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Based on the systematic Hamiltonian and superfield approaches, we construct the deformed N ¼ 4, 8
supersymmetric mechanics on Kähler manifolds interacting with a constant magnetic field and study their
symmetries. First, we construct the deformed N ¼ 4, 8 supersymmetric Landau problem via the minimal
coupling of standard (undeformed) N ¼ 4, 8 supersymmetric free particle systems on a Kähler manifold
with a constant magnetic field. We show that the initial “flat” supersymmetries are necessarily deformed to
SUð2j1Þ and SUð4j1Þ supersymmetries, with the magnetic field playing the role of a deformation
parameter, and that the resulting systems inherit all the kinematical symmetries of the initial ones. Then we
construct SUð2j1Þ supersymmetric Kähler oscillators and find that they include, in particular cases, the
harmonic oscillator models on complex Euclidian and complex projective spaces, as well as super-
integrable deformations thereof, viz. CN-Smorodinsky-Winternitz and CPN-Rosochatius systems. We
show that the supersymmetric extensions proposed inherit all the kinematical symmetries of the initial
bosonic models. They also inherit, at least in the case of the CN systems, hidden (nonkinematical)
symmetries. The superfield formulation of these supersymmetric systems is presented, based on the
worldline SUð2j1Þ and SUð4j1Þ superspace formalisms.
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I. INTRODUCTION

The models of supersymmetric mechanics were initially
introduced as toy models for supersymmetric field theories.
However, it was quickly realized that such models are of a
big interest in their own right. An important feature of the
supersymmetric mechanics models is that the main new
ingredient they bring in, the fermionic variables, after
quantization become the operators representing the spin
of particle. As the result, the fermionic parts of the relevant
Hamiltonians play the role of generalized Pauli terms
describing an interaction of a spin with external fields,
in particular, with the magnetic field. From this viewpoint,
the study of supersymmetric extensions of the mechanical
systems interacting with the magnetic field is of obvious
importance. However, such systems seem not to have

attracted enough attention, despite an enormous number
of publications on supersymmetric mechanics.
This is rather surprising, having in mind that the first

practical application of (N ¼ 2) supersymmetricmechanics
technique was the explanation of the “accidental” double
degeneracy of the spectrum of the (planar) Landau problem
(see, e.g., [1]). The Landau problem is the problem of the
planar motion of a nonrelativistic electron (charged 1

2
-spin

particle) in a constant magnetic field. For a long time, it has
been one of the central issues treated in the textbooks
on quantum mechanics [2]. However, nowadays, saying
“Landau problem”, people sometimes ignore the spin of the
original system.
The compact (spherical) analog of the planar Landau

problem is associated with a particle moving on the two-
sphere in the presence of a constant magnetic field generated
by a Dirac monopole placed in the center of the sphere. The
spherical Landau problem enjoys a SOð3Þ invariance, which
is also characteristic of the “free” particle on the two sphere.
The higher-dimensional generalization of this problem, a
particle on CPN interacting with a constant magnetic field,
inherits theSUðN þ 1Þ invariance of the relevant free system.
Quantummechanically, the inclusion of a constant magnetic
field supplies the systemwith a degenerate ground state. This
is due to the preservation of the symmetries of a free particle.
Thanks to this degeneracy, the quantum-mechanical Landau
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problem constitutes the basis of the theory of the quantum
Hall effect [3], equally as if its higher-dimensional general-
izations to complex projective spaces [4].
It is more or less obvious that the inclusion of constant

fields preserves the initial symmetries of the free particle
moving on the generic Kähler manifold as well. So the
(spinless) Landau problem can be defined for any Kähler
manifold. In order to restore the initial meaning of the
Landau problem in the context of these systems, one should
try to construct supersymmetric extensions of the (spinless)
Landau problem on a Kähler manifold, such that they
preserve the initial kinematical symmetries. However, in
the existing literature devoted to supersymmetric exten-
sions of the (generalized) Landau problem, the discussion
of the symmetry properties of the supersymmetric systems
constructed is as a rule left aside (see, e.g., [5,6]).
While for N ¼ 2, the construction of such supersym-

metric extensions is a rather trivial task, it is not the case for
the N ≥ 4 supersymmetric extensions. Generically, one
may pose the question:
How should systems in Kähler manifolds interact with

constant magnetic fields (in particular, the Landau prob-
lem) be supersymmetrized, so that their initial symmetries
be preserved?
We guess that the general answer is as follows. Instead of

consideringN , d ¼ 1 Poincaré supersymmetric extensions
of given bosonic systems, one should deal with super-
extensions based on the proper deformations of a standard
d ¼ 1 Poincaré supersymmetry.
An attempt towards proving this conjecture was per-

formed years ago in [7]. It was observed there that the
oscillator and the Landau problem on a complex projective
space admit the deformed N ¼ 4 supersymmetric exten-
sion (later on called the “weak N ¼ 4 supersymmetric
extension” [8]), which preserves the initial kinematical
symmetries of those systems. Departing from this model,
the class of systems with nonzero potentials called the
“Kähler oscillator” was introduced [7,9]. These systems
admit similar deformed supersymmetric extensions respect-
ing the inclusion of a constant magnetic field. The relevant
bosonic Hamiltonian reads

Hosc ¼ gābðπ̄aπb þ jωj2∂ āK∂bKÞ; ð1Þ

where Kðz; z̄Þ is the Kähler potential.
A few years later, the one-dimensional version of that

Kähler superoscillator model was rederived within a d ¼ 1
superfield formalism. It was based on SUð2j1Þ superalgebra
that was treated as a deformation ofN ¼ 4, d ¼ 1 Poincaré
superalgebra [10,11]. Thereby, the “weak N ¼ 4 super-
symmetry” was identified with suð2j1Þ superalgebra (this
fact was also independently noticed in the paper [12]
treating the supersymmetric quantum Landau problem on
CP1). Using similar techniques, the deformed N ¼ 8 one-
dimensional Landau problem associated with suð4j1Þ

superalgebra was also defined [13]. This study was to a
large extent inspired by the activity of building field-
theoretical models with the “rigid supersymmetry on curved
superspaces” initiated in [14].
Having in mind the “practical importance” of super-

symmetrization respecting symmetries of the initial bosonic
system and the field-theoretical importance of the “curved
superspace approach”, we develop here the systematic
approach to the deformed supersymmetrization of various
systems. These systems “live” on Kähler manifolds and
interact with a constant magnetic field by the use of a
supersymmetric analog of a minimal coupling. In the super-
field formulation, such a coupling naturally comes out under
some minimal choice of the related superfield Lagrangians.
Resorting first to theHamiltonian formalism,we construct

in this way the SUð2j1Þ supersymmetric extensions of the
Kähler oscillator (and of the Landau problem) on the generic
Kähler space. Furthermore we also discuss the SUð4j1Þ
supersymmetric Landau problem on the special Kähler
manifolds of the rigid type (that is the Kähler manifold
equipped with the holomorphic symmetric tensor of the
third rank obeying some compatibility condition [15]). We
show that this approach perfectly matches with the require-
ment that the supersymmetric Landau problem exhibits all
the kinematical symmetries of the original system and
involves the appropriate spin interaction. It is demonstrated
that both the SUð2j1Þ and SUð4j1Þ supersymmetric Landau
problems inherit all the kinematical symmetries of the
initial systems. Requiring the Hamiltonian in the SUð2j1Þ
case to commute with all the supercharges amounts to
adding the appropriate Zeeman term to it. In the super-
space language, this means that we should start from the
properly central-charge extended superalgebra, with the
Hamiltonian being identifiedwith the relevant central charge.
Analogously, the general SUð2j1Þ Kähler superoscillator
systems as superextensions of thosewith theHamiltonian (1)
can be constructed and then reproduced from the superfield
approach.
Exemplifying the general analysis, we set up and study

SUð2j1Þ supersymmetric extensions of the following par-
ticular superintegrable Kähler oscillator models:

(i) CN oscillator (the sum of N two-dimensional iso-
tropic oscillators);

(ii) CN-Smorodinsky-Winternitz system (the sum of N
copies of two-dimensional isotropic oscillators de-
formed by ring-shaped potentials) [16];

(iii) CPN oscillator [7,17], i.e., the CPN- counterpart of
the CN oscillator;

(iv) CPN-Rosochatius system [18], i.e., the CPN-
counterpart of theCN-Smorodinsky-Winternitz system.

We show that these models also inherit all the kinematical
symmetries of the initial systems. In addition, we find the
explicit expressions for the superanalogs of the hidden
symmetry generators of the CN-oscillator and CN-
Smorodinsky-Winternitz system (i.e., of the Fradkin and
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Uhlenbeck tensors). Unfortunately, we were not yet able to
find the superanalogs of such hidden symmetry generators
for theCPN-oscillator and of the CPN-Rosochatius system,
though they hopefully exist.
The paper is organized as follows:
In Sec. II, we describe the phase superspace as a proper

setting for the supersymmetrization of systems on Kähler
manifolds in an interaction with a constant magnetic field.
The Legendre transformation relating the Hamiltonian and
Lagrangian formulations of those systems is given. In
Sec. III, we present the Hamiltonian formulations of
SUð2j1Þ and SUð4j1Þ supersymmetric Landau problems.
The general Hamiltonian formulation of the SUð2j1ÞKähler
superoscillator is described in Sec. IV. As an example, we
show that this class of Hamiltonians incorporates the super-
symmetric version of a two-dimensional anisotropic oscil-
lator. In Sec. V, the previously considered systems are
recovered within the manifestly SUð2j1Þ and SUð4j1Þ
covariant off shell superfield approaches. Section VI is
devoted to a more detailed discussion of the SUð2j1Þ
supersymmetric extensions of the oscillatorlike systems on
CN and CPN that are listed above and to the study of their
symmetries.

