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We apply the DDC formalism [proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji] to study the
average rate of change of energy of two identical two-level atoms interacting with the vacuum massless
scalar field in synchronized motion along stationary trajectories. By separating the contributions of vacuum
fluctuations and atomic radiation reaction, we first show that for the two-atom system initially prepared in
the factorizable eigenstates jgAgBi and jeAeBi, where g and e represent the ground state and the excited
state of a single atom, respectively, both vacuum fluctuations and atomic radiation reaction contribute to the
average rate of change of energy of the two-atom system, and the contribution of vacuum fluctuations is
independent of the interatomic separation while that of atomic radiation reaction is dependent on it. This is
contrary to the existing results in the literature where vacuum fluctuations are interatomic-separation
dependent. However, if the two-atom system is initially prepared in the unfactorizable symmetric/
antisymmetric entangled state, the average rate of change of energy of the two-atom system is never
perturbed by the vacuum fluctuations, but is totally a result of the atomic radiation reaction. We then
consider two special cases of motion of the two-atom system, which is initially prepared in the symmetric/
antisymmetric entangled state, i.e., synchronized inertial motion and synchronized uniform acceleration. In
contrast to the average rate of change of energy of a single uniformly accelerated atom, the average rate of
change of energy of the uniformly accelerated two-atom system is nonthermal-like. The effects of
noninertial motion on the transitions of states of the two correlated atoms are also discussed.

DOI: 10.1103/PhysRevD.101.025009

I. INTRODUCTION

The cause of spontaneous emission, one of the promi-
nent radiative properties of atoms, has long been a
fascinating problem. So far two heuristic pictures-vacuum
fluctuations [1] and radiation reaction [2] or a combination
of them [3,4] have been put forward and the role they play
in spontaneous emission has been widely discussed [3–7].
However, there seems to be an ambiguity between the
contributions of vacuum fluctuations and radiation reaction
as they are crucially dependent on the ordering of commut-
ing atom and field variables. To resolve this uncertainty,
Dalibard, Dupont-Roc, and Cohen-Tannoudji (DDC) pro-
posed that a preferred operator ordering should be chosen
so that the Hamiltonians of the contributions of vacuum
fluctuations and radiation reaction are Hermitian, and thus

respectively possess independent physical meanings [8,9].
Using the DDC formalism, atomic radiative properties such
as the spontaneous emission and the energy shifts [10–13]
can be well explained, and the spontaneous excitation of
atoms in noninertial motion is also predicted [10,11,14,15].
In recent years, there has been extensive interest in the

radiative properties of entangled atoms [16–24], as quan-
tum entanglement is a central notion in quantum informa-
tion and is also crucial for quantum computing. In a recent
work, the authors calculated the response function of two
identical atoms in the maximally entangled state interacting
with vacuum massless scalar fields, and concluded that the
atomic spontaneous transition rates can be enhanced or
inhibited depending on the specific entangled state and the
interatomic separation, and the presence of boundaries also
modifies the transition rates [20]. Later, by generalizing the
DDC formalism [8,9], where the contributions of vacuum
fluctuations and atomic radiation reaction to the rate of
change of an observable of the atom are distinctively
separated, to the case of a two-atom system in interaction
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with the vacuum electromagnetic field, the radiative proc-
esses of the two-atom system were studied in the flat
Minkowski spacetime [16,19] as well as in the curved
Schwarzschild spacetime [22], and the generation and
degradation of entanglement of the two-atom system were
also analyzed. Following these works, the radiative proc-
esses of the same two-atom system in interaction with the
vacuum massless scalar field in the de Sitter spacetime
[23] and in interaction with the vacuum electromagnetic
field in the cosmic string spacetime [24] were also
investigated. However, as we show later, the contributions
of vacuum fluctuations are erroneously calculated in
Refs. [16,19,22–24], and as a consequence, the resulting
average rates of change of energy of the two-atom system
were also incorrect [25].
The paper is organized as follows. In Sec. I, we give a

