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Based on the systematic Hamiltonian and superfield approaches, we construct the deformed N = 4, 8
supersymmetric mechanics on Kéahler manifolds interacting with a constant magnetic field and study their
symmetries. First, we construct the deformed A/ = 4, 8 supersymmetric Landau problem via the minimal
coupling of standard (undeformed) N = 4, 8 supersymmetric free particle systems on a Kihler manifold
with a constant magnetic field. We show that the initial “flat” supersymmetries are necessarily deformed to
SU(2|1) and SU(4|1) supersymmetries, with the magnetic field playing the role of a deformation
parameter, and that the resulting systems inherit all the kinematical symmetries of the initial ones. Then we
construct SU(2|1) supersymmetric Kéhler oscillators and find that they include, in particular cases, the
harmonic oscillator models on complex Euclidian and complex projective spaces, as well as super-
integrable deformations thereof, viz. CV-Smorodinsky-Winternitz and CPY-Rosochatius systems. We
show that the supersymmetric extensions proposed inherit all the kinematical symmetries of the initial
bosonic models. They also inherit, at least in the case of the CV systems, hidden (nonkinematical)
symmetries. The superfield formulation of these supersymmetric systems is presented, based on the

worldline SU(2[1) and SU(4|1) superspace formalisms.

DOI: 10.1103/PhysRevD.101.025003

I. INTRODUCTION

The models of supersymmetric mechanics were initially
introduced as toy models for supersymmetric field theories.
However, it was quickly realized that such models are of a
big interest in their own right. An important feature of the
supersymmetric mechanics models is that the main new
ingredient they bring in, the fermionic variables, after
quantization become the operators representing the spin
of particle. As the result, the fermionic parts of the relevant
Hamiltonians play the role of generalized Pauli terms
describing an interaction of a spin with external fields,
in particular, with the magnetic field. From this viewpoint,
the study of supersymmetric extensions of the mechanical
systems interacting with the magnetic field is of obvious
importance. However, such systems seem not to have
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attracted enough attention, despite an enormous number
of publications on supersymmetric mechanics.

This is rather surprising, having in mind that the first
practical application of (A = 2) supersymmetric mechanics
technique was the explanation of the “accidental” double
degeneracy of the spectrum of the (planar) Landau problem
(see, e.g., [1]). The Landau problem is the problem of the
planar motion of a nonrelativistic electron (charged %—spin
particle) in a constant magnetic field. For a long time, it has
been one of the central issues treated in the textbooks
on quantum mechanics [2]. However, nowadays, saying
“Landau problem”, people sometimes ignore the spin of the
original system.

The compact (spherical) analog of the planar Landau
problem is associated with a particle moving on the two-
sphere in the presence of a constant magnetic field generated
by a Dirac monopole placed in the center of the sphere. The
spherical Landau problem enjoys a SO(3) invariance, which
is also characteristic of the “free” particle on the two sphere.
The higher-dimensional generalization of this problem, a
particle on CPV interacting with a constant magnetic field,
inherits the SU(N + 1) invariance of the relevant free system.
Quantum mechanically, the inclusion of a constant magnetic
field supplies the system with a degenerate ground state. This
is due to the preservation of the symmetries of a free particle.
Thanks to this degeneracy, the quantum-mechanical Landau
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problem constitutes the basis of the theory of the quantum
Hall effect [3], equally as if its higher-dimensional general-
izations to complex projective spaces [4].

It is more or less obvious that the inclusion of constant
fields preserves the initial symmetries of the free particle
moving on the generic Kihler manifold as well. So the
(spinless) Landau problem can be defined for any Kéihler
manifold. In order to restore the initial meaning of the
Landau problem in the context of these systems, one should
try to construct supersymmetric extensions of the (spinless)
Landau problem on a Ké&hler manifold, such that they
preserve the initial kinematical symmetries. However, in
the existing literature devoted to supersymmetric exten-
sions of the (generalized) Landau problem, the discussion
of the symmetry properties of the supersymmetric systems
constructed is as a rule left aside (see, e.g., [5,6]).

While for N' =2, the construction of such supersym-
metric extensions is a rather trivial task, it is not the case for
the A >4 supersymmetric extensions. Generically, one
may pose the question:

How should systems in Kihler manifolds interact with
constant magnetic fields (in particular, the Landau prob-
lem) be supersymmetrized, so that their initial symmetries
be preserved?

We guess that the general answer is as follows. Instead of
considering \V, d = 1 Poincaré supersymmetric extensions
of given bosonic systems, one should deal with super-
extensions based on the proper deformations of a standard
d = 1 Poincaré supersymmetry.

An attempt towards proving this conjecture was per-
formed years ago in [7]. It was observed there that the
oscillator and the Landau problem on a complex projective
space admit the deformed N = 4 supersymmetric exten-
sion (later on called the “weak N =4 supersymmetric
extension” [8]), which preserves the initial kinematical
symmetries of those systems. Departing from this model,
the class of systems with nonzero potentials called the
“Kéihler oscillator” was introduced [7,9]. These systems
admit similar deformed supersymmetric extensions respect-
ing the inclusion of a constant magnetic field. The relevant
bosonic Hamiltonian reads

Hoywe = G70(7,m, + |020:K0,K), (1)
where K(z,7) is the Kihler potential.

A few years later, the one-dimensional version of that
Kiéhler superoscillator model was rederived withina d = 1
superfield formalism. It was based on SU(2|1) superalgebra
that was treated as a deformation of V' = 4, d = 1 Poincaré
superalgebra [10,11]. Thereby, the “weak N =4 super-
symmetry” was identified with su(2|1) superalgebra (this
fact was also independently noticed in the paper [12]
treating the supersymmetric quantum Landau problem on
CP"). Using similar techniques, the deformed A = 8 one-
dimensional Landau problem associated with su(4|1)

superalgebra was also defined [13]. This study was to a
large extent inspired by the activity of building field-
theoretical models with the “rigid supersymmetry on curved
superspaces” initiated in [14].

Having in mind the “practical importance” of super-
symmetrization respecting symmetries of the initial bosonic
system and the field-theoretical importance of the “curved
superspace approach”, we develop here the systematic
approach to the deformed supersymmetrization of various
systems. These systems “live” on Kihler manifolds and
interact with a constant magnetic field by the use of a
supersymmetric analog of a minimal coupling. In the super-
field formulation, such a coupling naturally comes out under
some minimal choice of the related superfield Lagrangians.

Resorting first to the Hamiltonian formalism, we construct
in this way the SU(2|1) supersymmetric extensions of the
Kiéhler oscillator (and of the Landau problem) on the generic
Kihler space. Furthermore we also discuss the SU(4|1)
supersymmetric Landau problem on the special Kéhler
manifolds of the rigid type (that is the Kahler manifold
equipped with the holomorphic symmetric tensor of the
third rank obeying some compatibility condition [15]). We
show that this approach perfectly matches with the require-
ment that the supersymmetric Landau problem exhibits all
the kinematical symmetries of the original system and
involves the appropriate spin interaction. It is demonstrated
that both the SU(2|1) and SU(4|1) supersymmetric Landau
problems inherit all the kinematical symmetries of the
initial systems. Requiring the Hamiltonian in the SU(2|1)
case to commute with all the supercharges amounts to
adding the appropriate Zeeman term to it. In the super-
space language, this means that we should start from the
properly central-charge extended superalgebra, with the
Hamiltonian being identified with the relevant central charge.
Analogously, the general SU(2|1) Kihler superoscillator
systems as superextensions of those with the Hamiltonian (1)
can be constructed and then reproduced from the superfield
approach.

