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In this paper, we consider the evaluation of the effective action for photons coupled to charged scalar
fields in the framework of a (2þ 1)-dimensional noncommutative spacetime. In order to determine the
noncommutative Maxwell Lagrangian density, we follow a perturbative approach, by integrating out
the charged scalar fields, to compute the respective graphs for the vev’s hAAi, hAAAi, and hAAAAi.
Surprisingly, it is shown that these contributions are planar and that, in the highly noncommutative limit,
correspond to the Maxwell effective action and its higher-derivative corrections. It is explicitly verified that
the one-loop effective action is gauge invariant, as well as under discrete symmetries: parity, time reversal,
and charge conjugation. Moreover, a comparison of the main results with the noncommutative QED3 is
established. In particular, the main difference is the absence of parity violating terms in the photon’s
effective action coming from integrating out the charged scalar fields.
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I. INTRODUCTION

In recent years a great amount of attention has been paid
in the analysis and calculation of covariant effective action
for different types of quantum fields, exploring the diversity
of new interactions that mainly depend on the spin of
the fields involved as well as the spacetime dimensionality
[1–3]. One may say that the canonical example of a
complete analysis is the Euler-Heisenberg effective action
[4], where quantum effects from QED are responsible to
induce nonlinear interactions among photons. Moreover,
the effective action framework has served as an important
tool to explore different point of views about the quantum
gravitational theory, where the Einstein-Hilbert action is
augmented by metric and/or torsion fields higher-order
terms [5,6].
Naturally, since the framework of effective action is a

powerful tool, there is a great expectation that this approach
can be used to make contact with modern phenomenology
of physics beyond the standard model. The main idea
behind this formulation is that at energies below some

cutoff scale μ,1 all the effects of the massive degrees of
freedom (d.o.f.) above μ can be encoded as new interactions
among the fields remaining active below μ. The effective
action approach has been extensively used to the study of
Lorentz violating field theories, where the energy scale μ is
related to the Planck energy scale EPl (or length lPl) where
our notion of smooth geometry is expected to break [7,8].
In this case, the current understanding is that the low energy
Lorentz violating terms come as quantum corrections from
heavy modes [9,10].
Although the majority of studies of Lorentz violating

field theories is developed in a four-dimensional spacetime,
there are considerable interests in the description of three-
dimensional (3D) ones [11–13]. Besides the algebraic
richness of odd dimensional spacetimes, one may say that
the most appealing aspect of 3D field theories is the UV
finiteness in some models. This feature might provide an
ambiguity free description of Lorentz violation, allowing
thus a close contact of violating effects with physical planar
phenomena. In particular, it is worth recall the example
of the description of quantum hall fluids in terms of
noncommutative geometry [14,15].
Over the past two decades, field theories defined in a

noncommutative (NC) geometry have been considered as
one of the most prominent candidates presenting Lorentz
violation to make contact with quantum gravity phenom-
enology [15,16]. Within this description, the noncommu-
tativity measurement parameter is related to a length scale
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1That may signal symmetry violation, for instance Lorentz
symmetry violation.
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lnc ∼
ffiffiffi
θ

p
. In one hand, this length scale can be seen as a

manifestation of the discreteness of the spacetime, present-
ing a smooth profile in the UV region [17]. On the other
hand, this same scale is responsible for introducing
instabilities in the dispersion relations of the fields, the
so-called UV/IR mixing [18].
NC field theories have been studied through the effective

action approach, where the behavior of the new couplings
was deeply analyzed [19], where the presence of UV/IR
mixing in the 1PI functions signals that applying the
usual Wilsonian field theory notions and techniques to
NC QFT’s one should be careful. This type of analysis was
also developed to two and three-dimensional NC models
[20–24]. These studies of effective action in 3D models
were exclusive to the coupling of gauge and fermion fields,
no much attention has been paid to the case involving scalar
fields, in particular the case of spinless charged fields
interacting with photons.
In one hand, it is of physical significance to study scalars

in 3D field theories independently of fermions in con-
densed matter systems, as in quantum Hall systems, since
we have scalar quasiparticle excitations. On the other hand,
recently 3D versions of fermionization/bosonization have
also been introduced [25,26]. In these studies, it was
discussed the duality between nonspin Chern-Simons
theory and a spin Chern-Simons theory, exploring precisely
the spin structure of the given models. In this sense, the
present work could be the first step in extending such
analysis to the NC case. Motivated by these facts, we will
analyze throughout the paper to what extent the spin of the
matter fields can change the effective action when charged
scalar and fermion fields are considered in the presence of
the spacetime noncommutativity. A straightforward result
is that in the case of the 3D scalar quantum electrodynamics
(scalar QED3), it is not possible to generate the parity odd
Chern-Simons terms, showing thus that the dynamics of the
3D gauge field is significantly different in the presence
of either charged scalar or fermion fields. It is well known
that the presence of the d.o.f. associated with the spin
changes in most of the cases only the magnitude of physical
quantities, e.g., the beta function [27] and electron’s
magnetic moment [28].
In this paper we discuss the effective action for the

photon in the scalar QED in the noncommutative three-
dimensional spacetime. In Sec. II we present an overview
of the scalar QED, where the charged scalar fields are
minimally coupled with the photons. There we define
the main aspects regarding the Moyal product used in
our analysis,2 we also discuss the content of discrete

symmetries in the NC 3D spacetime. In addition, all the
Feynman rules are presented for the propagators and 1PI
vertices. Section III is focused in the perturbative compu-
tation of the relevant graphs corresponding to the one-loop
effective action for the photon gauge field. It is also
discussed the generation of higher-derivative terms, similarly
to the Alekseev-Arbuzov-Baikov effective Lagrangian for
non-Abelian fields. In Sec. IV we establish a comparison of
the obtained results for the effective action in the NC-scalar
QED to those of ordinary NC-QED, exploring the part
played by the spin in these cases. We present our final
remarks in Sec. V.

