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We present an approach to the parametrized post-Newtonian (PPN) formalism which is based on gauge-
invariant higher order perturbation theory. This approach divides the components of the metric
perturbations into gauge-invariant quantities, which carry information about the physical system under
consideration, and pure gauge quantities, which describe the choice of the coordinate system. This
separation generally leads to a simplification of the PPN procedure, since only the gauge-invariant
quantities appear in the field equations and must be determined by solving them. Another simplification
arises from the fact that the gauge-invariant approach supersedes the necessity to first choose a gauge for
solving the gravitational field equations and later transforming the obtained solution into the standard PPN
gauge, as it is conventionally done in the PPN formalism, whose standard PPN gauge is determined only
after the full solution is known. In addition to the usual metric formulation, we also present a tetrad
formulation of the gauge-invariant PPN formalism. To illustrate their practical application, we demonstrate
the calculation of the PPN parameters of a well-known scalar-tensor class of theories.
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I. INTRODUCTION

The open questions in cosmology and the tensions
between general relativity and quantum theory have
stipulated the study of a plethora of modified theories
of gravity. Besides addressing these open problems, any
such theory must of course also conform with the
numerous tests of gravity performed in laboratory experi-
ments, in the solar system as well as using observations of
the orbital motion of extrasolar objects. An indispensable
tool for testing the viability of gravity theories using this
set of high-precision data is the parametrized post-
Newtonian (PPN) formalism [1–7]. It allows to character-
ize any given theory of gravity which satisfies a number of
assumptions, such as the existence of a metric governing
the motion of test bodies, by a set of (usually constant)
parameters, which can be derived from a perturbative
solution of the field equations in a weak-field approxi-
mation. These parameters can then be compared to
observations, e.g., in the solar system.
A basic assumption of the PPN formalism is the

existence of a distinguished coordinate system, conven-
tionally identified with the universe rest frame, in which the
gravitational field is given by a perturbation of a fixed
background metric, usually the flat Minkowski metric. The
PPN formalism then prescribes to expand the field equa-
tions around this background solution up to quadratic order
in the perturbations, and to solve for the perturbations order

by order, where at each level of the perturbation theory the
equations to be solved are linear in the unknowns. While
this procedure is straightforward in principle, it may pose
practical difficulties if the field equations involve nontrivial
couplings between the metric and possibly other tensor
fields, intertwining their components in a way which makes
them difficult to separate. Another issue arises from the
remaining diffeomorphism invariance, which stems from
the fact that the PPN coordinate system is a priori defined
only up to coordinate transformations which are of the
order of the metric perturbations, and is fully determined
only after solving the field equations. This results in both
the freedom and the necessity to choose the coordinates
during the process of solving the field equations, by
supplementing them with an arbitrary choice of gauge
conditions on the metric perturbations, and possibly adapt-
ing this choice once the solution is obtained, and there is in
general no canonical way to make this choice.
While the assumption of a distinguished coordinate

system describing the universe rest frame may be reason-
able from an experimental point of view, it appears at least
unnatural from a point of view which attributes the
gravitational interaction to the geometry of spacetime. In
this picture, an important role is given to diffeomorphism
invariance, and hence the independence of the choice of
coordinate systems. One may therefore ask whether it is
possible to interpret the PPN formalism and its use of
perturbation theory in alignment with this geometric point
of view, with the fixed coordinate system merely being an
artifact of its conventional formulation, while at the same*manuel.hohmann@ut.ee
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time resolving the issues of noncanonical gauge choices
and possibly cumbersome equations to be solved.
Taking a look aside toward cosmology, in which per-

turbation theory likewise plays an important role to link
theory and experiment, one finds the gauge-invariant theory
of linear perturbations [8–11] as a common tool. In order to
devise a similar gauge-invariant approach to the PPN
formalism, one must go beyond the linear approximation
and consider higher order gauge-invariant perturbations.
For this purpose we make use of the theory of nonlinear
gauge transformations [12,13], from which a higher order
Taylor expansion of tensor fields was obtained [14]. This
work has been extended to perturbations in more than one
variable [15,16], and likewise been applied in the context of
cosmology [17,18], thus providing a gauge-invariant for-
mulation to numerous preceding studies of higher order
cosmological perturbations [19–21].
The aim of this article is to make use of the gauge-

invariant higher order perturbation theory mentioned
above and to apply it to the PPN formalism, in order to
address the aforementioned potential difficulties and to
provide a fundamentally geometric interpretation. This
requires addressing a few peculiarities of the PPN formal-
ism, such as assigning different perturbation orders to space
and time derivatives, and to explicitly derive the gauge
transformations and gauge-invariant description of various
quantities appearing in the PPN formalism, such as the
matter energy-momentum and the fundamental fields
mediating the gravitational interaction. To allow for an
easy and straightforward application of our formulation of
the PPN formalism in practice, we provide explicit for-
mulas whenever it appears useful.
The outline of this article is as follows. In Sec. II we

provide a brief review of higher order gauge-invariant
perturbation theory, with particular focus on our intention
to apply it to the PPN formalism. The gauge-invariant PPN
formalism is then developed in Sec. III, using the conven-
tional metric formulation. An alternative approach based on
tetrads, which is more suitable for certain classes of gravity
theories, is presented in Sec. IV. To illustrate the use of our
formalism, we apply it to a simple, yet nontrivial example
in Sec. V. We end with a conclusion in Sec. VI. Throughout
this article we use Greek letters μ; ν ¼ 0;…; 3 to denote
spacetime indices, while Latin letters i; j ¼ 1;…; 3 denote
spatial indices.

II. GAUGE-INVARIANT
PERTURBATION THEORY

We start with a brief review of higher order gauge-
invariant perturbation theory [12–18], where we focus on
the aspects which will be important for our intended
application to the PPN formalism. First, we give a fully
geometric definition of the notion of gauge we use
in Sec. II A. Making use of this notion, we proceed
to the definition of perturbations in Sec. II B. Gauge

transformations in this picture are discussed in Sec. II C.
Finally, in Sec. II D, we define the notion of gauge-
invariant quantities. Although we explicitly mention only
the metric in this section, the same procedure applies to any
other tensor fields present in a particular gravitational
theory under consideration.

A. Definition of gauge

We start our discussion of gauge invariance with a
general remark on the use of gauging in the literature. In
the context of diffeomorphism invariance, the term gauge
is often used synonymously to denote a choice of coor-
dinates, hence a chart of the spacetime manifold, which is
then used to express the components of tensor fields.
Following this interpretation, gauge transformations are
represented by changes of coordinates. This corresponds to
what is known as passive interpretation of a diffeomor-
phism: points on the manifold and tensor fields at these
points are the same, but the labels given to these points and
the tensor components with respect to this labeling change.
For our purposes, however, it will turn out to be more
convenient to resort to the active interpretation of diffeo-
morphisms: a fixed coordinate system is chosen, points are
mapped to a different position and tensor fields are moved
and changed along with them. We will make this notion
mathematically precise below, following the definitions
given in [13,16].
Let M0 be a manifold equipped with a metric gð0Þ. We

call ðM0; gð0ÞÞ the background spacetime, and gð0Þ the
background metric. We choose this background spacetime
to be some “standard” spacetime equipped with a fixed
choice of coordinates. Common examples are Minkowski
space with Cartesian coordinates or other maximally
symmetric spacetimes. The background spacetime will
serve as a reference, to which we can compare a second,
different manifold M equipped with a metric g, which we
call the physical spacetime and physical metric, respec-
tively. However, we cannot immediately compare the
metrics g and gð0Þ for two reasons:
(1) The metrics g and gð0Þ are defined on two different

manifolds. There is no notion of a “background
metric” on the physical spacetime, since the back-
ground metric is defined only on the reference
spacetime.

(2) There is no canonical identification between points
of the physical and reference spacetimes. In other
words, there is no canonical choice of coordinates on
the physical spacetime.

In order to compare the two metrics, we must therefore
choose a diffeomorphism X∶ M0 → M. This diffeomor-
phism will do two things:
(1) It allows us to identify points on the manifolds M0

and M. Hence, it will equip M with a distinguished
choice of coordinates, obtained from the coordinates
on M0.
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(2) It defines the pullbackX�g of g toM0, which wewill
also write as Xg, and which we can compare to the
background metric gð0Þ.

The diffeomorphism X is what we will call a gauge
[13,16]. Note that there is no canonical choice for such
a diffeomorphism.