detailed derivation of the DDC formalism for study of the
average rate of change of energy of a system composed of
two identical two-level atoms in interaction with the
vacuum massless scalar field, which are initially prepared
in one of the eigenstates. We show that, for the two-atom
system initially prepared in the state jgAgBi or jeAeBi,
where g and e represent the ground state and the excited
state of a single atom, both vacuum fluctuations and atomic
radiation reaction contribute to the average rate of change
of energy of the two-atom system, and furthermore, the
contribution of the vacuum fluctuations is independent of
the interatomic separation contrary to the existing results in
the literature [16,19,22–24]; while for the two-atom system
initially prepared in the symmetric/antisymmetric entangled
state, the energy of the two-atom system is never perturbed
by the vacuum fluctuations, and the transitions are wholly
induced by the atomic radiation reaction. In Secs. III and IV,
we use the DDC formalism to calculate the average rate of
change of energy of the two-atom system initially prepared
in the symmetric/antisymmetric entangled state in two
cases: two atoms in synchronized inertial motion and two
atoms in synchronized uniform acceleration. By comparing
the results in the two cases, we show how the transition
processes of the two-atom system are affected by the
noninertial motion. We present our conclusions in Sec. V.
Throughout the paper, we use the natural units ℏ ¼ c ¼ 1.

II. THE DDC FORMALISM

We consider a system of two identical two-level atoms
labeled by A and B that are in interaction with the vacuum
massless scalar field. The two atoms are assumed to move
synchronously and thus the interatomic separation is a
constant. We denote the ground state and the excited state
of the atoms with energies − ω0

2
and þ ω0

2
by jgi and jei,

respectively; then the Hamiltonian of the two atoms is
given by

Hs ¼ ω0RA
3 ðτÞ þ ω0RB

3 ðτÞ ð1Þ

with R3 ¼ 1
2
ðjeihej − jgihgjÞ. The Hamiltonian of the scalar

field is

HFðτÞ ¼
Z

d3kωka
†
kak

dt
dτ

: ð2Þ

Hereafter, t and τ represent the coordinate time and the
proper time, respectively. The interaction between the
atoms and the scalar field can be depicted by

HIðτÞ ¼ μRA
2 ðτÞϕðxAðτÞÞ þ μRB

2 ðτÞϕðxBðτÞÞ; ð3Þ

where μ is the coupling constant, which is assumed to
be very small, R2 ¼ i

2
ðR− − RþÞ with R− ¼ jgihej and

Rþ ¼ jeihgj, and

ϕðxÞ¼ 1

ð2πÞ3=2
Z

d3k
1ffiffiffiffiffiffiffiffiffi
2ωk

p ½akðtÞeik·xþa†kðtÞe−ik·x� ð4Þ

is the scalar field operator with akðtÞ and a†kðtÞ being the
annihilation and creation operators, respectively. The total
Hamiltonian of the system is obtained by summing up the
above three Hamiltonians,

HðτÞ ¼ ω0RA
3 ðτÞ þ ω0RB

3 ðτÞ þ
Z

d3kωka
†
kak

dt
dτ

þ μ½RA
2 ðτÞϕðxAðτÞÞ þ RB

2 ðτÞϕðxBðτÞÞ�: ð5Þ

Next, we follow the DDC formalism to calculate the
average rate of change of energy of the two-atom system in
terms of the contributions of vacuum fluctuations and
atomic radiation reaction in the Heisenberg picture.
Starting from the above Hamiltonian, we can derive the

following Heisenberg equation of motion for the dynamical
variables, akðtðτÞÞ, of the field

d
dτ

akðtðτÞÞ¼−iωakðtðτÞÞ
dt
dτ

þ iμRA
2 ðτÞ½ϕðxAðτÞÞ;akðtðτÞÞ�

þ iμRB
2 ðτÞ½ϕðxBðτÞÞ;akðtðτÞÞ�; ð6Þ

with ½; � denoting the commutator of two operators, and
those of the atoms

d
dτ

Rξ
�ðτÞ ¼ iω0½Rξ

3ðτÞ; Rξ
�ðτÞ� þ iμ½Rξ

2ðτÞ; Rξ
�ðτÞ�ϕðxξðτÞÞ;

ð7Þ

d
dτ

Rξ
3ðτÞ ¼ iμ½Rξ

2ðτÞ; Rξ
3ðτÞ�ϕðxξðτÞÞ; ð8Þ

where ξ ¼ A, B.
Solutions of the above equations (6)–(8) can be divided

into two parts: the free part that exists even when there is no
coupling between the atoms and the field, and the source
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part that is induced by the interaction between the atoms
and the field, i.e.,

akðtðτÞÞ ¼ afkðtðτÞÞ þ askðtðτÞÞ; ð9Þ

Rξ
�ðτÞ ¼ Rξf

� ðτÞ þ Rξs
�ðτÞ; ð10Þ

Rξ
3ðτÞ ¼ Rξf

3 ðτÞ þ Rξs
3 ðτÞ: ð11Þ

Up to the first order of the coupling constant μ, the free part
and the source part of the dynamical variables of the field
are found to be