Exemplifying the general analysis, we set up and study
SU(2|1) supersymmetric extensions of the following par-
ticular superintegrable Kéhler oscillator models:

(i) CN oscillator (the sum of N two-dimensional iso-

tropic oscillators);

(i) CN-Smorodinsky-Winternitz system (the sum of N
copies of two-dimensional isotropic oscillators de-
formed by ring-shaped potentials) [16];

(iii) CPV oscillator [7,17], i.e., the CP"- counterpart of
the CV oscillator;

(iv) CPV-Rosochatius system [18], ie., the CPV-
counterpart of the CV-Smorodinsky-Winternitz system.

We show that these models also inherit all the kinematical
symmetries of the initial systems. In addition, we find the
explicit expressions for the superanalogs of the hidden
symmetry generators of the CN-oscillator and CV-
Smorodinsky-Winternitz system (i.e., of the Fradkin and
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Uhlenbeck tensors). Unfortunately, we were not yet able to
find the superanalogs of such hidden symmetry generators
for the CP"V-oscillator and of the CP"-Rosochatius system,
though they hopefully exist.

The paper is organized as follows:

In Sec. II, we describe the phase superspace as a proper
setting for the supersymmetrization of systems on Kihler
manifolds in an interaction with a constant magnetic field.
The Legendre transformation relating the Hamiltonian and
Lagrangian formulations of those systems is given. In
Sec. III, we present the Hamiltonian formulations of
SU(2|1) and SU(4|1) supersymmetric Landau problems.
The general Hamiltonian formulation of the SU(2|1) Kihler
superoscillator is described in Sec. IV. As an example, we
show that this class of Hamiltonians incorporates the super-
symmetric version of a two-dimensional anisotropic oscil-
lator. In Sec. V, the previously considered systems are
recovered within the manifestly SU(2|1) and SU(4|1)
covariant off shell superfield approaches. Section VI is
devoted to a more detailed discussion of the SU(2|1)
supersymmetric extensions of the oscillatorlike systems on
C" and CP" that are listed above and to the study of their
symmetries.

II. PHASE SUPERSPACE, KINEMATICAL
SYMMETRIES, AND LAGRANGIANS

The Kihler manifold M is the Hermitian manifold
with the Hermitian metrics, ds®> = g,;dz%dz", which also
defines the symplectic structure,
wy = ig,;dz" A dZ°, doy =0= g,; = 0,0;K,

0 0

%= o

-0z @)
where the real function K(z, z), Kéhler potential, is defined
up to the holomorphic and antiholomorphic func-
tions, K(z,z) = K(z,2) + U(z) + U(2).

The Kéhler manifold can be equipped with the Poisson
brackets associated with the above symplectic structure,

[ Of Og  Og Of 2 .
{f,g}M:lg b<82g azb_ai" 8Zb>’ g bgl_n' :50' (3)

Therefore, the isometries of the Kihler structure should
preserve both complex and symplectic structures; i.e., they
are generated by the holomorphic Hamiltonian vector
fields,

o 9
8Z“+V”<Z) 074"

Vi = Vi 4)

Vﬂ = {h,u’ }M - VZ(Z)
Ve = ighdzh,(z,2),

where the real function h,(z,Z) is a momentum map
sometimes called the Killing potential. The holomorphicity

of the vector field yields the following equation to the
Killing potential:

&h, oh
—— T £—=0 5
8zaazb ab 8ZC ’ ( )

with I, = g“10, gba.l The same result can be obtained by
the direct solving of the Killing equations,

(a) Vﬂa;b + Vﬂb;a =0,
(b) Vs + Viga = 0. with V. = g,5VE.  (6)

The action of the vector field V, on an arbitrary function
f(z,7) can be expressed through the Poisson bracket with
the Killing potential,

Vﬂf = {hwf}M'

Thus, the requirement that the vector fields V, form Lie
algebra amounts to the same Lie algebra relations for the
Killing potentials,
V,.V,]=CLV, e {h,.h}, =Clh +const, (7)
where the constant term either corresponds to a cocycle in
that Lie algebra or can be absorbed by the appropriate
constant shift of Killing potentials.

Let us consider the electrically charged particle moving
on a Kihler manifold and interacting with the constant
magnetic field of strength B, i.e., the U(1)-Landau problem
on Kihler manifold. For this aim, we equip the cotangent
bundle of the Kéhler manifold with the following sym-
plectic structure and Hamiltonian:

wg = dn, A dz° + dr, A dz% — iBg,;dz" A dZ°,
Hy = ¢ 7,7, (8)

The corresponding Poisson brackets are given by

{my, 2} =L, {74 Wy} = iBg,p- 9)

The isometries of a Kéhler structure discussed earlier define
the Noether constants of motion,

J, =Vin, + Vir, — Bh,(zz),
{H07J/4}B =0

Ve = igimal;h (Z,Z): { }a (10)
g ! {JquU}B = Cﬁv-]/l

where the brackets {-, -}, are calculated according to (9).

Notice that the vector fields generated by J, are indepen-

dent of B,

"The only nonvanishing components of the Christoffel symbol
in the Kéhler geometry are Iy, and I'; ; = 40295
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0

- 0
V,={/, }s=Vilz )32 -V, ”8 +cc  (11)

Hence, coupling to a constant magnetic field preserves the
whole symmetry algebra of a free particle moving on a
Kihler manifold. This implies that the Landau problem can
be properly defined on any Kihler manifold.

To construct fermionic extensions of the systems on
Kéhler manifolds interacting with constant magnetic field,
we define the (2N|MN)-dimensional phase superspace
equipped with the symplectic structure,

Q=dn, Ndz* +dr, N d7°
— i(Bgup — Rupean®nd)dz® A dz°

+ 19,500 A Dify, (12)
where a=1,. are spinorial indices, Dn* =
dn@ +T4_ pedze, and Tpes Rapea = 905(Uac) 7 are, respec-

tively, the components of the connection and curvature of
the Kihler structure.

The Poisson brackets corresponding to the symplectic
structure (12) amount to the relations,

{”a’ Zb} = 52’

{ﬂ:a’ ba} = _cmnca’
{ma. 2y} = i(Bgap 955,

- RahLdn”lna) {ﬂaa, ’_72} =19

(13)

and their complex conjugates. They induce the following
generic Poisson bracket for the functions on the phase
superspace:

_of of =
{f.g} = o, V.9 + oz V.9
) 0 0
+ l(BgaB - Rabcd’?car/(l) A a_g
TTp
df g
ab 14
()
where A A B = AB — (—1)?4)?(B)BA and

V2 0 gm0 (15

82“ abl 8],1601 :

The extended symplectic structure (12) and Poisson
brackets (14) are manifestly covariant with respect to the
transformation,

7" 0z°

Sao

— _ % ba. 1
za " g a2 (16)

Hence, we can lift the isometries (11) to the whole phase
superspace and define the respective super-Hamiltonian
vector fields as

Vuz{j ’}
0 0 0
:VZ( )a Vabﬂaa —I—Va aaﬂaa+c,c., (17)
where
? H
=J capd. 18
T, wF gacpzal M (18)

with J, defined by (10).
Note that the symplectic structure (12) can be repre-
sented as a locally exact one form,

Q=dA

B
A =r,dz"* + 7,d7" + iE (0,Kdz" — 9;Kdz“)

i
+ 2 9ab (1 “*Digh, + o Dn*). (19)
Then, by the Hamiltonian,
H =" 7,mp +U(2.2.7.7), (20)

where the potential term U(z, Z,7,7) will be defined later
for each specific system, we can immediately write down
the first order-Lagrangian with the action,

S:/A—Hdt. (21)

Eliminating cyclic variables z,, 7,, we arrive at the second-
order Lagrangian,

L .B . -
L= gap2'2" +i5 (0K2" = 0,K7")

i _ _ o
+59ab (n“*D,itb + 15D m“) — U(z, 2,1, 77)

with  Dgé = né + ¢ nbze. (22)