B. Perturbations

In perturbation theory we assume that the physical metric
depends on a parameter ϵ, commonly called the perturba-
tion parameter, and so we will denote it by gϵ. We also
assume that for each value of ϵ, the metric is defined on a
different physical spacetime Mϵ. In order to compare the
physical and background metrics, we therefore need a
family of diffeomorphisms X ϵ∶ M0 → Mϵ. Further, we
assume that the “unperturbed” metric g0 agrees with the
background metric gð0Þ on M0. Hence, for consistency we
assume X0 ¼ idM0

∶ M0 → M0 is the identity map.1

A key idea of perturbation theory is the assumption that
the physical metric gϵ can be approximated by a series
expansion in the perturbation parameter ϵ, whose zeroth
order is the background metric gð0Þ. Following our dis-
cussion above, we see that we cannot perform such a series
expansion directly, since gϵ and gð0Þ are defined on different
manifolds. We can, however, express the pullback
Xgϵ ¼ X�

ϵgϵ, which is defined on M0, as a series expansion
of the form

Xgϵ ¼
X∞
k¼0

ϵk

k!
∂kXgϵ
∂ϵk

����
ϵ¼0

¼
X∞
k¼0

ϵk

k!
XgðkÞ: ð1Þ

Clearly, Xgð0Þ ¼ gð0Þ is the background metric, and hence
independent of the choice of the gauge X ϵ. The other series
coefficients XgðkÞ for k ≥ 1, however, will depend on the
choice of the gauge.

C. Gauge transformations

We now consider two different gaugesX ϵ;Yϵ∶M0→Mϵ.
This allows us to construct a family Φϵ∶ M0 → M0 of
diffeomorphisms given by Φϵ ¼ X−1

ϵ ∘Yϵ. The metrics
Xgϵ ¼ X �

ϵg, Ygϵ ¼ Y�
ϵg in the different gauges, which are

now both defined on the background spacetime M0, are
related by

Ygϵ ¼ Φ�
ϵ
Xgϵ: ð2Þ

Note that Φ is only a one-parameter family of diffeo-
morphisms, but in general not a one-parameter group; one
has Φϵþϵ0 ≠ Φϵ ∘Φϵ0 and Φ−ϵ ≠ Φ−1

ϵ in general. However,
one can show that for any one-parameter family Φ of
diffeomorphisms there exists an (in general infinite) series
of one-parameter groups ϕðkÞ of diffeomorphisms such
that [12]

Φϵ ¼ � � �ϕðkÞ
ϵk=k!

∘ � � � ∘ϕð2Þ
ϵ2=2

∘ϕð1Þ
ϵ : ð3Þ

Since each ϕðkÞ is a one-parameter group of diffeomor-
phisms, it is generated by a vector field, which we will
denote by ξðkÞ. It turns out that the metrics in the two
different gauges are related by the series expansion

Ygϵ ¼
X∞
l1¼0

� � �
X∞
lj¼0

� � � ϵl1þ���þjljþ���

ð1!Þl1 � � � ðj!Þlj � � � l1! � � � lj! � � �

× £l1ξð1Þ � � � £
lj
ξðjÞ � � � Xgϵ: ð4Þ

The coefficients of the Taylor expansion are thus related by

YgðkÞ ¼ ∂kYgϵ
∂ϵk

����
ϵ¼0

¼
X

0≤l1þ2l2þ���≤k

k!
ðk − l1 − 2l2 − � � �Þ!ð1!Þl1ð2!Þl2 � � � l1!l2! � � �

£l1ξð1Þ � � � £
lj
ξðjÞ � � � Xgðk−l1−2l2−���Þ: ð5Þ

Writing out the lowest four orders of this formula we find

Ygð0Þ ¼ Xgð0Þ ¼ g0; ð6aÞ

Ygð1Þ ¼ Xgð1Þ þ £ξð1Þ
Xgð0Þ; ð6bÞ

Ygð2Þ ¼ Xgð2Þ þ 2£ξð1Þ
Xgð1Þ þ £ξð2Þ

Xgð0Þ þ £2ξð1Þ
Xgð0Þ; ð6cÞ

Ygð3Þ ¼ Xgð3Þ þ 3£ξð1Þ
Xgð2Þ þ 3£ξð2Þ

Xgð1Þ þ 3£2ξð1Þ
Xgð1Þ

þ £ξð3Þ
Xgð0Þ þ 3£ξð1Þ£ξð2Þ

Xgð0Þ þ £3ξð1Þ
Xgð0Þ; ð6dÞ

Ygð4Þ ¼ Xgð4Þ þ 4£ξð1Þ
Xgð3Þ þ 6£ξð2Þ

Xgð2Þ þ 6£2ξð1Þ
Xgð2Þ

þ 4£ξð3Þ
Xgð1Þ þ 12£ξð1Þ£ξð2Þ

Xgð1Þ þ 4£3ξð1Þ
Xgð1Þ

þ £ξð4Þ
Xgð0Þ þ 3£2ξð2Þ

Xgð0Þ þ 4£ξð1Þ£ξð3Þ
Xgð0Þ

þ 6£2ξð1Þ£ξð2Þ
Xgð0Þ þ £4ξð1Þ

Xgð0Þ: ð6eÞ

1Note that in contrast to the treatment in [16–18] we will not
regard the manifolds Mϵ as leaves of a foliation of a manifold
N ≅ M × R, as it will not be necessary for the construction we
present here.
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Observe that for each term on the right hand side the per-
turbation order, given by the sumof the perturbation orders of
XgðkÞ and the vector fields ξðkÞ in the Lie derivatives, agrees
with the perturbation order of the left hand side.

D. Gauge-invariant quantities

The main idea of gauge-invariant perturbation theory is
to divide the variables describing the metric Xgϵ into gauge
independent variables gϵ, which describe properties of the
physical metric gϵ and hence observable quantities, and
gauge dependent variables, which describe properties of
the gauge only [16–18]. One possibility to achieve this
separation and to introduce gauge invariant quantities is to
choose a distinguished gauge Sϵ. This gauge can be
obtained, for example, by imposing gauge conditions on
the metric, such as the standard post-Newtonian or har-
monic gauges. If these uniquely fix the gauge Sϵ, we may
use it to define the gauge invariant metric

gϵ ¼ S�
ϵgϵ: ð7Þ

Given any other gauge X ϵ, we can write the metric in this
gauge in the form Xgϵ ¼ X�

ϵðS−1
ϵ Þ�gϵ, i.e., by applying a

gauge transformation. We have thus achieved a split of Xgϵ
into a gauge dependent part, namely the diffeomorphism
S−1
ϵ ∘X ϵ, describing the gauge, and a gauge-invariant part

gϵ, describing the physical metric. Note that this also
implies a split of the number of free components of Xgϵ: the
gauge invariant metric gϵ has fewer free components, since
some components are fixed by the gauge conditions
corresponding to the choice of the distinguished gauge
Sϵ. These missing components are exactly found in the
gauge transformations, if a different gauge X ϵ is chosen.
We will illustrate this fact when de define the gauge
invariant PPN metric in Sec. III C.
As discussed above, for any gauge transformation there

exist vector fields, which we will now denote by XðkÞ, such
that the metric can be written as a series expansion

Xgϵ ¼
X∞
l1¼0

� � �
X∞
lj¼0

� � � ϵl1þ���þjljþ���

ð1!Þl1 � � � ðj!Þlj � � � l1! � � � lj! � � �

× £l1Xð1Þ � � � £
lj
XðjÞ � � �gϵ: ð8Þ

Also the series expansion coefficients are related by

XgðkÞ ¼
X

0≤l1þ2l2þ���≤k

k!
ðk − l1 − 2l2 − � � �Þ!ð1!Þl1ð2!Þl2 � � � l1!l2! � � �

£l1Xð1Þ � � � £
lj
XðjÞ � � �gðk−l1−2l2−���Þ: ð9Þ

The Taylor coefficients XgðkÞ thus also split into a gauge
dependent part XðkÞ and a gauge-invariant part gðkÞ. Given
any other gauge Yϵ, the same formula holds for a different
family YðkÞ of vector fields, but with the same gauge
invariant part gðkÞ. The gauge defining vector fields XðkÞ
and YðkÞ are thus the only components of this split which
change under a gauge transformation Φϵ ¼ X−1

ϵ ∘Yϵ.
Writing the generating vector fields of Φϵ as ξðkÞ, one
finds that the transformation is given by

Yð1Þ ¼ Xð1Þ þ ξð1Þ; ð10aÞ

Yð2Þ ¼ Xð2Þ þ ξð2Þ þ ½ξð1Þ; Xð1Þ�; ð10bÞ

Yð3Þ ¼ Xð3Þ þ ξð3Þ þ 3½ξð2Þ; Xð1Þ� − ½ξð1Þ; ½ξð1Þ; Xð1Þ��
þ 2½½ξð1Þ; Xð1Þ�; Xð1Þ�; ð10cÞ

Yð4Þ ¼ Xð4Þ þ ξð4Þ þ 3½ξð2Þ; Xð2Þ� þ 4½ξð3Þ; Xð1Þ�
þ 6½½ξð2Þ; Xð1Þ�; Xð1Þ� þ 3½½ξð1Þ; Xð1Þ�; Xð2Þ�
− 3½ξð2Þ; ½ξð1Þ; Xð1Þ�� þ ½ξð1Þ; ½ξð1Þ; ½ξð1Þ; Xð1Þ���
þ 3½½½ξð1Þ; Xð1Þ�; Xð1Þ�; Xð1Þ�
− 3½½ξð1Þ; ½ξð1Þ; Xð1Þ��; Xð1Þ� ð10dÞ

and similarly for higher orders. The particular form of the
gauge-invariant perturbations, of course, depends on the
choice of the standard gauge Sϵ, which must be adapted to
the particular problem under consideration. We will show
one possibility how to make this gauge choice when we
apply the gauge invariant perturbation theory to the PPN
formalism in the following section.