(
afkðtðτÞÞ¼ afkðtðτ0ÞÞe−iωðtðτÞ−tðτ0ÞÞ;
askðtðτÞÞ¼ iμ

P
ξ¼A;B

R
τ
τ0
dτ0Rξf

2 ðτ0Þ½ϕfðxξðτ0ÞÞ;afkðtðτÞÞ�:
ð12Þ

Correspondingly, the free part and the source part of the
field operator follow

ϕfðxðτÞÞ ¼ 1

ð2πÞ3=2
Z

d3kffiffiffiffiffiffiffiffiffi
2ωk

p

× ½afkðtðτÞÞeik·x þ a†fk ðtðτÞÞe−ik·x� ð13Þ

and

ϕsðxðτÞÞ ¼ iμ
X
ξ¼A;B

Z
τ

τ0

dτ0Rξf
2 ðτ0Þ½ϕfðxξðτ0ÞÞ;ϕfðxðτÞÞ�:

ð14Þ

Similarly, the free parts and source parts of the atomic
dynamical variables are found to be

(
Rξf
� ðτÞ ¼ Rξ

�ðτ0Þe�iω0ðτ−τ0Þ;

Rξs
�ðτÞ ¼ iμ

R
τ
τ0
dτ0½Rξf

2 ðτ0Þ; Rξf
� ðτÞ�ϕfðxξðτ0ÞÞ;

ð15Þ

and

(
Rξf
3 ðτÞ ¼ Rξ

3ðτ0Þ;
Rξs
3 ðτÞ ¼ iμ

R
τ
τ0
dτ0½Rξf

2 ðτ0Þ; Rξf
3 ðτÞ�ϕfðxξðτ0ÞÞ:

ð16Þ

Now with the operators of the atoms and the fields
divided into the free parts and the source parts, we consider
the contributions of the vacuum fluctuations and atomic
radiation reaction to the average rate of change of energy of
the two-atom system. Suppose that the atoms are initially
prepared in one of the following states:

jψ1i ¼ jgAgBi;

jψ2i ¼ jψ�i ¼
1ffiffiffi
2

p ðjgAeBi � jeAgBiÞ;

jψ3i ¼ jeAeBi: ð17Þ

These states are eigenstates of the Hamiltoninan of the two-
atom system Hs [see Eq. (1)] with corresponding energies
−ω0; 0;ω0, and they form a complete basis.
For atom A, the Heisenberg equation of motion with

Hamiltonian HAðτÞ ¼ ω0RA
3 ðτÞ satisfies

d
dτ

HAðτÞ ¼ iμω0½RA
2 ðτÞ; RA

3 ðτÞ�ϕðxAðτÞÞ: ð18Þ

Replacing the field operator in the above equation with
ϕðxAðτÞÞ ¼ ϕfðxAðτÞÞ þ ϕsðxAðτÞÞ and choosing the sym-
metric operator ordering for the variables of the atoms and
the field as in Refs. [8,9], we obtain the operator for the rate
of change of energy of atom A caused by the free field,
ϕfðxðτÞÞ, namely, the contribution of vacuum fluctuations,

�
dHAðτÞ

dτ

�
vf

¼ 1

2
iμω0f½RA

2 ðτÞ; RA
3 ðτÞ�;ϕfðxAðτÞÞg; ð19Þ

and that by the source field, ϕsðxðτÞÞ, namely, the con-
tribution of atomic radiation reaction,

�
dHAðτÞ

dτ

�
rr
¼ 1

2
iμω0f½RA

2 ðτÞ; RA
3 ðτÞ�;ϕsðxAðτÞÞg: ð20Þ

Hereafter, we denote the anticommutator of two operators
by f; g. By the use of Eqs. (10), (11), (15), and (16) in each
of the above two equations, the contributions of vacuum
fluctuations and atomic radiation reaction to the second
order of the coupling constant can be reexpressed as