Now we can rederive (and so check) all the previous
formulas by applying the standard Legendre transformation
just to this Lagrangian. We define the canonical bosonic
momenta,

8[: 2 B i ca
P, = 55 = 9ap2” + 153(11{ - Qacguh(” t)-

oL B i .
P, = = — 0K + =029, (n°7k), 23
a 82 Z 9va — 2 a + 2 ¢9ba (77 ’70:) ( )
and the canonical fermionic ones,
orRC i oL i
P, =—= b, P¢i=——=—g; 24
ao a’;laa Zgabr]a a aflg Zg b’7 ( )
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The above expressions indicate the appearance of second-
class constraints,

i

i
5 P2 =PI ——gapn”~0.  (25)

9upiin =0, 5

¢aa =P aa
Thus, for the Hamiltonian formulation, we need to eliminate
these constraints in accordance with the Dirac’s method.
The standard procedure yields the following nonvanishing
Dirac brackets (and their complex conjugates):

1
{Pm ﬂh(l} = _Ergcnca7

(.7} = ig o,

{Pm Zb} = 52’
_ 1 -
{Pm 7]2} = _Eaagcagd)ng?

i

P, P;}=——
{a b} 4
i

4

0.9.205972 — (a < b)]g°® (n/“ns).

{Pa’Pb} - [aagct_iabgfé - (Cl < b)]gCE(nfaﬁg)' (26)

Introducing the noncanonical bosonic momenta, z,= gu;;i” ,
7, = %’ g,a» and taking into account the relations between
the momenta P, P;, 7, 7 in (23), it is straightforward to
recover the brackets involving 7z, 7, and defined earlier in
Egs. (13). In particular, it is easy to show that {r,, 7} =
{4, mp} =0. It is also straightforward, applying the
Noether procedure directly to (22) and assuming that the
potential term / is invariant, to reproduce the conserved
isometry current 7, defined in (18). With all these ingre-
dients at hand, we are prepared to turn to supersymmetrizing
the Landau problem on Ké&hler manifold.

III. SUPERSYMMETRIC LANDAU PROBLEM

To define the (deformed) N =2M supersymmetric
extension of the Landau problem (i.e., of the free particle
interacting with a constant magnetic field), we make use of
the strategy similar to symplectic coupling in the pure
bosonic case. The starting point is some supersymmetric
Hamiltonian system supplied by supercharges Q% and Q,,
which close on a Hamiltonian H,,

{0%. 0P}y = {04 Op}o = 0. {0% Op}o = i65H,,
{0" Ho}o = {Qu Ho}o = 0. (27)

where the Poisson brackets are defined by (13) with a zero
magnetic field, B = 0.

To introduce an interaction with an external magnetic
field, we deform the supersymplectic structure, still pre-
serving the form of the supercharges, (Qz_o, Q% Q,) —
(Qp, 0% 0,). Now, the graded Poisson bracket {-,-} is
defined through the symplectic form Qp defined in (12),
and one has to check whether the supersymmetry algebra
(27) remains unaltered.

If this is the case, then the Hamiltonian can be defined

as My = {0% Q,}. Otherwise, we end up with some
deformed superalgebra, which is different from the stan-
dard d = 1, N = 2M super Poincaré’ algebra (27), and
there we have to select the generator admitting an inter-
pretation as the appropriate Hamiltonian, i.e.,
{00/} =0+iB..., {0%0p}=i6§Hy+iB... (28)
Here, dots stand for some possible extra generators, which
should be further commuted with supercharges and among
themselves in order to obtain a closed superalgebra.

Below we will show that this program works perfectly
well for the cases of (deformed) N = 4, 8 supersymmetric
Landau problems.

A. The SU(2|1) (deformed N =4) supersymmetric
Landau problem

In order to set up the NV = 4 Landau problem, we choose
the standard “chiral” supercharges Q%, Q, (a = 1, 2) with
the same ansatz for them as in the absence of a magnetic
field and introduce the charges generating the SU(2) R
symmetry,

Q" = ”anaa’ Qa = 7_1'”77]3,

ao

1 _
R = 9asn™“ My = 5 8392517y - (29)

The closure of their Poisson brackets yields the super-
algebra,

{0+, 07} =0,

. i ~ . .
{Q“,Rf}:zéfQﬂ—EéfQ“, {00y} = idhHy + iBRY.

{R§. R} = —idh R + is3 R},

B
{QavHO}:iEQa’ {R;’HO}:(L (30)

where

_ 1 B
HO = gabﬁ-aﬂb - ERal;c[inaaﬁgnc/jﬁz + Egal_ynaaf]g' (31)
Extending the set (29) by the generator (31), we arrive at
the su(2|1) superalgebra (or “weak N = 4 superalgebra”
in the terminology of [8]). We observe, however, that the
supercharges do not commute with the Hamiltonian. This
drawback can be remedied via the appropriate modification
of the Hamiltonian,

- B B
Ho =Ho — Egaia’?aa'lg

aa s

non’

s 1
= gabﬂa”h - ERchc_iﬂ

{0 Hy} = 0. (32)

i + Bapn“iie:
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The last term in the Hamiltonians (31), (32) is obviously a
Zeeman term describing the interaction of the spin with an
external magnetic field. From the mathematical point of
view, the shift in (32) is the new R-symmetry U(1)
generator R =: 1 g,;7°*7i5. It extends SU(2) R symmetry
generated by Rf to U(2) R symmetry. Since H, commutes
with all other generators of the extended superalgebra, it
can be interpreted as the central charge generator promoting
the standard su(2|1) superalgebra to its central extension
su(2|1) [11].

All the generators of su(2|1) superalgebra (and of its
central extension) are manifestly invariant under the action
of the isometry current (18),

{07} ={00 T} ={R}. T, } = {Ho. T, } =0. (33)

This means that the supersymmetric system constructed
inherits all the kinematical symmetries of the initial system.
In particular, in the case of the CP"-Landau problem, the
extended system respects SU(N + 1) symmetry.

Thus, we have accomplished the well-defined “weak
N = 4 supersymmetrization” of the Landau problem on a
generic Kihler manifold and found that its supersymmetry
algebra is su(2|1).

Finally, it is straightforward to write down the
Lagrangian corresponding to (31),

azp | B ) .
Ly = 9.2 + i (0aKz" = 0;K%)

l oyl oyl Ao
+ = 9u5 ("D it + 75D m**)

2
1 aazzbocfid B aazzb
+ 5 Rabea ™ Man s = 5 Jap e~ (34)

The Lagrangian corresponding to the shifted Hamiltonian
(32) is obviously Loy = Ly — 5 g,5n““71}. These Lagrangians
provide a higher-dimensional generalization of those con-
structed in [19], [10], using the SU(2|1) superfield tech-
niques. The superfield derivation of (34) will be given in
Sec. VI. The relevant SU(2|1) off shell multiplet content is
N chiral multiplets (2, 4, 2). Note that the Lagrangian and
Hamiltonian £, and H, coincide with the previously
derived general expressions (22) and (20) for a =1, 2
and the choice U = 3 R 31" “Tan "1 — Bgasn““iy.

B. SU(4|1) (deformed N =8) supersymmetric
Landau problem

In the previous subsection, we considered the coupling
of N' = 4 supersymmetric particle on Kihler manifold to a
constant magnetic field and showed that the resulting
system yields the deformed SU(2|1) supersymmetric
Landau problem. We have shown that the latter inherits
the whole isometry group of the original system. Now we
perform a similar construction for " = 8 supersymmetric

mechanics on the special Kihler manifolds of the rigid
type [20].