III. GAUGE-INVARIANT PPN FORMALISM

With the necessary mathematical background at hand,
we may now develop a gauge-invariant approach to the
PPN formalism, where the notion of gauge is to be
understood as discussed in the preceding section. For this
purpose, we first review the notion of PPN perturbation
orders and its associated peculiarities in Sec. III A. We then
discuss post-Newtonian gauge transformations in Sec. III
B. We use them to define the gauge-invariant metric
perturbations in Sec. III C. In Sec. III D, we apply the
gauge-invariant description to the energy-momentum ten-
sor of a perfect fluid, which will act as the matter source.
This matter source is further described in terms of the so-
called PPN potentials in Sec. III E. Finally, in Sec. III F we
consider at the standard PPN form of the metric, and
decompose it into its gauge-invariant and gauge dependent
parts. This step will finally allow us to determine the PPN
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parameters from the gauge-invariant metric components,
which can then be compared to observations. Our treatment
uses the definitions and notation used in [5, Sec. 4]; a
slightly modified treatment is presented in [7, Sec. 4].

A. Post-Newtonian perturbation orders

In order to derive a gauge-invariant approach to the PPN
formalisms, it is important to notice a few peculiarities
about its use of perturbation theory, compared to the
standard theory we have discussed in the previous section.
Most of these peculiarities arise from the assumption that
the matter which acts as the source of the gravitational field
is given by a perfect fluid, whose velocity in a particular,
fixed coordinate system ðxμÞ, usually identified with the
“universe rest frame,” is small, measured in units of the
speed of light, and that this velocity acts as the perturbation
parameter. On the physical spacetime M this fluid is
described by a rest energy density ρ, specific internal
energy Π, pressure p and four-velocity uμ, so that its
energy-momentum tensor is given by

Tμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν: ð11Þ

The four-velocity uμ is normalized by the metric gμν, so that
uμuνgμν ¼ −1. Following our treatment in the previous
section, coordinates are introduced as a diffeomorphism
X∶ M0 → M from a given reference spacetime M0 to the
physical spacetime, and replacing all tensorial quantities
mentioned above by their pullbacks X• ¼ X�• along X . We
then assume that the velocity Xvi ¼ Xui=Xu0 of the source
matter in these coordinates is small, jXv⃗j ¼ ϵ ≪ 1, so that it
may serve as a perturbation parameter. Hence, all tensor
perturbations will be measured in terms of velocity
orders OðnÞ ∝ jXv⃗jn.
One of the aforementioned peculiarities is the fact that

time derivatives are weighted with an additional velocity
order, ∂0 ∼Oð1Þ. This can be implemented in the standard
perturbation theory by choosing the coordinates to be
(x0 ¼ ct, xi) and taking c−1 as the perturbation parameter.
Then one naturally obtains

∂
∂x0 ¼

1

c
∂
∂t ⇒

∂
∂x0OðnÞ ∼ ∂

∂tOðnþ 1Þ; ð12Þ

while spatial derivatives retain the perturbation order. Thus,
one may keep track of perturbation orders in this way by
counting powers of c. However, this is rather tedious, and
so we will omit this step here, since the relevant perturba-
tion orders have been thoroughly worked out for the PPN
formalism [5]. Further, it is conventional to write the
perturbation expansion in the form

Xg ¼
X∞
k¼0

X g
k
: ð13Þ

Comparing this with our previous definition (1) we see
that the factor ϵk=k! has been absorbed into the perturba-

tion X g
k ∼OðkÞ. We also suppressed the perturbation

parameter ϵ in this notation. Here the zeroth order is given
by the background metric, which we assume to be a flat

Minkowski background, X g
0

μν ¼ ημν ¼ diagð−1; 1; 1; 1Þ.
Note that also more general choices, such as a
Friedmann-Lemaitre-Robertson-Walker metric, are pos-
sible, but negligible for effects on solar system scales
[7, Sec. 4.1.3].
In order to determine which terms in the expansion (13)

are relevant, one considers the action

S½γ� ¼ −m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−XgμνX_γμX_γν
q

dt

¼ −m
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−Xg00 − 2Xg0iX_γi − XgijX_γiX_γj
q

dt ð14Þ

of a test particle of mass m moving along a trajectory
Xγμ ¼ ðt; x⃗Þ, which we chose to parametrize by coordinate
time t in the gauge X . One can then distinguish two
different cases:
(1) In the first case, one assumes that the velocity of the

test particle is of the same order jX_γ⃗j ∼Oð1Þ as that
of the source matter. Expanding the action (14) into
velocity orders one finds that the second velocity
order corresponds to the Newtonian limit, with
X g

2

00 ¼ 2XU given by the Newtonian potential,
while the post-Newtonian limit requires to consider
terms up to the fourth velocity order, which contain

the metric components X g
2

ij, X g
3

0i, X g
4

00.
(2) The second case is given by assuming that the

velocity of the test particle is of the order 1, which
is the case if one studies the propagation of light. Here
one finds that the first post-Newtonian correction
appears already at the secondvelocity order,while the
fourth velocity order yields a second post-Newtonian
correction [22,23]. In this case one expands themetric
up to the orders X g

4

ij, X g
4

0i, X g
4

00.
In addition to these considerations, which determine the
maximal velocity orders we consider, the appearing metric
components are further restricted by two more physical
considerations:
(1) As we will discuss in Sec. III D, the lowest order

components of the energy-momentum tensor,
which is the source of the gravitational field equa-
tions, are of the second velocity order. Hence,
no metric perturbations at the first velocity order
appear, X g

1 ¼ 0.
(2) The terms involving perturbations X g

2

0i, X g
3

00, X g
3

ij,
X g

4

0i in the action (14) contain an odd number of
velocity factors, so that they are antisymmetric under
time reversal, and thus correspond to dissipative pro-
cesses. These are prohibited by energy-momentum
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conservation: conservation of rest mass prohibits
terms of the first velocity order, while the third
velocity order is prohibited by Newtonian energy
conservation [5].

In summary, we will therefore consider in the following
only the components

X g
2

00; X g
2

ij; X g
3

0i; X g
4

00; X g
4

ij: ð15Þ

The final component X g
4

ij is usually not considered in the
PPN formalism, since its contribution to the equations of
motion of slow-moving test matter is subleading. However,
it appears in general in the fourth order field equations of
gravity theories and couples to the relevant component
X g

4

00, and it may be used to calculate higher-order con-
tributions to light deflection [22,23], so that we will keep it
here for completeness.

B. Gauge transformations

The conditions given above do not determine the
coordinate system uniquely, but allow for a particular set
of gauge transformations. These are restricted by the
conditions that they retain the post-Newtonian character
of the metric. In analogy to the metric components, we

introduce the notation ξ
k

¼ ξðkÞϵk=k! for the generating
vector fields of the gauge transformation. One then finds
that the only allowed and relevant components we have to
consider are given by

ξ
2

i; ξ
3

0; ξ
4

i; ð16Þ

where here and in the remainder of this article we use the
Minkowski metric η to raise and lower indices of tensor
fields on the background spacetime M0. Applying this
gauge transformation to the metric components (15) by
using the general formula (6) we find that in a different
gauge Y they take the form

Y g
2

00 ¼ X g
2

00; ð17aÞ

Y g
2

ij ¼ X g
2

ij þ 2∂ðiξ
2

jÞ; ð17bÞ

Y g
3

0i ¼ X g
3

0i þ ∂iξ
3

0 þ ∂0ξ
2

i; ð17cÞ

Y g
4

00 ¼ X g
4

00 þ 2∂0ξ
3

0 þ ξ
2

i∂i
X 2

g00 ; ð17dÞ

Y g
4

ij ¼ X g
4

ij þ 2∂ðiξ
4

jÞ þ 2X g
2

kði∂jÞξ
2

k þ ξ
2

k∂k
X g

2

ij

þ ∂ðiðξ
2

jk∂kjξ
2

jÞÞ þ ∂iξ
2

k∂jξ
2

k: ð17eÞ

By a suitable choice of ξ it is possible to eliminate certain
components from the metric. We will do so below, when we
define the gauge-invariant metric components.

