of Ref. [13]) for the beta
function. The same identity may be used to determine the
value of C so that g0 has a unit integral, namely

C ¼ b2n−2a−10

Bðaþ 1
2
; n − a − 1

2
Þ ; ð38Þ

in which case

C̃ ¼ b2ðn−aÞ−10 ð2ðn − aÞ − 1Þ
2nπ

ð39Þ

on simplifying the ratio of beta functions.

On the other hand, the derivative with respect to λ is

dgλðuÞ
dλ

¼ −
2nbλgλðuÞ
b2λ þ u2

dbλ
dλ

; ð40Þ

so the flow equation reduces to

b2ðn−aÞλ

dbλ
dλ

¼ −
C̃
2
¼ −

b2ðn−aÞ−10 ð2ðn − aÞ − 1Þ
4nπ

; ð41Þ

which has unique solution

bλ ¼ b0

�
1 −

4ðn − aÞ2 − 1

4nπb20
λ

� 1
2n−2aþ1

; ð42Þ

completing the solution of the flow equation.
The next step is to compute G2½gλ�, facilitated by the

observation that

gλðuÞ ¼ ðbλ=b0Þ2ða−nÞg0ðub0=bλÞ; ð43Þ

giving

G2½gλ� ¼ G2½g0�ðbλ=b0Þ4ða−nÞ−2

¼ G2½g0�
�

4nπb20
4nπb20 − ð4ðn − aÞ2 − 1Þλ

�
2

; ð44Þ

which is of the form (17).
Consequently, it is clear that the probability distribution

will again be a shifted gamma distribution. One of the three
parameters is already known, namely (on reinstating the n,
a, b subscripts)

βn;a;b ¼
4nπb2

4ðn − aÞ2 − 1
; ð45Þ

while αn;a;b ¼ G2½gn;a;b�β2 and σn;a;b ¼ αn;a;b=βn;a;b. Rather
than computing G2½gn;a;b� directly, we obtain the parameter
σn;a;b from the optimal QEI bound. This is given by

σn;a;b ¼
cC
12π

Z
∞

−∞

�
d
dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gn;aðvÞ

q �
2

dv;

¼ cC
12π

Z
∞

0

va−
3
2ðav − nvþ aÞ2ðvþ 1Þ−n−2dv;

¼ cð1 − 2nþ 2aÞð4a2 − 4an − 4aþ nÞ
48πð2a − 1Þðnþ 1Þb2 : ð46Þ

Thus,

αn;a;b ¼
cnð4a2 − 4an − 4aþ nÞ

12ð2a − 2n − 1Þðnþ 1Þð2a − 1Þ : ð47Þ

Equations (45), (46), and (47) give the three parameters
of the shifted gamma distribution for this family of test
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functions. Again, the special case a ¼ 0 reduces to a known
example [6].
In passing, we note that consistency between the two

formulas for σn;a;b (and then setting b ¼ 1) indirectly
proves the identity,

Z
∞

0

k3ðF ½u2a=ð1þ u2Þn�ðkÞÞ2dk

¼ −
ð4ðn − aÞ2 − 1Þ2ð4a2 − 4an − 4aþ nÞ

4ð2ðn − aÞ þ 1Þnðnþ 1Þð2a − 1Þ

× B

�
aþ 1

2
; n − a −

1

2

�
2

; ð48Þ

where F denotes Fourier transformation and in this case is
[cf. formula 7.12(27) of Ref. [12] for the a ¼ 0 case]

F ½u2a=ð1þ u2Þn�ðkÞ

¼ ð−1Þa 2
ffiffiffi
π

p
ðn − 1Þ!

d2a

dk2a
ðk=2Þn−1=2Kn−1=2ðkÞ; ð49Þ

where Kν denotes a modified Bessel function. We have
no independent proof for the identity (48), but we have
tested it in a number of cases (all 0 ≤ a < n, 1 ≤ n ≤ 10).
The case a ¼ 0 was implicitly established in Ref. [6] for
arbitrary n ≥ 1.

