
 

From gauged linear sigma models to geometric representation
of WCPðN;ÑÞ in 2D
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In this paper two issues are addressed. First, we discuss renormalization properties of a class of gauged
linear sigma models (GLSM), which reduce to WCPðN; ÑÞ nonlinear sigma models (NLSM) in the low-
energy limit. Sometimes they are referred to as the Hanany-Tong models. If supersymmetry is N ¼ ð2; 2Þ
the ultraviolet-divergent logarithm in GLSM appears, in the renormalization of the Fayet-Iliopoulos
parameter, and is exhausted by a single tadpole graph. This is not the case in the daughter NLSMs. As a
result, the one-loop renormalizations are different in GLSMs and their daughter NLSMs. We explain this
difference and identify its source. In particular, we show why at N ¼ Ñ there is no UV logarithm in the
parent GLSM, while they do appear in the corresponding NLSM. In the second part of the paper we discuss
the same problem for a class of N ¼ ð0; 2Þ GLSMs considered previously. In this case renormalization is
not limited to one loop; all orders exact β functions for GLSMs are known. We discuss logarithmically
divergent loops at one- and two-loop levels.
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I. INTRODUCTION

In 1979 Witten suggested [1] an ultraviolet (UV)
completion for CPðN − 1Þ, one of the most popular non-
linear sigma models (NLSM), with the aim of large-N
solution of the latter. He considered both nonsupersym-
metric and N ¼ ð2; 2Þ versions. In the supersymmetric
case the UV completion is in fact a two-dimensional scalar
supersymmetric quantum electrodynamics with the Fayet-
Iliopoulos (FI) term and judiciously chosen n fields. UV
completions of this type are referred to as gauged linear
sigma models (GLSM).
The target space of CPðN − 1Þ and similar models

(see below) is Kählerian1 and of the Einstein type. Such
models are renormalizable since all higher-order correc-
tions are proportional to the target-space metric, and, there-
fore, are characterized by a single coupling constant.2 Thus,

geometry of the target space is fixed up to a single scale
factor.
The renormalization group (RG) flow from GLSM to

NLSM is smooth; no change in the β function occurs on the
way.3 Moreover, for CPðN − 1Þ we know the large-N
solution that explicitly matches the dynamical scale follow-
ing from the β function. For, say, the Grassmann model
GðL;MÞ (here M þ L ¼ N) the solution is not worked out
in full. However, the β functions in both regimes—GLSM
and NLSM—coincide [2,3].
In [4–6] a generalization of N ¼ ð2; 2Þ GLSMs

was suggested and discussed. These generalizations
include a number of n fields, with sign-alternating
charges. Of special importance is the case in which
the number of positive charges N is equal to that of the
negative charges Ñ.4 In such GLSMs the Fayet-
Iliopoulos parameter is not renormalized [assuming
N ¼ ð2; 2Þ]. When these GLSMs are rewritten at
low energies in the form of NLSMs they give rise to
the so-called weighted WCPðN; ÑÞ models. The target
spaces in these cases are non-Einsteinian non-
compact manifolds. Hence, these models are not
renormalizable in the conventional sense of this
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1More exactly, CPðN − 1Þ is a particular case of the Grass-
mann model that, in turn, belongs to the class of compact,
homogeneous symmetric Kähler manifolds.

2In (2,2) supersymmetric models the first loop is the only one
that contributes to the coupling constant renormalization. In (0,2)
models fermions do not contribute in the first loop, manifesting
themselves starting from two loops.

3Strictly speaking, whether this statement survives beyond one
loop in models other than N ¼ ð2; 2Þ models is not fully known.
This feature is by no means generic.

4The general condition is
P

i qi þ
P

ĩ q̃ĩ ¼ 0.
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word.5 We discuss these N ¼ ð0; 2Þ models as well.
Unlike the N ¼ ð2; 2Þ case in the (0,2) models the
second loop does not vanish in generic cases, resulting
in “new” structures. (In those special cases when it
does, the third and higher loops do not vanish.) In this
paper we address the issue of RG running in the parent-
daughter pairs GLSM/NLSM for such target spaces.
Discussion of some previous results in the Hanany-Tong
model [6] that inspired the current work can be found in
[9]. Recently, a number of GLSMs with sign-alternating
charges were considered, and the β functions calculated
for (0,2) supersymmetric versions [10].
Our conclusions are as follows. For the class of GLSMs

that upon reduction produce NLSMs of the WCPðN; ÑÞ
type the RG evolution is more complicated and is not
smooth. The Kähler potential (and, hence, the Lagrangian)
of the resulting NLSMs consists of two parts. The first part
has exactly the same structure as the second term in the bare
Kähler potential Kð0Þ; see Eq. (13). Its RG evolution
produces the same formula for the renormalized coupling
constant r as for the FI constant in the parent GLSM. The
first term in (13) is not renormalized at all. Moreover, a new
structure emerges upon RG evolution [see the second line
in Eq. (26)] that receives a logarithmic in μ coefficient in
the RG flow, totally unrelated to that of rðμÞ. Thus, the RG
flow for the WCPðN; ÑÞ models is not described by a
single running coupling constant. The number of emergent
structures grows in higher loops in the nonsupersymmetric
case [see (66)], so that these NLSMs are not renormalizable
in the conventional sense of this word. Is the number of the
emergent structures limited in N ¼ ð0; 2Þ supersymmetry?
The answer to this question can be found in Sec. VIII. The
RG evolution in the N ¼ Ñ models at μ → 0 will be
discussed in a separate publication.
The paper is organized as follows. In Sec. II we briefly

outline the GLSM formalism and renormalization of the FI
constant under the RG evolution. Section III is devoted to
reduction to NLSMs of the WCPðN; ÑÞ type. We derive
geometry of the target space: metric, Riemann, and Ricci
tensors, scalar curvature, etc. In Sec. IV we consider RG
evolution in the WCPðN; ÑÞ models. Distinct structures
responsible for different effects are isolated and a general
result is formulated. Section VI presents the simplest
example of WCPð1; 1Þ for illustration. In Sec. VII we
work out the N ¼ ð0; 2Þ versions of the WCPðN; ÑÞ
models.