II. THE MODEL

In this section, we introduce the model and fix our
notation. The noncommutative extension of the bosonic
electrodynamics is described by the following action

S ¼
Z

d3x½ðDμϕÞ†⋆Dμϕ −m2ϕ†⋆ϕ�; ð2:1Þ

this functional action consists of the interaction of
charged scalar fields minimally coupled with an external
gauge field. We consider the covariant derivative form in
the fundamental representation Dμϕ ¼ ∂μϕþ ieAμ⋆ϕ.
This action is invariant under the infinitesimal gauge
transformation

δAμ ¼ ∂μλþ ie½Aμ; λ�⋆; δϕ ¼ ieλ⋆ϕ; ð2:2Þ

where ½; �⋆ is the Moyal bracket. Moreover, the Moyal star
product between the functions f and g is defined as

fðxÞ⋆gðxÞ ¼ fðxÞ exp
�
i
2
θμν∂⃖μ ∂⃗ν

�
gðxÞ; ð2:3Þ

where θμν ¼ −θνμ are constant parameters that measure the
noncommutative structure of the space-time. In order to
avoid unitarity violation, we assume that θ0i ¼ 0, hence
we have only one nonzero independent component θ12 in
our model.
It is worth mentioning that although the couplings (2.1)

are simply modified by the presence of a nonplanar
phase due to the Moyal product, the noncommutativity
of spacetime coordinates shows its importance in the
computation of the one-loop effective action for the gauge
field, where nonlinear self-couplings are present solely due
to the NC framework. The one-loop effective action for the
gauge field can be readily obtained by integrating out the
charged scalar fields of (2.1)

eiΓeff ½A� ¼
Z

Dϕ†Dϕ e−i
R

d3xϕ†⋆ðD2þm2Þ⋆ϕ: ð2:4Þ

2The noncommutativity we will be using in the paper is
defined by the algebra ½x̂μ; x̂ν� ¼ iθμν. So in order to construct a
noncommutative field theory, using the Weyl-Moyal (symbol)
correspondence, the ordinary product is replaced by the Moyal
star product as defined below.
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Using the Gaussian functional integration formulas for the
case of interacting charged scalar fields, we can write the
noncommutative 1PI effective action as below

iΓeff ½A� ¼ Tr ln

�ði∂μ − eAμÞ⋆ði∂μ − eAμÞ⋆ −m2

−∂2 −m2

�
; ð2:5Þ

where Tr is a sum over eigenvalues of the operator inside
the bracket which can also be evaluated in momentum
space. Similarly to the description of one-loop effective
action for the gauge field in the case of NC-QED [24], one
can show that Γeff ½A� has a convergent series expansion in
coupling constant e. From a diagrammatic point of view, it
includes the one-loop graphs contributing to the gauge field
n-point functions which is considered as

Γeff ½A�¼Seff ½AA�þSeff ½AAA�þSeff ½AAAA�þ��� : ð2:6Þ

However, the functional Γeff ½A�, in comparison to the
NC-QED case, has more graphs due to the presence of
an additional interacting vertex.
Moreover, it is important to emphasize that as we will

show in our model, similarly to the case of NC-QED [21],
the one-loop effective action for the photons is completely
planar. Explicitly, in the evaluation of the one-loop dia-
grams with an arbitrary number of external legs of photons,
for energies below the mass scale m, only planar diagrams
contribute. This means the absence of IR/UV mixing.

A. Discrete symmetries

Since we are interested in computing the one-loop
effective action for the photon, it is useful to analyze the
behavior of the original action (2.1) under discrete sym-
metries: parity, charge conjugation and time reversal. This
study will allow us to determine which of them may be
anomalous in the obtained results for the one-loop order
effective action.

(i) Parity
Parity transformation in d ¼ 2þ 1 is defined as

x1 → −x1 and x2 → x2, in this case we have that the
field ϕ is even under parity, and the components of
the gauge field Aμ behave as A0 → A0, A1 → −A1

and A2 → A2. Moreover, we observe from the NC
algebra that the θ parameter changes under this
transformation as θ12 → −θ12. With these consid-
erations, it is easy to show that the whole of the
action (2.1) is parity invariant.

(ii) Time reversal
Under time reversal, we have that x0 → −x0.

In this case, the components of the gauge field
behave as ðA0; AiÞ → ðA0;−AiÞ. By demanding
that the scalar field does not change ϕ → ϕ, and
that necessarily the NC parameter transforms as
θ12 → −θ12 under time reversal, we are left with
a T-invariant action.

(iii) Charge conjugation
As we know, the behavior of the gauge field under

charge conjugation is given by Aμ → −Aμ for any
space-time dimensionality. Taking the scalar field to
be unchanged under C, and the transformation for
the NC parameter θ → −θ, we conclude that the
action (2.1) is C-invariant.

B. Propagators and vertex functions

In order to discuss the computation of the perturbative
effective action, we must determine the basic propagators
and 1PI vertex functions. From the functional action
described in (2.1), we can obtain the bosonic propagator

DðpÞ ¼ i
p2 −m2

; ð2:7Þ

the cubic vertex hAϕϕ†i

Γμðp; qÞ ¼ −ieðpþ qÞμ exp
�
i
2
p ∧ q

�
; ð2:8Þ

and the quartic vertex hAAϕϕ†i

Λμνðp; q; sÞ ¼ 2ie2ημν exp

�
i
2
k ∧ s

�
cos

�
p ∧ q
2

�
;

ð2:9Þ

where we have introduced the notation p ∧ q ¼ pμθ
μνqν.

