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We propose a new model for the description of a gravitating multiparticle system, viewed as a kinetic
gas. The properties of the (colliding or noncolliding) particles are encoded into a so-called one-particle
distribution function, which is a density on the space of allowed particle positions and velocities, i.e., on the
tangent bundle of the spacetime manifold. We argue that an appropriate theory of gravity, describing the
gravitational field generated by a kinetic gas, must also be modeled on the tangent bundle. The most natural
mathematical framework for this task is Finsler spacetime geometry. Following this line of argumentation,
we construct a coupling between the kinetic gas and a recently proposed Finsler geometric extension of
general relativity. Additionally, we explicitly show how the general covariance of the action of the kinetic
gas on the tangent bundle leads to a novel formulation of its energy-momentum conservation in terms of its
energy-momentum distribution tensor.
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I. INTRODUCTION

An ensemble of a large number of P individual interact-
ing and gravitating point particles can be described on
several levels of accuracy and detail:

(i) The most precise description is to derive the trajec-
tories for each individual particle from their mutual
interactions directly, which in general is a too
complex task to be accomplished in a reasonable
amount of time and with a reasonable amount of
computational effort.

(ii) Instead of deriving the behavior of all individual
particles, one can consider them as a kinetic gas and
describe their properties collectively, in terms of a
so-called one-particle distribution function (1PDF).
The 1PDF still contains the information about the
velocity distribution of the different particles, but
further information about each individual particle is
averaged out.

(iii) Averaging the 1PDF over the velocities of the
multiple particle system leads to its description as
a fluid.

The gravitational field generated by the particles is
usually obtained on the level of least accuracy in the above
list. The energy-momentum tensor of a fluid is derived as
second moment of the 1PDF with respect to the velocities
of the particles, which then sources the Einstein equations.

The dynamics of the fluid itself are given by the Euler
equations, which follow from the fact that the energy-
momentum tensor must be covariantly constant.
Since the description of the P particle system as a kinetic

gas is more accurate and finer than its fluid description, the
conjecture of this article is that the same is true for the
description of the gravitational field generated by the P
particle system. One feature which for example would be
taken into account in this way is the velocity distribution
over the different gas particles. In the fluid description the
velocity distribution is averaged out.
Technically the 1PDF is a function on the tangent bundle

of spacetime, or in other words on the position and velocity
space of the particles. It describes the number of particles in
the gas and their trajectories. When averaged over the
particle velocities, one can extract information about the
pressure, density and energy-momentum of the resulting
fluid description, see [1,2] and [[3], Sec. II.3], or [4]. A
geometric description of the kinetic gas and its dynamics on
the tangent bundle has been investigated in [5] and was
applied to the formation of accretion discs in [6]. Moreover,
first post Newtonian corrections to the behavior of a
gravitating gas in a fixed gravitational behavior have been
studied [7,8]. What is missing in these approaches is the
dynamical backreaction of the kinetic gas on the gravita-
tional field, accordingly a dynamical equation which
determines the gravitational field generated by the kinetic
gas directly.
The aim of this article is to present how a kinetic gas, in

terms of the 1PDF, can be directly coupled to gravity, and
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how the 1PDF is the source term of a gravitational field
equation directly on the tangent bundle.
In order to couple the 1PDF to gravity without averag-

ing, it is necessary to construct the dynamics of the
gravitational field on the same space on which the 1PDF
lives. Since gravity is encoded into the geometry of
spacetime, this implies that we need a description of the
geometry of spacetime on the tangent bundle. A natural
mathematical framework for this task is Finsler geometry
[9–11].
The idea of using Finsler geometry as generalized

geometry of spacetime has been considered in the literature
for long [10,12–17]. Simultaneously, multiple attempts of
finding Finsler generalizations of the Einstein equations
have been made [15,17–21]. Besides mathematical diffi-
culties in the precise consistent formulation of indefinite
Lorentzian Finsler geometry, one most important open
question, in all of the attempts of using Finsler geometry as
a physically viable extension of the geometry of spacetime,
is how to couple the geometry to physical matter fields
correctly. One particular obstacle is that a Finslerian
geometry does not only depend on the points of spacetime,
but also on its directions.
By studying the kinetic gas in the language of Finsler

geometry, we turn this obstacle into an advantage.
Extending the previous studies [22,23], which considered
the dynamics of a kinetic gas in Finsler geometric language
in the context of cosmology, we formulate an action of the
kinetic gas on the tangent bundle. Its general covariance,
i.e., invariance under coordinate changes of the base
manifold, yields a new formulation of energy-momentum
conservation of a kinetic gas in terms of a quantity directly
formulated on the tangent bundle—the energy-momentum
distribution tensor—and it enables us to couple the gas to
gravity in a simple way. The Finslerian extension of
Einstein gravity which was proposed in [20], and further
developed to mathematical rigor and consistency recently
[17], provides the canonical gravitational field equation on
the tangent bundle, which naturally can be sourced by the
1PDF. By constructing the coupling of a kinetic gas to the
Finslerian geometry of spacetime explicitly, we demon-
strate how physically viable matter leads to a Finslerian
spacetime geometry dynamically and solve the problem of
how to couple physical matter to a Finsler geometric theory
of gravity.
The future application of the gravitational field equation

is expected to highly improve the understanding of systems
that are described by gravitating fluids, such as the universe
as a whole in cosmology, ordinary and neutron stars, as
well as accretion disks of black holes, by replacing the
averaged gravitating fluid by the more accurate and finer
notion of a kinetic gas.
We present our results as follows. In Sec. II we

recapitulate the main mathematical notions of Finsler
spacetime geometry, which are necessary to describe the

kinetic gas in terms of Finsler geometry in Sec. III. The
definition of the 1PDF is provided in Sec. III A. Then we
use the 1PDF to construct an action of the kinetic gas on the
tangent bundle in Sec. III B, before we find the energy-
momentum distribution tensor of the kinetic gas from the
general covariance of the action in Sec. III C. Finally, in
Sec. IV we derive the Finsler gravitational field equations
coupled to the kinetic gas before we conclude in Sec. V.

II. THE GEOMETRIC SETUP

The stage on which we couple the kinetic gas to gravity
is the tangent bundle TM of a spacetime manifold M,
which we assume to be of dimension 4 here. However,
the whole construction presented in this article can
straightforwardly be generalized to any spacetime dimen-
sion. Any local coordinate chart ðU; xaÞ on M induces a
local coordinate chart ðTU; ðxa; _xaÞÞ on TM, where an
element _x ∈ TU is a vector _x in some tangent space
TxM; x ∈ U, which in local coordinates can be expressed
as _x ¼ _xa∂ajx. This procedure associates the manifold
induced coordinates ðxa; _xaÞ to _x. If there is no risk of
confusion, we will sometimes omit the indices in the
coordinate representation. The canonical coordinate basis
of the tangent and cotangent spaces of TM is denoted by
ð∂a ¼ ∂

∂xa ; _∂a ¼ ∂
∂ _xaÞ resp. ðdxa; d_xaÞ.