C. Gauge-invariant metric

Examining the gauge transformation (17), we see that by
a suitable choice of ξi it is possible to eliminate certain
components of gij, such that only a diagonal (pure trace)
and a tracefree, divergencefree part remain. Similarly, we
may choose ξ0 such that any divergence is eliminated from
g0i, and retain only a divergence-free part. These conditions
uniquely fix a gauge, so that the remaining components,
which are also uniquely determined independent of the
gauge in which the metric was originally given, become
gauge-invariant quantities. These can be parametrized in
the form

g00 ¼ g⋆; g0i ¼ g⋄
i ; gij ¼ g•δij þ g†

ij ð18Þ

by two scalars g⋆;g•, a divergence-free vector g⋄
i and a

symmetric, tracefree, divergencefree tensor g†
ij. Note that

we have used filled symbols to denote scalars, empty
symbols for vectors and symbols without interior for
tensors. These components satisfy the restrictions

∂ig⋄
i ¼ 0; ∂ig†

ij ¼ 0; g†
½ij� ¼ 0; g†

ii ¼ 0: ð19Þ

Making use of the series expansion (9), we can expand the
metric components in any arbitrary gauge X as

X g
2

00 ¼ g
2 ⋆; ð20aÞ

X g
2

ij ¼ g
2 •δij þ g

2 †
ij þ 2∂i∂jX

2
♦ þ 2∂ðiX

2 ⋄
jÞ; ð20bÞ

X g
3

0i ¼ g
3 ⋄
i þ ∂iX

3 ⋆ þ ∂0∂iX
2
♦ þ ∂0X

2 ⋄
i ; ð20cÞ

X g
4

00 ¼ g
4 ⋆ þ 2∂0X

3 ⋆ þ ð∂iX
2
♦ þ X

2 ⋄
i Þ∂ig

2 ⋆; ð20dÞ

X g
4

ij ¼ g
4 •δij þ g

4 †
ij þ 2∂i∂jX

4
♦ þ 2∂ðiX

4 ⋄
jÞ

þ ½g2 •δik þ g
2 †
ik�∂jð∂kX

2
♦ þ X

2 ⋄
k Þ

þ ½g2 •δjk þ g
2 †
jk�∂ið∂kX

2
♦ þ X

2 ⋄
k Þ

þ ð∂kX
2
♦ þ X

2 ⋄
k Þ∂k½g

2 •δij þ g
2 †
ij�

þ ∂ið∂kX
2
♦ þ X

2 ⋄
k Þ∂jð∂kX

2
♦ þ X

2 ⋄
k Þ

þ 1

2
∂i½ð∂kX

2
♦ þ X

2 ⋄
k Þ∂kð∂jX

2
♦ þ X

2 ⋄
j Þ�

þ 1

2
∂j½ð∂kX

2
♦ þ X

2 ⋄
k Þ∂kð∂iX

2
♦ þ X

2 ⋄
i Þ�; ð20eÞ
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where we have written the gauge defining vector fields in

the form X
k ¼ XðkÞϵk=k!, before using a decomposition

Xi ¼ ∂iX♦ þ X⋄
i ; X0 ¼ X⋆; ð21Þ

where ∂iX⋄
i ¼ 0. Recalling our definition of the gauge-

invariant quantities in Sec. II D, we remark that the
distinguished gauge S, in which the metric reduces to

the gauge-invariant form, is given by the choice S
k

¼ 0 for
the gauge defining vector fields at all orders.
The gauge transformation (20) now also clarifies the split

of the metric Xg into the gauge-invariant part g and the
choice of the gauge which we mentioned in Sec. II D:
(1) At the second velocity order, we see that X g

2

ij

contains in addition to the trace part g
2 • and the

transverse, trace-free part g
2 †
ij also an off-diagonal

second derivative and the derivative of a divergence-
free vector obtained from the gauge transformation

vector field components X
2
♦ and X

2 ⋄
i . The former

two quantities have 1þ 2 ¼ 3 free components,
while the latter have another 1þ 2 ¼ 3 free com-
ponents. Their sum thus equals the six free compo-
nents of a symmetric tensor of rank two in three
dimensions.

(2) Continuing with the third velocity order, we see that
the three components of X g

3

0i split into the two free

components of the divergencefree vector g
3 ⋄
i and

one component for the pure divergence of X
3 ⋆. Note

that the components of the second-order gauge vector
field have already been counted at the previous
velocity order and must not be counted again.

(3) The fourth velocity order again yields three free
components of the gauge-invariant perturbations and
three components of the gauge defining vector
fields, as for the second order.

It is the virtue of the gauge-invariant formalism that, once
the distinguished gauge S is fixed, this splitting of the
components of the metric in a general gauge X is unique.
We will make use of this fact in Sec. III F, when we split the
standard PPN metric into its gauge invariant part and the
gauge choice.

D. Energy-momentum tensor

In order to solve the gravitational field equations, we
also need a gauge-invariant description of the energy-
momentum tensor, which acts as the source of the gravi-
tational field. In the PPN formalism one assumes that the
source matter is given by a perfect fluid, whose energy-
momentum tensor takes the form

XT00 ¼ Xρð1 − X g
2

00 þ ðXvÞ2 þ XΠÞ þOð6Þ; ð22aÞ

XT0i ¼ −XρXvi þOð5Þ; ð22bÞ
XTij ¼ XρXviXvj þ Xpδij þOð6Þ ð22cÞ

in an arbitrary gauge X , up to the relevant perturbation
order, where one assigns Xρ ∼ XΠ ∼Oð2Þ and Xp ∼Oð4Þ.
It follows from this assignment that the lowest terms in the
perturbative expansion are already of second velocity order
Oð2Þ for XT00, third order Oð3Þ for XT0i and fourth order
Oð4Þ for XTij. Under a gauge transformation defined by the

vector fields ξ
k

therefore most of the expansion coefficients
X T

k

retain their forms, with the complete set of trans-
formation rules given by

YT
2

00 ¼ X T
2

00; YT
2

ij ¼ X T
2

ij ¼ 0; YT
3

0i ¼ X T
3

0i;

YT
4

00 ¼ X T
4

00 þ ξ
2

i∂i
X 2

T00
; YT

4

ij ¼ X T
4

ij: ð23Þ
To obtain a gauge-invariant expression, we replace all
tensors occurring in the formulas above by their gauge
invariant counterparts, and introduce a decomposition
given by

T⋆ ¼ T00 ¼ ρð1 − g
2

00 þ v2 þΠÞ þOð6Þ; ð24aÞ

T⋄
i þ ∂iT♦ ¼ T0i ¼ −ρvi þOð5Þ; ð24bÞ

T•δij þ△ijT▴ þ 2∂ðiT△

jÞ þ T†
ij

¼ Tij ¼ ρvivj þ pδij þOð6Þ: ð24cÞ

The terms on the left-hand side are the gauge-invariant
potentials we are looking for. As it is also the case for the
metric, we impose a number of restrictions on these
potentials, which are given by

∂iT⋄
i ¼ 0; ∂iT△

i ¼ 0; ∂iT†
ij ¼ 0;

T†
½ij� ¼ 0; T†

ii ¼ 0: ð25Þ

Further, we have introduced the notation △ij ¼ ∂i∂j −
1
3
δij△ for the tracefree second derivative, where △ ¼ ∂i∂i

is the spatial Laplace operator. Using the gauge-invariant
expressions (24), as well as the transformation rules (23),
we find that in an arbitrary gauge X the velocity orders of
the energy-momentum tensor are expanded as

X T
2

00 ¼ T
2 ⋆; ð26aÞ

X T
2

ij ¼ 0; ð26bÞ

X T
3

0i ¼ T
3 ⋄
i þ ∂iT

3
♦; ð26cÞ
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X T
4

00 ¼ T
4 ⋆ þ ð∂iX

2
♦ þ X

2 ⋄
i Þ∂iT

2 ⋆; ð26dÞ

X T
4

ij ¼ T
4
•δij þ△ijT

4
▴ þ 2∂ðiT

4
△

jÞ þ T
4 †
ij: ð26eÞ

These expressions will be useful for solving the field
equations of a given gravity theory, as they generically
appear on the right-hand side of the field equations. We will
show this explicitly in Sec. V.