A straightforward difference of the scalar and fermionic
electrodynamics is the presence of the quartic vertex
hAAϕϕ†i, which increases significantly the number of
the one-loop graphs. Moreover, the scalar vertices are
rather simpler due to the absence of the Dirac γ matrices,
resulting in a much simpler algebraic analysis.

III. PERTURBATIVE EFFECTIVE ACTION

Now that we have determined the basic Feynman rules
for the 1PI functions, we shall proceed to the computation
of the one-loop diagrams related to the effective action for
the gauge field. For this purpose, we shall compute along
this section the respective contributions: the free part of the
effective action hAAi, and the interacting parts for the cubic
vertex hAAAi and quartic vertex hAAAAi. In general, the
final results of our analysis related to the graphs contrib-
uting to hAAi, hAAAi, and hAAAAi vertices shall be a
function of e, p̃μ ¼ θμνpν and p2=m2.
To highlight the effects of noncommutativity in the low

energy effective action and the photon two, three and four-
point functions, while we take the external momenta p such
that p2=m2 ≪ 1, we also take the highly noncommutative
limit, i.e., the low-energy regime p2=m2 → 0 while p̃ is
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kept finite. In this limit the noncommutative (planar) phase
factors, which are a function of p̃, remain finite. Moreover,
we shall focus our attention on those terms of order m−1.
We present by complementarity, at the next to leading
order, the terms of order m−3 that correspond to higher-
derivative corrections.

A. One-loop hAAi part
From the Feynman rules we can compute the one-loop

contribution to the AA-term corresponding to the free
part of the photon effective action. The two diagrams

contributing at this order are depicted in Fig. 1, which the
respective expressions have the form

Πμν
ðaÞðpÞ ¼ e2

Z
ddk
ð2πÞd

ðpþ 2kÞμðpþ 2kÞν
½ðpþ kÞ2 −m2�½k2 −m2� ;

Πμν
ðbÞðpÞ ¼ −e2

Z
ddk
ð2πÞd

2ημν½ðpþ kÞ2 −m2�
½ðpþ kÞ2 −m2�½k2 −m2� ; ð3:1Þ

so that the full contribution is written as

ΠμνðpÞ ¼ e2
Z

ddk
ð2πÞd

ðpþ 2kÞμðpþ 2kÞν − 2ημν½ðpþ kÞ2 −m2�
½ðpþ kÞ2 −m2�½k2 −m2� : ð3:2Þ

A first comment is that this piece is completely planar,
carrying no noncommutative effects. The explicit compu-
tation is straightforward using dimensional regularization.
After some algebraic calculation, we can consider the low-
energy limit, p2=m2 → 0, resulting into

ΠμνðpÞ ¼ ie2

48πm
ðpμpν − ημνp2Þ: ð3:3Þ

Moreover, for the next to leading order contribution,
Oðm−3Þ, we find that

Πμν
hdðpÞ ¼

ie2

960πm3
ðpμpν − ημνp2Þp2: ð3:4Þ

These two terms Eqs. (3.3) and (3.4) satisfy straightfor-
wardly the Ward identity, pμΠμν ¼ 0, as we expected. We
can determine the respective contribution to the effective
action by means of

iSeff ½AA� ¼
Z Z

d3x1d3x2Aμðx1ÞΓμνðx1; x2ÞAνðx2Þ;

ð3:5Þ

where Seff ½AA� is the quadratic part of the effective action
Γ½A� in (2.6). Here, we have defined by simplicity

Γμνðx1; x2Þ ¼
Z

d3p
ð2πÞ3 e

−ip·ðx1−x2ÞΠμνðpÞ: ð3:6Þ

After some algebra, the quadratic part of the induced
effective action for the photon, considering (3.3) and (3.4),
is given by

iSeff ½AA� ¼ −
ie2

48πm

Z
d3xð∂μAν∂μAν − ∂μAν∂νAμÞ

þ ie2

960πm3

Z
d3xð∂μAν□∂μAν − ∂μAν□∂νAμÞ:

ð3:7Þ

As we have previously mentioned, the first term of the
expression (3.7) corresponds to the kinetic part of the
noncommutative Maxwell action, Oðm−1Þ, while the sec-
ond term is the higher-derivative correction to the kinetic
term, of order Oðm−3Þ. Moreover, the obtained result does
not contain any noncommutativity effect, since the pro-
duced phase factors cancel for n ¼ 2. It is worth noticing
the absence of the parity odd Chern-Simons term in the
scalar QED3, which in turn is generated in the fermionic
electrodynamics due to the algebraic structure of the two-
dimensional realization of γ matrices.