II. GENERAL CONSTRUCTION

We start from presenting the bosonic part of our “master”
model; its versions are studied below. First, we introduce
two types (or flavors) of complex fields ni and ρa, with the
electric charges þ1 and −1, respectively,

S ¼
Z

d2x

�
j∇μnij2 þ j∇̃μρaj2 þ

1

4e2
F2
μν þ

1

e2
j∂μσj2

þ 1

2e2
D2 þ 2jσj2ðjnij2 þ jρaj2Þ

þ iDðjnij2 − jρaj2 − rÞ
�
þ fermions: ð1Þ

The index i runs from i ¼ 1; 2;…; N while a ¼ 1; 2;…; Ñ.
The action above is written in Euclidean conventions. The
parameter r in the last term of Eq. (1) is dimensionless. It
represents the two-dimensional Fayet-Iliopoulos term.
The U(1) gauge field Aμ acts on n and ρ through

appropriately defined covariant derivatives,6

∇μ ¼ ∂μ − iAμ; ∇̃μ ¼ ∂μ þ iAμ; ð2Þ
reflecting the sign difference between the charges. The
electric coupling constant e2 has dimension of mass
squared. A key physical scale is defined through the
product

m2
V ¼ e2r: ð3Þ

If e2 → ∞ all auxiliary fields (i.e., D and σ) can be
integrated out, and we are in the NLSM regime. All terms
except the kinetic terms of n and ρ disappear from the
action, while the last term reduces to the constraint

XN
i¼1

jnij2 −
X̃N
a¼1

jρaj2 ¼ r: ð4Þ

However, if the normalization point μ2 ≫ m2, the
appropriate regime is that of GLSM. The parameter r is
the only one that is logarithmically renormalized at one
loop in GLSM. The only trivially calculable contribution
comes from the tadpole diagram of Fig. 1. Namely,7

rðμÞ ¼ rUV −
N − Ñ
2π

log
MUV

μ
: ð5Þ

This renormalization vanishes if N ¼ Ñ due to cancellation
of charge þ1 and −1 fields. Now we proceed to the
discussion of the NLSM regime.

5In [7] the notion of a generalized renormalizability of any
two-dimensional NLSM is presented in the form of a quantum
deformation of its geometry described by the NLSM metric. By
nonrenormalizability we mean a more traditional definition for
which generally speaking an infinite number of counterterms is
needed to eliminate all ultraviolet logarithms. A thorough
discussion of geometrical properties to be used below can be
found in [8].

6For a generic situation,

∇μ ¼ ∂μ − iqiAμ; ∇̃μ ¼ ∂μ þ iq̃aAμ;

which reduces to (2) for qi ¼ 1 and q̃a ¼ −1.
7Equation (5) assumes that r is positive and N ≥ Ñ. If Ñ > N

one should consider negative r.
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III. GEOMETRIC FORMULATION
OF WCPðN;ÑÞ

To derive the geometric formulation we must take into
account that the constraint (4) and the U(1) gauge invari-
ance reduce the number of complex fields from N þ Ñ in
the set fnig þ fρag down to N þ Ñ − 1. The choice of the
coordinates on the target space manifold can be made
through various patches. For the time being we choose one
specific patch. Namely, the last ρ in the set fρag (assuming
it does not vanish on the selected patch) is denoted as

ρÑ ¼ φ; ð6Þ
where φ is set real. Then the coordinates on the target
manifold are

zi ¼ φni; i ¼ 1; 2;…; N;

wa ¼
ρa
φ
; a ¼ 1; 2;…; Ñ − 1: ð7Þ

Note that the variables introduced in (7) are not charged
under U(1).
On the given patch φ can be expressed in terms of the

above coordinates as

φ ¼
�

−rþH
2ðwaw̄a þ 1Þ

�
1=2

; ð8Þ

where

H ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4ziz̄iðwaw̄a þ 1Þ

q
: ð9Þ

The shorthand in Eq. (9) is used throughout the paper.
Integrating out the gauge field we observe that

Aμ ¼
i
2H

�
1

φ2
zi∂μ

↔
z̄i − φ2wa∂μ

↔
w̄a

�
: ð10Þ

Now we are ready to present the geometric data of the
target space for WCPðN; ÑÞ in the following form:

gi|̄ ¼
1

φ2

�
δi|̄ −

1

Hφ2
z̄iz|̄

�
; giā ¼

1

H
z̄iwā

gab̄ ¼ φ2

�
δab̄ −

φ2

H
w̄awb̄

�
; ð11Þ

with the inverse

gi|̄ ¼ φ2

�
δi|̄ þ 1

φ4
z̄|̄zi

�
; giā ¼ −

1

φ2
ziw̄ā

gab̄ ¼ 1

φ2
ðδab̄ þ waw̄b̄Þ: ð12Þ

This result can also be recovered by differentiating the
corresponding Kähler potential,8

Kð0Þðϕp; ϕ̄q̄Þ ¼ H þ 2r logφ; ð13Þ

which was previously found in [9,11]. We consider the
Kähler potential (13) and its one-loop correction in more
detail in the next section. For the time being, let us move on
to further discuss geometry of this target space. To this end,
we first find the metric connections,

Γi
jk ¼

−1
Hφ2

ðz̄jδik þ z̄kδijÞ þ
2

H2φ4
ziz̄jz̄k;