E. Post-Newtonian potentials

Another important ingredient of the PPN formalism is
the definition of a number of potentials, which are obtained
as Poisson-like integrals over the source matter. Note that
these integrals, which are defined on the background
spacetime M0 and carried out over a fixed time slice
t ¼ const, depend on the choice of the coordinates, and
hence on the choice of the gauge. In a fixed gauge X they

are given by the super- and Newtonian potentials at the
second velocity order

Xχðt; x⃗Þ ¼ −
Z

d3x0Xρðt; x⃗0Þjx⃗ − x⃗0j;

XUðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0Þ
jx⃗ − x⃗0j ; ð27Þ

the third-order vector potentials

XViðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0ÞXviðt; x⃗0Þ

jx⃗ − x⃗0j ;

XWiðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0ÞXvjðt; x⃗0Þðxi − x0iÞðxj − x0jÞ

jx⃗ − x⃗0j3 ;

ð28Þ

as well as the fourth-order scalar potentials

XΦ1ðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0ÞXv2ðt; x⃗0Þ

jx⃗ − x⃗0j ; XΦ2ðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0ÞXUðt; x⃗0Þ

jx⃗ − x⃗0j ;

XΦ3ðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0ÞXΠðt; x⃗0Þ

jx⃗ − x⃗0j ; XΦ4ðt; x⃗Þ ¼
Z

d3x0
Xpðt; x⃗0Þ
jx⃗ − x⃗0j ;

XAðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0Þ½Xviðt; x⃗0Þðxi − x0iÞ�2

jx⃗ − x⃗0j3 ; XBðt; x⃗Þ ¼
Z

d3x0
Xρðt; x⃗0Þ
jx⃗ − x⃗0j ðxi − x0iÞ

dXviðt; x⃗0Þ
dt

:

XΦWðt; x⃗Þ ¼
Z

d3x0d3x00Xρðt; x⃗0ÞXρðt; x⃗00Þ xi − x0i
jx⃗ − x⃗0j3

�
x0i − x00i
jx⃗ − x⃗00j −

xi − x00i
jx⃗0 − x⃗00j

�
: ð29Þ

In a different gauge Y the PPN potentials are defined analogously with Y in place of X . To relate the PPN potentials in the
different gauges, one may simply transform the corresponding quantities which appear inside the integrals and which define
the fluid source matter. In particular, using the transformation

Yρ ¼ Xρþ ξ
2

i
Xρ;i þOð6Þ; ð30Þ

obtained from the corresponding Lie derivative, we find that the second-order potentials transform as

Yχðt; x⃗Þ ¼ Xχðt; x⃗Þ þ
Z

d3x0Xρðt; x⃗0Þ
�
∂ 0
iξ
2

iðt; x⃗0Þjx⃗ − x⃗0j − ξ
2

iðt; x⃗0Þðxi − x0iÞ
jx⃗ − x⃗0j

�
þOð6Þ; ð31aÞ

YUðt; x⃗Þ ¼ XUðt; x⃗Þ −
Z

d3x0Xρðt; x⃗0Þ
�∂ 0

iξ
2

iðt; x⃗0Þ
jx⃗ − x⃗0j þ ξ

2

iðt; x⃗0Þðxi − x0iÞ
jx⃗ − x⃗0j3

�
þOð6Þ: ð31bÞ

The simplicity of deriving these relations, using only the
formula (30), shows one of the advantages of our geometric
interpretation of gauge compared to the conventional
interpretation in terms of coordinate choices. In our
formulation, the coordinates stay fixed, and only the source
field must be transformed, i.e., pulled back using a different
diffeomorphism. The conventional formulation involves a

coordinate transformation instead, which enters the inte-
grals in multiple places due to their explicit coordinate
dependence, so that the derivation becomes more lengthy
and requires particular care given to all appearing terms.
The result is, of course, the same [5]. Note that similar
calculations show the transformation behavior of the
remaining potentials. However, we will not discuss their
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transformations explicitly, since any arising differences are
of negligible perturbation order, so that they will not be
necessary for our following treatment.
Finally, we may now use the PPN potentials in the

distinguished gauge S, which we write in boldface in
analogy to the other quantities in this gauge, to express the
gauge-invariant parts of the energy-momentum tensor (24).
By taking appropriate traces and divergences, and solving
the resulting Poisson-like equations, we obtain the relations

T
2 ⋆ ¼ ρ ¼ −

1

4π
△U; ð32aÞ

T
3
♦ ¼ −

1

4π
∂0U; ð32bÞ

T
3 ⋄
i ¼ 1

8π
△ðVi þWiÞ; ð32cÞ

T
4 ⋆ ¼ ρðΠþ v2 − g

2 ⋆Þ ¼ −
1

4π
△ðΦ3 þΦ1 − 2Φ2Þ; ð32dÞ

T
4
• ¼ 1

3
ρv2 þ p ¼ −

1

12π
△ðΦ1 þ 3Φ4Þ; ð32eÞ

T
4
▴ ¼ 1

16π
ð3A −Φ1Þ: ð32fÞ

Note that for the component (32d) we have already made
use of the Newtonian limit, which mandates that the

component g
2 ⋆ must be given by g

2 ⋆ ¼ 2U; this will
become more clear in the next section. Further, we have

omitted the fourth order vector and tensor components T
4
△
i

andT
4 †
ij, since at the fourth velocity order generally only the

scalar components appear in the field equations for the
scalar components of the fourth order metric we need to
solve for. However, if needed one may derive these
quantities by taking the divergence of their defining relation
(24c) and integrating the resulting Poisson-like equation.
The result can be brought into different, equivalent forms
by using the Euler equations for the perfect fluid; we do not
display these here for brevity.

F. Standard post-Newtonian gauge
and PPN parameters

The final aim of applying the PPN formalism to a theory
of gravity is to calculate the so-called PPN parameters.
These are defined as the (constant) coefficients which
appear if one expresses the post-Newtonian metric, in a
specific gauge, through a linear combination of post-
Newtonian potentials. This specific gauge, which we
denote P, is called the standard post-Newtonian gauge.
In this gauge, the metric is assumed to be of the form [5]

P g
2

00 ¼ 2PU; ð33aÞ
P g
2

ij ¼ 2γPUδij; ð33bÞ

P g
3

0i ¼ −
1

2
ð3þ 4γ þ α1 − α2 þ ζ1 − 2ξÞPVi

−
1

2
ð1þ α2 − ζ1 þ 2ξÞPWi; ð33cÞ

P g
4

00 ¼ −2βPU2 þ ð2þ 2γ þ α3 þ ζ1 − 2ξÞPΦ1

þ 2ð1þ 3γ − 2β þ ζ2 þ ξÞPΦ2

þ 2ð1þ ζ3ÞPΦ3 þ 2ð3γ þ 3ζ4 − 2ξÞPΦ4

− 2ξPΦW − ðζ1 − 2ξÞPA: ð33dÞ
The first equation (33a) implements the Newtonian limit,
where the Newtonian constant is tautologically assumed to

be constant and normalized to 1. Observe that P g
2

ij is

diagonal and that P g
4

00 does not contain the potential PB;
this is the defining property of the standard PPN gauge.
While the former condition is easily implemented in the
gauge-invariant formalism we developed here, the latter is

rather cumbersome. To see this, note that P g
3

0i contains a
nonvanishing divergence part proportional to PVi − PWi,

which is determined only after fixing the component P
3 ⋆ of

the third order gauge vector field. However, this component

is fixed only by the absence of PB from P g
4

00, and so the
third order metric is fully determined only after solving
also the fourth order. The latter is significantly more
involved than solving the third order equations only, since
it requires an expansion of the field equations quadratic in
the perturbations, which does not occur in the third order. In
the proposed gauge invariant formalism we have avoided
this issue by choosing a different gauge condition.
We will now decompose the standard PPN metric (33)

into its gauge-invariant and gauge dependent parts, i.e., the
vector fields P defining the gauge P, using the decom-
position (20). For this purpose, we compare the metrics
(33) and (20) at each perturbation order, starting from the
lowest. By comparing the second-order temporal compo-
nents (20a) and (33a) corresponding to the Newtonian
limit, and further using the fact that under the gauge
transformation (31b) the Newtonian potential changes
only by a term of fourth velocity order Oð4Þ, so that
PU ¼ UþOð4Þ, one immediately reads off the relation

g
2 ⋆ ¼ 2U for the second velocity order; the fourth order
correction term which we obtain here by changing the post-

Newtonian potential becomes part of g
4 ⋆ later. For the next

step, note that the second-order spatial components of the
standard PPN metric (33b) are assumed to be diagonal.
Hence, by comparison with their expansion (20b), one
finds that they uniquely decompose into the components
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g
2 • ¼ 2γU; g

2 †
ij ¼ 0; P

2
♦ ¼ 0; P

2 ⋄
i ¼ 0; ð34Þ

since only the first of these contains the diagonal (trace)
part, while the remaining three components would intro-
duce off-diagonal terms. One then continues with the third
velocity order. Here the decomposition (20c) mandates to

separate the pure divergence ∂iP
3 ⋆ þ ∂0∂iP

2
♦ from the

divergencefree part g
3 ⋄
i þ ∂0P

2 ⋄
i . To apply this decompo-

sition to the standard PPN metric (33c), first note that the
third-order PPN potentials transform under a gauge trans-
formation as PVi ¼ Vi þOð5Þ and PWi ¼ Wi þOð5Þ, so
that we can immediately work with the gauge-invariant
potentials and neglect the higher-order contribution.
From their definition one can derive that they satisfy the
relations [5]

∂iVi ¼ −∂iWi ¼ −∂0U; Vi −Wi ¼ ∂0∂iχ : ð35Þ
The former shows that their sum Vi þWi is divergence-
free, while their difference Vi −Wi is a pure divergence.
Hence, the unique decomposition (20c) of the component
(33c) yields the gauge dependent part

P
3 ⋆ ¼ −

1

4
ð2þ 4γ þ α1 − 2α2 þ 2ζ1 − 4ξÞχ ;0; ð36Þ

as well as the gauge-invariant part (37d) which we display
below. Finally, inserting the component (33d) and the
gauge defining vector field (36) into the decomposition

(20d), we can solve for the gauge-invariant component g
4 ⋆.