B. One-loop hAAAi vertex
The relevant graphs for the hAAAi part of the effective

action are shown in Fig. 2. However, in order to determine
correctly the full contribution to the effective action, it is
necessary to consider all different permutations of the
external bosonic lines of the given graphs. It is easy to
see that the diagram (a) has an additional contribution (b),
corresponding to a permutation of the external photon legs,
which has an equivalent structure but with a reversed

(a) (b)

FIG. 1. Relevant graphs for the induced AA-term.
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momentum flow, which comes exactly from the S-matrix expansion at the order of e3. With help of the Feynman rules, we
can easily write the relevant expression for the sum of the graphs (a) and (b)

Πμνρ
ðaþbÞðp; qÞ ¼ 2ie3

Z
ddk
ð2πÞd

ðpþ 2kÞμð2pþ 2kþ qÞνðpþ qþ 2kÞρ
½ðpþ kÞ2 −m2�½ðpþ qþ kÞ2 −m2�½k2 −m2� sin

�
p ∧ q
2

�
; ð3:8Þ

which is a planar quantity, we can see that its integrand is independent of the noncommutativity. The contribution from the
graph (c) also has a simple planar structure, which is given by the expression

Πμνρ
ðcÞ ðp; qÞ ¼ −e3

Z
ddk
ð2πÞd

ημνðpþ qþ 2kÞρ
½ðpþ qþ kÞ2 −m2�½k2 −m2� cos

�
p ∧ q
2

�
: ð3:9Þ

Since the graph (c) is planar, one can perform straightforward manipulations to show that this contribution is identically
zero, i.e., Πμνρ

ðcÞ ¼ 0, for any value of the external momenta. Hence the full contribution for the hAAAi vertex reads

Πμνρðp; qÞ ¼ 2ie3
Z

ddk
ð2πÞd

ð2kþ pÞμð2kþ pþ sÞνðsþ 2kÞρ
½ðpþ kÞ2 −m2�½ðsþ kÞ2 −m2�½k2 −m2� sin

�
p ∧ q
2

�
: ð3:10Þ

The computation of the loop integral is lengthy but straightforward using dimensional regularization, and in the low-
energy limit p2, q2 ≪ m2, we find that

Πμνρðp; qÞ ¼ e3

12πm
½ðp − qÞρημν − ð2pþ qÞνημρ þ ðpþ 2qÞμηνρ� sin

�
p ∧ q
2

�
: ð3:11Þ

Here, we notice that the Eq. (3.11) corresponds exactly to the standard Feynman vertex of the 3-photon interaction term in
the NC spacetime. Moreover, in the next to leading order, Oðm−3Þ, we have the contribution from the higher-derivative
terms

Πμνρ
hd ðp; qÞ ¼ −

e3

240πm3
fημν½p2ð2q − pÞρ þ q2ðq − 2pÞρ þ ðp:qÞðq − pÞρ�

þ ημρ½p2ð4pþ 2qÞν þ q2ð3pþ qÞν þ ðp:qÞð4pþ qÞν�
− ηνρ½p2ðpþ 3qÞμ þ q2ð2pþ 4qÞμ þ ðp:qÞðpþ 4qÞμ�

þ pμqρðq − pÞν þ pρqμðq − pÞν − pμpρð2pþ qÞν þ qμqρðpþ 2qÞνg sin
�
p ∧ q
2

�
: ð3:12Þ

This expression corresponds to the higher-derivative correction to the 3-photon vertex.
It is important to observe that in the commutative limit, the graphs (a) and (b) cancel each other, so that the induced

3-photon vertex is completely removed in the scalar QED. We can understand this result from the charge conjugation
invariance of the scalar QED in any space-time dimension, known as Furry’s theorem, that forbids the presence of an odd

(a) (b) (c)

FIG. 2. Relevant graphs for the induced AAA-term.
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number of photon lines in the case of commutative theory. Another important aspect from our analysis is the absence of the
Chern-Simons self-coupling ϵμνλAμ⋆Aν⋆Aλ for the noncommutative scalar QED3 effective action (3.11), which is only
generated in the case of fermionic electrodynamics [24].

C. One-loop hAAAAi vertex
The full contribution to the hAAAAi part is determined by considering three different types of diagrams that are depicted

in Fig. 3. Since all of these graphs have 4 external bosonic legs, 24 different permutations for each graph must be considered
in order to obtain the fully symmetrized contribution. Hence, the full contribution can be formally written as

Γμνρσ
total ¼ Γμνρσ

ðaÞ þ Γμνρσ
ðbÞ þ Γμνρσ

ðcÞ ¼
X24
i¼1

Γμνρσ
ða;iÞ þ

X24
i¼1

Γμνρσ
ðb;iÞ þ

X24
i¼1

Γμνρσ
ðc;iÞ : ð3:13Þ

We shall present next the explicit discussion for the first contribution of each graph, whereas the remaining graphs are
obtained by a direct permutation of momenta and spacetime indices.
The box diagram contribution represented in graph (a) has the following expression

Πμνρσ
ða;1Þ ¼ e4

Z
ddk
ð2πÞd

ðpþ 2kÞμð2pþ qþ 2kÞνð2pþ 2qþ sþ 2kÞρðpþ qþ sþ 2kÞσ
½ðpþ qþ sþ kÞ2 −m2�½ðpþ qþ kÞ2 −m2�½ðpþ kÞ2 −m2�½k2 −m2� e

i
2
p∧qei

2
ðpþqÞ∧s; ð3:14Þ

where we have labeled the momenta (p, q, s, r) accordingly to the spacetime indices of the external legs (μ, ν, ρ, σ).
Moreover we have adopted the notation, in order to satisfy the energy-momentum conservation, where the momenta flow
satisfies the relation r ¼ pþ qþ s. The remaining contributions from the other 23 box diagrams, coming from the
S-matrix expansion, can easily be obtained from the equation (3.14) by considering the respective permutation. Next, we
have the contribution from the bubble diagram represented in (b), which is given by

Πμνρσ
ðb;1Þ ¼ e4

Z
ddk
ð2πÞd

ημνηρσ

½ðpþ qþ kÞ2 −m2�½k2 −m2� cos
�
p ∧ q
2

�
cos

�
s ∧ ðpþ qÞ

2

�
: ð3:15Þ

At last, the triangle contribution shown in graph (c) is written as

Πμνρσ
ðc;1Þ ¼ −e4

Z
ddk
ð2πÞd

ημνð2pþ 2qþ sþ 2kÞρðpþ qþ sþ 2kÞσ
½ðpþ qþ sþ kÞ2 −m2�½ðpþ qþ kÞ2 −m2�½k2 −m2� cos