Γi
aj ¼

φ2

H
w̄aδ

i
j −

2

H2
ziw̄az̄j;

Γi
ab ¼

2φ4

H2
ziw̄aw̄b;

Γa
bc ¼ −

φ2

H
ðw̄bδ

a
c þ w̄cδ

a
bÞ;

Γa
bi ¼

1

Hφ2
z̄iδab;

Γa
ij ¼ 0; ð14Þ

where 1 ≤ i, j ≤ N and 1 ≤ a, b ≤ Ñ − 1. Then the Ricci
tensor takes the form

Ri|̄ ¼
N − Ñ

r
gi|̄ þ

ð−rþHÞ½ðÑ − NÞH þ r�
rH2φ2

δi|̄

−
ð−rþHÞ2½ðÑ − NÞH þ 2r�

rH4φ4
z̄iz|̄;

Riā ¼
N − Ñ

r
giā

þ 1

rH4
½ðÑ − NÞH3 þ ðÑ − NÞHr2 þ 2r3�z̄iwā;

Rab̄ ¼
N − Ñ

r
gab̄ þ

φ2ðrþHÞ½ðÑ − NÞH þ r�
rH2

δab̄

−
φ4ðrþHÞ2½ðÑ − NÞH þ 2r�

rH4
w̄awb̄: ð15Þ

D
n, 

FIG. 1. Tadpole graph determining renormalization of r in the
GLSM regime.

8Equation (13) coincides with (6.14) in Ref. [11] if we take
into account that with our coordinate patch 4π=g2 in [11] should
be replaced by −r.
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According to (15), the target space is not an Einstein space.
Furthermore, the scalar curvature is

R ¼ 2

H3
f½ðÑ − NÞ2 þ ðÑ þ N − 2Þ�H2

þ 2ðÑ − NÞHrþ 2r2g: ð16Þ

Equation (16) implies thatH is a function of scalar curvature
and parameters N, Ñ and r, say H ¼ HðR; r; N; ÑÞ. Note
that settingN equal to 0 and r negative, we should be able to
recover all well-known results inCPðÑ − 1Þmodel. Indeed,
all non-Einstein terms in Eq. (15), the last two lines, vanish
because rþH ¼ 0 [and so do the first five lines becausewe
must put all terms with zi to 0 in (15)]. Then the coefficients
of the Ricci and scalar curvature also match, namely,

Rab̄ → −
Ñ
r
gab̄ and R → −

2

r
ÑðÑ − 1Þ; ð17Þ

with r < 0.
Next, we observe that the general theory of NLSMs

implies at one loop (see, e.g., [7])

SNLSM ¼
Z

d2x

�
gpq̄ð∂μϕ

p∂μϕ̄
q̄Þ

−
1

2π
log

MUV

μ
Rpq̄ð∂μϕ

p∂μϕ̄
q̄Þ
�
þ � � � ; ð18Þ

where fϕpg is a generic coordinate of the target space. The
question we address now is the relation between two
results: Eq. (5) in GLSM and Eq. (15) in NLSM. Both
expressions mentioned above are known in the literature
[for (15) with a particular choice of N, Ñ see, e.g., [9]].
Clarification of their relationships is our starting goal.

IV. RENORMALIZATION IN GLSM VS NLSM

In this section, we study the renormalization of the
WCPðN; ÑÞ model in the NLSM regime, and trace its
origin from the parent GLSM. First of all, to discuss the
renormalization structure, it is convenient to rephrase the
previous results in terms of the Kähler potential.
For a Kähler manifold endowed with the Kähler potential

Kðϕp; ϕ̄q̄Þ, the metric is determined by the relation

gpq̄ ¼
∂

∂ϕp

∂
∂ϕ̄q̄ Kðϕp; ϕ̄q̄Þ; ð19Þ

while other components vanish. The corresponding Ricci
tensor is given by

Rpq̄ ¼ −
∂

∂ϕp

∂
∂ϕ̄q̄ log

ffiffiffi
g

p
; ð20Þ

where g represents the determinant of the metric tensor,

g ¼ j detfgpq̄gj: ð21Þ

If this manifold admits an Einstein-Kähler metric, the Ricci
tenosr is proportional to its metric, in other words,

− log
ffiffiffi
g

p ¼ αKðϕp; ϕ̄q̄Þ ð22Þ

for some constant α. Yet, our case does not belong to
this class.
Back to our model, we can recover the result (11) by

using (13) and (19). For convenience we represent it in a
different form,

gi|̄¼
−rþH
Hφ2

δi|̄−
ð−rþHÞ2
H3φ4

z̄izj

þ r

�
1

Hφ2
δi|̄−

−rþ2H
H3φ4

z̄izj

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl};

giā¼
H2þ r2

H3
z̄iwāþ

−r2

H3
z̄iwā|fflfflfflffl{zfflfflfflffl};

gab̄¼
φ2ðrþHÞ

H
δab̄−

φ4ðHþ rÞ2
H3

wb̄w̄a

þ r

�
−
φ2

H
δab̄þ

φ4ð2Hþ rÞ
H3

wb̄w̄a

�
:|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl} ð23Þ

In the above formulas for the metric tensor [they are
identical to (11)] we separate the contributions from H
and 2r logφ, respectively, in the Kähler potential Kð0Þ,
namely, the terms marked by the underbrace originate from
2r logφ in Eq. (13).
From the expression (11), the metric determinant can be

calculated in a straightforward manner, and we obtain

− log
ffiffiffi
g

p ¼ 2ðN − ÑÞ logφþ logH ð24Þ

for which the result coincides with the example in [9]
with a particular pair of N, Ñ. As a consistency check,
we can apply (20) to (24) to see that it indeed reproduces
(15). Also, it is instructive to explicitly indicate the
Einstein part and non-Einstein part in the Ricci curvature.
Namely,