II. PHASE SUPERSPACE, KINEMATICAL
SYMMETRIES, AND LAGRANGIANS

The Kähler manifold M is the Hermitian manifold
with the Hermitian metrics, ds2 ¼ gab̄dz

adz̄b, which also
defines the symplectic structure,

ωM ¼ igab̄dz
a ∧ dz̄b; dωM ¼ 0 ⇒ gab̄ ¼ ∂a∂ b̄K;

∂a ¼
∂
∂za ; ∂ b̄ ¼

∂
∂z̄b ; ð2Þ

where the real function Kðz; z̄Þ, Kähler potential, is defined
up to the holomorphic and antiholomorphic func-
tions, Kðz; z̄Þ → Kðz; z̄Þ þUðzÞ þ Ūðz̄Þ.
The Kähler manifold can be equipped with the Poisson

brackets associated with the above symplectic structure,

ff;ggM ¼ igāb
� ∂f
∂z̄a

∂g
∂zb−

∂g
∂z̄a

∂f
∂zb

�
; gābgb̄c ¼ δac: ð3Þ

Therefore, the isometries of the Kähler structure should
preserve both complex and symplectic structures; i.e., they
are generated by the holomorphic Hamiltonian vector
fields,

Vμ ¼ fhμ; gM ¼ Va
μðzÞ

∂
∂za þ Vā

μðz̄Þ
∂
∂z̄a ;

Va
μ ¼ igb̄a∂ b̄hμðz; z̄Þ; Vā

μ ¼ Va
μ; ð4Þ

where the real function hμðz; z̄Þ is a momentum map
sometimes called the Killing potential. The holomorphicity

of the vector field yields the following equation to the
Killing potential:

∂2hμ
∂za∂zb − Γc

ab

∂hμ
∂zc ¼ 0; ð5Þ

with Γc
ab ¼ gcd̄∂agbd̄.

1 The same result can be obtained by
the direct solving of the Killing equations,

ðaÞ Vμa;b þ Vμb;a ¼ 0;

ðbÞ Vμa;b̄ þ Vμb̄;a ¼ 0; with Vμa ¼ gab̄V
b̄
μ: ð6Þ

The action of the vector field Vμ on an arbitrary function
fðz; z̄Þ can be expressed through the Poisson bracket with
the Killing potential,

Vμf ¼ fhμ; fgM:

Thus, the requirement that the vector fields Vμ form Lie
algebra amounts to the same Lie algebra relations for the
Killing potentials,

½Vμ;Vν� ¼ Cλ
μνVλ;⇔ fhμ; hνgM ¼ Cλ

μνhλ þ const:; ð7Þ

where the constant term either corresponds to a cocycle in
that Lie algebra or can be absorbed by the appropriate
constant shift of Killing potentials.
Let us consider the electrically charged particle moving

on a Kähler manifold and interacting with the constant
magnetic field of strength B, i.e., theUð1Þ-Landau problem
on Kähler manifold. For this aim, we equip the cotangent
bundle of the Kähler manifold with the following sym-
plectic structure and Hamiltonian:

ωB ¼ dπa ∧ dza þ dπ̄a ∧ dz̄a − iBgab̄dz
a ∧ dz̄b;

H0 ¼ gābπ̄aπb: ð8Þ

The corresponding Poisson brackets are given by

fπa; zbg ¼ δba; fπa; π̄bg ¼ iBgab̄: ð9Þ
The isometries of a Kähler structure discussed earlier define
the Noether constants of motion,

Jμ ¼ Va
μπa þ V̄ā

μπ̄ā − Bhμðzz̄Þ;

Va
μ ¼ igb̄a∂ b̄hμðz; z̄Þ∶

� fH0; JμgB ¼ 0

fJμ; JνgB ¼ Cλ
μνJλ

�
; ð10Þ

where the brackets f·; ·gB are calculated according to (9).
Notice that the vector fields generated by Jμ are indepen-
dent of B,

1The only nonvanishing components of the Christoffel symbol
in the Kähler geometry are Γc

ab and Γc̄
ā b̄

¼ gdc̄∂ āgdb̄.
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Ṽμ ¼ fJμ; gB ¼ Va
μðzÞ

∂
∂za − Va

μ;bπa
∂
∂πb þ c:c: ð11Þ

Hence, coupling to a constant magnetic field preserves the
whole symmetry algebra of a free particle moving on a
Kähler manifold. This implies that the Landau problem can
be properly defined on any Kähler manifold.
To construct fermionic extensions of the systems on

Kähler manifolds interacting with constant magnetic field,
we define the ð2NjMNÞC-dimensional phase superspace
equipped with the symplectic structure,

Ω ¼ dπa ∧ dza þ dπ̄a ∧ dz̄a

− iðBgab̄ − Rab̄cd̄η
cαη̄dαÞdza ∧ dz̄b

þ igab̄Dηaα ∧ Dη̄bα; ð12Þ

where α ¼ 1;…M are spinorial indices, Dηaα ¼
dηaα þ Γa

bcη
bαdzc, and Γa

bc, Rab̄cd̄ ¼ geb̄ðΓe
acÞ;d̄ are, respec-

tively, the components of the connection and curvature of
the Kähler structure.
The Poisson brackets corresponding to the symplectic

structure (12) amount to the relations,

fπa; zbg ¼ δba; fπa; ηbαg ¼ −Γb
acη

cα;

fπa; π̄bg ¼ iðBgab̄ − Rab̄cd̄η
cαη̄dαÞ; fηaα; η̄bβg ¼ igab̄δαβ;

ð13Þ

and their complex conjugates. They induce the following
generic Poisson bracket for the functions on the phase
superspace:

ff; gg ¼ ∂f
∂πa ∧ ∇agþ

∂f
∂π̄a ∧ ∇̄ag

þ iðBgab̄ − Rab̄cd̄η
cαη̄dαÞ

∂f
∂πa ∧

∂g
∂π̄b

þ igāb
� ∂lf
∂ηaα ∧

∂rg
∂η̄bα

�
; ð14Þ

where A ∧ B ¼ AB − ð−1ÞpðAÞpðBÞBA and

∇a ≡ ∂
∂za − Γc

abη
bα ∂
∂ηcα : ð15Þ

The extended symplectic structure (12) and Poisson
brackets (14) are manifestly covariant with respect to the
transformation,

z̃a ¼ z̃aðzÞ; π̃a ¼
∂zb
∂z̃a πb; η̃aα ¼ ∂z̃a

∂zb η
bα: ð16Þ

Hence, we can lift the isometries (11) to the whole phase
superspace and define the respective super-Hamiltonian
vector fields as

Vμ ¼fJ μ; g

¼Va
μðzÞ

∂
∂za−Va

μ;bπa
∂
∂πbþVa

μ;bη
bα ∂
∂ηaαþ c:c:; ð17Þ

where

J μ ¼ Jμ þ
∂2hμ
∂zc∂z̄d η

cαη̄dα; ð18Þ

with Jμ defined by (10).
Note that the symplectic structure (12) can be repre-

sented as a locally exact one form,

Ω ¼ dA

A ¼ πadza þ π̄adz̄a þ i
B
2
ð∂aKdza − ∂ āKdz̄aÞ

þ i
2
gab̄ðηaαDη̄bα þ η̄bαDηaαÞ: ð19Þ

Then, by the Hamiltonian,

H ¼ gābπ̄aπb þ Uðz; z̄; η; η̄Þ; ð20Þ

where the potential term Uðz; z̄; η; η̄Þ will be defined later
for each specific system, we can immediately write down
the first order-Lagrangian with the action,

S ¼
Z

A −Hdt: ð21Þ

Eliminating cyclic variables πa, π̄a, we arrive at the second-
order Lagrangian,

L ¼ gab̄ _z
a _̄zb þ i

B
2
ð∂aK_za − ∂ āK _̄zaÞ

þ i
2
gab̄ðηaαDtη̄

b
α þ η̄bαDtη

aαÞ − Uðz; z̄; η; η̄Þ
with Dtη

a
α ¼ _ηaα þ Γa

bcη
b
α _zc: ð22Þ

Now we can rederive (and so check) all the previous
formulas by applying the standard Legendre transformation
just to this Lagrangian. We define the canonical bosonic
momenta,

Pa ≔
∂L
∂ _za ¼ gab̄ _̄z

b þ i
B
2
∂aK −

i
2
∂cgab̄ðηcαη̄b̄αÞ;

Pā ≔
∂L
∂ _̄za ¼ _zbgbā − i

B
2
∂ āK þ i

2
∂ c̄gbāðηcαη̄b̄αÞ; ð23Þ

and the canonical fermionic ones,

Paα ≔
∂RL
∂ _ηaα ¼

i
2
gab̄η̄

b
α; Pα

ā ≔
∂RL

∂ _̄ηaα ¼ i
2
gābηbα: ð24Þ
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The above expressions indicate the appearance of second-
class constraints,

ϕaα ¼Paα−
i
2
gab̄η̄

b
α≃0; ϕα

ā ¼Pα
ā−

i
2
gābηbα≃0: ð25Þ

Thus, for the Hamiltonian formulation, we need to eliminate
these constraints in accordance with the Dirac’s method.
The standard procedure yields the following nonvanishing
Dirac brackets (and their complex conjugates):

fPa; zbg ¼ δba; fPa; ηbαg ¼ −
1

2
Γb
acη

cα;

fPa; η̄bαg ¼ −
1

2
∂agcd̄g

cb̄η̄dα; fηaβ; η̄bαg ¼ igab̄δβα;

fPa; Pb̄g ¼ −
i
4
½∂agcd̄∂ b̄gfē − ða ↔ b̄Þ�gcēðηfαη̄dαÞ;

fPa; Pbg ¼ −
i
4
½∂agcd̄∂bgfē − ða ↔ bÞ�gcēðηfαη̄dαÞ: ð26Þ

Introducing the noncanonical bosonic momenta, πa¼gab̄ _̄z
b,

π̄a ¼ _zbgbā, and taking into account the relations between
the momenta Pa, Pb̄, πa, πb̄ in (23), it is straightforward to
recover the brackets involving πa, π̄a and defined earlier in
Eqs. (13). In particular, it is easy to show that fπa; πbg ¼
fπ̄a; π̄bg ¼ 0. It is also straightforward, applying the
Noether procedure directly to (22) and assuming that the
potential term U is invariant, to reproduce the conserved
isometry current J μ defined in (18). With all these ingre-
dients at hand, we are prepared to turn to supersymmetrizing
the Landau problem on Kähler manifold.