A. Finsler spacetimes

To describe the kinetic gas and its coupling to gravity
geometrically on the tangent bundle, we employ Finsler
spacetime geometry and the Finsler spacetime geometric
description of the gravitational dynamics [13,17,20,24].
The Finslerian geometry of spacetime is derived from the

geometric clock of observers, resp. free point particle action
for massive particles on trajectories γ∶ R → M; τ ↦ γðτÞ,
with tangent vectors denoted by _γ ¼ ∂γa

∂τ ∂a ¼ _γa∂a and
tangent bundle representation ðγ; _γÞ:

S½γ� ¼
Z

dτFðγ; _γÞ; ð1Þ

where F is a 1-homogeneous function on TM with respect
to its second argument. Later, when we consider the
relativistic kinetic gas in Sec. III, we assume that the
trajectories γðτÞ of the particles which constitute the gas
extremize this length functional, i.e., they are the geodesics
of (1).
To make the mathematical setup precise, we recall the

definition of Finsler spacetimes with which we work here.
Details about this definition can be found in [17], which
was distilled from existing definitions in the literature
[12,14,25].
Definition 1. Let A be a conic subbundle of TM such

that TMnA is of measure zero. A Finsler spacetime is a pair
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(M;L), where L∶ A → R is a smooth function, called the
Finsler-Lagrange function, which satisfies:

(i) L is positively homogeneous of degree two with
respect to _x∶ Lðx; α_xÞ ¼ α2Lðx; _xÞ; α ∈ Rþ;

(ii) on A the vertical Hessian

gLab ¼
1

2

∂2L
∂ _xa∂ _xb ð2Þ

of L (called L-metric) is nondegenerate in every
coordinate chart;

(iii) there exists a connected component T of the pre-
image L−1ðð0;∞ÞÞ ⊂ TM on which gL exists, is
smooth and has Lorentzian signature ðþ;−;−;−Þ1

(iv) the Euler-Lagrange equations

d
dτ

_∂aL − ∂aL ¼ 0: ð3Þ

have a unique local solution for every initial con-
dition ðx; _xÞ ∈ T ∪ N , where N is the kernel of L.
At points of N nA, i.e., where the L-metric degen-
erates or does not even exist, the solution must be
constructed by continuous extension. This means
that the geodesic equation coefficients admit a C1

extension at those points.
The 1-homogeneous function F, which defines the point

particle action (1), is derived from the Finsler Lagrange
function as F ¼ ffiffiffiffiffiffijLjp

. For clarity, we list the different sets
which appear in the definition and comment on their
meaning:

(i) A: the subbundle where L is smooth and gL is
nondegenerate, with fiber Ax ¼ A ∩ TxM, called
the set of admissible vectors,

(ii) N : the subbundle where L is zero, with fiber
N x ¼ N ∩ TxM,

(iii) A0 ¼ AnN : the subbundle where L can be used for
normalization, with fiber A0x ¼ A0 ∩ TxM,

(iv) T : a maximally connected conic subbundle where
L > 0, the L-metric exists and has Lorentzian
signature ðþ;−;−;−Þ, with fiber T x ¼ T ∩ TxM.

The connected component T is interpreted as the set of
future directed timelike directions on spacetime. An
important subset of the timelike directions is formed by
the future pointing unit timelike vectors

O ≔ fðx; _xÞ ∈ T jLðx; _xÞ ¼ 1g; ð4Þ

which is called the observer space [26–30]. This set is itself
a fibered manifold over M, with fibers Ox ¼ O ∩ TxM.

Finsler spacetimes are a straightforward generalization
of pseudo-Riemannian spacetimes equipped with a metric
gab of Lorentzian signature. The latter constitute a subclass
of Finsler spacetimes (M;L) with L ¼ gabðxÞ_xa _xb, defined
by the components of a pseudo-Riemannian metric.

B. Geometry of Finsler spacetimes

Finsler geometry is a longstanding straightforward
generalization of Riemannian geometry [10,11]. Finsler
spacetime geometry is, up to the precise definition of
Finsler spacetimes, an equally straightforward generaliza-
tion of pseudo-Riemannian geometry. Here we recall the
geometric notions we need to describe the kinetic gas
consistently in the language of Finsler geometry and to
couple it as source term to the Finsler gravitational field
equation.
Starting from the Finsler Lagrange function L, we can

define canonical tensor fields on A0 ⊂ TM. The Hilbert
form2 ω, the Finsler metric tensor gL and the Cartan tensor
C, using the notation _xa ¼ gLabðx; _xÞ_xb, are,

ω ¼ _∂aFdxa ¼
L
jLj

_xaffiffiffiffiffiffijLjp dxa; gL ¼ gLabdx
a ⊗ dxb;

C ¼ 1

2
_∂cgLabdx

a ⊗ dxb ⊗ dxc: ð5Þ

The geodesic equations of (1) in arc length parametriza-
tion are given by the Euler-Lagrange equations (3) and take
the form

ẍa þ 2Gaðx; _xÞ ¼ 0: ð6Þ

They are defined in terms of the so-called spray coefficients
Ga, which in turn determine the Cartan nonlinear con-
nection coefficients Ga

b

Ga ¼ 1

4
gLabð_xm∂m

_∂bL − ∂bLÞ; Ga
b ≔ _∂bGa: ð7Þ

The connection coefficients give rise to a splitting of the
tangent and cotangent spaces toA, into so-called horizontal
and vertical parts. Locally, they are spanned by the basis
vector fields

Tðx;_xÞA ¼ spanfδa ¼ ∂a −Gb
a
_∂b;

_∂ag3a¼0;

T�
ðx;_xÞA ¼ spanfdxa; δ_xa ¼ dxa þ Ga

bd_xbg3a¼0: ð8Þ

With help of this adapted basis, onA0 we can introduce the
following vector field, which is dual to the Hilbert form,

1It is possible to equivalently formulate this property with
opposite sign of L and metric gL of signature ð−;þ;þ;þÞ. We
fixed the signature and sign of L here to simplify the discussion.