The special Kihler manifold of the rigid type is the
Kihler manifold equipped with the symmetric tensor
fapedz®dz’dz¢ and its complex conjugate which obey
the following compatibility conditions:

0 - _
a_zdfabc =0, fabc;d :fabd;c’ RchZi = _fﬁaﬁgnmfmac’
(35)

where fabc;d = fabad - Ff[afebc - Ffjbfaec - Fficfabe is the
covariant derivative of the third-rank covariant tensor. The
special Kihler manifolds of the rigid type are widely known
because of their close relevance to T duality that relates the
UV and IR limits of the N = 2, d = 4 super Yang-Mills
theory [21].

To construct the relevant supersymmetric Landau prob-
lem, we choose the symplectic structure (12) and Poisson
brackets (14) with the su(4) spinor indices a, f = 1, ..., 4.
To avoid a possible confusion, we relabel them by the
capital latin letters 7, J, K, L. With this notation, the “flat”
N = 8 supersymmetry algebra reads

{Ql, QJ} = {Qb QJ} =0, {Q" QJ} = i55HSUSY- (36)

Following [20], we define the supercharges as

i- - - o i
QI = ﬂa”lal + gfabcTabd’ QI = ”a’ﬁ =+ gfabcT?bC’

1
T?bc = B 511KL’1“J’1bK77CL, (37)

where the symmetric tensor f ;. obeys the relations (35).2
Also, we introduce the following deformation of the
Poisson brackets used in [20]:

{mp.Py=685 A{m,n'}=-Thn,
{707} =i(Bgup—Rupean' ). {n.i}=ig"s}. (38)

Then we can construct R-symmetry charges forming su(4)
algebra by the same relations as in the undeformed case,

IJKL

Here, we introduced the antisymmetric symbol & satisfy-

ing the following identities:

1234

_ _ 1JKL
€ =¢34 = 1, e

ek = 24,
1JKL _ gsL 1JKL _ K s K L
€ erxm = 60y, € ermn = 2(8y 0y — SN0y
1JKL _ 5] sKsL J SK sL J sK sL J K sL

e enp = OyOy0p — Oy 0p Oy + Sy Op Sy — Gy 0p

+ 85K 5k — 15Kk,

The highest-degree monomial of the Grassmann variables can be

represented as y/'y/y Kyt = 5; &KL ey pry My Ny ).
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o _
Ry =5 g pith — Z’n“’(gaw?
{R}.RE} = i(8¥ R}, — 8| RY). (39)

Calculating the modified Poisson brackets between the
supercharges and R charges, we arrive at the generators
Hsusy> Q' R which form the superalgebra su(4[1),

{Ql, QJ} = {Ql’ QJ} =0, {QI’ QJ} = i55Ho+iBR§,

{R}.ON) =i 0/~ 15)0%, {Ho.0%} == 0F. (40
Here,

- ;2 B .
HO = gub”a”b + RaEcElASLhd + Zn Kgaﬁnlly(

1 1- -
- gfabc;dAade - gfabc;dAadev (41)

where, as before, f . is the covariant derivative of the
third-rank covariant symmetric tensor, and

1
_ g SIJKL;,]aI;,]bJ;,]cKndL ,

Aabed —
a1 b=
AP s= St g (42)

We observe that the inclusion of a constant magnetic field B
deforms A =8, d = 1 Poincaré superalgebra to the su(4|1)
superalgebra.

Let us require that the isometry of the Kéhler structure
given by the vector field V, preserves as well the third-
order tensor f,,.dz*dz’dz; i.e., that the Lie derivative of
the latter along this field equals to zero,

LV#fabchadedZC = 0©3Vz,(bfac)d + V/Zlfabc,d =0. (43)

Using these additional relations, one can check that the
isometry generator (18) commutes with all the elements of
SU(4/1) superalgebra,

{ijl}:{j ’Ql}:{j ’Rg}:{j aHLan}:O- (44)

Thus, we managed to define the consistent SU(4|1) Landau
problem on special Kihler manifolds of the rigid type.
In contrast to the SU(2|1) Landau problem, we cannot
bring the Hamiltonian to the form in which it commutes
with the supercharges, except for the trivial case f ;. = 0.
Finally, taking into account the correspondence (22), we
can write the expression for the relevant Lagrangian,

L. B . .
Lo = gap2'2" + i3 (0aKZ" = 9:KZ*)
i al =b =b al B aK =b
+§ga5(f7 D,if; + ;D m™) =2 1" 9Tk

+ § (fabc;dAath + faBE;HAabL d)
=+ fabcgca/fé’(_i EAgbaé' (45)

The rederivation of this Lagrangian from the appropriate
off shell SU(4|1) superfield formalism is given in Sec. V,
where the conditions (35) are resolved, in the special
coordinate frame, through the single holomorphic function
F(z) known as Seiberg-Witten prepotential,

;= 62.7-'(z) +c.c
b pragt T
PF  OPF(z)
e = — —ev— 2 (46
abc 8z"8zbaz“’ fabc € Bzaazbﬁzc ( )

Clearly, the function F(z) is defined up to the redefinition,
F(2) = F(2) +icypziz? + c,z% + ¢, (47)

where c,, ¢ are the arbitrary complex constants, and ¢, are
the real ones, ¢, = c4p-

The corresponding Kéhler potential is given by the
expression,

K(z.7) =z agrz(f) + 2 agz@ . (48)

In these coordinates, the T-duality transformation is real-
ized as follows [21]:

OF =~
@ (@) ~ (1= g F ).

0z
PF(u) OF _
ou,0u, 9z°9z> 7
jr(”) = (uaza - f(z))|u“=(9ﬂ.7:(z)' (49)

where

IV. SU(2|1) KAHLER SUPEROSCILLATOR

The Kihler oscillator is defined by the symplectic
structure (8) and the Hamiltonian [9],

H 5o = g (701, + |0?0:K0,K), (50)

where K(z,Z) is the Kiéhler potential.

This system is distinguished in that it is “friendly” to
supersymmetrization: the addition of the potential (50)
amounts to minor changes in the procedure of the SU(2|1)
supersymmetrization of the Landau problem described in
the previous section. Namely, we can preserve the form
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(29) of the SU(2) R charges and adopt the followmg
slightly modified expressions for the supercharges

0 = 71" + i@, K,

0, = i1 + iwd, Ke,zn™ . (51)
Calculating their Poisson brackets, we obtain

{07,604} = i6§H, + iBRY, {09, 08} = 2iaR™,

(09, RE} = —is2@ + é&f@a, (52)
where the Hamiltonian is now given by the expression,

o 1 _ _
7_(osc = gab (ﬂaﬂb + |(1)‘28[—1K6bK) —ERcha’?aaﬂgﬂcﬂ'lZ

| 1. . B _
-0k ap1nh — = 0K 5 514" + = g 5mih.  (53)

2 2
To close the superalgebra, we have to complete (52) by the
SU(2) algebra relations between the R charges as is given
in (29) and by the full set of the Poisson brackets involving
the supercharges ©”.
In order to bring this superalgebra into the conventional
form, it is convenient to rotate the supercharges as

Q* = e"/? cos 10% + e~/? 5in 1e7©,,

0, = e % cos 1O, — e¥/?sin 24,07, (54)
where
B
cos2l = ————,
4|w|* + B?
2 4
sin2i = —— 22 = |le™.  (55)

VAw[* +B*

In terms of these newly defined quantities, the symmetry
algebra is rewritten as

(0.0} = i + 4ol + BRg,

{0 Hose} = \/4Iw|2+BzQ“
{0°, 0"} = {Qw 04} =0, (56)

*We use here the following rules for complex conjugation and
raising and lowering of SU(2) spinor indices:

Ep=—e", &P =g,

eVe,s = 858, - 575,

E1p = 821 = 1,

{0 R} = —iseQF +§5€Qﬂ

(R, R} = iR — i63RY {R Hose} =0 (57)

Comparing these relations with those of the supersymmet-
ric N' = 4 Landau problem (30), we can identify them as
defining SU(2|1) superalgebra with the deformation
parameter m = \/4|w|*> + B>