III. SUPERSYMMETRIC LANDAU PROBLEM

To define the (deformed) N ¼ 2M supersymmetric
extension of the Landau problem (i.e., of the free particle
interacting with a constant magnetic field), we make use of
the strategy similar to symplectic coupling in the pure
bosonic case. The starting point is some supersymmetric
Hamiltonian system supplied by supercharges Qα and Q̄α,
which close on a Hamiltonian H0,

fQα; Qβg0 ¼ fQ̄α; Q̄βg0 ¼ 0; fQα; Q̄βg0 ¼ iδαβH0;

fQα;H0g0 ¼ fQ̄α;H0g0 ¼ 0; ð27Þ

where the Poisson brackets are defined by (13) with a zero
magnetic field, B ¼ 0.
To introduce an interaction with an external magnetic

field, we deform the supersymplectic structure, still pre-
serving the form of the supercharges, ðΩB¼0; Qα; Q̄αÞ →
ðΩB;Qα; Q̄αÞ. Now, the graded Poisson bracket f·; ·g is
defined through the symplectic form ΩB defined in (12),
and one has to check whether the supersymmetry algebra
(27) remains unaltered.

If this is the case, then the Hamiltonian can be defined
as H0 ≔ i

M fQα; Q̄αg. Otherwise, we end up with some
deformed superalgebra, which is different from the stan-
dard d ¼ 1, N ¼ 2M super Poincaré’ algebra (27), and
there we have to select the generator admitting an inter-
pretation as the appropriate Hamiltonian, i.e.,

fQα;Qβg¼ 0þ iB…; fQα;Q̄βg¼ iδαβH0þ iB… ð28Þ

Here, dots stand for some possible extra generators, which
should be further commuted with supercharges and among
themselves in order to obtain a closed superalgebra.
Below we will show that this program works perfectly

well for the cases of (deformed) N ¼ 4, 8 supersymmetric
Landau problems.

A. The SUð2j1Þ (deformed N = 4) supersymmetric
Landau problem

In order to set up theN ¼ 4 Landau problem, we choose
the standard “chiral” supercharges Qα, Q̄α (α ¼ 1, 2) with
the same ansatz for them as in the absence of a magnetic
field and introduce the charges generating the SUð2Þ R
symmetry,

Qα ¼ πaη
aα; Q̄α ¼ π̄aη̄

a
α;

Rα
β ¼ gab̄η

aαη̄bβ −
1

2
δαβgab̄η

aγη̄bγ : ð29Þ

The closure of their Poisson brackets yields the super-
algebra,

fQα;Qβg¼ 0; fRα
β;R

γ
δg¼−iδγβRα

δ þ iδαδR
γ
β;

fQα;Rβ
γg¼ iδαγQβ−

i
2
δβγQα; fQα;Q̄βg¼ iδαβH0þ iBRα

β;

fQα;H0g¼ i
B
2
Qα; fRα

β;H0g¼ 0; ð30Þ

where

H0 ¼ gābπ̄aπb −
1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ þ

B
2
gab̄η

aαη̄bα: ð31Þ

Extending the set (29) by the generator (31), we arrive at
the suð2j1Þ superalgebra (or “weak N ¼ 4 superalgebra”
in the terminology of [8]). We observe, however, that the
supercharges do not commute with the Hamiltonian. This
drawback can be remedied via the appropriate modification
of the Hamiltonian,

H̃0 ¼ H0 −
B
2
gab̄η

aαη̄bα

¼ gab̄πaπ̄b −
1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ þ Bgab̄η

aαη̄bα∶

fQα; H̃0g ¼ 0: ð32Þ
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The last term in the Hamiltonians (31), (32) is obviously a
Zeeman term describing the interaction of the spin with an
external magnetic field. From the mathematical point of
view, the shift in (32) is the new R-symmetry Uð1Þ
generator R≕ 1

2
gab̄η

aαη̄bα. It extends SUð2Þ R symmetry
generated byRα

β to Uð2Þ R symmetry. Since H̃0 commutes
with all other generators of the extended superalgebra, it
can be interpreted as the central charge generator promoting
the standard suð2j1Þ superalgebra to its central extensionbsuð2j1Þ [11].
All the generators of suð2j1Þ superalgebra (and of its

central extension) are manifestly invariant under the action
of the isometry current (18),

fQα;J μg¼fQ̄α;J μg¼fRα
β;J μg¼fH0;J μg¼ 0: ð33Þ

This means that the supersymmetric system constructed
inherits all the kinematical symmetries of the initial system.
In particular, in the case of the CPN-Landau problem, the
extended system respects SUðN þ 1Þ symmetry.
Thus, we have accomplished the well-defined “weak

N ¼ 4 supersymmetrization” of the Landau problem on a
generic Kähler manifold and found that its supersymmetry
algebra is bsuð2j1Þ.
Finally, it is straightforward to write down the

Lagrangian corresponding to (31),

L0 ¼ gab̄ _z
a _̄zb þ i

B
2
ð∂aK_za − ∂ āK _̄zaÞ

þ i
2
gab̄ðηaαDtη̄

b
α þ η̄bαDtη

aαÞ

þ 1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ −

B
2
gab̄η

aαη̄bα: ð34Þ

The Lagrangian corresponding to the shifted Hamiltonian
(32) is obviously L̃0 ¼ L0 − B

2
gab̄η

aαη̄bα. These Lagrangians
provide a higher-dimensional generalization of those con-
structed in [19], [10], using the SUð2j1Þ superfield tech-
niques. The superfield derivation of (34) will be given in
Sec. VI. The relevant SUð2j1Þ off shell multiplet content is
N chiral multiplets (2, 4, 2). Note that the Lagrangian and
Hamiltonian L0 and H0 coincide with the previously
derived general expressions (22) and (20) for α ¼ 1, 2
and the choice U ¼ 1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ − Bgab̄η

aαη̄bα.

B. SUð4j1Þ (deformed N = 8) supersymmetric
Landau problem

In the previous subsection, we considered the coupling
of N ¼ 4 supersymmetric particle on Kähler manifold to a
constant magnetic field and showed that the resulting
system yields the deformed SUð2j1Þ supersymmetric
Landau problem. We have shown that the latter inherits
the whole isometry group of the original system. Now we
perform a similar construction for N ¼ 8 supersymmetric

mechanics on the special Kähler manifolds of the rigid
type [20].
The special Kähler manifold of the rigid type is the

Kähler manifold equipped with the symmetric tensor
fabcdzadzbdzc and its complex conjugate which obey
the following compatibility conditions:

∂
∂z̄d fabc¼ 0; fabc;d ¼ fabd;c; Rab̄cd̄ ¼−f̄b̄ d̄ n̄gn̄mfmac;

ð35Þ

where fabc;d ¼ fabc;d − Γe
dafebc − Γe

dbfaec − Γe
dcfabe is the

covariant derivative of the third-rank covariant tensor. The
special Kähler manifolds of the rigid type are widely known
because of their close relevance to T duality that relates the
UV and IR limits of the N ¼ 2, d ¼ 4 super Yang-Mills
theory [21].
To construct the relevant supersymmetric Landau prob-

lem, we choose the symplectic structure (12) and Poisson
brackets (14) with the suð4Þ spinor indices α; β ¼ 1;…; 4.
To avoid a possible confusion, we relabel them by the
capital latin letters I, J, K, L. With this notation, the “flat”
N ¼ 8 supersymmetry algebra reads

fQI;QJg¼fQ̄I;Q̄Jg¼ 0; fQI;Q̄Jg¼ iδIJHSUSY: ð36Þ

Following [20], we define the supercharges as

QI ¼ πaη
aI þ i

3
f̄abcT̄abcI; Q̄I ¼ π̄aη̄

a
I þ

i
3
fabcTabc

I ;

Tabc
I ≡ 1

2
εIJKLη

aJηbKηcL; ð37Þ

where the symmetric tensor fabc obeys the relations (35).
2

Also, we introduce the following deformation of the
Poisson brackets used in [20]:

fπa;zbg¼δba; fπa;ηbIg¼−Γb
acη

cI;

fπa;π̄bg¼ iðBgab̄−Rab̄cd̄η
cI η̄dI Þ; fηaI;η̄bJg¼ igab̄δIJ: ð38Þ

Then we can construct R-symmetry charges forming suð4Þ
algebra by the same relations as in the undeformed case,

2Here, we introduced the antisymmetric symbol εIJKL satisfy-
ing the following identities:

ε1234 ¼ ε1234 ¼ 1; εIJKLεIJKL ¼ 24;

εIJKLεIJKM ¼ 6δLM; εIJKLεIJMN ¼ 2ðδKMδLN − δKNδ
L
MÞ;

εIJKLεIMNP ¼ δJMδ
K
Nδ

L
P − δJMδ

K
Pδ

L
N þ δJNδ

K
Pδ

L
M − δJNδ

K
Mδ

L
P

þ δJPδ
K
Mδ

L
N − δJPδ

K
Nδ

L
M:

The highest-degree monomial of the Grassmann variables can be
represented as ψ IψJψKψL ¼ 1

24
εIJKLðεMNPRψ

MψNψPψR).
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RI
J ¼ ηaIgab̄η̄

b
J −

δIJ
4
ηaKgab̄η̄

b
K;

fRI
J; R

K
Lg ¼ iðδKJ RI

L − δILR
K
J Þ: ð39Þ

Calculating the modified Poisson brackets between the
supercharges and R charges, we arrive at the generators
HSUSY, QI, RI

J which form the superalgebra suð4j1Þ,

fQI;QJg¼fQ̄I;Q̄Jg¼0; fQI;Q̄Jg¼ iδIJH0þiBRI
J;

fRI
J;Q

Kg¼ iδKJ Q
I−

i
4
δIJQ

K; fH0;QKg¼−
3iB
4

QK: ð40Þ

Here,

H0 ¼ gābπ̄aπb þ Rab̄cd̄Λacb̄ d̄
0 þ B

4
ηaKgab̄η̄

b
K

−
1

3
fabc;dΛabcd −

1

3
f̄abc;dΛ̄abcd; ð41Þ

where, as before, fabc;d is the covariant derivative of the
third-rank covariant symmetric tensor, and

Λabcd ≔ −
1

8
εIJKLη

aIηbJηcKηdL;

Λacb̄ d̄
0 ≔

1

2
ηaIηcJ η̄bI η̄

d
J: ð42Þ

We observe that the inclusion of a constant magnetic field B
deformsN ¼8, d ¼ 1 Poincaré superalgebra to the suð4j1Þ
superalgebra.
Let us require that the isometry of the Kähler structure

given by the vector field Vμ preserves as well the third-
order tensor fabcdzadzbdzc; i.e., that the Lie derivative of
the latter along this field equals to zero,

LVμ
fabcdzadzbdzc¼0⇔3Vd

μ;ðbfacÞdþVd
μfabc;d¼0: ð43Þ

Using these additional relations, one can check that the
isometry generator (18) commutes with all the elements of
SUð4j1Þ superalgebra,

fJ μ;QIg¼fJ μ;Q̄Ig¼fJ μ;RI
Jg¼fJ μ;HLang¼0: ð44Þ

Thus, we managed to define the consistent SUð4j1Þ Landau
problem on special Kähler manifolds of the rigid type.
In contrast to the SUð2j1Þ Landau problem, we cannot

bring the Hamiltonian to the form in which it commutes
with the supercharges, except for the trivial case fabc ¼ 0.
Finally, taking into account the correspondence (22), we

can write the expression for the relevant Lagrangian,

L0 ¼ gab̄ _z
a _̄zb þ i

B
2
ð∂aK_za − ∂ āK _̄zaÞ

þ i
2
gab̄ðηaIDtη̄

b
I þ η̄bIDtη

aIÞ − B
4
ηaKgab̄η̄

b
K

þ 1

3
ðfabc;dΛabcd þ f̄ā b̄ c̄;d̄Λ̄ā b̄ c̄ d̄Þ

þ fabcgcc̄
0
f̄c̄0d̄ ēΛabd̄ ē

0 : ð45Þ

The rederivation of this Lagrangian from the appropriate
off shell SUð4j1Þ superfield formalism is given in Sec. V,
where the conditions (35) are resolved, in the special
coordinate frame, through the single holomorphic function
F ðzÞ known as Seiberg-Witten prepotential,

gab̄ ¼
∂2F ðzÞ
∂za∂zb þ c:c:;

Γabc̄ ¼
∂3F

∂za∂zb∂zc fabc ¼ eiν
∂3F ðzÞ

∂za∂zb∂zc : ð46Þ

Clearly, the function F ðzÞ is defined up to the redefinition,

F ðzÞ → F ðzÞ þ icabzazb þ caza þ c; ð47Þ

where ca, c are the arbitrary complex constants, and cab are
the real ones, c̄ab ¼ cab.
The corresponding Kähler potential is given by the

expression,

Kðz; z̄Þ ¼ z̄a
∂F ðzÞ
∂za þ za

∂F̄ ðz̄Þ
∂z̄a : ð48Þ

In these coordinates, the T-duality transformation is real-
ized as follows [21]:

ðza;F ðzÞÞ →
�
ua ¼

∂F
∂za ; F̃ ðuÞ

�
;

where
∂2F̃ ðuÞ
∂ua∂uc

∂F
∂zc∂zb ¼ −δab;

F̃ ðuÞ ¼ ðuaza − F ðzÞÞjua¼∂aF ðzÞ: ð49Þ

IV. SUð2j1Þ KÄHLER SUPEROSCILLATOR

The Kähler oscillator is defined by the symplectic
structure (8) and the Hamiltonian [9],

Hosc ¼ gābðπ̄aπb þ jωj2∂ āK∂bKÞ; ð50Þ

where Kðz; z̄Þ is the Kähler potential.
This system is distinguished in that it is “friendly” to

supersymmetrization: the addition of the potential (50)
amounts to minor changes in the procedure of the SUð2j1Þ
supersymmetrization of the Landau problem described in
the previous section. Namely, we can preserve the form
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(29) of the SUð2Þ R charges and adopt the following
slightly modified expressions for the supercharges:3

Θα ¼ πaη
aα þ iω̄∂̄aKεαβη̄aβ;

Θ̄α ¼ π̄aη̄
a
α þ iω∂aKεαβη

aβ: ð51Þ

Calculating their Poisson brackets, we obtain

fΘα; Θ̄βg ¼ iδαβHosc þ iBRα
β; fΘα;Θβg ¼ 2iω̄Rαβ;

fΘα;Rβ
γg ¼ −iδαγΘβ þ i

2
δβγΘα; ð52Þ

where the Hamiltonian is now given by the expression,

Hosc¼ gābðπ̄aπbþjωj2∂ āK∂bKÞ−1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ

−
1

2
ωKa;bη

aαηbα−
1

2
ω̄Kā;b̄η̄

a
αη̄

bαþB
2
gab̄η

aαη̄bα: ð53Þ

To close the superalgebra, we have to complete (52) by the
SUð2Þ algebra relations between the R charges as is given
in (29) and by the full set of the Poisson brackets involving
the supercharges Θ̄β.
In order to bring this superalgebra into the conventional

form, it is convenient to rotate the supercharges as

Qα ¼ eiν=2 cos λΘα þ e−iν=2 sin λεαγΘ̄γ;

Q̄α ¼ e−iν=2 cos λΘ̄α − eiν=2 sin λεαγΘγ; ð54Þ

where

cos 2λ ¼ Bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jωj2 þ B2

p ;

sin 2λ ¼ −
2jωjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4jωj2 þ B2
p ; ω ¼ jωjeiν: ð55Þ

In terms of these newly defined quantities, the symmetry
algebra is rewritten as

fQα; Q̄βg ¼ iδαβHosc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jωj2 þ B2

q
Rα

β;

fQα;Hoscg ¼ i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jωj2 þ B2

q
Qα;

fQα; Qβg ¼ fQ̄α; Q̄βg ¼ 0; ð56Þ

fQα;Rβ
γg ¼ −iδαγQβ þ i

2
δβγQα

fRα
β;R

γ
δg ¼ iδγβR

α
δ − iδαδR

γ
β fRα

β;Hoscg ¼ 0: ð57Þ

Comparing these relations with those of the supersymmet-
ric N ¼ 4 Landau problem (30), we can identify them as
defining SUð2j1Þ superalgebra with the deformation
parameter m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jωj2 þ B2

p
.

The Lagrangian of SUð2j1Þ supersymmetric Kähler
oscillator is given by the general expression (22), with

U ¼ jωj2gab̄∂aK∂ b̄K −
1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ −

ω

2
Ka;bη

aαηbα

−
ω̄

2
Kā;b̄η̄

a
αη̄

bα þ B
2
gab̄η

aαη̄bα: ð58Þ

The supersymmetrization procedure described above is
capable of producing a family of nonequivalent
Hamiltonians parametrized by an arbitrary holomorphic
function. Namely, replacing the initial Kähler potential K
by the gauge-equivalent one,

Kðz; z̄Þ → Kðz; z̄Þ þ 1

ω
UðzÞ þ 1

ω̄
Ūðz̄Þ; ð59Þ

we obtain the class of Hamiltonians parametrized by an
arbitrary holomorphic function UðzÞ,

Hosc →Hosc ¼ gābðπ̄aπb þ ∂ āŪ∂bUÞ− 1

2
Rab̄cd̄η

aαη̄bαη
cβη̄dβ

þ 1

2
Ua;bη

aαηbα þ
1

2
Ūā;b̄η̄

a
αη̄

bα þB
2
gab̄η

aαη̄bα

þ jωj2gāb∂ āK∂bK

þ jωjgābð∂ āK∂bUþ ∂ āŪ∂bKÞ
−
ω

2
Ka;bη

aαηbα −
ω̄

2
Kā;b̄η̄

a
αη̄

bα: ð60Þ

In the limit ω ¼ 0, we arrive at the well-known
Hamiltonian which admits, in the absence of magnetic
field, the “flat”N ¼ 4 supersymmetry (see, e.g., [22]). It is
given by the first line in the above expression with B ¼ 0.