2Mathematically precise, the restriction of ω to the observer
space O defines a contact structure on O.
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r ¼ _xaffiffiffiffiffiffijLjp δa; irω ¼ ωðrÞ ¼ 1: ð9Þ

The restriction of r to the observer space O is called the
Reeb vector field rjO associated to ω. By Cartan’s magic
formula, which relates the interior product, the exterior
derivative and the Lie derivative LX ¼ iXdþ diX, and by
the explicit expansion of dω in the adapted basis the
following important relation is satisfied

Lrω ¼ irdωþ dirω ¼ irdω ¼ 0: ð10Þ
The curvature tensor R of the Cartan nonlinear con-

nection and the Finsler Ricci scalar R0 are defined as

R ¼ 1

2
Ra

bcdxb ∧ dxc ⊗ _∂a;

Ra
bc
_∂a ¼ ðδbGa

c − δcGa
bÞ _∂a ¼ ½δb; δc�;

R0 ¼
1

L
Ra

ab _xb: ð11Þ

Last but not least, the canonical volume form on the set
A0 of a Finsler spacetime is given by

Vol0 ¼
j det gLj
L2

d4x ∧ d4 _x ≔
j det gLj

L2
dx0

∧ … ∧ dx3 ∧ d_x0 ∧ … ∧ d_x3: ð12Þ

Denote by C ¼ _xa _∂a the Liouville vector field. It gives rise
to a 7-form Σ, see also [17],

Σ ¼ iCVol0 ¼
1

3!
ω ∧ dω ∧ dω ∧ dω

¼ j det gLj
L2

iCðd4x ∧ d4 _xÞ ð13Þ

¼ 1

3!

j det gLj
L2

_xaϵabcddx0 ∧ … ∧ dx3 ∧ d_xb ∧ d_xc ∧ d_xd;

ð14Þ
and a 6-form Ω

Ω ¼ irΣ ¼ 1

3!
dω ∧ dω ∧ dω; ð15Þ

which obey

dΩ ¼ 0; Σ ¼ ω ∧ Ω: ð16Þ

These differential forms will play the role of canonical
volume forms on different subsets of the observer space O.
In the literature on Finsler geometry several canonical

linear covariant derivatives on TM are considered, which
all reduce to the Levi-Civita connection in the case of
Pseudo-Riemannian geometry, i.e., Finsler geometry with a

Finsler Lagrangian that is quadratic in the dependence on _x,
i.e., L ¼ gabðxÞ_xa _xb. We employ the so called Chern-Rund
linear covariant derivative, which can be defined by its
action in the adapted basis as

∇δaδb ¼ Γc
abδc; ∇δa

_∂b ¼ Γc
ab
_∂c;

∇ _∂aδb ¼ 0; ∇ _∂a
_∂b ¼ 0; ð17Þ

with Γc
ab ¼ 1

2
gLcqðδagLbq þ δbgLaq − δqgLabÞ. It satisfies the

important identities, see [[10], p. 104],

∇δa _x
b ¼ 0; ∇δaL ¼ 0 and ∇δag

L
bc ¼ 0; ð18Þ

which we prove for completeness in Appendix A.
Furthermore there exists the so-called dynamical covariant
derivative, which is uniquely defined in terms of the
canonical Cartan nonlinear connection alone, independ-
ently of the choice of linear connection; we denoted the
dynamical covariant derivative by ∇ without any index.
Operationally, it can be understood as

∇δb ≔ _xa∇δaδb ¼ Gc
bδc; ∇ _∂b ¼ _xa∇δa

_∂b ¼ Gc
b
_∂c:

ð19Þ
Last but not least, we recall the components of the
Landsberg tensor, in terms of the connection coefficients
of the Chern-Rund connection or equivalently with help of
the dynamical covariant derivative of the Cartan tensor,

Pa
bc ¼ _∂cGa

b − Γa
cb ¼ gLad∇Cdbc: ð20Þ

The trace Pb ¼ Pa
ab will be part of the geometry side of the

gravitational field equation (56).
With the help of the geometric setup just introduced, we

can now describe a relativistic kinetic gas.

III. THE KINETIC GAS IN THE LANGUAGE
OF FINSLER GEOMETRY

Instead of describing a relativistic gas, i.e., a collection of
relativistic particles, particle by particle, the kinetic gas
theory employs a 1PDF to describe the gas particles
collectively. This approach to the description of the gas
is more accurate than its approximation as a fluid. Classical
reference to the topic are the article by Israel [1] and the
lectures by Ehlers [2]. A modern review can be found in the
monograph [3] or in the articles [4,5].
In terms of the 1PDF, kinetic gases are naturally

described on the tangent bundle of a manifold, which is
the same stage on which Finsler geometry naturally lives.
In this section, we introduce the 1PDF and use the
geometry of Finsler spacetimes to deduce the action of a
kinetic gas on the observer space O over M. Moreover, we
study the conservation laws which follow from the invari-
ance of the action under arbitrary 1-parameter groups of
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spacetime induced coordinate changes on TM. The arising
Noether currents point out the novel notion of an energy-
momentum distribution tensor of the gas on the tangent
bundle, via a Gotay-Marsden type procedure [31,32]. We
will relate this new notion of energy-momentum to the
usual definition of the energy-momentum tensor of a
kinetic gas on the spacetime manifold M.
The analysis of the properties of the tangent bundle

action of a kinetic gas prepares its coupling to Finsler
gravity in the next section.

A. General description

A kinetic gas is a collection of P particles which
propagate through spacetime on piecewise normalized
geodesics γðτÞ. In the language of a Finsler spacetime,
this means that the tangent vectors of the trajectories of
particles are elements of the observer space, dγ

dτ ¼ _γðτÞ ∈
OγðτÞ ⊂ T γðτÞ and that the tangents of the lifted trajectories
cðτÞ ¼ ðγðτÞ; _γðτÞÞ are given by the Reeb vector field
_c ¼ rjc. The latter statement is equivalent to saying that
the particle trajectories extremize the point particle action
integral

S½γ�¼m
Z

τ2

τ1

c�ω¼m
Z

τ2

τ1

_γaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijLðγ; _γÞjp c�ðdxaÞ

¼m
Z

τ2

τ1

_γaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijLðγ; _γÞjp _γadτ¼m
Z

τ2

τ1

dτFðγ; _γÞ¼mt: ð21Þ

It is defined by a Finsler function F, which in turn is
derived from a Finsler spacetime Lagrange function L, see
Definition 1. The number t ¼ τ2 − τ1 denotes the proper
time passing along a particle trajectory between γðτ1Þ
and γðτ2Þ.
Instead of describing the motion of all particles indi-

vidually, the kinetic gas theory employs the 1PDF,

ϕ∶ O → R; ðx; _xÞ ↦ ϕðx; _xÞ; ð22Þ
which expresses the number N½σ� of particle trajectories
passing through an oriented, 6-dimensional hypersurface
σ ⊂ O through the integral