Rpq̄¼
�
N−Ñ
r

�
gpq̄þ

∂
∂ϕp

∂
∂ϕ̄q̄

�
logH−

N− Ñ
r

H

�
: ð25Þ

At one-loop level, the Kähler potential acquires a
correction following from (24); see also (25),
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Kð0ÞþKð1Þ

¼Kð0Þ−
1

2π
log

MUV

μ

�
N−Ñ
r

Kð0Þþ
�
logH−

N−Ñ
r

H

��

¼Hþ2

�
r−

N−Ñ
2π

log
MUV

μ

�
logφ−

�
1

2π
log

MUV

μ

�
logH:

ð26Þ

The correction of the coupling constant r and the logH
term results from the first and the second terms in Eq. (24),
respectively, while the corrections to the H term cancel. As
a consistency check, considering the CPðÑ − 1Þ case
(N ¼ 0), we observe that H reduces to a constant and
dropping all H terms we observe that the Kähler potential
renormalizes multiplicatively. We recover the conventional
CPðÑ − 1Þ result.
We can immediately read off from Eq. (26) that the FI

parameter is renormalized as9

rðμÞ ¼ rUV −
N − Ñ
2π

log
MUV

μ
; ð27Þ

in agreement with (5) obtained in the GLSM analysis.
As an essential example, we consider the model with the

equal numbers of positive and negative charges. Then, as
shown in (27), the FI parameter gets no correction and the
corresponding β function vanishes. However, the Kähler
potential is still modified by the one-loop contribution,

Kð0Þ þ Kð1ÞjN¼Ñ ¼ 2r logφþH −
�
1

2π
log

MUV

μ

�
logH:

ð28Þ

The emergent term proportional to logH does not vanish
even if N ¼ Ñ, therefore making the theory nonrenorma-
lizable [in the case of N ¼ ð0; 2Þ supersymmetry, see
Sec. VII].
Note that in the generic case N ≠ Ñ but N ∼ Ñ the

renormalization of r scales as N while the coefficient of
logH is OðN0Þ. Then the latter can be ignored in the large-
N limit.

V. WHERE DOES THE DISCREPANCY BETWEEN
GLSM AND NLSM COME FROM?

The answer to the above question might seem paradoxi-
cal. Let us return to Sec. I in which it was stated that the
only ultraviolet logarithm in GLSM comes from the Fayet-
Iliopoulos term renormalization depicted in Fig. 1. This
statement is correct. However, this does not mean that there

are no other logarithms in this model (which is a two-
dimensional reduction of supersymmetric quantum electro-
dynamics with matter fields possessing opposite charges).
If we descend down in μ below mV [see (3)], we discover
logarithms ofmV=μ rather than logMUV=μ. The former in a
sense might be called “infrared.” They come from the Z
factors of the matter fields in (1) and are determined by the
graphs shown in Fig. 2.
On dimensional grounds the one-loop contribution to the

Z factor is proportional to

e2m−2
V log

mV

μ
∼
1

r
log

mV

μ
: ð29Þ

It is curious that the same type of infrared logarithms were
found 45 years ago [12] in weak flavor-changing decays
and are widely known now as penguins. They are typical of
theories with multiple scales.
In passing from GLSMs to NLSMs we tend mV → ∞,

thus identifying it with MUV. The distinction between two
types of logarithms is lost.
We conclude that the Fayet-Iliopoulos parameter is

related—in the NLSM formulation—to the cohomology
class of the Kähler form of the target space generically
defined as

ω ¼ i
2
gpq̄dϕp ∧ dϕ̄q̄; ð30Þ

where d is the de Rham operator.10 Speaking in physical
terms, the Kähler class can be viewed as a product of a
complexified scale parameter r and an analog of the
appropriately normalized topological (or θ) term. The latter
takes integer values.
These remarks explain the structure of the first line in

Eq. (26), as well as the emergence of extra logarithms. That
is why in GLSM we recover Eq. (27), inherited from
GLSM, in addition to an “extra” last term in the first line
of Eq. (26).

VI. THE SIMPLEST EXAMPLE: WCPð1;1Þ MODEL

To further illustrate our analysis, let us have a closer look
at the minimal example consisting of only two chiral fields,

V

FIG. 2. Z factor of the matter fields in GLSM with μ ≪ mV .

9To factor out r in Kð0Þ it is convenient to rescale z, namely,
z → zr. Then H becomes proportional to r and Kð0Þ → rK̃ð0Þ

where K̃ð0Þ is r independent.

10See [4,13] for more thorough discussions. We thank A.
Gorsky, S. Ketov, A. Losev, and D. Tong for instructive
correspondence on this issue.
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one with the positive unit charge and the other with the
negative unit charge (i.e., N ¼ Ñ ¼ 1). Also, the appro-
priate number of Fermi superfields can be included, so we
can consider eitherN ¼ ð2; 2Þ orN ¼ ð0; 2Þ theories. The
bare Kähler potential in this problem is presented in
[14], Sec. 52.
Note that in the given simplest case

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 4zz̄

p
: ð31Þ

First of all, let us examine the structure of the vacuum
manifold in the corresponding GLSM,

jnj2 − jρj2 ¼ r: ð32Þ
This space is simply a four-dimensional hyperboloid.
Gauging out a Uð1Þ phase we arrive at a two-dimensional
target space in WCPð1; 1Þ (two real dimensions).
Indeed, ρ in Eq. (6) can be chosen to be real and positive;

then so is φ. Using the choice of coordinates in (6) and (7),
we can reduce (32) to

jzj2
φ2

− φ2 ¼ r; ð33Þ

illustrated in Fig. 3. From the graph, we see that the
singularity at φ ¼ 0 is 1 and the only one singular point on
this patch. However, considering z and z̄ as coordinates, we
observe that