A. Two-dimensional anisotropic oscillator

The supersymmetrization procedure outlined above
makes it possible to extend the class of the known systems
admitting such a supersymmetrization. Here, we illustrate
this on the case of a two-dimensional harmonic oscillator,
which is the simplest system possessing the conventional
N ¼ 4, d ¼ 1 “Poincaré” supersymmetric extension. Take
the one-dimensional complex space ðC; ds2 ¼ dzdz̄Þ and
consider in it the Kähler oscillator defined by the potential,

Kðz; z̄Þ ¼ zz̄þ igz2

2ω
−
iḡz̄2

2ω̄
: ð61Þ

3We use here the following rules for complex conjugation and
raising and lowering of SUð2Þ spinor indices:

εαβ ¼ −εαβ; εαβ ¼ −εβα;

ε12 ¼ ε21 ¼ 1; εαβεγδ ¼ δαδδ
β
γ − δαγ δ

β
δ :
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It gives rise to the following Kähler-oscillator system:

H ¼ ππ̄ þ ðωω̄þ gḡÞzz̄þ iω̄gz2 − iωḡz̄2;

fπ; zg ¼ fπ̄; zg ¼ 1; fπ; π̄g ¼ iB: ð62Þ

Diagonalizing this potential, we arrive at the two-
dimensional anisotropic oscillator system with frequencies,

ω� ¼ jjωj � jgjj: ð63Þ

For the choice ω ¼ 0, it yields the two-dimensional
isotropic oscillator with the frequency jgj, which admits,
in the absence of a magnetic field, the standard N ¼ 4,
d ¼ 1 supersymmetrization. In the presence of a magnetic
field, this supersymmetry is deformed to SUð2j1Þ. In the
opposite limit, at g ¼ 0, we once again obtain some
SUð2j1Þ supersymmetric extension of a two-dimensional
isotropic oscillator, but different from the first option. In the
generic case of g ≠ 0, ω ≠ 0, the procedure proposed
allows us to construct a SUð2j1Þ superextension of the
two-dimensional anisotropic oscillator interacting with a
constant magnetic field perpendicular to the plane.
Enlarging the above set of Poisson brackets by the relation
fηα; η̄βg ¼ iδαβ, we can write down the Hamiltonian of the
supersymmetric extension of this system as

Hanosc ¼ ππ̄ þ ðωω̄þ gḡÞzz̄þ iω̄gz2 − iωḡz̄2 −
ig
2
ηαηα

þ iḡ
2
η̄αη̄

α þ B
2
ηαη̄α: ð64Þ

The relevant supercharges and R charges have the follow-
ing simple form:

Θα ¼ πηα þ ðiω̄zþ ḡ z̄Þεαβη̄β
Rα

β ¼ ηαη̄β −
1

2
δαβη

γη̄γ: ð65Þ

It is straightforward to extend this model to N-dimensional
complex Euclidian space CN (see Sec. VI).

V. SUPERFIELD FORMULATION

The one-particle [i.e., one-(complex)dimensional] ver-
sions of the Lagrangians presented above were derived
from the SUð2j1Þ and SUð4j1Þ superfield approaches in
[11] and [13]. The generalization of these models to the
N-dimensional case is straightforward. We briefly describe
it below.

A. SUð2j1Þ case
As the first step, we reproduce the Lagrangian of the

SUð2j1Þ Kähler superoscillator corresponding to (53) and
its particular case, the Lagrangian of SUð2j1Þ supersym-
metric Landau problem (34).

In [10] and [11], the coset method was used to define the
world-line realizations of the supergroup SUð2j1Þ on the
d ¼ 1 superspace ðt; θα; θ̄βÞ identified with the coset of
SUð2j1Þ over its R-symmetry subgroup SUð2Þ. The basic
objects of this realization are covariant spinor derivatives,

Dα ¼ e−
imt
2

��
1þm

2
θ̄βθβ −

3m2

16
ðθ̄βθβÞ2

� ∂
∂θα

−
m
2
θ̄αθβ

∂
∂θβ −

i
2
θ̄α∂t

�
;

D̄α ¼ e
imt
2

�
−
�
1þm

2
θ̄βθβ −

3m2

16
ðθ̄βθβÞ2

� ∂
∂θ̄α

þm
2
θ̄βθα

∂
∂θ̄β þ

i
2
θα∂t

�
; ð66Þ

which, in the contraction limit m ¼ 0, become standard
covariant spinor derivatives of flatN ¼ 4, d ¼ 1 supersym-

metry. The chiral SUð2j1Þ superfieldsΦaðt; θ̂; ¯̂θÞ satisfy the
generalized SUð2j1Þ covariant chirality constraints [11],

ðcos λD̄α − sin λDαÞΦa ¼ 0: ð67Þ

In the appropriate superspace basis, the conditions (67)
become “short” up to an overall factor,

ðcos λD̄α − sin λDαÞΦa

¼
�
1þ B

4
¯̂θ
β
θ̂β þ

ω

4
ðθ̂βθ̂β þ ¯̂θ

β ¯̂θβÞ −
m2

32
ð ¯̂θβθ̂βÞ2

�

×

�
−

∂
∂ ¯̂θα þ

i
2
θ̂α∂t

�
Φa; ð68Þ

and are solved by the expressions,

ΦaðtL;θ̂αÞ¼zaþ θ̂αη
aαþ1

2
θ̂αθ̂

αAa; tL¼ tþ i
2
¯̂θ
α
θ̂α: ð69Þ

The dependence on the new parameter λ is now hidden in the
definition of the superspace coordinates tL and θ̂α, which
have the following SUð2j1Þ transformation properties:

δθ̂α ¼ cos λ

�
ϵαe

i
2
mtL þm

2
ϵ̄βθ̂βθ̂αe−

i
2
mtL

�

þ sin λ
�
ϵ̄αe−

i
2
mtL þm

2
ϵβθ̂βθ̂αe

i
2
mtL

�
; ð70Þ

δtL ¼ i cos λϵ̄βθ̂βe−
i
2
mtL − i sin λϵβθ̂βe

i
2
mtL : ð71Þ

These coordinate transformations induce the off shell
SUð2j1Þ supersymmetry transformation of chiral super-
fields. On the component fields, they are realized as
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δza ¼ −ðcos λϵαei
2
mt þ sin λϵ̄αe−

i
2
mtÞηaα;

δηaα ¼ ϵ̄αði cos λ_za − sin λAaÞe−i
2
mt

− ϵαði sin λ_za þ cos λAaÞei
2
mt;

δAa ¼ − cos λϵ̄α

�
i_ηaα þm

2
ηaα

�
e−

i
2
mt

þ sin λϵα

�
i_ηaα −

m
2
ηaα

�
e

i
2
mt; ð72Þ

where ϵα are “infinitesimal” Grassmann parameters.
The corresponding off shell superfield Lagrangian is as

follows (see [11] for the one-particle case):

L¼
Z

d2θ̂d2 ¯̂θ

�
1þB

2
¯̂θ
α
θ̂αþ

ω

2
ðθ̂αθ̂αþ ¯̂θ

α ¯̂θαÞ
�
KðΦa;Φ̄bÞ;

ð73Þ

where4

B ¼ m cos 2λ; ω ¼ −
m
2
sin 2λ: ð74Þ

It is straightforward to check that the transformation of
the factor within the square brackets in (73) precisely
cancels the transformation of the integration measure

dtLd2θ̂d2
¯̂θ. Integrating in (73) over θ̂, ¯̂θ and eliminating

the auxiliary fields Aa, we recover the on shell Lagrangian
(22) with the expression (58) for U. In the particular case
λ ¼ 0 (ω ¼ 0), we arrive at the Lagrangian (34) of the
Landau problem. Holomorphic terms (59) can be naturally
inserted in (73) with ω ≠ 0 through the shift,

KðΦa; Φ̄bÞ → KðΦa; Φ̄bÞ þ 1

ω
UðΦaÞ þ 1

ω
ŪðΦ̄bÞ; ð75Þ

which amounts to the introduction of the additional super-
potential terms which, in components, induce the modified
potential U, as in (60).
It is instructive to see how the phenomenon of preserving

the isometries under the deformation manifests itself in the
superfield language. For this purpose, we need to know
how the Kähler potential itself transforms under the
isometry of the Kähler structure given by (4). To this
end, we rewrite the equation (b) in (6) in the equivalent
form as

∂c∂ d̄f½Va
μðzÞ∂a þ Vā

μðz̄Þ∂ ā�Kðz; z̄Þg ¼ 0; ð76Þ

whence

½Va
μðzÞ∂a þ Vā

μðz̄Þ∂ ā�Kðz; z̄Þ ¼ φμðzÞ þ φ̄μðz̄Þ: ð77Þ

The holomorphic function φμðzÞ, in each specific case, can
be defined up to a constant by differentiating (77) with
respect to zb.
The isometry transformations of the Kähler manifold in

the superfield coordinates are obtained just by the changes
za → Φa, z̄a → Φ̄a in the relevant holomorphicHamiltonian
vector fields. Recalling the transformation (77) of Kðz; z̄Þ
under isometry, we see that the superfield Lagrangian in (73)
is transformed as

δ�K ¼ bμφðΦaÞμ þ b̄μφ̄ðΦ̄aÞμ; ð78Þ

where bμ, b̄μ are constant isometry parameters. Taking the
bar-spinor derivatives from the integration measure and
making use of the chirality of Φa, it is easy to see that the
holomorphic term in (78) does not contribute at ω ¼ λ ¼ 0,
B ¼ m. The vanishing of the contribution from the con-
jugated antiholomorphic term in (78) can be proved after
passing to the right-chiral basis in the SUð2j1Þ superspace.
This is the superfield proof of the property that the
SUð2j1Þ super Landau model inherits all the isometries
of the undeformed case ω ¼ λ ¼ m ¼ 0. The isometries are
not generically inherited by the Kähler superoscillator,
when ω ≠ 0.
It should be pointed out that the input parameters of the

above superfield formalism are just the contraction mass-
dimension parameter m coming from the (anti)commuta-
tion relations of the suð2j1Þ algebra and the angle λ coming
from the chirality constraint (67). The physical meaning of
these parameters as the strength of the external magnetic
field and the oscillator frequency is revealed at the level of
the component Lagrangians and Hamiltonians.