Here we must take into account that at the second velocity

order component g
2 ⋆ we replaced the Newtonian potential

PU by its gauge-invariant counterpart U. Their difference,
which is of fourth velocity order Oð4Þ, must therefore be

taken into account as contribution to g
4 ⋆. However, note

that from the second order equations (34) follows that the

second-order gauge defining vector fields vanish, P
2
♦ ¼ 0

and P
2 ⋄
i ¼ 0. Together with the transformation rule (31b)

this implies that also the aforementioned fourth-order
correction vanishes. This yields the fourth-order gauge-
invariant component (37e), so that we may summarize the
full list of gauge-invariant components determined by the
PPN metric as

g
2 ⋆ ¼ 2U; ð37aÞ

g
2 • ¼ 2γU; ð37bÞ

g
2 †
ij ¼ 0; ð37cÞ

g
3 ⋄
i ¼ −

�
1þ γ þ α1

4

�
ðVi þWiÞ; ð37dÞ

g
4 ⋆ ¼ 1

2
ð2 − α1 þ 2α2 þ 2α3ÞΦ1

þ 2ð1þ 3γ − 2β þ ζ2 þ ξÞΦ2 þ 2ð1þ ζ3ÞΦ3

þ 2ð3γ þ 3ζ4 − 2ξÞΦ4 − 2ξΦW − 2βU2

þ 1

2
ð2þ 4γ þ α1 − 2α2ÞA

þ 1

2
ð2þ 4γ þ α1 − 2α2 þ 2ζ1 − 4ξÞB; ð37eÞ

where in the last component we used another relation
following from the definition of the PPN potentials given
by [5]

χ ;00 ¼ AþB −Φ1: ð38Þ
A few remarks are in order. First note that the relation (37a)
is the gauge-invariant formulation of the Newtonian limit
(33a). Second, in the standard PPN metric the tensor part

g
2 †
ij is assumed to vanish identically. This assumption is

related to the fact that at the second velocity order the only
source term arising from the energy-momentum tensor of a
perfect fluid is a scalar, and so there is neither a source term

for g
2 †
ij, nor a possibility to construct a corresponding PPN

potential. However, if one considers more general source
matter models exhibiting also anisotropic stress, one may
suitably extend the PPN formalism to include also such
terms in the PPN metric.
Further, we see that already by solving the field

equations up to the second velocity order we obtain the
PPN parameter γ, while solving for the third velocity order
also yields the PPN parameter α1. This is less obvious in the

standard PPN metric (33), where the final form of P g
3

0i is
determined only after gauge fixing by eliminating PB from

(and hence solving for) P g
4

00. However, note that of course
also in the standard formalism one can obtain α1 already
after solving the field equations at the third velocity order,

by decomposing P g
3

0i into its pure divergence and diver-
gencefree parts, as explained in Sec. III C, hence effectively

calculating g
3 ⋄
i .

We also remark that the standard PPN gauge P is not
related to the field equations of any particular gravity
theory. In the context of gauge-invariant perturbations we
discuss here, it is obtained from the generic linear combi-
nation (37) of the PPN potentials in the gauge-invariant
metric components by applying the unique gauge trans-
formation defined by the second-order vector fields (34)

which retains the diagonal form of P g
2

ij and the third-order
vector field (36) which cancels the potential B from the

fourth-order component P g
4

00, as shown explicitly in
[5, Sec. 4.2].
Note that one could easily extend the post-Newtonian

metric (37) beyond the standard PPN formalism by
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including, e.g., an expansion of the component g
4 • in terms

of PPN potentials, thereby introducing new PPN param-
eters as their coefficients. While this is not done in the
standard PPN formalism, since it yields a subleading
contribution to the motion of slow-moving test matter, it
may be used, e.g., to calculate the deflection of light at
higher post-Newtonian orders [22,23], as argued at the end
of Sec. III A. We will not pursue this direction here, as it
would go beyond the aim of this article.
This completes our construction of a gauge-invariant

PPN formalism. We will demonstrate its use by applying it
to an example theory in Sec. V. However, before doing so,
we also present a tetrad formulation in the following
section.

IV. TETRAD FORMULATION

In the previous section we have derived a gauge-invariant
approach to the PPN formalism in its standard, metric
formulation. While this is suitable for most theories of
gravity, there are also theories which employ a tetrad
instead of the metric as their fundamental field variable.
We therefore also present a tetrad formulation of our
formalism in this section. We proceed in analogy to the
metric case. In Sec. IVA we discuss the perturbative
expansion of the tetrad in velocity orders and its relation
to the corresponding expansion of the metric. Gauge
transformations of the tetrad perturbations are discussed
in Sec. IV B. These are then used in Sec. IV C to derive a
gauge-invariant set of tetrad perturbations. Finally, in
Sec. IV D we relate the gauge invariant tetrad perturbations
to the standard PPN gauge and thus the PPN parameters.

A. Perturbative expansion

The starting point for our tetrad formulation of the
gauge-invariant PPN formalism is a perturbative expansion
of the tetrad around a fixed background, in analogy to the
expansion of the metric shown in Sec. III A. For this
purpose, note first that the metric gμν and the tetrad θAμ are
related by

gμν ¼ ηABθ
A
μθ

B
ν; ð39Þ

where ηAB ¼ diagð−1; 1; 1; 1Þ is the Minkowski metric and
we introduced Lorentz indices A;B ¼ 0;…; 3. In a gauge
X , we then write the tetrad in a perturbative expansion of
the form

Xθ ¼
X∞
k¼0

X θ
k

: ð40Þ

To be consistent with the corresponding expansion (13)
we set the zeroth order term to the diagonal tetrad,

X θ
0
A
μ ¼ ΔA

μ ¼ diagð1; 1; 1; 1Þ, which defines the back-
ground geometry. For the remaining terms k > 0 it then

turns out to be more convenient to lower the Lorentz index
with the Minkowski metric and to turn it into a spacetime
index with the diagonal tetrad, so that we define

X θ
k

μν ¼ ΔA
μηAB

X θ
k
B
ν: ð41Þ

In order to restrict the tetrad perturbation components we
consider, we follow a similar line of arguments as for the
metric treatment at the end of Sec. III A., one can show that
only certain components of the tetrad perturbations are
relevant in the PPN formalism. In analogy to the metric
perturbation components (15), these are given by

Xθ
2

00; Xθ
2

ij; Xθ
3

0i; Xθ
3

i0; Xθ
4

00; Xθ
4

ij: ð42Þ

Note that also here the last component X θ
4

ij would not
appear in a naive treatment of the standard PPN formalism,
but we keep it here, since it will in general be coupled to the

component X θ
4

00 we must solve for to determine the PPN
parameters. This can also be seen by deriving the relation
between the metric perturbations (13) and the tetrad
perturbations (40). Expanding the relation (39) in velocity
orders in a given gauge yields

Xg
2

00¼ 2Xθ
2

00; Xg
2

ij ¼ 2Xθ
2

ðijÞ; Xg
3

0i¼ 2Xθ
3

ð0iÞ;

Xg
4

00¼−ðXθ
2

00Þ2þ2Xθ
4

00; Xg
4

ij¼ 2Xθ
4

ðijÞ þXθ
2

ki
Xθ
2

kj:

ð43Þ
Here we also see that only the symmetric parts of the tetrads
are relevant for the metric perturbations, with the exception

of X θ
2

ij, where also the antisymmetric part enters in the last
term. It will thus be useful to treat the symmetric and
antisymmetric parts separately, and to define

Xθ
k

μν¼Xs
k

μνþXa
k

μν; Xs
k

μν¼Xθ
k

ðμνÞ; Xa
k

μν¼Xθ
k

½μν�: ð44Þ

In the following we will make use of this decomposition.