φ2 ¼ −
r
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

4
þ zz̄

r
ð34Þ

becomes 0 at the origin, the point that must be punctured on
the given patch. The constraints imposed on the fermion
fields are of the type

n̄τþ − ρ̄ξþ ¼ 0; ð35Þ

which implies that the fermions live on the tangent bundle
of the target manifold; see Sec. VII.
Following the same line of calculation as in Sec. III, we

obtain the only nonvanishing element of the metric

g11̄ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 4zz̄
p : ð36Þ

Its connections are

Γ1
11 ¼ −

2z̄
r2 þ 4zz̄

; and Γ1̄
1̄ 1̄

¼ −
2z

r2 þ 4zz̄
: ð37Þ

In addition, it is not difficult for the curvature tensor,

R11̄11̄ ¼ −
2r2

ðr2 þ 4zz̄Þ5=2 ð38Þ

and the Ricci tensor,

R11̄ ¼
2r2

ðr2 þ 4zz̄Þ2 : ð39Þ

From (36) and (39), we can explicitly see that the Ricci
tensor is not proportional to the metric, and this is
consistent with the fact that the target manifold is not of
the Einstein type and our general analysis of Sec. IV. The
scalar curvature is also computed; it reduces to

R ¼ 4r2

ðr2 þ 4zz̄Þ3=2 : ð40Þ

Now, it is time to talk about the quantum correction of
this model. That is, the β function is computed as follows,

βðg11̄Þone−loop ¼
r2

πðr2 þ 4zz̄Þ2 : ð41Þ

For the N ¼ ð2; 2Þ case, this is the end of the story.
However, for a nonsupersymmetric model, it is not the case;
i.e., it still receives the two-loop correction. Namely,

βðg11̄Þtwo−loop¼
r2

πðr2þ4zz̄Þ2
�
1þ r2

2πðr2þ4zz̄Þ3=2
�
; ð42Þ

see Sec. VIII for various N ¼ ð0; 2Þ models. In this
simplest example the Lagrangian (including one loop)
can be written as follows:

L¼Lð0Þ þLð1Þ ¼∂μz∂μz̄

�
1

H
−
�
r2

π
log

MUV

μ

�
1

H4

�
; ð43Þ

where H is given in (31). The first term on the right-hand
side represents the bare Lagrangian that is not renormalized
(remember that in the case at hand N ¼ Ñ ¼ 1). The
second term emerges at one loop—a different structure
proportional to log μ that is absent in the UV. It can be
ignored at large jzj.
As an aside, if we take the Uð1Þ charges of two chiral

superfields to be q and −q, the geometry of the target space
does not change, but only the scale r from the FI term
rescales as r=q. For example,

g11̄ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr=qÞ2 þ 4zz̄
p : ð44Þ

FIG. 3. Geometry of the chosen patch of the target space in the
WCPð1; 1Þ model.
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VII. GENERALIZATION TO N = ð0;2Þ WCPðN;ÑÞ
The N ¼ ð0; 2Þ deformation discussed in this section

was introduced in [10]. With the fermion fields taken into
account, we can work out in this paper heterotic super-
symmetric versions. As suggested in [15,16], we construct
N ¼ ð0; 2Þ GLSM with the gauge multiplet, Fermi mul-
tiplets, and two types of the boson chiral superfields with
Uð1Þ charge þ1 and −1.
Before proceeding to the invariant action, we recall the

superfield representation for each multiplet. In this case,
two chiral multiplets are

N i ¼ ni þ
ffiffiffi
2

p
θþτþ;i − iθþθ̄þ∇þþni;

ϱa ¼ ρa þ
ffiffiffi
2

p
θþξþ;a − iθþθ̄þ∇þþρa; ð45Þ

the gauge multiplet is

U−− ¼ σ − 2iθþλ̄i − 2iθ̄þλi þ 2θþθ̄þD; ð46Þ
and, lastly, the Fermi multiplets are

Γ−;M ¼ χ−M −
ffiffiffi
2

p
θþGM − iθþθ̄þ∇þþχ−M: ð47Þ

Now, we are allowed to present the full expression of the
N ¼ ð0; 2Þ extensionof the keymodel,which is nonminimal

Sð0;2Þ ¼
Z
d2x

�
j∇μnij2−iτ̄þ;i∇−−τ

iþþj∇̃μρaj2−iξ̄þ;a∇̃−−ξ
aþ

þ 1

4e2
F2
μνþ

1

e2
iλ̄−∇þþλ−−iχ̄−M∇þþχM−

þ 1

2e2
D2þjGMj2þ

ffiffiffi
2

p
n̄iλ−τiþ−

ffiffiffi
2

p
τ̄þ;iλ̄−ni

−
ffiffiffi
2

p
ρ̄aλ−ξ

aþþ
ffiffiffi
2

p
ξ̄þ;aλ̄−ρ

aþiDðjnij2− jρaj2−rÞ
�
:

ð48Þ

The covariant derivative for the χ−M field is defined
though its Uð1Þ charge, qM, such that

∇þþχ−M ¼ ð∂þþ − iqMAþþÞχ−M: ð49Þ

Note that the σ field is suppressed preserving (0,2) super-
eymmetry. Also, we notice that GM is an auxiliary field.
In the NLSM regime, the gauge multiplet becomes

auxiliary (all kinetic terms vanish in e2 → ∞ limit), so
the corresponding component fields (i.e., σ, λ−, and D) can
be integrated out to give the constraints. To be more precise,
the D term again results in Eq. (4), and gauginos yield

XN
i¼1

n̄iτiþ −
X̃N
a¼1

ρ̄aξ
aþ ¼ 0; ð50Þ

where the same condition applies to its Hermitian conjugate.