N½σ� ¼
Z
σ
ϕΩ: ð23Þ

It vanishes for hypersurfaces for which the tangent vectors
_c are tangent to σ, i.e., _c ∈ Tcσ. The integral is non-
vanishing for hypersurfaces that are transversal to the
particle trajectories, i.e., for which _c ∉ Tcσ. The canonical
volume form Ω on σ was defined in (13). Since in all
practical physical situations, there will always be gas
particles with a finite maximal velocity, we assume in
what follows that for all x ∈ M ϕxð_xÞ ¼ ϕðx; _xÞ has
compact support on the set of future pointing unit timelike
directions Ox.
An important feature of this integral is that its result is

independent of the geometric field L on TM.3 It only
depends on the trajectories of the particles and the hyper-
surface chosen. Therefore, its variation with respect to the
Finsler Lagrangian vanishes and we find the equation

δLN½σ� ¼
Z
σ
δLðϕΩÞ ¼

Z
σ
ðδLϕΩþ ϕδLΩÞ ¼ 0: ð24Þ

It defines a relation between the 1PDF ϕ and the Finsler
Lagrangian L, which is the important feature that couples
the gas to the geometry of spacetime.
For a collisionless gas, the Liouville equation holds

rðϕÞ ¼ _xaδaϕ ¼ 0; ð25Þ

FIG. 1. Construction of hypersurfaces by the flow of the Reeb vector field, and the corresponding swept out volume.

3Note that the integrand in (23) is 0-homogeneous with respect
to its _x dependence, i.e., it depends only on the future pointing
directions on M. In [17] we have shown that such integrals over
compact domains on the unit tangent bundle U ¼ fðx; _xÞ ∈
TMjjLðx; _xÞj ¼ 1g are identical to integrals over compact do-
mains on the so called projectivized tangent bundle. In particular,
this holds for compact domains in O ⊂ U. While U and O are
defined in terms of L, the projectivized tangent bundle is not.
Hence, being able to map the integration domain σ of the number
counting integral to a subset σþ of the projectivized tangent
bundle (that is independent of L) allows us to commute the
variation with respect to L with integration. Here we do not
discuss these mathematical details, which will be reviewed in
detail an upcoming article on the mathematical foundations of
field theory on Finsler spacetimes.
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which can be seen by the following argument, see for
example [4,22]. Choose a hypersurface σ0 ⊂ O as above.
We obtain a family of hypersurfaces σs by following the
flow of the Reeb vector field r from each point in σ0 for one
and the same parameter 0 < s < t. This family of hyper-
surfaces spans a volume V ¼ ⋃s∈ð0;tÞσs, see Fig. 1 for a
sketch. The difference between the number of particles on
σ0 and σt is given by

N½σt� − N½σ0� ¼
Z
V
rðϕÞΣ: ð26Þ

For a collisionless gas N½σt� − N½σ0� ¼ 0 and hence the
Liouville equation (25) follows. The proof of (26) involves
Stokes’ theorem and the properties (16) of the forms Ω and
Σ, details can be found in [4,22].
With help of the 1PDF and the number counting integral,

we can now construct the action of a kinetic gas on TM.

B. The action of a kinetic gas

Let us consider a kinetic gas which consists of P
individual particles of equal mass m. Hence the action
of a gas in a volume V generated by the flow of the Reeb
vector field from an initial hypersurface σ0, which is
pierced by all P particle trajectories, to a final hypersurface
σt, with flow parameter 0 ≤ s ≤ t, V ¼ ⋃0<s<tσs ⊂ U, see
Fig. 1, is given by

Sgas ¼ mPt ¼ mP
Z

τ2

τ1

dτFðγ; _γÞ

¼ P
Z

τ2

τ1

c�ω ¼ m
Z

t

0

Pds: ð27Þ

To express the action in terms of the 1PDF, we will
express the particle number P in (27) by the number
counting integral P ¼ N½σs� to obtain

Sgas ¼ m
Z

t

0

�Z
σs

ϕΩ
�
ds ¼ m

Z
V
ϕΩ ∧ ω: ð28Þ

Applying the relation (16), which relates the different
volume forms, we conclude that the tangent bundle action
of a kinetic gas is

Sgas ¼ m
Z
V
ϕΣ: ð29Þ

This action depends on the particle trajectories ðγðτÞ;
_γðτÞÞ, which determine the 1PDF ϕðx; _xÞ from the
number integral (23), and on the geometry defining
Finsler Lagrange function L. It thus is defined by the
Lagrangian 7-form

λðx; _x; Lðx; _xÞ; _∂ _∂ Lðx; _xÞÞ ¼ mϕΣ: ð30Þ

Variation of the action with respect to the particle trajecto-
ries yields the Finsler geodesic equation for each of the
particles, while variation with respect to the Finsler
Lagrange function yields the source term for the gravita-
tional dynamics.
We like to remark that the volume V over which the

action integral is taken is usually assumed to be composed
out of compact domains D ⊂ M and Vx ⊂ Ox for each
x ∈ D, where Vx is chosen such that it contains the support
of ϕx, i.e., V ¼ ⋃x∈DVx. With such choice of V, it is
possible to split the action integral

Sgas ¼ m
Z
V
ϕΣ ¼ m

Z
D

�Z
Vx

ϕxð_xÞΣx

�
d4x

¼ m
Z
D

�Z
Ox

ϕxð_xÞΣx

�
d4x; ð31Þ

where Σx is the volume measure on Ox obtained from

Σx ¼ i∂0i∂1i∂2i∂3Σ ¼ det gL

L2 iCðd4 _xÞ. The extension of the
integration from Vx to Ox is always possible by the
assumption of compact support of ϕx.
Before we investigate the gravitational dynamics sourced

by the kinetic gas in Sec. IV, we now deduce the energy-
momentum of the gas on the tangent bundle from manifold
induced coordinate invariance of the action Sgas.

C. General covariance and
energy-momentum conservation

All geometric objects in Finsler geometry have a dis-
tinguished behavior under coordinate changes of the base
manifold. That means even though the objects introduced
in Sec. II B are objects on the tangent bundle, their
components in the adapted basis transform under coordi-
nate changes of TM induced by coordinate changes of M
just as if they were objects on M.
More precisely, consider a local coordinate change xa ↦

x̃aðxÞ on M. Such a coordinate change naturally induces a
local coordinate change on TM by ðxa; _xaÞ ↦ ðx̃a; _̃xaÞ ¼
ðx̃aðxÞ; ∂x̃a∂xb ðxÞ_xbÞ. The basis change of the adapted hori-
zontal and vertical bases are