�
dHAðτÞ

dτ

�
vf

¼ 1

2
iμω0f½RAf

2 ðτÞ; RAf
3 ðτÞ�;ϕfðxAðτÞÞg

−
1

2
μ2ω0

Z
τ

τ0

dτ0½RAf
2 ðτ0Þ; ½RAf

2 ðτÞ; RAf
3 ðτÞ��

× fϕfðxAðτÞÞ;ϕfðxAðτ0ÞÞg; ð21Þ
�
dHAðτÞ

dτ

�
rr
¼ 1

2
μ2ω0

Z
τ

τ0

dτ0f½½RAf
2 ðτÞ;RAf

3 ðτÞ�;RAf
2 ðτ0Þ�g

× ½ϕfðxAðτÞÞ;ϕfðxAðτ0ÞÞ�

þ1

2
μ2ω0

Z
τ

τ0

dτ0f½½RAf
2 ðτÞ;RAf

3 ðτÞ�;RBf
2 ðτ0Þ�g

× ½ϕfðxAðτÞÞ;ϕfðxBðτ0ÞÞ�: ð22Þ

Taking the average of the above two operators over the
vacuum state of the field j0i, we get

RADIATION-REACTION-INDUCED TRANSITIONS OF TWO … PHYS. REV. D 101, 025009 (2020)

025009-3



�
dHAðτÞ

dτ

�
vf

¼ iμ2
Z

τ

τ0

dτ0CFðxAðτÞ; xAðτ0ÞÞ

×
d
dτ

½RAf
2 ðτÞ; RAf

2 ðτ0Þ�; ð23Þ

and

�
dHAðτÞ

dτ

�
rr
¼ iμ2

Z
τ

τ0

dτ0χFðxAðτÞ; xAðτ0ÞÞ

×
d
dτ

fRAf
2 ðτÞ; RAf

2 ðτ0Þg

þ iμ2
Z

τ

τ0

dτ0χFðxAðτÞ; xBðτ0ÞÞ

×
d
dτ

fRAf
2 ðτÞ; RBf

2 ðτ0Þg; ð24Þ

in which h� � �i ¼ h0j � � � j0i, and CFðxξðτÞ; xξ0 ðτ0ÞÞ and
χFðxξðτÞ; xξ0 ðτ0ÞÞ are the symmetric and antisymmetric
correlation functions of the field defined as

CFðxξðτÞ; xξ0 ðτ0ÞÞ ¼
1

2
h0jfϕfðxξðτÞÞ;ϕfðxξ0 ðτ0ÞÞgj0i; ð25Þ

χFðxξðτÞ; xξ0 ðτ0ÞÞ ¼
1

2
h0j½ϕfðxξðτÞÞ;ϕfðxξ0 ðτ0ÞÞ�j0i; ð26Þ

with ξ, ξ0 ¼ A, B. In obtaining Eqs. (23) and (24), we have
used the relation HAðτÞ ¼ ω0R

Af
3 ðτÞ, which is accurate to

the leading order.
Averaging Eqs. (23) and (24) over the initial state of the

two-atom system, jψni (n ¼ 1, 2, 3), we find the contri-
butions of vacuum fluctuations and atomic radiation
reaction to the average rate of change of energy of atom A,

�
dHAðτÞ

dτ

�
n;vf

¼ 2iμ2
Z

τ

τ0

dτ0CFðxAðτÞ;xAðτ0ÞÞ
d
dτ

χAnðτ;τ0Þ;

ð27Þ
�
dHAðτÞ

dτ

�
n;rr

¼2iμ2
Z

τ

τ0

dτ0χFðxAðτÞ;xAðτ0ÞÞ
d
dτ

CAA
n ðτ;τ0Þ

þ2iμ2
Z

τ

τ0

dτ0χFðxAðτÞ;xBðτ0ÞÞ
d
dτ

CAB
n ðτ;τ0Þ;

ð28Þ

in which χξnðτ; τ0Þ and Cξξ0
n ðτ; τ0Þ are two statistical func-

tions of the atoms defined as

χξnðτ; τ0Þ ¼ 1

2
hψnj½Rξf

2 ðτÞ; Rξf
2 ðτ0Þ�jψni; ð29Þ

Cξξ0
n ðτ; τ0Þ ¼ 1

2
hψnjfRξf

2 ðτÞ; Rξ0f
2 ðτ0Þgjψni: ð30Þ

The contributions of vacuum fluctuations and atomic
radiation reaction to the average rate of change of energy
of atom B can be easily obtained by replacing A with B in
Eqs. (27) and (28). Thus for the average rate of change of
energy of the two-atom system, the contribution of vacuum
fluctuations is

�
dHsðτÞ
dτ

�
n;vf

¼2iμ2
Z

τ

τ0

dτ0CFðxAðτÞ;xAðτ0ÞÞ
d
dτ

χAnðτ;τ0Þ

þ2iμ2
Z

τ

τ0

dτ0CFðxBðτÞ;xBðτ0ÞÞ
d
dτ

χBn ðτ;τ0Þ;