�
p ∧ q
2

�
e

i
2
ðpþqÞ∧s: ð3:16Þ

The Feynman expressions of the graphs (a), (b), and (c) show that all of them are planar, making the evaluation of the
momentum integration easier by dimensional regularization. Hence the resulting expressions from the contributions (3.14)
to (3.16), evaluated in the highly noncommutative limit, where p2, q2, s2 ≪ m2, are written as follows

σ σ σ

(a) (b) (c)

FIG. 3. Relevant graphs for the induced AAAA-term.
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Γμνρσ
ða;1Þ ¼

1

4
×

ie4

12πm
ðημνηρσ þ ημρηνσ þ ημσηνρÞei

2
p∧qei

2
r∧s;

Γμνρσ
ðb;1Þ ¼

1

2
×

ie4

8πm
ημνηρσ cos

�
p ∧ q
2

�
cos

�
r ∧ s
2

�
;

Γμνρσ
ðc;1Þ ¼ 1 ×

−ie4

8πm
ημνηρσ cos

�
p ∧ q
2

�
cos

�
r ∧ s
2

�
;

ð3:17Þ
where the coefficients 1

4
, 1
2
and 1 are the symmetry factors

for the graphs (a), (b), and (c) of Fig. 3, respectively. We
then apply to the results (3.17) all the 24 permutations,
necessary to evaluate (3.13), yielding

Γμνρσ
ðaÞ ¼ ie4

6πm
ðημνηρσ þ ημρηνσ þ ημσηνρÞ½cosð12Þ cosð34Þ

þ cosð13Þ cosð24Þ þ cosð14Þ cosð23Þ�;

Γμνρσ
ðbÞ ¼ ie4

2πm
½ημνηρσ cosð12Þ cosð34Þ

þ ημρηνσ cosð13Þ cosð24Þ
þ ημσηνρ cosð14Þ cosð23Þ�;

Γμνρσ
ðcÞ ¼ −

ie4

πm
½ημνηρσ cosð12Þ cosð34Þ

þ ημρηνσ cosð13Þ cosð24Þ
þ ημσηνρ cosð14Þ cosð23Þ�; ð3:18Þ

where we have introduced, by simplicity of the upcoming
analysis, the following notation for the NC momenta
product: ð12Þ≡ ðp∧q

2
Þ, ð13Þ≡ ðp∧s

2
Þ, ð14Þ≡ ðp∧r

2
Þ, ð23Þ≡

ðq∧s
2
Þ, ð24Þ≡ ðq∧r

2
Þ, and ð34Þ≡ ðs∧r

2
Þ. Finally, we substitute

the results (3.18) into the Eq. (3.13) to obtain the total
one-loop contribution expression corresponding to the
photon 4-point function

Γμνρσ
total ¼

ie4

πm

�
1

6
ðημνηρσ þ ημρηνσ þ ημσηνρÞ½cosð12Þcosð34Þ

þ cosð14Þcosð23Þþ cosð13Þcosð24Þ�

−
1

2
½ημνηρσ cosð12Þcosð34Þþ ημρηνσ cosð13Þcosð24Þ

þ ημσηνρ cosð14Þcosð23Þ�
�
: ð3:19Þ

We can verify whether the quartic vertex (3.19) satisfy
the Ward identity in scalar QED. First, we consider the
commutative limit, i.e., θ → 0, so that the one-loop con-
tribution (3.19) is reduced to

lim
θ→0

Γμνρσ
total ¼

ie4

πm
ðημνηρσ þ ημρηνσ þ ημσηνρÞ

×

�
1

2
þ 1

2
− 1

�
¼ 0; ð3:20Þ

showing that the photon quartic self-coupling in the order
Oðm−1Þ is absent in the Abelian theory; however higher
order contributions could be nonvanishing, corresponding
to nonlinear Euler-Heisenberg-like terms. Moreover, in the
case of the violation of the Ward identity, a nonvanishing
result for the contribution (3.20) would generate a four
photon interaction term in the effective action of the type

lim
θ→0

Seff ½AAAA� ∼
Z

d3xðημνηρσ þ ημρηνσ þ ημσηνρÞ

× AμðxÞAνðxÞAρðxÞAσðxÞ; ð3:21Þ
that is not explicitly gauge invariant. Hence, with the
result (3.20) we conclude that the gauge invariance is
satisfied in our analysis of Oðm−1Þ terms at the one-loop
approximation.
On the other hand, in the noncommutative case, as it is

well known, we expect to find the relevant Feynman rule
corresponding to the 4-photon interaction term at this order.
To accomplish that, we start working separately each one of
the tensor terms present in the function Γμνρσ

total Eq. (3.19). We
shall illustrate the analysis for the terms proportional to
ημνηρσ, the remaining terms can be evaluated in the same
fashion. Hence, by picking the pieces that are proportional
to ημνηρσ in (3.19), we have that

Iμν;ρσ ≡ ie4

6πm
ημνηρσ½−2 cosð12Þ cosð34Þ

þ cosð14Þ cosð23Þ þ cosð13Þ cosð24Þ�: ð3:22Þ
The major work here consist in simplifying the trigono-
metric part of this function by making use of the energy-
momentum conservation r ¼ pþ qþ s, which in the
new notation is renamed as 4 ¼ 1þ 2þ 3, together with
the manipulation of some trigonometric identities, e.g.,
cos α cos β ¼ cosðαþ βÞ þ sin α sin β. After some labori-
ous but straightforward calculation, we arrive at the desired
expression