B. SUð4j1Þ case
Next, let us present the SUð4j1Þ superfield formulation

for the Lagrangian of the N ¼ 8 Landau problem (45),
based on the superspace approach developed in [23]. This
superfield Lagrangian is written in terms of chiral (2, 8, 6)
superfields as follows (its one-particle case was constructed
in [13]):

S ¼
Z

dtL

¼ −
Z

dtLd4θe−3imtLF ðΦaÞ −
Z

dtRd4θ̄e3imtRF̄ ðΦ̄aÞ;

m ¼ jBj: ð79Þ

Here, F ðzÞ is the Seiberg-Witten prepotential (46), while
the θ expansion of the superfields Φa reads

4We limit our attention to the real frequencies ω ¼ jωj in order
to match the superfield approach elaborated in [11]. In fact, one
can easily generalize this consideration to ω ∈ C.
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ΦaðtL; θIÞ ¼ za þ θKη
aKe3imtL=4 þ 1

2
θIθJAaIJe3imtL=2

−
1

6
εIJKLθIθJθK

�
i _̄ηaL −

m
4
η̄aL

�
e9imtL=4

þ 1

24
εIJKLθIθJθKθLð̈z̄a þ im _̄zaÞe3imtL ; ð80Þ

with the following conjugation rules: ðAaIJÞ ¼ Aa
IJ ¼

1
2
εIJKLAaKL; ðηaIÞ ¼ η̄aI .
The coordinate set ftL; θIg is closed under the SUð4j1Þ

transformations,

δθI ¼ ϵI þmϵ̄KθKθI; δtL ¼ iϵ̄KθK: ð81Þ

The corresponding off shell supersymmetry transforma-
tions of the component fields read

δza ¼ −ϵKηaKe3imt=4; δz̄a ¼ ϵ̄K η̄aKe
−3imt=4;

δAaIJ ¼ 2ϵ̄½I
�
i_ηaJ� þm

4
ηaJ�

�
e−3imt=4

þ εIJKLϵ½K

�
i _̄ηaL� −

m
4
η̄aL�

�
e3imt=4;

δηaI ¼ ϵ̄Iði_zaÞe−3imt=4 − ϵKAaIKe3imt=4;

δη̄aI ¼ −ϵIði _̄zaÞe3imt=4 − ϵ̄KAa
IKe

−3imt=4: ð82Þ

Integration in (80) over θ, θ̄ gives the off shell Lagrangian,

Loff−shell ¼ gab̄

�
_za _̄zb −

1

4
AaIJAb

IJ þ
i
2
ðηaK _̄ηbK − _ηaK η̄bKÞ −

m
4
ηaK η̄bK

�
−
i
2
ð_zc∂cgab̄ − _̄zc∂ c̄gab̄ÞηaK η̄bK

þ imð_za∂ āF̄ − _̄za∂aF Þ þ 1

2
Ab
IJη

aIηcJ∂cgab̄ −
1

2
AaIJη̄bI η̄

c
J∂ c̄gab̄

−
1

24
½εIJKLηaIηbJηcKηdL∂c∂dgab̄ þ εIJKLη̄aI η̄

b
J η̄

c
K η̄

d
L∂ c̄∂ d̄gab̄�; ð83Þ

where the metric gab̄ is identified with the metric defined in
(46). The subsequent elimination of the auxiliary fields
AaIJ yields just the on shell Lagrangian (45).
It is important that the superfield action (79) is

invariant under the transformations corresponding to (47)
(see [24]),

F ðΦaÞ → F ðΦaÞ þ icabΦaΦb þ caΦa þ c;

F̄ ðΦ̄aÞ → F̄ ðΦ̄aÞ − icabΦ̄aΦ̄b þ c̄aΦ̄a þ c̄; ð84Þ

where c, ca are complex numbers, and cab are real ones.
These transformations are just the N ¼ 8 superfield

version of the general transformations of the holomorphic
prepotential F ðzÞ under an arbitrary isometry of the special
Kähler structure, i.e., of the isometry of Kähler structure
preserving holomorphic third-order tensor (43) (see the
Appendix). Hence, the invariance of (79) under (84)
explicitly demonstrates that the deformed N ¼ 8 super-
symmetric mechanics we are considering inherits the full
set of isometries of the undeformed case.
The proof of this superfield invariance is not too easy.

To this end, one needs to represent the invariant chiral
measure d4θe−3imtL in the action (79) in terms of covariant
derivatives (up to total time derivatives) as5

d4θe−3imtL ¼ 1

24
e−3imtLεIJKL∂I∂J∂K∂L

¼ 1

24
εIJKLDIDJDKDL: ð85Þ

Covariant derivatives anticommute as

fD̄I;D̄Jg¼0; fDI;DJg¼0;

fDI;D̄Jg¼δIJH0þmR̃I
J; R̃I

JD
K¼1

4
δIJD

K−δKJ D
I; ð86Þ

where R̃I
J are SUð4Þ matrix generators acting on external

indices of superfields and covariant derivatives. The
chiral superfield Φa (a ¼ 1;…N) describing N multiplets
(2, 8, 6) satisfies the constraints [24],

DIΦ̄a ¼ 0; D̄KΦa ¼ 0;

DIDJΦa ¼ 1

2
εIJKLD̄KD̄LΦ̄a: ð87Þ

Exploiting (85)–(87) for the action (79), one can show its
invariance under the transformations (84). Another, more
direct proof is to substitute the explicit expressions (80)
for Φa and the conjugated ones for Φ̄a into (84) and to be
convinced that the coefficients of the higher-order mono-
mials in θIðθ̄IÞ in the holomorphic(antiholomorphic)
shifts (84) either are combined into the total t derivatives
or just vanish. Note that the reality condition for the

5Though expressions for SUð4j1Þ covariant derivatives were
not calculated, the function DIDJDKDLF ðΦaÞ is SUð4j1Þ
invariant. Hence, it must give the same invariant action (79).
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coefficient cab in (84) is essential for ensuring the proper-
ties just mentioned.
Derivation of the purely bosonic counterpart of the

transformations (84) from the isometry condition (43) is
discussed in the Appendix.

VI. EXAMPLES OF SUPERINTEGRABLE
KÄHLER OSCILLATOR MODELS

In the previous sections, we dealt with two classes of
models admitting deformed supersymmetry: the Landau
problems, and the Kähler oscillators. In the case of the
Landau problem, we found that the supersymmetric exten-
sions preserve all (kinematical) symmetries of the initial
systems. But we were not able to prove the similar general
proposition for the Kähler oscillators. In this section, we
present supersymmetric extensions of two particular types
of the Kähler oscillator systems which possess kinematical
symmetries and the hidden symmetries generated by the
constants of a motion quadratic in momenta. These two
types are encompassed by the following models:

(i) CN-oscillator (the sumofN two-dimensional isotropic
oscillators) and CN-Smorodinsky-Winternitz system
(the sum of N copies of two-dimensional isotropic
oscillators deformed by ring-shaped potentials).

(ii) CPN-oscillator and CPN-Rosochatius system, which
are superintegrable counterparts of CN-oscillator and
CN-Smorodinsky-Winternitz systems on the complex
projective spaces.

Our main goal will be to inspect whether SUð2j1Þ super-
symmetric extensions of these systems inherit their hidden
symmetries.

A. Euclidean spaces

We start by considering the Kähler oscillators on the
complex Euclidian space ðCN; ds2 ¼ P

N
a¼1 dz

adz̄aÞ. The
relevant phase space is defined by the Poisson brackets,

fπa;zbg¼ δba; fπ̄a; z̄bg¼ δba; fπa; π̄bg¼ iBδab̄: ð88Þ

The set of symmetries of this space is constituted by the
SUðNÞ generators,

Jab̄¼ iπazb−iπ̄bz̄a−Bzbz̄a∶fJāb;Jc̄dg¼ iδādJb̄c−iδc̄bJād;

ð89Þ

and the translation generators,

Ja ¼ iπa − Bz̄a∶ fJa; Jbg ¼ fJa; J̄bg ¼ 0;

fJa; Jbc̄g ¼ −iJbδac̄: ð90Þ

For the construction of SUð2j1Þ supersymmetric Kähler
oscillator models on this space, we have to complete the
Poisson brackets (88) by the following ones:

fηaα; η̄bβg ¼ iδab̄δαβ; ð91Þ

with α, β ¼ 1, 2. Then we should perform the SUð2j1Þ
supersymmetrization procedure described above, for the
appropriate choice of the initial bosonic Kähler oscilla-
tor model.