ð31Þ

and that of the atomic radiation reaction is�
dHsðτÞ
dτ

�
n;rr

¼
X

ξ;ξ0¼A;B

2iμ2
Z

τ

τ0

dτ0χFðxξðτÞ; xξ0 ðτ0ÞÞ

×
d
dτ

Cξξ0
n ðτ; τ0Þ: ð32Þ

The expression of the contribution of vacuum fluctuations,
Eq. (31), is composed of two terms with each dependent on
only one of the atoms, and it differs from the corresponding
expressions derived in Refs. [16,19,22–24], where the
expression of the contribution of vacuum fluctuations is
composed of four terms with two of them the same as ours
in Eq. (31) as those given in Ref. [23] where the scalar
field is considered and two terms similar to ours as in
Refs. [16,19,22,24] where the electromagnetic field is
considered, and the other two cross terms that are depen-
dent on both atoms. The two superfluous cross terms
originate from the erroneous expressions of the source
parts of the atomic dynamical variables.Aswe have shown in
the second lines of Eqs. (15) and (16), the source parts of
the dynamical variables of atom A, RAs

� ðτÞ and RAs
3 ðτÞ are

independent of atom B, and vice versa. However, in the
second line of Eq. (15) in Ref. [19], the source part of the
dynamical variable of atomA is relatedwith atomB [26], and
consequently it leads to the erroneous expression of the
contribution of vacuum fluctuations. The contribution of
atomic radiation reaction, Eq. (32), is composed of four
terms, with two of them dependent on only one of the atoms
while theother two cross terms dependent onboth atoms; and
thus it is generally interatomic-separation dependent. This is
consistent with what is found in Refs. [16,19,22–24].
For the two-atom system initially prepared in the

factorizable state jψ1i ¼ jgAgBi or jψ3i ¼ jeAeBi, it is
easy to deduce from Eq. (29) that

χA1 ðτ; τ0Þ ¼ χB1 ðτ; τ0Þ ¼ −
1

8
ðeiω0ðτ−τ0Þ − e−iω0ðτ−τ0ÞÞ; ð33Þ

χA3 ðτ; τ0Þ ¼ χB3 ðτ; τ0Þ ¼
1

8
ðeiω0ðτ−τ0Þ − e−iω0ðτ−τ0ÞÞ; ð34Þ
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while for the two-atom system initially prepared in the
symmetric/antisymmetric entangled state jψ2i ¼ jψ�i,

χA2 ðτ; τ0Þ ¼ χB2 ðτ; τ0Þ ¼ 0: ð35Þ

The above statistical functions of the atoms together with
the expression of the contribution of vacuum fluctuations
[Eq. (27)] indicate that the contribution of vacuum fluctu-
ations to the average rate of change of energy of the two-
atom system initially prepared in the factorizable state
jgAgBi or jeAeBi is generally nonzero and interatomic-
separation independent, while the contribution of vacuum
fluctuations to the average rate of change of energy of the
two-atom system initially prepared in the unfactorizable
symmetric/antisymmetric entangled state vanishes.
Some comments are in order as our results are contrary to

those in the literature. For example, in Ref. [23], the
average rate of change of energy of a two-atom system
in interaction with the massless scalar field in de Sitter
spacetime was calculated and the contribution of vacuum
fluctuations to the average rate of change of energy of the
atoms initially prepared in all the four states [jgAgBi, jψ�i
and jeAeBi] is incorporated into their Eq. (24), which is
characterized by the interatomic separation dependent
factor f12ðΔω; L=2Þ. These interatomic separation depen-
dent terms come from the two cross terms in the expression
of the contribution of vacuum fluctuations [see the first line
of Eq. (13) in Ref. [23] ]. However, as we have already
pointed out, these terms are actually nonexistent. For the
case of the two-atom system initially prepared in the
symmetric/antisymmetric entangled state, though the con-
tribution of vacuum fluctuations is expressed in terms of the
summation of two terms [corresponding to the upward
transition process jψ�i → jgAgBi and the downward tran-
sition process jψ�i → jeAeBi] with each of them charac-
terized by f12ðΔω; L=2Þ, the two terms actually sum up to
0. Thus the error in this case does not carry on to the final
contribution of vacuum fluctuations and neither to the total
rate of change of energy. But for the cases of the two-atom
system initially prepared in the other eigenstate jgAgBi or
jeAeBi, the allowed transition process induced by the
vacuum fluctuations is jgAgBi → jψ�i or jeAeBi → jψ�i;
then only one erroneous term in Eq. (24) remains. Without
the other canceling erroneous term, now, the error leads to
an extra erroneous nonzero contribution of vacuum fluc-
tuations, which carries on to the total rate of change of
energy of the two-atom system. Similar errors were also
made in Refs. [16,19,22,24] where the average rate of
change of energy of the two-atom system in interaction
with vacuum electromagnetic fields in various spacetime
backgrounds is calculated.
It is worth pointing out that the vanishing contribution of