Iμν;ρσ ¼ ie4

6πm
ημνηρσ½sinð14Þ sinð23Þ þ sinð13Þ sinð24Þ�:

ð3:23Þ
Similarly, we can apply the same process in order to
simplify the remaining terms, proportional to ημρηνσ and
ημσηνρ, so that it yields to

Iμρ;νσ ¼ ie4

6πm
ημρηνσ½sinð12Þ sinð34Þ − sinð14Þ sinð23Þ�;

Iμσ;νρ ¼ −
ie4

6πm
ημσηνρ½sinð12Þ sinð34Þ þ sinð13Þ sinð24Þ�:

ð3:24Þ
Hence, by considering the results from our manipula-

tions, Eqs. (3.23) and (3.24), we can rewrite (3.19) in a
convenient form as the following
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Γμνρσ
total ¼

ie4

6πm

�
ðημνηρσ − ημσηνρÞ sin

�
p ∧ s
2

�
sin

�
q ∧ r
2

�

þ ðημνηρσ − ημρηνσÞ sin
�
p ∧ r
2

�
sin

�
q ∧ s
2

�

þ ðημρηνσ − ημσηνρÞ sin
�
p ∧ q
2

�
sin

�
s ∧ r
2

��
;

ð3:25Þ

where we have reintroduced the notation in terms of
the external momenta p, q, s, r. As we can observe, the
expression inside the bracket corresponds exactly to the
Feynamn vertex of the 4-photon interaction within
the noncommutative U⋆ð1Þ gauge theory.
Finally, we can gather the leading Oðm−1Þ contributions

from the one-loop order parts related to the two, three and
four-point functions, Eqs. (3.3), (3.11), and (3.25), respec-
tively, so that we can write the complete expression of the
NC Maxwell action as

iSeff

			
Oðm−1Þ

¼ −
ie2

96πm

Z
d3xFμν⋆Fμν; ð3:26Þ

in which the field strength tensor in the NC framework
is defined as Fμν ¼ ∂μAν − ∂νAμ þ ie½Aμ; Aν�⋆. As we
have previously discussed, this action is manifestly
U⋆ð1Þ gauge invariant under the transformation
U ¼ eieλ⋆ , where the field strength has the following trans-
formation law Fμν → U⋆Fμν⋆U−1.
Regarding the higher-derivative corrections to the

4-photon vertex (3.25), corresponding to the next to leading
order Oðm−3Þ terms, we arrive at a result involving a long
expression which can be found in the Appendix. This
Oðm−3Þ result can be seen as the 3D version of the Euler-
Heisenberg Lagrangian. We notice that in the commutative
limit, the gauge invariant field strength is defined as
fμν ¼ ∂μAν − ∂νAμ, so that the commutative version of
the effective action (3.26) only receives contribution from
the one-loop hAAi part, the remaining contributions are
vanishing. Thus, the commutative one-loop effective action
in the presence of the higher-derivative term, at the next to
leading order, is described as

lim
θ→0

iSeff

			
Oðm−3Þ

¼ −
ie2

96πm

Z
d3x fμνfμν

þ ie2

1920πm3

Z
d3x fμν□fμν: ð3:27Þ

Some comments about the result (3.26) are now in place.
Regarding discrete symmetries, following the aforemen-
tioned discussion in Sec. II A, it is easy to show that the
above one-loop effective action is also invariant under all

of the discrete symmetries and therefore we have not faced
any anomalous symmetry at this order.
Since the effective action (3.26), arising from the 2, 3,

and 4-point functions at the order Oðm−1Þ, is exactly
gauge invariant, it is possible to conclude that no further
Oðm−1Þ terms are generated from higher-order graphs
with n > 4 external photon legs. According to this
reasoning, we can also discuss the gauge invariance of
the higher-derivative terms generated by considering the
next to leading order Oðm−3Þ of our expansion. Actually,
it is possible to make use of a dimensional analysis, based
on arguments of gauge invariance, to establish the
perturbative generation of all possible gauge invariant
higher-derivative terms in the one-loop effective action
[24]. As an example, if we consider all of the Oðm−3Þ
contributions up to the diagrams with n ¼ 6 external
photon legs, we can generate the following effective
higher-derivative Lagrangian

Lhd ¼
1

6μ2
∇μFμν⋆∇λFλν þ

1

6μ2
∇λFμν⋆∇λFμν

−
e

18μ2
Fμν⋆Fνλ⋆Fλ

μ; ð3:28Þ

where ∇μ ¼ ∂μ þ ie½Aμ; �⋆ is the covariant derivative in
the adjoint representation and μ ∼m is the mass scale
of the theory. This expression can been seen as a non-
commutative extension of the Alekseev-Arbuzov-Baikov
effective Lagrangian [3,29].
One last comment about the photon effective action is

in regard of some of the nonlinear contributions. It is
well known that either fermionic or scalar electrodynam-
ics generate nonlinear corrections of quantum character
to the photon dynamics [3]. In the case of a (2þ 1)
spacetime the effective Euler-Heisenberg Lagrangian
density has the appearance of fractional powers of the
field strength [30]

LEH ∼


e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − E2

p �3
2: ð3:29Þ

Hence, it is reasonable to expect that the coordinates
noncommutativity would also present corrections to this
nonlinear coupling term.