δ̃a ¼ ∂̃axbδb;
_̃∂a ¼ ∂̃axb _∂b;

dx̃a ¼ ∂bx̃adxb; δ _̃xa ¼ ∂bx̃aδ_xb: ð32Þ

Since all Finsler geometric objects are naturally expressed
in the adapted basis, their components transform under
manifold induced coordinate changes precisely the same
way. All tensor fields on TM with this property, are called
d-, or distinguished, tensor fields, see [10,33] for details on
d-tensors.
Since the Lagrangian 7-form of the kinetic gas λ ¼ mϕΣ

is constructed out of a scalar and Finsler geometric objects,
it is a d-7-form, and hence invariant under manifold
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induced coordinate changes. Studying infinitesimal mani-
fold induced coordinate changes gives rise to conserved
currents and an energy-momentum tensor of the gas on TM,
which we will call energy-momentum distribution tensorΘ.
It will turn out that this new tangent-bundle notion of
energy-momentum distribution tensor of a kinetic gas is
related to the usual definition of its energy-momentum
tensor on the base manifold by averaging.
Infinitesimal manifold induced coordinate changes,

labeled with a small expansion parameter ϵ, are generated
by a vector field ξ ¼ ξaðxÞ∂a

x̃aðxÞ ¼ xa þ ϵξa: ð33Þ

The corresponding manifold induced coordinate change on
TM is given by the additional change

_̃xaðx; _xÞ ¼ _xa þ ϵ_xb∂bξ
a: ð34Þ

Hence the total infinitesimal coordinate change on TM is
induced by the complete lift ξC ¼ ξaðxÞ∂a þ _xb∂bξ

a _∂a of
the vector field ξ. In the adapted basis ξC ¼ ξaδa þ
∇ξa _∂a holds.
The Lagrangian 7-form depends on the coordinates on

TM and on the field variable L. Hence its variation can be
written as

δξλðx; _x; L; _∂ _∂ LÞ ¼ d
dϵ

λðxþ ϵδx; _xþ ϵδ_x; L

þ ϵδL; _∂ _∂ Lþ ϵ _∂ _∂ δLÞjϵ¼0; ð35Þ

where δxa ¼ ξa, δ_xa ¼ _xb∂bξ
a and δL ¼ −ξCðLÞ.

Evaluating the above derivative carefully, as it is done in
Appendix B, yields the expression

δξλ ¼ mðLξCðϕΣÞ þ δLðϕΣÞδLÞ: ð36Þ

Using Cartan’s magic formula LX ¼ iξCdþ diξC in the first
terms in (36) reveals the equality

LξCðϕΣÞ ¼ iξCdðϕΣÞ þ diξCðϕΣÞ ¼ diξCðϕΣÞ; ð37Þ

where the term iξCdðϕΣÞ vanishes since Σ is a form of
maximal rank on O and thus dðϕΣÞ ¼ 0.
The second term in (36) gives

δLðϕΣÞδL ¼ ðδLðϕΩÞ ∧ ωþ ϕΩ ∧ δLωÞδL
¼ ðϕΩ ∧ δLωÞδL

¼ 1

2L
ϕδLΣ ð38Þ

¼ −
1

2L
ϕξCðLÞΣ ¼ −

1

2L
ϕ _∂aL∇ξaΣ: ð39Þ

In the first line we used Σ ¼ Ω ∧ ω and in the second
line that δLðϕΩÞ ¼ 0, see (24). To reach the third line, the
derivation of Ω ∧ δLω ¼ 1

2LϕΣ as it is displayed in
Appendix C was applied. Finally, for the variation with
respect to the manifold induced coordinates, we have
that δL ¼ −ξCðLÞ ¼ ∇ξa _∂aL, since δaL ¼ 0. Inserting
_∂aL ¼ 2gLabðx; _xÞ_xb ¼ 2_xa, the total change of the
Lagrange 7-form of the kinetic gas is given by

δξλ ¼ m

�
−ϕ

_xa
L
∇ξaΣþ diξCðϕΣÞ

�
; ð40Þ

and so the variation of the action is

δξSgas ¼ −m
Z
V
ϕ
_xa
L
∇ξaΣþm

Z
∂V

iξCðϕΣÞ: ð41Þ

From equation (38) we see that the integrand of the volume
integral in (41) is the Euler-Lagrange part of the variation of
the action with respect to the Finsler Lagrange function L,
which will define the source term of the gravitational
dynamics in the next section. The boundary term, where
∂V ¼ ð⋃x∈D∂VxÞ ∪ ð⋃x∈∂DVxÞ, compare (31), can thus
be interpreted as Noether current4 Jξ ¼ iξCðϕΣÞ associated
to invariance of the action (29) under the 1-parameter group
of ξC [32].
To identify the energy-momentum tensor of the kinetic

gas on the tangent bundle, we use the product rule in the
first term of the variation of the action and obtain

δξSgas ¼ −m
Z
V
∇
�
ϕ_xa
L

ξa
�
Σþm

Z
V
∇δb

�
ϕ_xa _xb

L

�
ξaΣ

þm
Z
∂V

iξCðϕΣÞ; ð42Þ

where ∇δb and ∇ are the Chern-Rund and the dynamical
covariant derivative introduced in (17) and (19).
The first term is again a boundary term, which can be

combined with the last term setting f ≔ ϕ_xaξa

L

δξSgas ¼ m
Z
V
∇δb

�
ϕ_xa _xb

L

�
ξaΣþm

Z
∂V
ðiξCðϕΣÞ − ifrΣÞ:

ð43Þ

Using the methods from [31,32], we find that the middle
term singles out the desired energy-momentum distribution
tensor, which is defined as

4Actually, the current Jξ is only a partial Noether current since
the contribution of the gravitational Lagrangian, giving dynamics
to the Finsler Lagrangian L, needs to be added.
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Θa
bðx; _xÞ ¼ m

ϕ_xa _xb
L

: ð44Þ

Having identified the canonical energy-momentum dis-
tribution tensor of a kinetic gas on the tangent bundle let us
make four important observations:

(i) The average ofΘa
bðx; _xÞ over all observer directions

Ox at a point x ∈ M gives the components Ta
bðxÞ

of the energy-momentum tensor density of the gas
on M
Z
Ox

Θa
bðx; _xÞΣx ¼

Z
Ox

m
ϕ_xa _xb
L

Σx ¼ Ta
bðxÞ: ð45Þ

The last equality makes sense by the assumption
that ϕx ¼ ϕðx; ·Þ is compactly supported. In case
the Finsler geometry is pseudo-Riemannian, i.e.,
gLabðx; _xÞ ¼ gabðxÞ, the lower index velocity _xb can
be written as gbcðxÞ_xc, the metric components can be
pulled out of the integral and Ta

bðxÞ can be written
asTacðxÞgbcðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgmnðxÞÞ

p
whereTacðxÞ is iden-

tical to the energy-momentum tensor of a kinetic gas
in the literature, obtained as second moment of the
1PDF with respect to the four-velocities [2,4]. In the
general Finsler setting, generically, there exists no
metric tensor on the spacetime manifold M, so it is
not possible to raise or lower an index on Ta

bðxÞ and
thus one needs to work with the canonically defined
(1,1)-tensor density field.