To obtain the geometric formulation of N ¼ ð0; 2Þ
WCPðN; ÑÞ, we follow the parallel treatment in Sec. III
to eliminate Uð1Þ redundancy by setting

ϱÑ ¼ φþ
ffiffiffi
2

p
θþκþ þ � � � ; ð51Þ

in which φ is a real field and κþ is a complexWeyl fermion.
Notice that ϱÑ is assumed to be nowhere vanishing on the
chosen patch. On the target manifold, bosonic coordinates
are defined in the same way as Eq. (7) while the fermionic
coordinates are

ζþ;i ¼ κþni þ τþ;iφ for i ¼ 1; 2;…; N;

ηþ;a ¼
1

φ

�
ξþ;a −

ρa
φ
κþ

�
for a ¼ 1; 2;…; Ñ − 1: ð52Þ

This can be seen by taking the following parametrization
for superfields:

Zi ¼ zi þ
ffiffiffi
2

p
θþζþ;i ≕N iϱÑ ;

Wa ¼ wa þ
ffiffiffi
2

p
θþηþ;a ≕ ϱaϱ

−1
Ñ
: ð53Þ

On this patch φ has the identical expression as Eq. (8)
and κþ is written in terms of the above coordinates by

κþ ¼ z̄iζiþ − φ4w̄aη
aþ

Hφ
: ð54Þ

Integrating out gauge fields we then find that

A−− ¼
i
2H

�
1

φ2
zi∂↔

−−z̄i−φ2wa∂↔
−−w̄a

�
−
1

H

X
M

qM χ̄−MχM− ;

Aþþ ¼ i
2H

�
1

φ2
zi∂↔þþz̄i−φ2wa∂↔þþw̄a

�

þhi|̄ζ̄
|̄
þζiþþhab̄η̄

b̄þηaþþðha{̄ζ̄iþηaþþH:c:Þ; ð55Þ

where

hi|̄ ¼
−1
Hφ2

�
δij̄ −

2H − r
H2φ2

z̄iz|̄

�
;

hab̄ ¼
φ2

H

�
δab̄ −

φ2

H2
ð2H þ rÞw̄āwb̄

�
;

ha{̄ ¼
r
H3

z{̄w̄a: ð56Þ

As a remark, these coefficients can also be related to the
connection associated with χM fields [see Eq. (61) with ∂þþ
replaced by the exterior derivative d] in the way

dΩ ¼ −ihpq̄dϕp ∧ dϕ̄q̄: ð57Þ
Next, we present the final expression of the geometric

formulation of N ¼ ð0; 2Þ WCPðN; ÑÞ by collecting the
above ingredients.
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SNLSM¼
Z

d2xfgi|̄∂μz̄|̄∂μziþgab̄∂μw̄b̄∂μwaþgiā∂μw̄ā∂μzi

þga{̄∂μz̄{̄∂μwaþ igi|̄ζ̄
|̄
þ∇c

−−ζ
iþþ igab̄η̄

b̄þ∇c
−−η

aþ

þ igiāη̄āþ∇c
−−ζ

iþþ iga{̄ζ̄ {̄þ∇c
−−η

aþþ iχ̄−M∇f
þþχM−

þ½hi|̄ζ̄|̄þζiþþhab̄η̄
b̄þηaþþhiāη̄āþζiþþha{̄ζ̄{̄þηaþ�

×
X
M

qM χ̄−MχM− g: ð58Þ

The covariant derivative in (58) for chiral fields is
defined as

∇c
−−ψ

p
þ ≔ ∂−−ψ

p
þ þ Γp

qsð∂−−ϕ
qÞψ sþ; ð59Þ

where fϕpg and fψpg are generic coordinates on the target
space, say, fzi; wag and fζþ;i; ηþ;ag, respectively, and Γp

qs

is defined in Eq. (14) while for Fermi multiplet, it is
shown that

∇f
þþχM− ≔ ∂þþχM− − iqMΩþþχM− ; ð60Þ

with

Ωþþ ¼ i
2H

�
1

φ2
zi∂↔þþz̄i − φ2wa∂↔þþw̄a

�
: ð61Þ

Two remarks are in order here. First, we may wonder
whether it is possible to enhance supersymmetry in (58) up
to N ¼ ð2; 2Þ under an appropriate choice of parameters.
The answer is negative. This can be traced back to the
original construction of the gauged formulation, Eq. (48).
Evidently, the kinetic term of the left-handed fermions, τþ
and ξþ (corresponding to ζþ and ηþ), respectively, does not
match that for the right-handed fermions χ−M. In addition,
interactions of these fermions are different. These two facts
block the possibility of finding N ¼ ð2; 2Þ models in the
class of N ¼ ð0; 2Þ models considered in this section.

However, we see that once the anomaly-free condition is
met, the two-loop term in the β functionvanishesmuch in the
same way as in N ¼ ð2; 2Þ; see Sec. IX for more details.
Second, in accordance with [10,17], we need to impose

the constraints on the representation of the chiral and Fermi
multiplets for the theories to be free of the gauge anomalies,
which implies their internal quantum consistency. Namely,

X
i;a

q2i þ q̃2a ¼ N þ Ñ ¼
X
M

q2M; ð62Þ

where theUð1Þ charges on the left-hand side come from the
(left-handed) fermions in the supermultiplets N i and ϱa
while those on the right-hand side are from the (right-
handed) Fermi multiplets.
To wrap up this section, the geometry of the target

manifold is identical to that obtained from the bosonic
calculation, cf. Eqs. (11) and (14)–(16), at the classical
level. Since the fermion fields play no role in one-loop
renormalization, the FI parameter and the Kähler potential
receive the same corrections at the first order as discussed
in the previous section. Taking one step further, we show in
the next two sections that the N ¼ ð0; 2Þ case has no
correction at the two-loop level.