The Lagrangian of SU(2|1) supersymmetric Kihler
oscillator is given by the general expression (22), with

U= |a)|2ga58aK8i)K C/} - _Ka hrlaanz

1
2 Rabcd’/l 7](17] )

|

o B _
— = K piai"™ + Egam‘“ng- (58)

The supersymmetrization procedure described above is
capable of producing a family of nonequivalent
Hamiltonians parametrized by an arbitrary holomorphic
function. Namely, replacing the initial Kdhler potential K
by the gauge-equivalent one,

K(Z,Z)—>K(Z,Z)+éU(Z)+%U(Z)’ (59)

we obtain the class of Hamiltonians parametrized by an
arbitrary holomorphic function U(z),

Hosc - Hasc - g (ﬂa”b + 0z Uab U) 2 abcd’] ’,]a;,lcﬂ,—]tﬁi

1 1. B
+ = Upn®nl + = Uagien™™ + = gapn““iis

2« 2 2
+ w2 g0, K 0, K
+ |w|g® (0,K0,U + 0;U0,K)

~ LK ynt = 2 K e, (60)
2% 2

In the limit o =0, we arrive at the well-known

Hamiltonian which admits, in the absence of magnetic

field, the “flat” N = 4 supersymmetry (see, e.g., [22]). Itis

given by the first line in the above expression with B = 0.

A. Two-dimensional anisotropic oscillator

The supersymmetrization procedure outlined above
makes it possible to extend the class of the known systems
admitting such a supersymmetrization. Here, we illustrate
this on the case of a two-dimensional harmonic oscillator,
which is the simplest system possessing the conventional
N =4, d =1 “Poincaré” supersymmetric extension. Take
the one-dimensional complex space (C,ds?> = dzdz) and
consider in it the Kéhler oscillator defined by the potential,
LA i (61)

K 7) =
(z,2) =22+ 7 e
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It gives rise to the following Kihler-oscillator system:

H = z7 + (0 + g9)zZ + iwgz* — iwgz>,
{m, 2} ={m 2z} =1, {z,7} = iB. (62)

Diagonalizing this potential, we arrive at the two-
dimensional anisotropic oscillator system with frequencies,

= llo] + gll- (63)

For the choice w =0, it yields the two-dimensional
isotropic oscillator with the frequency |g|, which admits,
in the absence of a magnetic field, the standard N = 4,
d = 1 supersymmetrization. In the presence of a magnetic
field, this supersymmetry is deformed to SU(2|1). In the
opposite limit, at g =0, we once again obtain some
SU(2|1) supersymmetric extension of a two-dimensional
isotropic oscillator, but different from the first option. In the
generic case of g # 0, w # 0, the procedure proposed
allows us to construct a SU(2|1) superextension of the
two-dimensional anisotropic oscillator interacting with a
constant magnetic field perpendicular to the plane.
Enlarging the above set of Poisson brackets by the relation
g} = id5, we can write down the Hamiltonian of the

supersymmetric extension of this system as

i
Honowe = 77 + (0@ + g5)27 + i@g2® — iwgz> — Egnana
ig_ B .
+ S Al S 1T (64)

The relevant supercharges and R charges have the follow-
ing simple form:

0% = mn* + (idz + §2)e” iy
1 _
R = iy = 5 557y (65)

It is straightforward to extend this model to N-dimensional
complex Euclidian space CV (see Sec. VI).

V. SUPERFIELD FORMULATION

The one-particle [i.e., one-(complex)dimensional] ver-
sions of the Lagrangians presented above were derived
from the SU(2|1) and SU(4|1) superfield approaches in
[11] and [13]. The generalization of these models to the
N-dimensional case is straightforward. We briefly describe
it below.

A. SU(2|1) case

As the first step, we reproduce the Lagrangian of the
SU(2|1) Kihler superoscillator corresponding to (53) and
its particular case, the Lagrangian of SU(2|1) supersym-
metric Landau problem (34).

In [10] and [11], the coset method was used to define the
world-line realizations of the supergroup SU(2|1) on the
d = 1 superspace (t,0,,0”) identified with the coset of
SU(2|1) over its R-symmetry subgroup SU(2). The basic
objects of this realization are covariant spinor derivatives,

int 3m? - 0
D=1+ 2000 999, | -
< [(+2 » =16 ﬁ)>89a
m_. . 0
~ 500 55 - ea,},
imt m - 3 2 8
D, = % {_(1 ¥ Eeﬂeﬂ _om (eﬂeﬂ)2> e
+ Mg, 0 +5 L0, (66)
2 a aeﬂ a“'t |

which, in the contraction limit m = 0, become standard
covariant spinor derivatives of flat A" = 4, d = 1 supersym-

metry. The chiral SU(2|1) superfields ®¢(z, 0, é) satisfy the
generalized SU(2|1) covariant chirality constraints [11],

(cos AD, — sin AD,)d¢ = 0. (67)

In the appropriate superspace basis, the conditions (67)
become “short” up to an overall factor,

(cos 1D, — sinAD,)®

[1+ 00, +5 0,0 +0)) m—zéﬂé

0 iA .
x {— e Eeaa,] o, (68)

and are solved by the expressions,
N ~ | A [ g~
O (1,.0,) =2+ D"+ 50,07 A", rL:z+%e“9a. (69)

The dependence on the new parameter 4 is now hidden in the

definition of the superspace coordinates #;, and 90,, which
have the following SU(2|1) transformation properties:

80, = cosl(eae%m’L + %éﬂéﬁé e 2’”’L)
+ sinl(e e~ 4 Eeﬂeﬁﬁ ezm’L> (70)

St = icos A hye s — isindePPper.  (71)

These coordinate transformations induce the off shell
SU(2|1) supersymmetry transformation of chiral super-
fields. On the component fields, they are realized as
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57% = —(cos de e + sin g, e " e,

o = &%(i cos Az% — sin JA%) e

— (i sin Az% + cos AA%)e™ |

0A% = —cos A€, <ii1‘w‘ + %n’”’) e
+ sin e, (iﬁ"“ - %n““) e, (72)

where €, are “infinitesimal” Grassmann parameters.
The corresponding off shell superfield Lagrangian is as
follows (see [11] for the one-particle case):

P Bzgn A A Xa% -
L:/d29d29[1+§9 90+§(909“+9 Ha)]K(CD“,GDb),

(73)
where”

B=mcos2h, = —%sin 22, (74)

It is straightforward to check that the transformation of
the factor within the square brackets in (73) precisely
cancels the transformation of the integration measure
dt; d*0d*. Integrating in (73) over 6, O and eliminating
the auxiliary fields A%, we recover the on shell Lagrangian
(22) with the expression (58) for U. In the particular case
A=0 (w =0), we arrive at the Lagrangian (34) of the
Landau problem. Holomorphic terms (59) can be naturally
inserted in (73) with @ # 0O through the shift,

K(®, ®") —» K(D?, ®°) + é U(®9) + é U(@b), (75)

which amounts to the introduction of the additional super-
potential terms which, in components, induce the modified
potential U, as in (60).

It is instructive to see how the phenomenon of preserving
the isometries under the deformation manifests itself in the
superfield language. For this purpose, we need to know
how the Kihler potential itself transforms under the
isometry of the Kihler structure given by (4). To this
end, we rewrite the equation (b) in (6) in the equivalent
form as

0:0{[Vii(2)0, + Vii(2)05]K (2.2)} = 0. (76)

whence

“We limit our attention to the real frequencies @ = |w| in order
to match the superfield approach elaborated in [11]. In fact, one
can easily generalize this consideration to w € C.