(ii) Rewriting (43) as an iterated integral over a compact
domain D ⊂ M, and a compact domain Vx ⊂ Ox
which contains suppðϕxÞ, see (31), yields

0 ¼
Z
D

�Z
Vx

∇δbΘ
b
aðx; _xÞξaΣx

�
d4x

þm
Z
ð⋃x∈D∂VxÞ∪ð⋃x∈∂DVxÞ

ðiξCðϕΣÞ − ifrΣÞ

¼
Z
D

�Z
Ox

∇δbΘ
b
aðx; _xÞξaΣx

�
d4x

þm
Z
ð⋃x∈D∂OxÞ∪ð⋃x∈∂DOxÞ

ðiξCðϕΣÞ − ifrΣÞ:

ð46Þ
The extension of the integration from Vx to all ofOx
in the second line is viable due to the compact
support of ϕx. Since Ox has no boundary and the
invariance δξSgas ¼ 0 holds in particular for com-
pactly supported vector fields ξ whose support is
contained in D, i.e., ξj∂D ¼ 0, we find that the
boundary term vanishes and hence at each point
x ∈ M, the averaged conservation law

Z
Ox

∇δbΘ
b
aΣx ¼ 0: ð47Þ

(iii) For collisionless gas a nonaveraged conservation
law holds

∇δbΘ
b
a ¼

_xb _xa
L

∇δbϕ ¼ _xb _xa
L

δbϕ ¼ _xa
L
rðϕÞ ¼ 0;

ð48Þ

since ∇δb _x
a ¼ 0, ∇δbL ¼ 0, ∇δbg

L
ac ¼ 0, by con-

struction of the Chern-Rund covariant derivative, see
(17) and Appendix A, and the fact that the 1PDF of a
collisonless gas satisfies the Liouville equation
rðϕÞ ¼ 0, see (25). Thus the Liouville equation
can be interpreted as covariant energy-momentum
distribution tensor conservation equation.

(iv) Using the averaged conservation law (47) in (43),
using f ¼ ϕ_xaξa

L , we find for arbitrary ξ, only the
horizontal part of ξC contributes to the integral,Z

ð⋃x∈D∂OxÞ∪ð⋃x∈∂DOxÞ
ðiξCðϕΣÞ − Θb

aðx; _xÞξaiδbΣÞ

¼
Z
⋃x∈∂DOx

ðξbiδbðϕΣÞ − Θb
aðx; _xÞξaiδbΣÞ ¼ 0:

ð49Þ
The above equality, proven in Appendix D, relates
the energy-momentum distribution tensor to the
previously identified quasi Noether current. This
demonstrates that indeed Θa

bðx; _xÞξb represents the
corrected Noether current, see [31], due to general
covariance of the Lagrangian, that is, it provides the
correct energy-momentum of the system [31,32].

In summary our findings clearly demonstrate that the
description of kinetic gases on the base manifold is just a
velocity averaged description. The finer, more precise
nonaveraged description of the kinetic gas can be formu-
lated on the tangent bundle.
In the next section we couple the tangent bundle

description of the kinetic gas directly to the gravity.

IV. COUPLING THE KINETIC GAS TO GRAVITY

The idea that Finsler geometry is a good candidate to
generalize general relativity has been around for a long time
[15,17–21]. One highly debated question is how to couple
matter fields consistently to a Finsler geometric theory of
gravity, which naturally lives on the tangent bundle of
spacetime instead of on spacetime itself. Usually, this
feature is seen as a complication to construct a consistent
complete theory.
After our discussion of the kinetic gas in the language of

Finsler geometry, we will turn this complication into an
advantage. The best motivated Finsler gravity action was
formulated on the projectivized tangent bundle. In particu-
lar, taking care of all mathematical details, which are
discussed in the recent article [17], it was shown that it
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can be equivalently understood as a theory on the unit
tangent bundle, which contains the observer space O.
Therefore, Finsler gravity offers a direct coupling of gravity
to the Finslerian description of a gravitating relativistic
kinetic gas.
For this purpose, we propose the following action:

S ¼ 1

2κ2
Sgrav þ Sgas ¼

1

2κ2

Z
V
R0Σþ

Z
V
ϕΣ; ð50Þ

where κ is the Finslerian gravitational coupling constant.
To obtain the gravitational field equations we perform

variation of the action with respect to L. For the gravita-
tional part we found in [17,20]

δLSgrav ¼
Z
V

�
1

2
gLab _∂a

_∂bðLR0Þ − 3R0

− gLabð∇δaPb − PaPb þ _∂að∇PbÞÞ
�
δL
L

Σ; ð51Þ

where Pa ¼ Pb
ba are the components of the trace of the

Landsberg tensor, which was defined in (20).
Variation of the our newly constructed kinetic gas action

yields

δLSgas ¼
Z
V
δLðϕΩ ∧ ωÞ ¼

Z
V
δLðϕΩÞ ∧ ω

þ
Z
V
ϕΩ ∧ δLω: ð52Þ

The first term is nothing but the variation of the number
counting integral and thus vanishes, see (24),

Z
V
δLðϕΩÞ ∧ ω ¼ 0: ð53Þ

In Appendix C we derive that

Ω ∧ δLω ¼ 1

2

δL
L

Σ; ð54Þ

and thus obtain from (52)

δLSgas ¼
Z
V
ϕ
1

2

δL
L

Σ: ð55Þ

Eventually, the Finsler gravity equations sourced by a
kinetic gas on the observer space O are

1

2
gLab _∂a

_∂bðR0LÞ− 3R0 − gLabð∇δaPb −PaPb þ _∂að∇PbÞÞ
¼ −κ2ϕ: ð56Þ

This equation determines the geometry of spacetime, i.e.,
the gravitational field, directly from the 1PDF of a kinetic
gas. It takes into account the influence of the in general
nontrivial velocity distribution over the different gas

particles. The first two terms appearing can be understood
analogue to the appearance of the Ricci tensor and Ricci
scalar in the Einstein tensor, in the sense that these terms
arise from the traces of the geodesic deviation operator of
the spacetime geometry. The term involving the trace of the
Landsberg tensor, which measures the change of the Cartan
tensor along Finsler geodesics, is purely Finslerian. The
precise physical meaning of these terms is an ongoing
investigation.
In contrast to the Einstein equations, our new equation is

not a tensorial equation for a metric on spacetime, but a
scalar equation for a Finsler Lagrangian on the tangent
bundle of spacetime, as it must be when one considers a
scalar function on the tangent bundle as fundamental
gravitational field variable. A natural question appearing
is, how and if this equation is related to the Einstein
equations. For the vacuum equation we demonstrated in
[17,20] that they are equivalent to the Einstein vacuum
equations if a Finsler Lagrangian of the type Lðx; _xÞ ¼
gabðxÞ_xa _xb is considered.
To discuss this question for the matter coupled equation

we employ the relation between the fluid energy-momentum
tensor and the 1PDF (45). We apply the same integration
operator to both sides of our field equation (56),