VIII. MORE ON GEOMETRY OF WCPðN;ÑÞ
As a complement to the discussion of the WCPðN; ÑÞ

target manifold carried out above, here we present the
Riemann curvature tensors needed for the second loop to be
obtained in Sec. IX.
For a generic Kähler manifold, the Riemann curvature

tensor can be written as

Rp̄qr
s ¼ −Rqp̄r

s ¼ ∂̄p̄Γs
qr; ð63Þ

implying

Rījk
l ¼ −1

Hφ2
ðδlkδj{̄þδljδk{̄Þþ

−rþ2H
H3φ4

z{̄ðz̄jδlkþ z̄kδljÞþ
2

H2φ4
zlðz̄jδk{̄þ z̄kδj{̄Þ−

4ð−rþ2HÞ
H4φ6

zīz̄jz̄kz
l;

Rīaj
k ¼ r

H3
zīδ

k
j w̄a−

2

H2
δj{̄zkw̄aþ

4ð−rþHÞ
H4φ2

z{̄z̄jzkw̄a; Rīab
j ¼ 4rφ2

H4
zjz{̄w̄aw̄b; Rīab

c ¼−
r
H3

z{̄ðw̄bδ
c
aþ w̄aδ

c
bÞ;

Rībj
a ¼ δab

Hφ2

�
δj{̄−

−rþ2H
H2φ2

z̄jz{̄

�
; Rījk

a ¼ 0; Rāij
k ¼ r

H3
ðz̄jδki þ z̄iδkjÞwā−

4r
H4φ2

zkz̄jz̄iwā;

Rābi
j ¼φ2

H

�
δji −

2

Hφ2
zjz̄i

�
δbā−

φ4ð2Hþ rÞ
H3

δjiwāw̄bþ
4ðHþ rÞφ2

H4
z̄izjwāw̄b;

Rābc
i ¼ 2φ4

H2
ziðδbāw̄cþδcāw̄bÞ−

4φ6ðrþ2HÞ
H4

ziwāw̄bw̄c; Rābc
d ¼−

φ2

H
ðδbāδdc þδcāδ

d
bÞþ

φ4ð2Hþ rÞ
H3

ðw̄bδ
d
c þ w̄cδ

d
bÞwā;

Rābi
c ¼−

r
H3

z̄iwāδ
c
b Rāij

b ¼ 0: ð64Þ
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In what follows we also need a special quadratic combi-
nation of the Riemann tensors,

Rð2Þ
pq̄ ¼ Rrs

ptRq̄rs
t: ð65Þ

This combination can be obtained by a tedious although
straightforward calculation. Extensively employing (12)
and (64) we derive

Rð2Þ
i|̄ ¼ 2

H4φ2
½ðN þ Ñ − 1ÞH2 þ r2�δi|̄

þ 1

H7φ4
½−4ðN þ Ñ − 1ÞH4 þ 4ðN þ Ñ − 1ÞH3r

− 2ðN þ Ñ þ 2ÞH2r2 þ 8Hr3 − 4r4�z̄iz|̄;

Rð2Þ
{ā ¼ 2r2

H7
½ðN þ Ñ − 2ÞH2 þ 2r2�z̄iwā;

Rð2Þ
ab̄

¼ 2φ2

H4
½ðN þ Ñ − 1ÞH2 þ r2�δab̄

−
φ4

H7
½4ðN þ Ñ − 1ÞH4 þ 2ð2N þ 2Ñ − 3ÞH3r

þ 2ðN þ ÑÞH2r2 þ 6Hr3 þ 4r4�w̄awb̄: ð66Þ
One can easily verify the above expressions in two

simple limiting cases. First, we consider the CP models
and, then, the simplest example N ¼ Ñ ¼ 1 discussed in
Sec. VI. To reduce the generic case to CPðÑ − 1Þ, we
should again take N ¼ 0 and r negative, arriving at

Rð2Þ
ab̄

→
2Ñ
r2

gab̄: ð67Þ

On the other hand, addressing the WCPð1; 1Þ model, we
set N ¼ Ñ ¼ 1 and obtain

Rð2Þ
11̄

→
4r4

H7
; ð68Þ

cf. Eq. (42).
As is seen from Eq. (66), more and more structures

emerge in higher order corrections. In comparison with the
one-loop results in which only terms up to H−4 show up at
two loops we find additional H−5 to H−7 terms. It is not
possible to absorb them in gpq̄. This illustrates our state-
ment of nonrenormalizability of the nonsupersymmetric
Hanany-Tong model.
Similarly to theN ¼ ð2; 2Þ case, the two-loop correction

does not exist in the N ¼ ð0; 2Þ sigma model since the
imposition of (62) leads to a vanishing coefficient in front
of the second order term in the beta function.