Vi(2)04 + Vi(2)0a]K (2.2) = 9u(2) + 9,(2).  (77)

The holomorphic function ¢,(z), in each specific case, can
be defined up to a constant by differentiating (77) with
respect to z”.

The isometry transformations of the Kihler manifold in
the superfield coordinates are obtained just by the changes
7% = ®9, 7% — ®“ in the relevant holomorphic Hamiltonian
vector fields. Recalling the transformation (77) of K(z,7)
under isometry, we see that the superfield Lagrangian in (73)
is transformed as

5K = b'op(D7), 4 b'ip(D?),. (78)

where b, Z_Jﬂ are constant isometry parameters. Taking the
bar-spinor derivatives from the integration measure and
making use of the chirality of @7, it is easy to see that the
holomorphic term in (78) does not contribute at = 1 = 0,
B = m. The vanishing of the contribution from the con-
jugated antiholomorphic term in (78) can be proved after
passing to the right-chiral basis in the SU(2|1) superspace.
This is the superfield proof of the property that the
SU(2|1) super Landau model inherits all the isometries
of the undeformed case @ = A = m = 0. The isometries are
not generically inherited by the Kihler superoscillator,
when w # 0.

It should be pointed out that the input parameters of the
above superfield formalism are just the contraction mass-
dimension parameter m coming from the (anti)commuta-
tion relations of the su(2|1) algebra and the angle A coming
from the chirality constraint (67). The physical meaning of
these parameters as the strength of the external magnetic
field and the oscillator frequency is revealed at the level of
the component Lagrangians and Hamiltonians.

B. SU(4|1) case

Next, let us present the SU(4|1) superfield formulation
for the Lagrangian of the A/ = 8 Landau problem (45),
based on the superspace approach developed in [23]. This
superfield Lagrangian is written in terms of chiral (2, 8, 6)
superfields as follows (its one-particle case was constructed
in [13]):

S—/dt/:

=-— / diy d*@e™ L F () — / digd*6e> ™= F (D),

m = |B]. (79)

Here, F(z) is the Seiberg-Witten prepotential (46), while
the @ expansion of the superfields ®“ reads
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; 1 .
DU (1,,0;) =7+ 91(7’]”K€3lmlL/4 4 _QIQJAaIJeSzth/z
1
6 ”KLHIHJQK (NIL _ ZI/[ ) 9imty /4
1 . . ‘
+ ﬂ SIJKLenggKeL (Zu + imZ“)e3””’L, (80)

with the following conjugation rules: (A%) = A¢, =
TeKL NS

The coordinate set {7;,0'} is closed under the SU(4|1)
transformations,

AaKL

591 = €1 + méKQKHI, (StL = léKgK (81)

The corresponding off shell supersymmetry transforma-
tions of the component fields read

aK€3imt/4 —3imt/4
9 ’

87% = —exn 674 = ekt e

SAYT — 2(::[1 <i;;laj] + %naj]> p—3imt/4

IJKL = 3 4
+ € €k (n];] Z”L]) imt/
5’1a1 — é[(iza)e—_’aimt/él

5,—77 — —€I(i%a)e3i"1t/4 _ EKA7K6_3imZ/4. (82)

_ eKAalK€31mt/4’

Integration in (80) over 6, @ gives the off shell Lagrangian,

LAz 1 a I ak > a a i sc a
Lot—shell = 9ap |2°2" = ZA IJAI;J +5 (n K’?fr’( - "7 b) - Z’? K’?% ) (2°0cGap — Z “0e9ap)n" N b
1
+im(2°0,F =20, F) + 5 AIJ”I 70 9ap _EAGU’?[;’_?;aEQuB

1

= 5 e nEn " 009 + LRGN 0: 0495, (83)
where the metric g, is identified with the metric defined in 4n —3imn L _dime I aJ AK AL
(46). The subsequent elimination of the auxiliary fields d*0e= = 24° veuk 00070

A7 yields just the on shell Lagrangian (45).

It is important that the superfield action (79) is
invariant under the transformations corresponding to (47)
(see [24]),

F (DY) - F(®) + icy, @D’ + ¢, @ + c,
F(@) —» F(®) — ic,, ®® + ¢,0° + ¢, (84)

where ¢, ¢, are complex numbers, and c,;, are real ones.

These transformations are just the N = 8 superfield
version of the general transformations of the holomorphic
prepotential F (z) under an arbitrary isometry of the special
Kdihler structure, i.e., of the isometry of Kihler structure
preserving holomorphic third-order tensor (43) (see the
Appendix). Hence, the invariance of (79) under (84)
explicitly demonstrates that the deformed N = 8 super-
symmetric mechanics we are considering inherits the full
set of isometries of the undeformed case.

The proof of this superfield invariance is not too easy.
To this end, one needs to represent the invariant chiral
measure d*@e3"" in the action (79) in terms of covariant
derivatives (up to total time derivatives) as’

>Though expressions for SU(4|1) covariant derivatives were
not calculated, the function D'D/DEXDLF(®4) is SU(4|1)
invariant. Hence, it must give the same invariant action (79).

1
= _gleL'DIDJ’DKDL. (85)
24
Covariant derivatives anticommute as

{D1.D;}=0. {D'.D'}=0.

_ o 1
{D'.D,}=8)Ho+mR}. R)D¥=15DK~5fD'. (86)

where R} are SU(4) matrix generators acting on external
indices of superfields and covariant derivatives. The
chiral superfield ®“ (a = 1, ...N) describing N multiplets
(2, 8, 6) satisfies the constraints [24],

DId* =0, Dyd* =0,

1 - -
DIDJCDa = §€[]KLDKDL(I)‘Z. (87)

Exploiting (85)—(87) for the action (79), one can show its
invariance under the transformations (84). Another, more
direct proof is to substitute the explicit expressions (80)
for ®* and the conjugated ones for ®“ into (84) and to be
convinced that the coefficients of the higher-order mono-
mials in 6,(6') in the holomorphic(antiholomorphic)
shifts (84) either are combined into the total ¢ derivatives
or just vanish. Note that the reality condition for the

025003-11



IVANOV, NERSESSIAN, SIDOROV, and SHMAVONYAN

PHYS. REV. D 101, 025003 (2020)

coefficient c,;, in (84) is essential for ensuring the proper-
ties just mentioned.

Derivation of the purely bosonic counterpart of the
transformations (84) from the isometry condition (43) is
discussed in the Appendix.

VL. EXAMPLES OF SUPERINTEGRABLE
KAHLER OSCILLATOR MODELS

In the previous sections, we dealt with two classes of
models admitting deformed supersymmetry: the Landau
problems, and the Kihler oscillators. In the case of the
Landau problem, we found that the supersymmetric exten-
sions preserve all (kinematical) symmetries of the initial
systems. But we were not able to prove the similar general
proposition for the Kihler oscillators. In this section, we
present supersymmetric extensions of two particular types
of the Kihler oscillator systems which possess kinematical
symmetries and the hidden symmetries generated by the
constants of a motion quadratic in momenta. These two
types are encompassed by the following models:

(i) CN-oscillator (the sum of N two-dimensional isotropic

oscillators) and C"-Smorodinsky-Winternitz system
(the sum of N copies of two-dimensional isotropic
oscillators deformed by ring-shaped potentials).

(i) CPM-oscillator and CP"-Rosochatius system, which
are superintegrable counterparts of CV-oscillator and
CN-Smorodinsky-Winternitz systems on the complex
projective spaces.

Our main goal will be to inspect whether SU(2|1) super-
symmetric extensions of these systems inherit their hidden
symmetries.