Z
Ox

_xc _xd
L

�
1

2
gLab _∂a

_∂bR − 3
R
L

− gLabð∇δaPb − PaPb þ _∂að∇PbÞÞ
�
Σx

¼ −
Z
Ox

κ2
_xc _xd
L

ϕΣx ¼ −
κ2

m
Tc

dðxÞ: ð57Þ

This equation is a tensorial equation of the type Ga
b ¼

− κ2

m Ta
bðxÞ on the spacetime manifold. An open question,

which we are currently investigating, is, if, how and under
which conditions the tensor field Ga

b, resulting from
velocity averaging, is related to the Einstein tensor.
We like to stress that the above equation already looks

close to the Einstein-Vlasov system, which is one way how
the gravitational field of a kinetic-gas is determined in the
literature [34]. Denote with gab ¼ gabðxÞ the components
of a pseudo-Riemannian spacetime metric and with rab and
r the components of the Ricci tensor and Ricci scalar of its
Levi-Civita connection. Then the Einstein-Vlasov equation
can be written as5

rab −
1

2
δabr ¼

8πG
c4

1ffiffiffiffiffiffiffiffiffi
det g

p
Z
Ox

_xa _xb
gijðxÞ_xi _xj

ϕΣx; ð58Þ

5Often, the Einstein-Vlasov system is considered on the
cotangent bundle of spacetime, i.e., using momenta instead of
velocities. As long as a Legendre transform between the
Lagrangian and Hamiltonian formulation of the underlying point
particle mechanics is available both pictures are equivalent.
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where here Σx, as defined below equation (31), is nothing
but

ffiffiffiffiffiffiffiffiffi
det g

p
times the canonical volume form onOx induced

by the pullback of the spacetime metric.
Comparing the Einstein-Vlasov system and our new

approach to the determination of the gravitational field
of a P-particle system, we conjecture the following
interpretation: The Einstein equations determine only the
velocity averaged gravitational field of the P-particle
system. Our Finslerian description of the gravitational field
of kinetic gases determines the gravitational field dis-
tribution, without averaging over the velocity distribution
of the particles, in the same way as the 1PDF describes the
system more accurately than its velocity averaged fluid
approximation.

V. CONCLUSION

We used the language of Finsler geometry to describe a
multiple particle system as a kinetic gas in terms of a 1PDF
on the tangent bundle, which we directly coupled to a
Finslerian extension of Einstein’s theory of gravity. In
contrast to the usual general relativistic coupling between
the multi particle system and gravity, via its fluid energy-
momentum tensor as source of the Einstein equations, our
new coupling procedure takes the velocity distribution of
the gas particles and its influence on the gravitational field
into account. In contrast, on the right-hand side of the
Einstein equations, the information of the velocity distri-
bution is averaged out.
Using the language of Finsler spacetime geometry, we

obtained the main results of this article: our finding of the
energy-momentum distribution tensor (44) and its conser-
vation laws for a kinetic gas with and without collisions as
displayed in (47) and (48), and the Finsler generalizations
of the Einstein equations sourced by the 1PDF of the
kinetic gas in (56).
With the construction of an action based formulation of

the dynamics of a kinetic gas and its coupling to gravity, we
complete the Finsler geometric description of kinetic gases
and are now able to derive the full mutual kinetic gas-
gravity interaction on the tangent bundle. Moreover, by
adding this physical matter coupling to Finsler gravity, a
most subtle point in the construction of Finslerian theories
of gravity—the matter coupling—is solved.
Our work offers a plethora of possible applications.

One may apply our extended description of gravity and
kinetic gases to any physical system which is convention-
ally described by classical fluid dynamics. An obvious
system to target with this description is of course cos-
mology, where a better model of fluids and gravity may
provide potential new explanations for the observed accel-
erating phases, known as dark energy and inflation, via a
modification of the effective Friedmann equations. Another
possible application is to the dynamics of galaxies and the
large scale structure of the Universe, where conventionally

dark matter must be assumed in order to explain observa-
tions. Further, compact objects such as neutron stars may
provide a potential testbed for our theory, since the
description of their constituting matter is crucial for their
understanding.
The next step toward these applications is to identify

physically well motivated 1PDFs, which may be for
example given by a tangent bundle version of the relativ-
istic Maxwell-Juettner distribution [35], which is usually
formulated on the cotangent bundle. Other fascinating
possibilities are to find 1PDF realisations of quantum
distribution functions such as Bose-Einstein or Fermi-
Dirac distributions and couple them directly to gravity.
A further interesting line of investigation is to study the

relation of our description of the relativistic kinetic gas to
the framework of kinetic field theory, which was recently
applied to cosmology [36].
We leave such investigations for future research, keeping

the discussion presented in this article at the foundational
level, having constructed the gravitational field equations
for a gravitating kinetic gas.
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APPENDIX A: PROPERTIES OF THE
CHERN-RUND COVARIANT DERIVATIVE

For completeness, we give a proof of the basic properties
of the Chern-Rund covariant derivative (18).
The covariant constancy of the L-metric can easily be

seen from the definition of the connection coefficients
Γc

ab ¼ 1
2
gLcqðδagLbq þ δbgLaq − δqgLabÞ

∇δag
L
bc ¼ δagLbc − Γp

abgLbc − Γp
acgLbp ¼ 0: ðA1Þ

The covariant constancy of _xa requires some more lines.

∇δa _x
b ¼ δa _xb þ Γb

ac _xc ¼ ð∂a − Gc
a
_∂cÞ_xb þ Γb

ac _xc

¼ −Gb
a þ Γb

ac _xc ¼ 0: ðA2Þ

The last equality above can be seen from
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Γb
ac _xc ¼

1

2
gLbqðδagLcq þ δcgLaq − δqgLacÞ_xc

¼ 1

2
gLbqð∂agLcq þ ∂cgLaq − ∂qgLacÞ_xc −

1

2
gLbqGp

c _xc _∂pgLqa

¼ 1

4
gLbqð∂a

_∂qLþ _xc∂cgLaq − ∂q
_∂aLÞ − gLbqGp _∂agLqp

¼ 1

4
gLbqð∂a

_∂qLþ _xc∂cgLaq − ∂q
_∂aLÞ − gLbq _∂aðGpgLqpÞ þ Gb

a

¼ Gb
a; ðA3Þ

where we used the definition of the δa operator, several
times Euler’s Theorem for homogeneous functions, the
total symmetry in all indices of _∂agLqp and the definition of
Ga and Ga

b, see (7).
Finally the covariant constancy of L itself is a simple

consequence of the above equalities

∇δaL ¼ ∇δaðgLbc _xb _xcÞ ¼ 0: ðA4Þ

APPENDIX B: VARIATION OF THE
KINETIC GAS ACTION UNDER

MANIFOLD INDUCED
COORDINATE CHANGES

When we studied the variation of the action of the kinetic
gas under manifold induced coordinate changes we claimed
Eq. (36)

δξλ ¼ mðLξCðϕΣÞ þ δLðϕΣÞξCðLÞÞ: ðB1Þ
which we will prove now.
We start from the definition of the variation

δξλðx; _x; L; _∂ _∂ LÞ ¼ d
dϵ

λðxþ ϵδx; _xþ ϵδ_x; Lþ ϵδL; _∂ _∂ L
þ ϵ _∂ _∂ δLÞjϵ¼0; ðB2Þ

where δxa ¼ ξa; δ_xa ¼ _xb∂bξ
a and δL ¼ −ξCðLÞ.