IX. SECOND LOOP

Let us explore the renormalization of WCPðN; ÑÞ in
higher loops. For a given bosonic two-dimensional non-
linear sigma model, the first two terms in the β function are
known in the general form (see, e.g., [18]), namely,

βpq̄ ¼
1

2π
Rpq̄ þ

1

8π2
Rð2Þ
pq̄ þ � � � ; ð69Þ

where the first term is nothing but the Ricci tensor and the
following term represents the second power of the Riemann
tensors; see Eq. (66).
Note that in Eq. (69), the term proportional to the Ricci

curvature stands for the one-loop correction while the
second term composed of the square of the Riemann
tensors relates to the two-loop calculation. The discussion
of the first order renormalization is presented in Sec. IV.
Now we briefly outline what happens in the second order.
In the N ¼ ð0; 2Þ model we consider the two-loop

fermionic contribution shown in Fig. 4. If we work in
the vicinity of the origin on the given patch and keep only
the lowest order terms, this is the only relevant diagram.
Then, it is easy to see that

−
1

16π2

�
N þ Ñ þ

X
M

q2M

�
¼ −

1

8π2
ðN þ ÑÞ: ð70Þ

In the above equality we employ the anomaly-free con-
dition (62); see [10] for details. It is important to stress that
we should take the coefficient in front of the fermion

contribution to Rð2Þ
pq̄ to be −1=ð16π2Þ in the minimal N ¼

ð0; 2Þ model [19]. The reason is that the fermion graph in
Fig. 4 contributing at two loops acquires an extra factor 1=2
in passing from the Driac to Weyl fermions.
Returning to the anomaly-free nonminimal N ¼ ð0; 2Þ

model we observe that the second order contributions from
bosonic and fermionic fields cancel each other, and thus the
second order coefficient vanishes.
Indeed, if we neglect for a short while the N and Ñ

dependence in Eq. (70), the fermionic two-loop correction
reduces,−1=8π2. Together with the bosonic part in (69), we
obtain the second order coefficient

−
1

8π2
þ 1

8π2
¼ 0; ð71Þ

leading to the same result as in N ¼ ð2; 2Þ model,
in which only the first loop survives as a result of a
nonrenormalization theorem. The two models above are

FIG. 4. The second-order fermion loop diagram contributing to
the β function. The wavy line denotes the quantum part of the
bosonic fields, z, and w.
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expected to have different contributions starting from
three loops.
The remaining question refers to the overall factor

N þ Ñ in Eq. (70). In the latter equation it was obtained
by examining the vicinity of the origin of the given patch.
Now we have a closer look at the general form of Rð2Þ

pq̄
near the origin starting from (66). It is important that in the
vicinity of the origin of the origin H → r and therefore

Rð2Þ
i|̄ → ðN þ ÑÞ

�
2

H2φ2
δi|̄ −

1

H5φ4
ð2r2Þz̄iz|̄

�
;

Rð2Þ
{ā → ðN þ ÑÞ

�
2r2

H5
z̄iwā

�
;

Rð2Þ
ab̄

→ ðN þ ÑÞ
�
2φ2

H2
δab̄ −

φ4

H7
ð10r4Þw̄awb̄

�
: ð72Þ

Proportionality of Rð2Þ
pq̄ to the overall N þ Ñ factor near the

coordinate origin is obvious in the above expressions.
Summarizing, from general covariance and the above

calculation in the nonminimal anomaly-free N ¼ ð0; 2Þ
WCPðN; ÑÞ models, we have

βðgpq̄Þ ¼
1

2π
Rpq̄ þ � � � ; ð73Þ

where the ellipses stand for three-loop and higher order
corrections.
In addition, we can compare with the results in [10] [see

Eq. (4.10)]. Generally speaking, the β function in our
notation has the form

βðg2Þ ¼ −
g2

4π

�X
i

qi −
1

2

X
α

qαγα þ
1

2

X
M

qMγM

�
; ð74Þ

where γα and γM are the anomalous dimensions of the chiral
multiplets and the Fermi multiplets, respectively. Also, the
coupling constant g is linked to the FI parameter through
the relation

r ¼ 2

g2
: ð75Þ

Perturbatively, to obtain the two-loop β function, we only
need γ at the one-loop level, and we know that

γαj1−loop ¼ γMj1−loop ≡ γ: ð76Þ

Thus, Eq. (74) is simplified as

βðg2Þtwo−loop ¼ −
g2
P

iqi
4π

þ γg2

8π

�X
α

qα −
X
M

qM

�
: ð77Þ

Since this formula is universal, it is good enough to
consider a simple example discussed in [10], in particular,
the N ¼ ð0; 2Þ CPðN − 1Þ model. In this case, there are N
chiral fields with positive unit charge and the same number
of Fermi multiplets with the same charge as that of chiral
fields. As a consequence, the second term in (77) vanishes
and only the one-loop effect survives, namely,

βðg2Þtwo−loop ¼ −
Ng2

4π
: ð78Þ

A similar argument can also be applied to the entire
particular class of the N ¼ ð0; 2Þ WCPðN; ÑÞ models
without internal anomalies that we consider in this paper.
To proceed, let us first note that the anomaly-free condition
(62) in this model again forces the left-handed fermions to
“pair up” with the right-handed ones as is the case in N ¼
ð2; 2Þmodels. We can specify a particular choice for the set
of qMs such that N of them have the Uð1Þ charge þ1 and
the rest of the Ñ fields have the Uð1Þ charge −1. Then,
Eq. (77) further reduces to

βðg2Þtwo−loop ¼ −
ðN − ÑÞg4

4π
þ γg2

8π
½N − Ñ − ðN − ÑÞ�

¼ −
ðN − ÑÞg4

4π
; ð79Þ

i.e., the two-loop contribution vanishes in much the same
way as we have seen in the CPðN − 1Þ case.

X. CONCLUSIONS

In this paper, we studied the structures of a particular
NLSM derived from a class of GLSM and its N ¼ ð0; 2Þ
family. The geometry of such NLSM is a weighted complex
projective space,WCPðN; ÑÞ, whereN and Ñ stand for the
number of fields with the opposite Uð1Þ charges. This
noncompact Kählerian manifold does not admit a Kähler-
Einstein metric that leads to emergence of extra structures
and two different types of logarithms. Renormalization of
the Fayet-Iliopoulos in GLSM and that of the Kähler class
in NLSM coincide. However, there are additional loga-
rithms in NLSM.
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