A. Euclidean spaces

We start by considering the Kédhler oscillators on the
complex Euclidian space (CV,ds* = >N | dz°dz"). The
relevant phase space is defined by the Poisson brackets,
(102} =8 (%2} =8 {(n,.7)}=iBos. (88)
The set of symmetries of this space is constituted by the
SU(N) generators,

Jop =im,2" =im,7 = B2 {Jap S sa} = i6aad e — i82pd aas

(89)
and the translation generators,
Ju = iﬂa - Bz": {Jw‘]h} = {Juvjb} = 0’
{Ja’ JhZ} = _i‘lbéai' (90)

For the construction of SU(2|1) supersymmetric Kihler
oscillator models on this space, we have to complete the
Poisson brackets (88) by the following ones:

{nee.ih} = i6e0 s, (91)

with a, f =1, 2. Then we should perform the SU(2|1)
supersymmetrization procedure described above, for the
appropriate choice of the initial bosonic Kéhler oscilla-
tor model.

1. Harmonic oscillator

We define the CM-harmonic oscillator defined as a
Kihler oscillator with K(z,z) = Y~ z92% and w = @,

N
H()SL' = Z(ﬂaﬁa + a)zzaza)' (92)

a=1

This system possesses SU(N) kinematical symmetry gen-
erated by the generators (89) and hidden symmetries
defined by the so-called Fradkin tensor,

Iul; = ﬂaﬁ-b + a)ZZqu: {Ial_w Iu_l} = léua_l']d_l - lécl;JuZl’

{Iu}_i’ J(,L_l} = iwéua_llc}; - la)écl_)lm_l (93)

In the SU(2|1) supersymmetric extension of this system,
the Hamiltonian, dynamical supercharges, and R charges
are determined by those of the two-dimensional isotropic
oscillator,

N
H=> Ha

a=1 a=1 a=1

with
= 2 asa B aaa
Hu:”a”u+w <z +§’1 Nas
1
O = +iwz eV, R =T =505in i, (95)

All constants of motion of the bosonic Hamiltonian become
those of the supersymmetrized one, since all these quan-
tities are just sums of the bosonic and fermionic parts.
Moreover, in the supersymmetric system, there appear
additional symmetry generators acting on the fermionic
variables only. Thus, the system with the Hamiltonian (95)
inherits kinematical SU(N) symmetries of the bosonic
sector (89), hidden symmetries generated by the Fradkin
tensor (93), and reveals an additional U(N) symmetry
realized in the fermionic sector,

Ras = "7 {Rup Reh =i6,aRe ~ i85 Rz (96)

Now we turn to considering a less trivial example of the
SU(2|1) supersymmetric Kihler oscillator with hidden
symmetries.
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2. CN-Smorodinsky-Winternitz system

The CM-Smorodinsky-Winternitz system is defined by
the Hamiltonian [16],

N
Hgy :Zla,
a=1

It has N manifest U(1) symmetries z¢ — €, with the
generators J,;, and the hidden symmetries spanned by the
above generators /,, as well as by the following ones
(the so-called Uhlenbeck tensor):

1, = 77, + 029z +|9“Z| . (97)

Ly el g P
U eatbb T paza bz

{aps Hsw} =0, (98)

Loy = J b pa

where J; are u(N) generators defined in (89).
This system can be identified as a Kéhler oscillator with
the following Kéhler potential:

K =1zz —I—&logz“ +gTalOgZ“,
w w

N
argw = arg Z 9 + /2. (99)

a=1

Its SU(2|1) supersymmetric extension is found to be
associated with the Hamiltonian,

N
How =Y _ZLas
a=1

T, = m.7i, + |w|?zz° + |ga| +9_a77 a
2 z%z¢
Ga Mall™® _
> Z(“z“ + S 1" g (100)
and the supercharges,
@ = 7 + iweaﬂﬁg< a a‘i) (101)

Clearly, the generators Z, commute with each other, and so
they are the constants of motion of the supersymmetric
CN-Smorodinsky-Winternitz system. This supersymmetric
system possesses N manifest U(1) symmetries z¢ — e/*z4,
n% — e*n¢, with the generators,

T aa =Jaa +1"Ng: {jailﬂjbi)}:{jamzb}:o- (102)
The extensions of the hidden symmetry generators /,, 1,

are given, respectively, by the generators Z, defined in
(100) and by the following ones:

b asa
g Z 4 x.d g —asaa 9p < o
Lop =1ap + ;Z aja “Na ;Zuza Nall™ + = 2 b b’ib‘ﬂfi
gbZ Z =b=ba .
+3—Z ioii": {Zap. Hsw} = 0. (103)

Thus, the SU(2|1) supersymmetric extension of the
CV-Smorodinsky-Winternitz system inherits all its hidden
symmetries.

The conclusion is that the “Kihler superoscillator
approach” yields the well-defined superextensions of both
the isotropic oscillator and the Smorodinsky-Winternitz
system on CV.

B. Complex projective spaces

In this section, we will deal with superintegrable systems
on complex projective spaces CPV, which are specified by
the presence of a constant magnetic field and belong to the
class of the Kéhler oscillator models.

Consider the complex projective space equipped with
su(N + 1)-invariant Fubini-Study metrics,

_log(1+2z) 85 22
07¢0z>  1+4zz (1+4z2)*
(104)

9apdz*dz’, with g,p

The inverse metrics, nonzero Christoffel symbols, and
Riemann tensor are defined by the expressions,

g = (14 z2)(5% + 792%),
597¢ + 89zb

¢ =—
be 14 2zz

Rabcd 9abYca + 9cbYaas (105)

The Killing potentials of su(N + 1) isometry algebra are of
the form,
bza sa
2’z Z
hyj=——, h, = -, 106
L 1+2zzZ (106)

Equipping the cotangent bundle of CP" with the twisted
symplectic structure (8) and the related Poisson brackets,
we obtain the mechanics systems involving an interaction
with a constant magnetic field.

The su(N + 1) isometry generators are given by the
expressions of the form,

Faad
1+ zz°
Za
1+2zZ

Jap = i(P7, — 7,2%) — B

Jo=i(z, +2(z7)) - B

{Jz'zb’JEd} = i5ad-]13c
{‘]a’jb} = i"al_ﬂ

- iéEbJadﬂ

{Ja"lbé} = :Fi']béaé' (107)

Extending these generators to this phase superspace as in
(18), we obtain
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2 2

0%h,;
=7 ca—d’ .
jab ab+a ca d’/l Na j

0
=7 - ta ca—d‘
at azcazd”l Na

(108)

With these expressions at hand, we can construct super-
integrable models admitting weak SU(2|1) supersymmetry.

1. CPN-oscillator

The oscillator on a complex projective space is defined
by the Hamiltonian [7],6

H().\'c = gabﬁ-a”h + |CO|2ZZ- (109)
The constants of motion of this system are given by the

u(N) generators J,; (107) and by the analog of “Fradkin
tensor”,

Ial; :Jajb + |w|22azb (110)
This system belongs to the class of “Kéhler oscillators” (1)
with K = log(1 + zZ), and hence admits a SU(2|1) super-
symmetric extension. The relevant Hamiltonian and super-
charges read

- 1 o
Hose = G Tatty + |02 = > (9updea + 9ep9aa) 1 Tien 7

Wzl @2 i b
_@ + . (111
2 <1+ZZ>2 (1+ZZ>2 29(11)’7 ’70: ( )
O = mp + i —— e,
1+2zZ
0, = 7% + iw & e ™. (112)
a alla ]+ZZ af

This system has the manifest u(N) symmetry defined by
the generators 7 ,;: {7 45> Hose} = O.

One could expect that the appropriate generalization of
the Fradkin tensor should still have the form (110), with J,,
replaced by J,, and that just this minimal modification
yields constants of motion of the superoscillator. However,
one can check that it is not the case. So, for the time being,
it is an open question whether a supersymmetric counter-
part of the Fradkin tensor exists.