IV. COMPARISON WITH NC-QED3

In this section, we shall present a comparative discussion
of the 2,3, and 4-point functions in the case of fermionic
and bosonic matter fields coupled to the photon. It is
notable that the presence of the trace of γ matrices in
fermionic QED3 leads to two sectors characterized as: odd
and even in regard to parity symmetry. The former is related
to the induced Chern-Simons (CS) terms, appearing with
odd powers of the fermion mass me, while the latter sector
contributes to the induced Maxwell (M) terms, with even
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powers of me. Now in the scalar framework, odd parity
terms are absent, and only parity preserving terms are
present in the induced effective action, which can be
understood as the main difference between these two
matter fields. These results can be briefly described in
terms of a mass expansion as the following:

Order Induced action NC-QED3

NC-scalar
QED3

Oðm0Þ ordinary NC-CS ✓ ×
Oðm−1Þ ordinary NC-M ✓ ✓
Oðm−2Þ higher-derivative NC-CS ✓ ×
Oðm−3Þ higher-derivative NC-M ✓ ✓
..
. ..

. ..
. ..

.

Oðm−2lÞ higher-derivative NC-CS ✓ ×
Oðm−2l−1Þ higher-derivative NC-M ✓ ✓

Here some important comments are in order. In
NC-QED3, the structure of the kinetic part, coming from
the n ¼ 2 photon external legs analysis, has the con-
tribution of two types of terms: a CS-type parity violating
term e2A∂□lA, at the order Oðm−2lÞ, and a M-type
parity preserving term e2A∂∂□lA, at the order
Oðm−2l−1Þ. We can observe that the mass dimension
of the CS and M-type terms is given by 3þ 2l and
4þ 2l, respectively. Thus, we can conclude that in order
to have a gauge invariant CS-type action at the order
Oðm−2lÞ, it is necessary to consider all contributions
originating from the graphs with n ¼ 2; 3;…; 3þ 2l
photon legs. On the other hand, to obtain a gauge
invariant M-type action at the order Oðm−2l−1Þ, it is
necessary to consider all contributions arising from the
relevant graphs with n ¼ 2; 3;…; 4þ 2l photon legs.
Furthermore, in (2þ 1) dimensions, the number of

d.o.f. of the charged boson and Dirac fermion (in the 2
dimensional representation) is equal and hence it is easy
to see that the numerical coefficient appearing in the
2-point function (3.7) would be the same as in the
fermionic QED3. Now for the n ¼ 3 graphs, in the case
of NC-QED3, there are only the contribution of two
triangle graphs in the one-loop order. These contributions
are the same as in the NC-scalar QED3 because the
additional graph is identically zero. Thus, it is easy to
realize that the final result in the parity preserving sector
for both cases is the same [24]. The last type of diagrams
is for n ¼ 4 legs, that for the fermionic case we have
the contribution of the box diagram only, i.e., type (a).
The expression for this diagram at the leading order of
Oðm−1Þ is given by

Γμνρσ
ða;1Þ

			
NC-QED

¼−
ie4

3πm
ðημσηνρ−2ημρηνσþημνηρσÞei

2
p∧qei

2
r∧s:

ð4:1Þ

By considering all of the 24 permutations and some
manipulations we obtain the following

Γμνρσ
total

			
NC-QED

¼ 4ie4

3πm

�
ðημνηρσ − ημρηνσÞ sin

�
p ∧ r
2

�
sin

�
q ∧ s
2

�

þ ðημνηρσ − ημσηνρÞ sin
�
q ∧ r
2

�
sin

�
p ∧ s
2

�

þ ðημρηνσ − ημσηνρÞ sin
�
p ∧ q
2

�
sin

�
s ∧ r
2

��
;

ð4:2Þ

which has the same tensor and momenta structure as the
standard 4-photon vertex (3.25), but with a different
numerical coefficient. In this case, we can conclude that
the commutative limit of this function is also satisfied,
and have a vanishing result as we would expect.

V. FINAL REMARKS

In this paper we have considered the perturbative
evaluation of the effective action for photon in the context
of scalar QED in the (2þ 1) noncommutative spacetime.
Our main interest was to determine to what extent the
spin of the matter fields can change the effective action in
the presence of the spacetime noncommutativity. Since
the number of d.o.f. of the charged boson and Dirac
fermion (in the 2 dimensional representation) is equal,
the main difference between these fields is solely to
the well known presence of different couplings in the case
of scalar QED, implying in new types of graphs. An
important drawback from the scalar QED in terms of the
induced effective action for the photon is the absence of
parity violating terms, showing that no Chern-Simons
terms are generated when charged scalar fields are
considered.
The perturbative analysis followed the computation of

the hAAi, hAAAi, and hAAAAi vertex functions. A more
detailed and careful analysis was necessary to the
computation of the 4 point vertex, where the process of
symmetrization is rather intricate. The evaluation of the
noncommutative Maxwell action

R
Fμν⋆Fμν was done by

considering the highly noncommutative limit of these 1PI
functions at order Oðm−1Þ.
In addition, we have considered the generation of

Oðm−3Þ terms, which are higher-derivative terms for the
photon fields, and can be seen as the noncommutative
generalization of the phenomenological Alekseev-
Arbuzov-Baikov effective Lagrangian. Another possible
terms to be present in the gauge invariant photon’s effective
action are those nonlinear couplings, e.g., analogous to
the Euler-Heisenberg action, thus within our study of
NC-scalar QED, we would find noncommutative correc-
tions to the fractional powers of the field strength that
appear in the (2þ 1) dimensional Euler-Heisenberg action.
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APPENDIX: HIGHER-DERIVATIVE CORRECTIONS TO THE 4-PHOTON VERTEX