B. Gauge transformations

Using the perturbative expansions given above, one can
now proceed similarly to the derivation in Sec. III B and
calculate the gauge transformation of the tetrad perturba-
tions. These follow from the same formula (6) which holds
also for the metric perturbations. However, when applying
this formula, one must pay attention that the tetrads are one-
forms with an additional Lorentz index, which comes from
the fact that they take values in a vector bundle. Note that
there is in general no a priori relation between these
Lorentz vector bundles over the physical spacetime M and
the background spacetime M0. Hence, the full set of gauge
transformations for a tetrad is given not only by
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diffeomorphisms relating M and M0, but by vector bundle
isomorphisms relating these two Lorentz vector bundles, in
order to take into account the additional gauge freedom.
In the following we will resort to a simplified treatment,

and assume that both on the physical spacetime M and the
background spacetime M0 a fixed Lorentz gauge for the
tetrad is chosen,2 and that the Lorentz index of the tetrad
reflects its component with respect to this fixed gauge. As a
consequence, the Lorentz index is inert under gauge
transformations, which are again given by diffeomorphisms
as in the metric case, so that the Lie derivative acts only on
the spacetime index. This means that one must use the
index form θAμ for the tetrads, and not the transformed
index expression (41), which can only be used by properly
taking into account also the Lie derivative of the back-
ground tetrad ΔA

μ. First applying the gauge transformation
and then transforming the indices using the relation (41)
then yields the transformation behavior

Y θ
2

00 ¼ X θ
2

00; ð45aÞ

Y θ
2

ij ¼ X θ
2

ij þ ∂jξ
2

i; ð45bÞ

Y θ
3

0i ¼ X θ
3

0i þ ∂iξ
3

0; ð45cÞ

Y θ
3

i0 ¼ X θ
3

i0 þ ∂0ξ
2

i; ð45dÞ

Y θ
4

00 ¼ X θ
4

00 þ ∂0ξ
3

0 þ ξ
2

i∂i
X θ

2

00; ð45eÞ

Yθ
4

ij ¼ Xθ
4

ijþ∂jξ
4

iþ∂jξ
2

k
Xθ
2

ikþξ
2

k∂k
Xθ
2

ijþ
1

2
∂jðξ

2

k∂kξ
2

iÞ:
ð45fÞ

As it is also the case for the metric, one can now eliminate
certain components of the tetrad perturbations by a suitable
choice of the gauge transformation. Choosing the compo-
nents which are to be eliminated will then allow us to fix
the gauge.

C. Gauge-invariant tetrad

We can now make use of the gauge transformation (45),
in order to find gauge-invariant components for the tetrad
perturbations, as we have done for the metric in Sec. III C.
First note that by a suitable choice of ξi it is possible to
eliminate certain components of θij. One possible choice is
to retain only a diagonal (pure trace) and a symmetric,
tracefree, divergencefree part, as well as an antisymmetric

part. Similarly to the metric case, we could then further
choose ξ0 such that any divergence is eliminated from θ0i,
and retain only a divergencefree part. However, note that
one cannot perform such a simplification for the component
θi0, since ξi is already fixed by the previous condition, and
so it contains both a pure divergence and a divergence-free
part. This means that the symmetric part s0i, which is
relevant for determining the metric, and which we thus aim
to solve for and simplify, would also retain a divergence
part. Thus, choosing the divergence part of θ0i such that it
cancels the contribution from θi0 appears more useful.
Using this gauge fixing, we can parametrize the resulting
tetrad in the form

θ00 ¼ θ⋆; θ0i ¼ ∂iθ♦þ θ⋄i þ θ∘
i ; θi0 ¼−∂iθ♦þ θ⋄i − θ∘

i ;

θij ¼ θ•δijþ θ†ijþ ϵijkð∂kθ▪þ θ▫kÞ: ð46Þ

Note that we have chosen a parametrization which sim-
plifies the split of the tetrad perturbations into symmetric
and antisymmetric parts. These are given by

s00 ¼ θ⋆; s0i ¼ θ⋄i ; sij ¼ θ•δij þ θ†ij;

a0i ¼ ∂iθ♦ þ θ ∘
i ; aij ¼ ϵijkð∂kθ▪ þ θ▫kÞ: ð47Þ

We can then transform the tetrad perturbations to an
arbitrary gauge X . Decomposing the gauge defining vector
fields in the form (21) as in the metric case, we find the
transformation behavior

X θ
2

00 ¼ θ
2 ⋆; ð48aÞ

X θ
2

ij ¼ θ
2
•δij þ θ

2 †
ij þ ϵijkð∂kθ

2
▪ þ θ

2
▫
kÞ þ ∂i∂jX

2
♦ þ ∂jX

2 ⋄
i ;

ð48bÞ

X θ
3

0i ¼ ∂iθ
3
♦ þ θ

3 ⋄
i þ θ

3 ∘
i þ ∂iX

3 ⋆; ð48cÞ

X θ
3

i0 ¼ −∂iθ
3
♦ þ θ

3 ⋄
i − θ

3 ∘
i þ ∂0∂iX

2
♦ þ ∂0X

2 ⋄
i ; ð48dÞ

X θ
4

00 ¼ θ
4 ⋆ þ ∂0X

3 ⋆ þ ∂iθ
2 ⋆ð∂iX

2
♦ þ X

2 ⋄
i Þ; ð48eÞ

X θ
4

ij ¼ θ
4
•δij þ θ

4 †
ij þ ϵijkð∂kθ

4
▪ þ θ

4
▫
kÞ þ ∂i∂jX

4
♦ þ ∂jX

4 ⋄
i

þ 1

2
∂j½ð∂kX

2
♦ þ X

2 ⋄
k Þ∂kð∂iX

2
♦ þ X

2 ⋄
i Þ�

þ ð∂kX
2
♦ þ X

2 ⋄
k Þ∂k½θ

2
•δij þ θ

2 †
ij þ ϵijlð∂lθ

2
▪ þ θ

2
▫
l Þ�

þ ∂jð∂kX
2
♦ þ X

2 ⋄
k Þ½θ

2
•δik þ θ

2 †
ik þ ϵiklð∂lθ

2
▪ þ θ

2
▫
l Þ�:

ð48fÞ

It must be noted that the distinguished gauge in which the
tetrad takes the form (46) is not the same as the one we used

2An example for such a fixed Lorentz gauge choice used in a
tetrad extension of the PPN formalism is the Weitzenböck gauge
in teleparallel gravity [24] and its scalar extension [25,26], which
may be imposed independently at each order of the perturbation
theory.
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before to bring the metric to the form (18). This can be

seen, for example, by noticing that g
4

ij contains only a
pure trace and a symmetric, tracefree, divergencefree part,

while the corresponding metric component 2θ
4

ðijÞ þ θ
2

kiθ
2

kj

obtained from the gauge-invariant tetrad receives additional
contributions from the second, nonlinear term. However,
since this is the only component in which the different
gauge choice appears, and its form is not relevant for
determining the PPN parameters, it will not make any
difference for our calculations.

D. Standard post-Newtonian gauge
and PPN parameters

We can now finally establish the relation between the
gauge-invariant tetrad perturbations and the PPN parame-
ters, in analogy to the relation (37) we derived in Sec. III F
for the metric perturbations. Expressing the metric (33) in
the standard PPN gauge through the tetrad by using the
substitution rules (43), we find that the relevant tetrad
components can be written in terms of the PPN parameters
and potentials as

P s
2

00 ¼ PU; ð49aÞ
P s
2

ij ¼ γPUδij; ð49bÞ
P s
3

0i ¼ −
1

4
ð3þ 4γ þ α1 − α2 þ ζ1 − 2ξÞPVi

−
1

4
ð1þ α2 − ζ1 þ 2ξÞPWi; ð49cÞ

P s
4

00 ¼
1

2
ð1 − 2βÞPU2 þ 1

2
ð2þ 2γ þ α3 þ ζ1 − 2ξÞPΦ1

þ ð1þ 3γ − 2β þ ζ2 þ ξÞPΦ2 þ ð1þ ζ3ÞPΦ3

þ ð3γ þ 3ζ4 − 2ξÞPΦ4 − ξPΦW −
1

2
ðζ1 − 2ξÞPA:

ð49dÞ
Observe that only the symmetric parts of the tetrad
perturbations enter the calculation of the standard PPN
metric (33). Hence, these are the only components we write
in terms of PPN parameters and PPN potentials. Comparing
these components with the tetrad (48) written in terms of
gauge-invariant components and gauge defining vector
fields, we find that the vector fields which transform the
tetrad (46) from the distinguished gauge to the standard
PPN gauge are the same vector fields (36) which we also
found in the metric case. Recall, however, our remark from
Sec. IV C that the distinguished gauge we chose to define
the gauge-invariant tetrad differs from our choice made in
the metric case; this difference affects only higher order

vector fields P
k
μ with k ≥ 4, and is thus not relevant for our

calculation here. We finally find that the gauge-invariant
tetrad components can be expressed as