1. Harmonic oscillator

We define the CN-harmonic oscillator defined as a
Kähler oscillator with Kðz; z̄Þ ¼ P

N
a¼1 z

az̄a and ω ¼ ω̄,

Hosc ¼
XN
a¼1

ðπaπ̄a þ ω2zaz̄aÞ: ð92Þ

This system possesses SUðNÞ kinematical symmetry gen-
erated by the generators (89) and hidden symmetries
defined by the so-called Fradkin tensor,

Iab̄ ¼ πaπ̄b þ ω2z̄azb∶ fIab̄; Icd̄g ¼ iδad̄Jcb̄ − iδcb̄Jad̄;

fIab̄; Jcd̄g ¼ iωδad̄Icb̄ − iωδcb̄Iad̄: ð93Þ

In the SUð2j1Þ supersymmetric extension of this system,
the Hamiltonian, dynamical supercharges, and R charges
are determined by those of the two-dimensional isotropic
oscillator,

H¼
XN
a¼1

Ha; Θα ¼
XN
a¼1

Θaα; Rα
β ¼

XN
a¼1

Raα
β ; ð94Þ

with

Ha¼πaπ̄aþω2zaz̄aþB
2
ηaαη̄aα;

Θaα¼πaη
aαþiωzaεαβη̄aβ; Raα

β ¼ηaαη̄aβ−
1

2
δαβiη

aγη̄aγ : ð95Þ

All constants of motion of the bosonic Hamiltonian become
those of the supersymmetrized one, since all these quan-
tities are just sums of the bosonic and fermionic parts.
Moreover, in the supersymmetric system, there appear
additional symmetry generators acting on the fermionic
variables only. Thus, the system with the Hamiltonian (95)
inherits kinematical SUðNÞ symmetries of the bosonic
sector (89), hidden symmetries generated by the Fradkin
tensor (93), and reveals an additional UðNÞ symmetry
realized in the fermionic sector,

Rab̄¼
X
α

ηbαη̄aα∶ fRab̄;Rcd̄g¼ iδad̄Rcb̄− iδcb̄Rad̄: ð96Þ

Now we turn to considering a less trivial example of the
SUð2j1Þ supersymmetric Kähler oscillator with hidden
symmetries.
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2. CN-Smorodinsky-Winternitz system

The CN-Smorodinsky-Winternitz system is defined by
the Hamiltonian [16],

HSW ¼
XN
a¼1

Ia; Ia ¼ πaπ̄a þ jωj2zaz̄a þ jgaj2
zaz̄a

: ð97Þ

It has N manifest Uð1Þ symmetries za → eiκ, with the
generators Jaā, and the hidden symmetries spanned by the
above generators Ia, as well as by the following ones
(the so-called Uhlenbeck tensor):

Iab ¼ Jab̄Jbā −
1

2
JaāJbb̄ þ

jgaj2zbz̄b
zaz̄a

þ jgbj2zaz̄a
zbz̄b

; ∶

fIab; HSWg ¼ 0; ð98Þ

where Jab̄ are uðNÞ generators defined in (89).
This system can be identified as a Kähler oscillator with

the following Kähler potential:

K ¼ zz̄þ ga
ω
log za þ ḡa

ω̄
log z̄a;

argω ¼ arg
XN
a¼1

ga þ π=2: ð99Þ

Its SUð2j1Þ supersymmetric extension is found to be
associated with the Hamiltonian,

HSW ¼
XN
a¼1

Ia;

Ia ¼ πaπ̄a þ jωj2zaz̄a þ jgaj2
zaz̄a

þ ga
2

ηaαηaα
zaza

þ ḡa
2

η̄aαη̄
aα

z̄az̄a
þ B

2
ηaαη̄aα; ð100Þ

and the supercharges,

Θaα ¼ πaη
aα þ iωεαβη̄aβ

�
za þ ga

ωza

�
: ð101Þ

Clearly, the generators Ia commute with each other, and so
they are the constants of motion of the supersymmetric
CN-Smorodinsky-Winternitz system. This supersymmetric
system possesses N manifest Uð1Þ symmetries za → eiκza,
ηaα → eiκηaα, with the generators,

J aā ¼ Jaāþηaαη̄aα∶ fJ aā;J bb̄g¼fJ aā;Ibg¼ 0: ð102Þ

The extensions of the hidden symmetry generators Ia, Iab
are given, respectively, by the generators Ia defined in
(100) and by the following ones:

Iab ¼ Iab þ
ga
2

zbz̄b

zaza
ηaαηaα þ

ḡa
2

zbz̄b

z̄az̄a
η̄aαη̄

aα þ gb
2

zaz̄a

zbzb
ηbαηbα

þ ḡb
2

zaz̄a

z̄bz̄b
η̄bαη̄

bα∶ fIab;HSWg ¼ 0: ð103Þ

Thus, the SUð2j1Þ supersymmetric extension of the
CN-Smorodinsky-Winternitz system inherits all its hidden
symmetries.
The conclusion is that the “Kähler superoscillator

approach” yields the well-defined superextensions of both
the isotropic oscillator and the Smorodinsky-Winternitz
system on CN .

B. Complex projective spaces

In this section, we will deal with superintegrable systems
on complex projective spaces CPN , which are specified by
the presence of a constant magnetic field and belong to the
class of the Kähler oscillator models.
Consider the complex projective space equipped with

suðN þ 1Þ-invariant Fubini-Study metrics,

gab̄dz
adz̄b; with gab̄ ¼

logð1þ zz̄Þ
∂za∂z̄b ¼ δab̄

1þ zz̄
−

z̄azb

ð1þ zz̄Þ2 :

ð104Þ
The inverse metrics, nonzero Christoffel symbols, and
Riemann tensor are defined by the expressions,

gāb ¼ ð1þ zz̄Þðδāb þ z̄azbÞ;

Γa
bc ¼ −

δabz̄
c þ δacz̄b

1þ zz̄
: Rab̄cd̄ ¼ gab̄gcd̄ þ gcb̄gad̄; ð105Þ

The Killing potentials of suðN þ 1Þ isometry algebra are of
the form,

hab̄ ¼
zbz̄a

1þ zz̄
; ha ¼

z̄a

1þ zz̄
: ð106Þ

Equipping the cotangent bundle of CPN with the twisted
symplectic structure (8) and the related Poisson brackets,
we obtain the mechanics systems involving an interaction
with a constant magnetic field.
The suðN þ 1Þ isometry generators are given by the

expressions of the form,

Jab̄ ¼ iðzbπa − π̄bz̄aÞ − B
z̄azb

1þ zz̄
;

Ja ¼ iðπa þ z̄aðz̄ π̄ÞÞ − B
z̄a

1þ zz̄
∶

fJāb; Jc̄dg ¼ iδādJb̄c − iδc̄bJād;

fJa; J̄bg ¼ iJab̄; fJa; Jbc̄g ¼ ∓iJbδac̄: ð107Þ

Extending these generators to this phase superspace as in
(18), we obtain
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J ab̄ ¼ Jab̄ þ
∂2hab̄
∂zc∂z̄d η

cαη̄dα; J a ¼ Ja þ
∂2ha
∂zc∂z̄d η

cαη̄dα:

ð108Þ

With these expressions at hand, we can construct super-
integrable models admitting weak SUð2j1Þ supersymmetry.

1. CPN-oscillator

The oscillator on a complex projective space is defined
by the Hamiltonian [7],6

Hosc ¼ gābπ̄aπb þ jωj2zz̄: ð109Þ

The constants of motion of this system are given by the
uðNÞ generators Jab̄ (107) and by the analog of “Fradkin
tensor”,

Iab̄ ¼ JaJ̄b þ jωj2z̄azb: ð110Þ

This system belongs to the class of “Kähler oscillators” (1)
with K ¼ logð1þ zz̄Þ, and hence admits a SUð2j1Þ super-
symmetric extension. The relevant Hamiltonian and super-
charges read

Hosc ¼ gābπ̄aπbþ jωj2zz̄− 1

2
ðgab̄gcd̄þ gcb̄gad̄Þηaαη̄bαηcβη̄dβ

−
ω

2

z̄az̄bηaαηbα
ð1þ zz̄Þ2 −

ω̄

2

zazbη̄aαη̄bα

ð1þ zz̄Þ2 þ
B
2
gab̄η

aαη̄bα; ð111Þ

Θα ¼ πaη
aα þ iω̄

za

1þ zz̄
εαβη̄aβ;

Θ̄α ¼ π̄aη̄
a
α þ iω

z̄a

1þ zz̄
εαβη

aβ: ð112Þ

This system has the manifest uðNÞ symmetry defined by
the generators J ab̄: fJ ab̄;Hoscg ¼ 0.
One could expect that the appropriate generalization of

the Fradkin tensor should still have the form (110), with Ja
replaced by J a, and that just this minimal modification
yields constants of motion of the superoscillator. However,
one can check that it is not the case. So, for the time being,
it is an open question whether a supersymmetric counter-
part of the Fradkin tensor exists.