vacuum fluctuations for the two-atom system initially
prepared in the symmetric/antisymmetric entangled state
is physically understandable. As is demonstrated in

Ref. [10], the vacuum fluctuations tend to excite an atom
initially in the ground state, while deexcite an atom initially
in the excited state, and when only the contribution of
vacuum fluctuations is taken into account, both excitation
and deexcitation occur with equal probability. For the two
atoms initially prepared in the symmetric/antisymmetric
entangled state, each atom has the probability of 1

2
to

populate the ground state and the excited state; thus the
contribution of vacuum fluctuations comes out to be
nullified. The same conclusion can also be drawn if we
view the two atoms as a whole. The symmetric/antisym-
metric entangled state belongs to the intermediate state of
the two-atom system with zero energy. As vacuum
fluctuations are equally capable of deexciting and exciting
the two-atom system, the average rate of change of energy
of the system due to the upward transition (jψ�i → jeAeBi)
and the downward transition (jψ�i → jgAgBi) sums up to 0.
In the following two sections, we are mainly interested in

the transitions of the two-atom system initially prepared in
the symmetric/antisymmetric entangled state jψ2i ¼ jψ�i
in two cases: two atoms in synchronized inertial motion and
two atoms in synchronized uniform acceleration. As the
vacuum fluctuations do not contribute, the average rate of
change of energy of the two-atom system in the symmetrci/
antisymmetric entangled state is only ascribed to the
contribution of atomic radiation reaction,

�
dHsðτÞ
dτ

�
¼

�
dHsðτÞ
dτ

�
rr

¼
X

ξ;ξ0¼A;B

2iμ2
Z

τ

τ0

dτ0χFðxξðτÞ; xξ0 ðτ0ÞÞ

×
d
dτ

Cξξ0 ðτ; τ0Þ: ð36Þ

Hereafter, we omit the subscript n ¼ 2 for simplicity. Let us
note here that the resonance interatomic energy of the two-
atom system in the symmetric/antisymmetric entangled
state is also only ascribed to the atomic radiation reaction
and irrelevant to the vacuum fluctuations [17].

III. RATE OF CHANGE OF ENERGY OF TWO
ENTANGLED ATOMS IN SYNCHRONIZED

INERTIAL MOTION

Suppose that two atoms are in synchronized inertial
motion along the same direction, and we choose the
Cartesian coordinates to depict their trajectories,

tAðτÞ¼ γτ; xAðτÞ¼ x0þvγτ; yA¼ 0; zA ¼ 0; ð37Þ

tBðτ0Þ¼γτ0; xBðτ0Þ¼x0þvγτ0; yB¼L; zB¼0; ð38Þ

where v denotes the constant velocity of the atoms
and γ ¼ ð1 − v2Þ−1=2.
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According to Eq. (36), to calculate the average rate of
change of energy of the two atoms, we should first derive
the antisymmetric correlation function of the field defined
in Eq. (26). For the massless scalar field, we have

χFðxξðτÞ; xξ0 ðτ0ÞÞ ¼
i

8πjΔxj ½δðΔtþ jΔxjÞ − δðΔt − jΔxjÞ�;

ð39Þ
where Δt ¼ tξðτÞ − tξ0 ðτ0Þ and jΔxj ¼ jxξðτÞ − xξ0 ðτ0Þj,
which, for two inertial atoms moving along the trajectories
)37 ) and (38), reduces to

χFðxAðτÞ; xAðτ0ÞÞ ¼ χFðxBðτÞ; xBðτ0ÞÞ

¼ −
i
4π

δðΔτÞ
Δτ

; ð40Þ

χFðxAðτÞ; xBðτ0ÞÞ ¼ χFðxBðτÞ; xAðτ0ÞÞ

¼ i
8πL

½δðΔτ þ LÞ − δðΔτ − LÞ�; ð41Þ

with Δτ ¼ τ − τ0. For the two atoms prepared in the
symmetric/antisymmetric entangled state jψ�i, the atomic
statistical functions defined in Eq. (30) are found to be