V. HALF-SIDED VARIANTS

When the parameter a is at least 1, both fa;b and gn;a;b
vanish to at least quadratic order at the origin. As we will
show, this is sufficient for the two halves of the real line
to decouple. Consequently, we find a simple derivation for
the probability distribution of half-line versions of these
averaging functions.
Our argument is based on the Virasoro relations, which

imply that

−i½TðgÞ; TðhÞ� ¼ Tðgh0 − g0hÞ þ c
24π

Z
∞

−∞
g000ðuÞhðuÞdu:

ð50Þ

Let f be one of the test functions studied above, with a ≥ 1,
and define

gðuÞ ¼ ΘðuÞfðuÞ; hðuÞ ¼ Θð−uÞfðuÞ: ð51Þ

Then one may check that both gh0 − g0h and g000h vanish
identically, so that TðfÞ may be expressed as the sum of
two commuting operators (see the end of this section for a
remark on the validity of this step). Therefore, the prob-
ability distribution associated with TðfÞ should be the
convolution of the distributions associated with TðgÞ and
TðhÞ. But as h is simply the reflection of g in the origin,
these distributions are the same. We conclude that the

probability density function for f is the convolution square
of the probability density function for g, or conversely, that
the probability density function for g is a convolution
square root of that for f. As the shifted gamma distribution
is (infinitely) divisible, this implies that the distribution for
g is again a shifted gamma distribution, with parameters α
and σ divided by 2 and β unchanged.
Summarizing, we have argued that the energy density

averages against the family

f̃a;bðuÞ ¼ γΘðuÞu2ae−bu2 ; a ∈ N>0; b > 0; ð52Þ

where γ is the same normalization factor as in Eq. (18)
(so f̃a;b has total integral 1

2
) correspond to shifted gamma

distributions with parameters

α̃a;b¼
cð4a−1Þ
48ð2a−1Þ ; β̃a;b¼

π

b
; σ̃a;b¼

cbð4a−1Þ
48πð2a−1Þ : ð53Þ

Similarly, averages against the family

gn;a;bðuÞ¼
CΘðuÞu2a
ðb2þu2Þn ; a;n∈N; 1≤a<n; b>0; ð54Þ

with C as in Eq. (38), correspond to shifted gamma
distributions with parameters

α̃n;a;b ¼
cnð4a2 − 4an − 4aþ nÞ

24ð2a − 2n − 1Þðnþ 1Þð2a − 1Þ ;

β̃n;a;b ¼
4nπb2

4ðn − aÞ2 − 1
;

σ̃n;a;b ¼
cð1 − 2nþ 2aÞð4a2 − 4an − 4aþ nÞ

96πð2a − 1Þðnþ 1Þb2 : ð55Þ

It would be interesting to confirm these results by direct
solutions of the flow equation, but we do not pursue
this here.
To close, we note that our argument depends on an

extension of the Virasoro relations (50) to nonsmooth test
functions, so some care is needed. The argument is
rigorously valid for a ≥ 3 at least, because then g, h are
at least 4 times continuously differentiable (see Ref. [14]
for rigorous proofs; more recent work in a similar direction
is presented in Refs. [15,16]). It is a reasonable conjecture
that the overall result holds for a ¼ 2 (and perhaps even
a ¼ 1 as well), and this is supported by numerical evidence
to be reported elsewhere.

VI. CONCLUDING REMARKS

We have described four new infinite families of averag-
ing functions for which the probability distribution of the
vacuum CFT energy density may be computed in closed
form. In all these examples—like those previously obtained
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in Refs. [2,6] by the moment generating function method—
the result is a shifted gamma distribution. While it is known
that this cannot be the distribution in all cases, these results
suggest that there is a large distinguished class of averaging
functions for which this is the case. Understanding this
may help to cast light on the problem of finding general
solutions to the flow equation, and related issues, such as
the relationship between the moment generating function
method and the conformal welding method, which is
currently unclear.
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