2. CPN-Rosochatius system

The CPN-Rosochatius system is defined by the sym-
plectic structure (8) and by the Hamiltonian [18],

HRos ¼ ð1þ zz̄Þ
�
ππ̄ þ ðzπÞðz̄ π̄Þ þ jω0j2 þ

XN
a¼1

jωaj2
zaz̄a

�

−
XN
i¼0

jωij2: ð113Þ

This system possesses N manifest Uð1Þ symmetries with
the generators Jaā defined in (107), as well as symmetries
generated by the second-order constants of motion,

Ia ¼ JaJ̄ā þ ω2
0z

az̄a þ ω2
a

z̄aza
;

Iab ¼ Jab̄Jbā −
1

2
JaāJbb̄ þ

�
ω2
a
zbz̄b

zaz̄a
þ ω2

b
zaz̄a

zbz̄b

�
: ð114Þ

The Hamiltonian (113) can be cast, up to a constant shift, in
the form of the “Kähler oscillator” Hamiltonian [7,9],

HRos ¼ gab̄ðπaπ̄b þ jωj2∂aK∂ āKÞ − E0; ð115Þ

where

K ¼ logð1þ zz̄Þ −
XN
a¼1

�
ωa

ω
log za þ ω̄a

ω̄
log z̄a

�
;

ω ¼
XN
i¼0

ωi; E0 ¼
				XN
i¼0

ωi

				2 −XN
i¼0

jωij2: ð116Þ

Thus, this system admits a SUð2j1Þ supersymmetric
extension given by the following Hamiltonian and super-
charges:

HRos ¼ HRos −
1

2
ðgab̄gcd̄ þ gcb̄gad̄Þηaαη̄bαηcβη̄dβ

−
�
ωz̄az̄b

1þ zz̄
−
ωaz̄b

za
−
ωbz̄a

zb

�
ηaαηbα

2ð1þ zz̄Þ

−
�
ω̄zazb

1þ zz̄
−
ω̄azb

z̄a
−
ω̄bza

z̄b

�
η̄aαη̄

bα

2ð1þ zz̄Þ
þ B

2
gab̄η

aαη̄bα; ð117Þ

Θα ¼ πaη
aα þ i

�
ω̄

za

1þ zz̄
−
ω̄a

z̄a

�
εαβη̄aβ: ð118Þ

They are easily checked to constitute the suð2j1Þ super-
algebra (52) (HRos ≡Hosc).
It is interesting that, in contrast to the CN-Smorodinsky-

Winternitz system, in the absence of a magnetic field and
under the special choice of the parameters ωi, this system

6Hereafter, we use the notation zz̄≡P
N
c¼1 z

cz̄c, ðπzÞ ¼P
N
c¼1 πcz

c etc.
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admits flat N ¼ 4, d ¼ 1 “Poincaré” supersymmetry [18].
The choice just mentioned is as follows:

B ¼ 0; jωj ¼
				XN
i¼0

ωi

				 ¼ 0: ð119Þ

The second equation has the simple graphical illustration: it
defines the planar polygon with the edges jωaj and,
therefore, corresponds to the inequality jω0j≤

P
N
a¼1 jωaj,

where, without a loss of generality, we assume that
jω0j ≥ jω1j ≥ � � � ≥ jωN j. In this case, we arrive at the
well-known N ¼ 4 supersymmetric mechanics on Kähler
manifold with the holomorphic prepotential UðzÞ ¼P

N
a¼1 ωa log za (see, e.g., [22]).
Finally, we note that all symmetries respected by the

systems considered in this section are symmetries of the
appropriate superfield Lagrangians (73) at B ≠ 0, ω ≠ 0,
with Φa, Φ̄b standing for za, z̄b.

VII. DISCUSSION AND OUTLOOK

In this paper, we presented the systematic combined
Hamiltonian and superfield approach to the construction of
the multiparticle models of deformed N ¼ 4, 8 super-
symmetric mechanics on Kähler manifolds in interaction
with a constant magnetic field. The latter are introduced
via a supersymmetric version of minimal coupling. We
applied this approach to the various (super)integrable
models and demonstrated that such superextensions pre-
serve all kinematical symmetries of the initial bosonic
systems (and some hidden symmetries in a few particular
cases). One of the basic features of our approach is that
diverse isometries are realized on the SUð2j1Þmultiplets of
the same sort, without introducing any extra multiplet.
This is a crucial difference of our approach from the
models of Refs. [25–27] in which similar isometries were
realized within the standard N ¼ 4 supersymmetric
mechanics at a cost of introducing extra degrees of
freedom (coming back to the spin variables introduced
in [28]).7

The next obvious task is the study of the quantum
mechanical properties (spectra, etc.) of the SUð2j1Þ super-
symmetricLandauproblemonCPN , aswell as of theSUð2j1Þ
supersymmetric oscillatorlike models on CN and CPN .
Some other tasks are
(i) Coupling, to a constant magnetic field, of “flat”

N ¼ 8 supersymmetric mechanics with a nonzero
potential on special Kähler manifolds as suggested
in [30] and studying the new deformed N ¼ 8
mechanics models obtained in this way;

(ii) The construction of the deformed supersym-
metric extensions of the Landau problem on qua-
ternionic manifolds and, in particular, on quater-
nionic projective spaces HPN , having in mind their
relevance to the so-called high-dimensional Hall
effect [31];

(iii) The construction of the HPN-Rosochatius system
and studying the symmetry properties of it and of
the HPN oscillator’s [32], as well as of their super-
symmetric extensions.

(iv) Introducing the notion of a quaternionic oscillator,
by analogy with the Kähler one, and the study of its
possible deformed supersymmetric extensions.

We plan to address this circle of problems in the near
future.
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APPENDIX: ISOMETRIES OF SPECIAL
KÄHLER STRUCTURE IN THE

LOCAL COORDINATES

In this appendix, we formulate the conditions (43)
defining the isometries of the special Kähler structure in
the local coordinate frame, in which the Kähler metric and
the tensor fabcðzÞ take the form (48). The Eq. (43)
expresses, in the special coordinate frame, via Seiberg-
Witten prepotential F ðzÞ as follows:

3∂ðaVd
μ∂b∂cÞ∂dF þ Vd

μ∂a∂b∂c∂dF ¼ 0; ðA1Þ

with Va
μ, V̄ā

μ being the components of the holomorphic
Hamiltonian vector field (4).
To extract the necessary corollaries of this equation, we

first act by the derivative ∂a on (76), where the Kähler
potential is defined by (48). Step by step, it yields

7Applications of the spin variables in the models of SUð2j1Þ
mechanics were considered, e.g., in [29].
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∂a∂b∂ c̄½ðVd
μ∂d þ Vd̄

μ∂ d̄Þðz̄e∂eF þ ze∂ ēF̄ Þ� ¼ 0 ⇒

∂a∂b∂ c̄½Vd
μðz̄e∂d∂eF þ ∂ d̄F̄ Þ þ Vd̄

μð∂dF þ ze∂ d̄∂ ēF̄ Þ� ¼ 0 ⇒

∂a∂ c̄½∂bVd
μ∂ d̄F̄ þ z̄e∂bðVd

μ∂d∂eF Þ þ Vd̄
μð∂ d̄∂ b̄F̄ þ ∂d∂bF Þ� ¼ 0 ⇒

∂ c̄½Vd̄
μ∂agbd̄ þ ∂a∂bVd

μ∂ d̄F̄ þ z̄e∂a∂bðVd
μ∂d∂eF Þ� ¼ 0 ⇒

∂ c̄Vd̄
μ∂a∂b∂dF þ ∂a∂bVd

μgdc̄ þ ∂aVd
μ∂d∂c∂bF þ ∂bVd

μ∂d∂c∂aF þ Vd
μ∂d∂c∂a∂bF ¼ 0 ⇒

3∂ðaVd
μ∂b∂cÞ∂dF − ∂a∂b∂dF ð∂cVd

μ − ∂ c̄Vd̄
μÞ þ Vd

μ∂a∂b∂c∂dF þ gdc̄∂a∂bVd
μ ¼ 0: ðA2Þ

Using the last condition, we can rewrite (A1) as

gdc̄∂a∂bVd
μ − ∂a∂b∂dF ð∂cVd

μ − ∂ c̄Vd̄
μÞ ¼ 0: ðA3Þ

Next, taking ∂ ē derivative of this relation, we obtain

∂ ē∂ d̄∂ c̄F̄∂a∂bVd
μ ¼ −∂a∂b∂dF∂ ē∂ c̄Vd̄

μ: ðA4Þ

The left- and right-hand sides of this relation are products
of holomorphic and antiholomorphic functions. Obviously,
the factors of the same holomorphicity should be equal,
which yields

∂a∂bVc
μ ¼ iCcd

μ ∂a∂b∂dF ; Ccd
μ ¼ C̄dc

μ ; ðA5Þ

where Ccd
μ are some complex constant parameters.

Taking also into account (A3), the solution of (A5) can
be written as

Vd
μ ¼ iCde

μ ∂eF þ βdμaza þ αdμ;

Vd̄
μ ¼ −iCde

μ ∂eF þ βdμaz̄a þ ᾱdμ; ðA6Þ

where βdμa and αdμ are, respectively, real and complex
constant parameters. From (A3) and (A5), it follows that
Ccd
μ is a symmetric real matrix, Ccd

μ ¼ Cdc
μ .

The variation of F is then equal to

δμF ≡ Vd
μ∂dF ¼ ðiCde

μ ∂eF þ βdμaza þ αdμÞ∂dF : ðA7Þ

Inserting this solution in (A1) yields the condition,

∂a∂b∂cðδμF Þ ¼ 0; ðA8Þ

having the obvious general solution,

δμF ¼ cμ þ caμza þ cabμzazb; ðA9Þ

where cμ, caμ and cabμ are complex parameters.
Next we insert the solution (A6) in the Killing equa-

tion (6) (b), with the metric defined by (46), and derive the
additional condition on δμF ,

∂a∂bðδμF Þ þ ∂ ā∂ b̄ðδμF̄ Þ ¼ 0: ðA10Þ

This equation amounts to the reality condition
ðcabμÞ ¼ −cabμ.
The superfield transformations (84) have precisely the

form of the general isometry δμF, with the complex
coordinates za, z̄a being replaced by the chiral SUð4j1Þ
superfields Φa and their antichiral counterparts.
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