Cξξ0 ðτ;τ0Þ ¼
(

1
8
ðeiω0ðτ−τ0Þ þ e−iω0ðτ−τ0ÞÞ; ξ¼ ξ0;

� 1
8
ðeiω0ðτ−τ0Þ þ e−iω0ðτ−τ0ÞÞ; ξ≠ ξ0:

ð42Þ

In the second line of the above equation, the � correspond
to jψ�i, respectively.
Inserting Eqs. (40)–(42) into Eq. (36) and doing some

simplifications, we obtain the expression of the average rate
of change of energy of the two atoms,�
dHsðτÞ
dτ

�
¼ μ2iω0

8π

Z
τ

τ0

dτ0ðeiω0Δτ − e−iω0ΔτÞδðΔτÞ
Δτ

∓ μ2iω0

16πL

Z
τ

τ0

dτ0ðeiω0Δτ − e−iω0ΔτÞ½δðΔτþLÞ

− δðΔτ−LÞ�: ð43Þ
Taking the time interval Δτ to be infinitely long, the above
integrations can be simplified to

�
dHsðτÞ
dτ

�
¼ −

μ2ω2
0

8π
∓ μ2ω0

8π

sinðω0LÞ
L

: ð44Þ

The first term on the right of the above result is exactly
equal to the average rate of change of energy of a single
inertial excited atom coupled to the massless scalar field
[see Eqs. (42) and (43) in Ref. [10] ]. This consistency is
physically understandable. As is shown in Ref. [10], the
atomic radiation reaction gives equal contribution to the
average rate of change of an atom in the ground state as
well as in the excited state [10]. Thus for the two-atom

system prepared in the symmetric/antisymmetric entangled
state, the average rate of change of the atomic energy
contains the contributions of radiation reaction to both
atoms, which sum up to the first term in Eq. (44). The
second term is characterized by the interatomic separation,
and the sign of this term is opposite for the symmetric and
the antisymmetric entangled states. It manifests the inter-
ference effect of the radiative fields of the two entangled

atoms. When ω0L ≪ 1, hdHsðτÞ
dτ i for the symmetric

entangled state jψþi is almost twice the average rate of
change of energy of a single excited atom in interaction

with the vacuum scalar field; whereas hdHsðτÞ
dτ i for the

antisymmetric entangled state jψ−i is almost 0. For a
general value of the interatomic separation L, this average
rate of change of the atomic energy can either be enhanced
or weakened for the atoms in both the symmetric and the
antisymmetric entangled states, as compared to that of a
single excited atom.

IV. RATE OF CHANGE OF ENERGY OF TWO
ENTANGLED ATOMS IN SYNCHRONIZED

UNIFORM ACCELERATION

In this section, we calculate the average rate of change of
energy of the two atoms in synchronized uniform accel-
eration with constant interatomic separation. Suppose that
the two atoms are uniformly accelerated along the x
direction, and their trajectories are depicted by

tAðτÞ¼
1

a
sinhðaτÞ; xAðτÞ¼

1

a
coshðaτÞ; yA¼0; zA¼0;

ð45Þ

tBðτ0Þ ¼
1

a
sinhðaτ0Þ; xBðτ0Þ ¼

1

a
coshðaτ0Þ;

yB ¼ L; zB ¼ 0: ð46Þ

Combining the above trajectories with Eq. (39), the
antisymmetric correlation functions of the field can be
expressed as

χFðxξðτÞ; xξðτ0ÞÞ ¼ −
i
4π

δðΔτÞ
2
a sinhða2ΔτÞ

; ð47Þ

and

χFðxξðτÞ; xξ0 ðτ0ÞÞ ¼
i

8πL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
a2L2

q
×

�
δ

�
Δτ þ 2

a
sinh−1

�
aL
2

��

− δ

�
Δτ −

2

a
sinh−1

�
aL
2

���
ð48Þ
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for ξ ≠ ξ0. The use of the above correlation functions of the
field together with Eq. (42) in Eq. (36) gives the following
average rate of change:

�
dHsðτÞ
dτ

�
¼ μ2iω0a

16π

Z
τ

τ0

dτ0ðeiω0Δτ − e−iω0ΔτÞ δðΔτÞ
sinhða

2
ΔτÞ

∓ μ2iω0

16πL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
a2L2

q Z
τ

τ0

dτ0ðeiω0Δτ − e−iω0ΔτÞ

×

�
δ

�
Δτþ 2

a
sinh−1

�
aL
2

��

− δ

�
Δτ−

2

a
sinh−1

�
aL
2

���
: ð49Þ

Further simplifications of the above integrations lead to

�
dHsðτÞ
dτ

�
¼ −

μ2ω2
0

8π
∓ μ2ω0

8π

sinð2ω0

a sinh−1ðaL
2
ÞÞ

L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4
a2L2

q : ð50Þ

This is the total average rate of change of energy of two
synchronously uniformly accelerated atoms in the sym-
metric/antisymmetric entangled state and in interaction
with the vacuum massless scalar field. The first term is
the same as the corresponding term in the case of two
inertial atoms [see the first term in Eq. (44)]; the second
term is characterized by the interatomic separation L and
the atomic acceleration a, and thus it exhibits the interfer-
ence effects of the radiative fields of the two entangled
atoms. Obviously, the interference effects in this case are
modulated by the atomic noninertial motion. Comparing
this result with the average rate of change of energy of a
single uniformly accelerated atom in interaction with
vacuum scalar fields [see Eq. (59) of Ref. [10] ], we find
a sharp distinction, i.e., for the latter case the average rate of
change of the atomic energy is identical to that of a static
atom immersed in a thermal bath with temperature T ¼ a

2π;
whereas our result for two atoms correlated by the
symmetric/antisymmetric state is nonthermal-like. The
cause of the distinction is that the energy of the two atoms
in the symmetric/antisymmetric entangled state is never
perturbed by the vacuum fluctuations but only affected by
the atomic radiation reaction, and only the contribution of
vacuum fluctuations exhibits thermal-like behaviors for
uniformly accelerated atoms [10,13,18]; whereas for a
single atom in interaction with the massless scalar field,
both vacuum fluctuations and atomic radiation reaction
contribute. When a → 0, the above result reduces to that in
the case of two inertial atoms, Eq. (44).
Finally we stress that the above conclusions are valid for

the two-atom system initially prepared in the symmetric/
antisymmetric entangled state. If the two atoms are initially
prepared in the other factorizable eigenstates, jgAgBi and
jeAeBi, as we have previously pointed out in Sec. II, the

contributions of vacuum fluctuations to the rate of change
of energy of the two-atom system are no longer zero, and
thus the total rate of change of energy of the two-atom
system should be ascribed to both vacuum fluctuations and
atomic radiation reaction. Because of the contribution of
vacuum fluctuations, thermal-like effects would appear for
two uniformly accelerated atoms.

V. CONCLUSIONS

In this paper, we have applied the DDC formalism in
calculating the average variation rate of energy of a two-
atom system in interaction with the vacuum massless scalar
field. We demonstrated (in contrast to the existing results in
the literature) that for the two-atom system initially
prepared in the factorizable eigenstate jgAgBi or jeAeBi,
both vacuum fluctuations and atomic radiation reaction
contribute to the average rate of change of energy of the
two-atom system, with the contribution of vacuum fluctu-
ations independent of the interatomic separation and that of
atomic radiation reaction dependent on it; whereas if the
two-atom system is initially prepared in the unfactorizable
symmetric/antisymmetric entangled state, the average rate
of change of energy of the two-atom system can only be
ascribed to the contribution of atomic radiation reaction.
We then exploited the DDC formalism to investigate the

effect of atomic noninertial motion on the rate of change for
the two-atom system initially prepared in the symmetric/
antisymmetric entangled state. We calculated the average
rate of change of energy of the two-atom system in two
cases: two atoms in synchronized inertial motion and two
atoms in synchronized uniform acceleration. We find that
for the two atoms in synchronized inertial motion, the
average rate of change of energy is composed of an
interatomic-separation independent term that is the same
as the average rate of change of energy of a single excited
atom in interaction with the vacuum massless scalar field,
and an interatomic-separation dependent term, of which the
sign differs when the state of the system changes from
symmetric entangled state to antisymmetric and vice versa.
For the case of two synchronously uniformly accelerated
atoms, the average rate of change of energy of the two-atom
system exhibits nonthermal behaviors. Our results indicate
that the radiative processes of the two-atom system in the
symmetric/antisymmetric entangled state can be effectively
manipulated by the atomic noninertial motion.
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