First, we notice that the Lagrangian 7-form in consid-
eration, (30), can be split into a coordinate volume form and
a Lagrange scalar density L

λ ¼ Lðx; _x; L; _∂ _∂ LÞiCðd4x ∧ d4 _xÞ: ðB3Þ

The change of the coordinate volume form can be
calculated by means of the identities

dðxa þ ϵδxaÞ ¼ dxa þ ϵ∂bδxadxb ¼ dxa þ ϵ∂bξ
adxb;

ðB4Þ

dð_xa þ ϵδ_xaÞ ¼ d_xa þ ϵð∂bδ_xadxb þ _∂bδ_xad_xbÞ
¼ d_xa þ ϵð_xc∂b∂cξ

adxb þ ∂bξ
ad_xbÞ: ðB5Þ

For the wedge product of these one forms we thus get to
first order in ϵ

iCðd4ðxþ ϵδxÞ ∧ d4ð_xþ ϵδ_xÞÞ

¼ det
� ∂bðxa þ ϵδxaÞ _∂bðxa þ ϵδxaÞ
∂bð_xa þ ϵδ_xaÞ _∂bð_xa þ ϵδ_xaÞ

�
iCðd4x ∧ d4 _xÞ

¼ det

�
δab þ ϵ∂bξ

a 0

ϵ_xc∂b∂cξ
a δab þ ϵ _∂bð_xc∂cξ

aÞ
�
ðd4x ∧ d4 _xÞ

¼ ð1þ ϵð∂aξ
a þ _∂bð_xc∂cξ

bÞÞÞiCðd4x ∧ d4 _xÞ: ðB6Þ
Second, direct Taylor expansion to first order in ϵ yields

the change of the scalar density L under the coordinate
change to be

Lðxþ ϵδx; _xþ ϵδ_x; Lþ ϵδL; _∂ _∂ Lþ ϵ _∂ _∂ δLÞ
¼ Lðx; _x; L; _∂ _∂ LÞ
þ ϵðξCðLÞ − δLLξCðLÞÞjL¼Lðx;_x;L; _∂ _∂ LÞ: ðB7Þ
We did not perform the expansion of the derivatives with

respect to ϵ of the terms involving the change of L
explicitly but combined them into the term δLL, since this
variation can be done most simply after we recombine the
terms and get

δξλ ¼ ðLð∂aξ
a þ _∂bð_xc∂cξ

bÞÞ þ ξCðLÞÞiCðd4x ∧ d4 _xÞ
− δLLξCðLÞiCðd4x ∧ d4 _xÞ

¼ LξCλ − ξCðLÞδLλ ¼ diξCλ − ξCðLÞδLλ: ðB8Þ
Inserting λ ¼ mϕΣ proves the desired variation for-
mula (36). The variation δLλ ¼ mδLðϕΣÞ, which comes
from the change of L, is discussed during the derivation of
the gravitational field equation coupled to the gas in Sec. IV
and Appendix C.

APPENDIX C: PROOF OF THE VARIATION
OF THE KINETIC GAS ACTION WITH

RESPECT TO L

During the variation of the action of the kinetic gas with
respect to L, (39) and (52), we evaluated
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ϕΩ ∧ δLω ¼ ϕ
1

2

δL
L

Σ: ðC1Þ

To prove this equation, we first observe that on O

δLω ¼ δL _∂aFdxa ¼ _∂aδLFdxa ¼ _∂a

�
1

2

δLffiffiffiffi
L

p
�
dxa: ðC2Þ

Furthermore, for functionsf onTM,which areh-homogeneous
with respect to _x and at least C1, the following holds:

Ω ∧ _∂sfdxs ¼ irΣ ∧ _∂sfdxs

¼ irðΣ ∧ _∂sfdxsÞ þ Σ ∧ _∂sfirdxs

¼ _xs _∂sfΣ ¼ hfΣ; ðC3Þ
where we used the product rule for the interior product, the
relation Σ ∧ dxs ¼ 0 satisfied by the 7-form Σ and Euler’s
theorem for homogeneous functions. Inserting f ¼ 1

2
δLffiffiffi
L

p and

h ¼ 1 we find

Ω ∧ _∂sfdxs ¼ Ω ∧ δLω ¼ 1

2

δL
L

Σ: ðC4Þ

APPENDIX D: INTEGRATION OF THE
VERTICAL INTERIOR PRODUCT

When we found that the energy-momentum distribution
tensor is related to the Noether current in Eq. (49), we used
that Z

ð⋃x∈D∂OxÞ∪ð⋃x∈∂DOxÞ
ð∇ξai _∂aðϕΣÞÞ ¼ 0 ðD1Þ

to equate

Z
ð⋃x∈D∂OxÞ∪ð⋃x∈∂DOxÞ

ðiξCðϕΣÞ − Θb
aðx; _xÞξaiδbΣÞ

¼
Z
⋃x∈∂DOx

ðξbiδbðϕΣÞ − Θb
aðx; _xÞξaiδbΣÞ ¼ 0; ðD2Þ

since in the first term iξCðϕΣÞ ¼ ξbiδbðϕΣÞ þ∇ξai _∂aðϕΣÞ.
The best way to see this is to rewrite the integral as a

volume integral and use the splitting into an iterated
integral over a domain D ⊂ M and the observer space
fiber Ox

Z
ð⋃x∈D∂OxÞ∪ð⋃x∈∂DOxÞ

∇ξai _∂aðϕΣÞ

¼
Z
V
di∇ξa _∂aðϕΣÞ ¼

Z
V
divð∇ξa _∂aÞΣ

¼
Z
D

�Z
Ox

divð∇ξa _∂aÞΣx

�
d4x ðD3Þ

The vector field ∇ξa _∂a is purely vertical and hence the
inner integral becomes an integral over the boundary ofOx,
which is empty. Hence the whole integral vanishes

Z
Ox

divð∇ξa _∂aÞΣx ¼
Z
∂Ox

i∇ξa _∂aΣx ¼ 0: ðD4Þ
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