2. CPN-Rosochatius system
The CPY-Rosochatius system is defined by the sym-

plectic structure (8) and by the Hamiltonian [18],

®Hereafter, we use the notation z7Z = ’CV:] 72°7¢, (#z) =

N c
SN w2t ete.

s = (1+2) (w3 + ar) 7)ol + 3 20

fava
N

- Z @il
i=0

(113)

This system possesses N manifest U(1) symmetries with
the generators J,; defined in (107), as well as symmetries
generated by the second-order constants of motion,

1, =JJa+ 0§z°z" +

, 270, 297°
Iab:JaEJbZt_ZJanbb+ a)aﬁ+a)bﬁ : (114)

The Hamiltonian (113) can be cast, up to a constant shift, in
the form of the “Kéhler oscillator” Hamiltonian [7,9],

HRos = gal;(ﬂaﬁb + |a)]26aK6aK) - EO’ (115)
where
N D)
= log(1 + zz) — ; (E log z¢ + 5log Z“) 7
N N s N
= th Ey = Zwi - Z . (116)
i=0 i=0 i=0

Thus, this system admits a SU(2[1) supersymmetric
extension given by the following Hamiltonian and super-
charges:

1
5

077" w,7% w7 nn,
_(1+ZZ_ “ z”>2(1+z2)

@7°7"  @,72" @2\ 7
_< B - ‘b>2(1+z2)

ao

HR()S = HR()S - 9abYca + gcl_Jgad)n ﬂ(l”L/}n/}

1+zz Z¢ Z

a s

B
+*gab7/] ’7(11 (117)

2

@
0% = ' + i @ — =2 ) e,
Tall ( 142z z“) T

(118)

They are easily checked to constitute the su(2|1) super-
algebra (52) (HR()S = Hosc)'

It is interesting that, in contrast to the CV-Smorodinsky-
Winternitz system, in the absence of a magnetic field and
under the special choice of the parameters w;, this system
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admits flat N = 4, d = 1 “Poincaré” supersymmetry [18].
The choice just mentioned is as follows:

B =0, lo| = w;| = 0. (119)

N
=0

1

The second equation has the simple graphical illustration: it
defines the planar polygon with the edges |w,| and,
therefore, corresponds to the inequality |wo| <>V, |w,],
where, without a loss of generality, we assume that
lwg| > |@| >+ > |wy|. In this case, we arrive at the
well-known N = 4 supersymmetric mechanics on Kihler
manifold with the holomorphic prepotential U(z) =
SN w,logz? (see, e.g., [22]).

Finally, we note that all symmetries respected by the
systems considered in this section are symmetries of the
appropriate superfield Lagrangians (73) at B # 0, w # 0,
with @¢, ®" standing for z¢, z”.

VII. DISCUSSION AND OUTLOOK

In this paper, we presented the systematic combined
Hamiltonian and superfield approach to the construction of
the multiparticle models of deformed N =4, 8 super-
symmetric mechanics on Kihler manifolds in interaction
with a constant magnetic field. The latter are introduced
via a supersymmetric version of minimal coupling. We
applied this approach to the various (super)integrable
models and demonstrated that such superextensions pre-
serve all kinematical symmetries of the initial bosonic
systems (and some hidden symmetries in a few particular
cases). One of the basic features of our approach is that
diverse isometries are realized on the SU(2|1) multiplets of
the same sort, without introducing any extra multiplet.
This is a crucial difference of our approach from the
models of Refs. [25-27] in which similar isometries were
realized within the standard N =4 supersymmetric
mechanics at a cost of introducing extra degrees of
freedom (coming back to the spin variables introduced
in [28]).

The next obvious task is the study of the quantum
mechanical properties (spectra, etc.) of the SU(2|1) super-
symmetric Landau problem on CP", as well as of the SU(2|1)
supersymmetric oscillatorlike models on CY and CPV.

Some other tasks are

(i) Coupling, to a constant magnetic field, of “flat”

N = 8 supersymmetric mechanics with a nonzero
potential on special Kéhler manifolds as suggested
in [30] and studying the new deformed N =8
mechanics models obtained in this way;

" Applications of the spin variables in the models of SU(2|1)
mechanics were considered, e.g., in [29].

(i) The construction of the deformed supersym-
metric extensions of the Landau problem on qua-
ternionic manifolds and, in particular, on quater-
nionic projective spaces HPV, having in mind their
relevance to the so-called high-dimensional Hall
effect [31];

(iii) The construction of the HP"-Rosochatius system
and studying the symmetry properties of it and of
the HPV oscillator’s [32], as well as of their super-
symmetric extensions.

(iv) Introducing the notion of a quaternionic oscillator,
by analogy with the Kihler one, and the study of its
possible deformed supersymmetric extensions.

We plan to address this circle of problems in the near
future.
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APPENDIX: ISOMETRIES OF SPECIAL
KAHLER STRUCTURE IN THE
LOCAL COORDINATES

In this appendix, we formulate the conditions (43)
defining the isometries of the special Kdhler structure in
the local coordinate frame, in which the Kihler metric and
the tensor f,,.(z) take the form (48). The Eq. (43)
expresses, in the special coordinate frame, via Seiberg-
Witten prepotential F(z) as follows:

38<0Vﬁc’)bac)5)d.7:+ V,‘faaabﬁcad}": 0, (Al)

with V', VZ being the components of the holomorphic
Hamiltonian vector field (4).

To extract the necessary corollaries of this equation, we
first act by the derivative 0, on (76), where the Kihler
potential is defined by (48). Step by step, it yields
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0,0,0:[(Va04 + VI03)(z°0,F + 220, F) = 0 =
0,0,0: V(2 0,0,F + 03 F) + VU0, F + 260;0,F)] = 0 =
0,0:(0, VIO, F + 7°0,,(V10,40,F) + V(005 F + 040, F)] = 0 =

0:V10,9,5 + 0,0, VIO F + 7¢0,0,(V10,0,F) = 0 =
9:V120,0,04F + 030,Vegae + 0,V4040.0,F + 0,V10,0,0,F + V1940.0,0,F =0 =

30(,Vi20y0e)04F — 0,0,0,F (0. Vi — 85V,‘3) + V40,0,0,.04F + 9ac0,0,VE = 0. (A2)
|
Using the last condition, we can rewrite (Al) as The variation of F is then equal to
9ac0,0, V= 0,0,0,F (0, Ve — 85fo) =0. (A3) 8, F = V40, F = (iC¥0,F + pl.z* + al)0,F. (A7)
Next, taking 0, derivative of this relation, we obtain Inserting this solution in (A1) yields the condition,
0:070:F 0,0,V = =0,0,0,F0:0:Vi.  (A4) 0,040.(8,F) =0, (A8)
The left- and right-hand sides of this relation are products  haying the obvious general solution,
of holomorphic and antiholomorphic functions. Obviously,
the factors of the same holomorphicity should be equal, 8, F = €+ CapZ® + Capp?® . (A9)

which yields

aa(?bV; = iC;daaabadf, C;d = CZC, (AS)
where C;d are some complex constant parameters.
Taking also into account (A3), the solution of (A5) can

be written as

d _ ;d d d
V4 = iCL0,F + ploz® + o,

Vi = —iCd0,F + pl,ze + ad, (A6)

where ,‘fa and a,‘f are, respectively, real and complex
constant parameters. From (A3) and (A5), it follows that
C4¢ is a symmetric real matrix, C;? = C4°.

where ¢,, ¢,, and c,;, are complex parameters.

Next we insert the solution (A6) in the Killing equa-
tion (6) (b), with the metric defined by (46), and derive the
additional condition on 6,7,

0404(8,F) + 0,05(8,F) = 0. (A10)
This equation amounts to the reality condition
(caby) = —Caby-

The superfield transformations (84) have precisely the
form of the general isometry §,F, with the complex
coordinates z%, z* being replaced by the chiral SU(4|1)
superfields @“ and their antichiral counterparts.
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