The higher-derivative contributions of the graphs, depicted in Fig. 3, to the 4-photon vertex at the next to leading order,
Oðm−3Þ, are described as the following:

Γμνρσ
hd ¼ Γμνρσ

hdðaÞ þ Γμνρσ
hdðbÞ þ Γμνρσ

hdðcÞ: ðA1Þ

For simplicity, we define Γμνρσ
hdðaÞ ¼ ie4

240πm3 Γ̃μνρσ
hdðaÞ and Γμνρσ

hdðbþcÞ ¼ − ie4

24πm3 Γ̃μνρσ
hdðbþcÞ in which

Γ̃μνρσ
hdðaÞ ¼ fημν½−2pσpρ þ 4qσpρ − 6sσpρ − qρpσ − sρpσ þ 2qσsρ þ qρqσ − 3qρsσ − 4sρsσ�

þ ημρ½−2ðpσ þ 3qσ − 2sσÞpν − qνpσ − sνpσ − 4qνqσ − 3sνqσ þ 2qνsσ þ sνsσ�
þ ημσ½4ð2pρ þ qρ þ sρÞpν þ 4qνpρ þ 4sνpρ þ 2qρsν þ qνqρ þ 2qνsρ þ sνsρ�
þ ηνρ½−2pσpμ − qσpμ − sσpμ − qμpσ − sμpσ þ qμqσ − 3sμqσ þ sμsσ − 3qμsσ�
þ ηνσ½−2pρpμ − qρpμ − sρpμ þ 4sμpρ − 6qμpρ þ 2qρsμ − 4qμqρ þ sμsρ − 3qμsρ�
þ ηρσ½−2pνpμ − qνpμ − sνpμ þ 4qμpν − 6sμpν þ qμqν þ 2qμsν − 3sμqν − 4sμsν�

þ ðημνηρσ þ ημρηνσ þ ημσηνρÞ½4p2 þ 3q2 þ 3s2 þ 4ðp:qÞ þ 4ðp:sÞ þ 2ðq:sÞ�g cos
�
r ∧ sþ q ∧ p

2

�

þ fημν½pρpσ − pρqσ − 3pρsσ þ 4pσqρ þ 2pσsρ − 2qρqσ − qσsρ − 6qρsσ − 4sρsσ�
þ ημρ½ðpσ − qσ − 3sσÞpν − pσqν − 3pσsν − 2qνqσ − qσsν − qνsσ þ sνsσ�
þ ημσ½−ð4pρ þ 6qρ þ 3sρÞpν − pρqν þ 2pρsν þ 4qρsν − 2qνqρ − qνsρ þ sνsρÞ
þ ηνρ½−4pμpσ − pμqσ þ 2pμsσ − 6pσqμ − 3pσsμ − 2qμqσ − qσsμ þ 4qμsσ þ sμsσ�
þ ηνσ½pμpρ þ 4pμqρ þ 2pμsρ þ 4pρqμ þ 2pρsμ þ 4qρsμ þ 8qμqρ þ 4qμsρ þ sμsρ�
þ ηρσ½pμpν − pμqν − 3pμsν þ 4pνqμ þ 2pνsμ − 2qμqν − qνsμ − 6qμsν − 4sμsν�

þ ðημνηρσ þ ημρηνσ þ ημσηνρÞ½3p2 þ 4q2 þ 3s2 þ 4ðp:qÞ þ 2ðp:sÞ þ 4ðq:sÞ�g cos
�
p ∧ rþ q ∧ s

2

�

þ fημν½pρpσ − 3pρqσ − pρsσ − 3pσqρ − pσsρ þ qρqσ − qσsρ − qρsσ − 2sρsσ�
þ ημρ½ðpσ − 3qσ − sσÞpν þ 2pσqν þ 4pσsν − 4qνqσ − 6qσsν − qνsσ − 2sνsσ�
þ ημσ½−ð4pρ − 2qρ þ sρÞpν − 3pρqν − 6pρsν þ 4qρsν þ qνqρ − qνsρ − 2sνsρ�
þ ηνρ½−4pμpσ þ 2pμqσ − pμsσ − 3pσqμ − 6pσsμ þ 4qσsμ þ qμqσ − qμsσ − 2sμsσ�
þ ηνσ½pμpρ − 3pμqρ − pμsρ þ 2pρqμ þ 4pρsμ − 4qμqρ − 6qρsμ − qμsρ − 2sμsρ�
þ ηρσ½pμpν þ 2pμqν þ 4pμsν þ 2pνqμ þ 4pνsμ þ 4qνsμ þ qμqν þ 4qμsν þ 8sμsν�

þ ðημνηρσ þ ημρηνσ þ ημσηνρÞ½3p2 þ 3q2 þ 4s2 þ 2ðp:qÞ þ 4ðp:sÞ þ 4ðq:sÞ�g cos
�
p ∧ sþ r ∧ q

2

�
ðA2Þ
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Γ̃μνρσ
hdðbþcÞ ¼

�
½ðp2 þ q2 þ p:qþ s:rÞημνηρσ þ pνqμηρσ − rρsσημν� cos

�
p ∧ q
2

�
cos

�
s ∧ r
2

�

þ ½ðp2 þ s2 þ p:sþ q:rÞημρηνσ þ pρsμηνσ − rνqσημρ� cos
�
p ∧ s
2

�
cos

�
q ∧ r
2

�

þ ½ðq2 þ s2 þ q:sþ p:rÞημσηνρ þ qρsνημσ − rμpσηνρ� cos
�
p ∧ r
2

�
cos

�
q ∧ s
2

��
ðA3Þ
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