θ
2 ⋆ ¼ U; ð50aÞ

θ
2
• ¼ γU; ð50bÞ

θ
2 †
ij ¼ 0; ð50cÞ

θ
3 ⋄
i ¼ −

1

2

�
1þ γ þ α1

4

�
ðVi þWiÞ; ð50dÞ

θ
4 ⋆ ¼ 1

4
ð2 − α1 þ 2α2 þ 2α3ÞΦ1

þ ð1þ 3γ − 2β þ ζ2 þ ξÞΦ2 þ ð1þ ζ3ÞΦ3

þ ð3γ þ 3ζ4 − 2ξÞΦ4 − ξΦW þ 1

2
ð1 − 2βÞU2

þ 1

4
ð2þ 4γ þ α1 − 2α2ÞA

þ 1

4
ð2þ 4γ þ α1 − 2α2 þ 2ζ1 − 4ξÞB: ð50eÞ

This concludes our construction of a gauge-invariant PPN
formalism in the tetrad formulation. To illustrate its use, we
apply it to an example theory in the following section.

V. EXAMPLE: SCALAR-TENSOR GRAVITY

We now apply the gauge-invariant PPN formalism
developed in the preceding sections to a simple example
theory. For the latter we chose the widely discussed scalar-
tensor theory of gravity with a massless scalar field, whose
PPN parameters are well known, so that we can immedi-
ately check our result. We briefly display this theory in
Sec. VA. We then perturbatively solve its field equations in
terms of gauge-invariant potentials in the metric formalism
in Sec. V B. Finally, we also display this solution in the
tetrad formalism in Sec. V C.

A. Action and field equations

In the following we discuss a class of scalar-tensor
theories of gravity, whose action is given by [27]

S ¼ 1

2κ2

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
ψR −

ωðψÞ
ψ

∂ρψ∂ρψ

�
þ Sm½gμν; χ�

ð51Þ
in Brans-Dicke like parametrization in the Jordan con-
formal frame. Here Sm denotes the matter part of the action,
where we collectively denoted by χ the set of matter fields.
The gravitational part contains a free function ω of the
scalar field ψ . Each theory of this class is defined by a
particular choice of this free function ω. By variation of this
action with respect to the metric and the scalar field as well
as subtraction of a suitable multiple of the trace of the
metric field equation one obtains the field equations
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ψRμν −∇μ∂νψ −
ω

ψ
∂μψ∂νψ þ gμν

4ωþ 6

dω
dψ

∂ρψ∂ρψ

¼ κ2
�
Tμν −

ωþ 1

2ωþ 3
gμνT

�
; ð52aÞ

ð2ωþ 3Þ▫ψ þ dω
dψ

∂ρψ∂ρψ ¼ κ2T; ð52bÞ

where ▫ ¼ gμν∇μ∇ν is the d’Alembert operator on the
physical spacetimeM. In order to perturbatively solve these
equations, we also need to provide a perturbative expansion
of the scalar field ψ , as well as an expansion in terms of
gauge-invariant quantities. First note that the relevant
perturbation orders are given by

X ψ
0 ¼ Ψ; X ψ

2
; X ψ

4 ð53Þ

in a gauge X , where Ψ denotes the constant cosmological
background value of ψ . Using the gauge transformation

Yψ
2 ¼ X ψ

2
; Yψ

4 ¼ X ψ
4 þ ξ

2

i
X ψ

2

;i ð54Þ

to a different gauge Y, we can define the gauge-invariant

scalar field perturbations ψ
k

as the perturbations in the
distinguished gauge determined by the choice of the metric
(or tetrad), so that in an arbitrary gauge we have

X ψ
2 ¼ ψ

2
; X ψ

4 ¼ ψ
4 þ ð∂iX

2
♦ þ X

2 ⋄
i Þψ

2

;i: ð55Þ
Finally, also the function ωðψÞ must be expanded into a
Taylor series around the cosmological background. Here
we introduce the shorthand notation

ω0 ¼ ωðΨÞ; ω1 ¼ ω0ðΨÞ ð56Þ

for the Taylor coefficients, which we assume to be of zeroth
velocity order Oð0Þ.

B. Solution in metric formulation

In order to illustrate the gauge-invariant metric PPN
formalism detailed in Sec. III, we now apply it to the field
equations (52), pulled back to the reference spacetime M0

by an arbitrary gauge X . First, observe that the zeroth

order X ψ
0 ¼ Ψ; X g0 μν ¼ ημν indeed solves the zeroth order

(vacuum) field equations. We continue with the time
component of the second-order metric field equations (52a).
The corresponding equation reads

−
1

2
Ψ△Xg

2

00¼ κ2
�
XT

2

00þ
ω0þ1

2ω0þ3
ðXT2 ii−XT

2

00Þ
�
: ð57Þ

We then express both sides of the equation by gauge-
invariant quantities. On the left-hand side we thus substitute

the metric component X g
2

00 ¼ g
2 ⋆ using the relation (20),

while on the right-hand side we have the energy-
momentum tensor (26) and thus

XT
2

00¼T
2

00¼T
2 ⋆ ¼ ρ; XT

2

ii ¼T
2

ii ¼ 3T
2
• ¼ 0: ð58Þ

The resulting gauge-invariant equation and its solution are
thus given by

−
1

2
Ψ△g

2 ⋆ ¼ κ2
ω0 þ 2

2ω0 þ 3
ρ ⇒ g

2 ⋆ ¼ κ2

2πΨ
ω0 þ 2

2ω0 þ 3
U:

ð59Þ

At this point it is helpful to recall the standard normali-
zation (37a) of the gravitational constant, through which

the Newtonian limit takes the form g
2 ⋆ ¼ 2U. We perform

this normalization here by setting

κ2 ¼ 4πΨ
2ω0 þ 3

ω0 þ 2
; ð60Þ

which we will use during the remainder of this section. In
the next step we consider the scalar field equation (52b) at
the second velocity order, which in an arbitrary gauge X
reads

ð2ω0 þ 3Þ△X ψ
2 ¼ κ2ðX T2 ii − X T

2

00Þ: ð61Þ

Performing the same substitution for the energy-momen-
tum tensor as in the metric field equation above, as well as

substituting X ψ
2 ¼ ψ

2
, we then find

ð2ω0 þ 3Þ△ψ
2 ¼ −κ2ρ⇒ ψ

2 ¼ κ2

4πð2ω0 þ 3ÞU¼ Ψ
ω0 þ 2

U:

ð62Þ

We then continue with the second-order spatial com-
ponents of the field equation (52a). In an arbitrary gauge
X we have

−
1

2
Ψð△Xg

2

ij−Xg
2

00;ijþXg
2

kk;ij−Xg
2

ik;jk−Xg
2

jk;ikÞ−Xψ
2

;ij

¼ κ2
�
XT

2

ij−
ω0þ1

2ω0þ3
δijðXT

2

ii−XT
2

00Þ
�
: ð63Þ

On the right-hand side we substitute the energy-momentum
tensor as in the previous equations. On the left-hand side
we substitute the metric components using the relations
(20). By the virtue of the gauge-invariant decomposition
we find that all occurrences of the gauge defining vector
field X cancel and the resulting equation takes the
simple form
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−
1

2
Ψðδij△g

2 • þ g
2 •
;ij − g

2 ⋆
;ij þ△g

2 †
ijÞ − ψ

2

;ij

¼ κ2
ω0 þ 1

2ω0 þ 3
δijρ: ð64Þ

This equation may now be decomposed into its trace, a
tracefree second derivative and a transverse, tracefree part.
To isolate the former, we take the trace

−
1

2
Ψð4△g

2 • −△g
2 ⋆Þ −△ψ

2 ¼ 3κ2
ω0 þ 1

2ω0 þ 3
ρ: ð65Þ

To solve for g
2 •, we substitute the previously found

solutions for g
2 ⋆ and ψ

2
and obtain

−2Ψ△g
2 • ¼ 4κ2

ω0 þ 1

2ω0 þ 3
ρ ⇒

g
2 • ¼ κ2

2πΨ
ω0 þ 1

2ω0 þ 3
U ¼ 2

ω0 þ 1

ω0 þ 2
U: ð66Þ

One now easily checks that this solution also solves the
tracefree second derivative part of the second-order equa-
tion (64), which reads

−△ij

�
1

2
Ψðg2 • − g

2 ⋆Þ þ ψ
2
�
¼ 0: ð67Þ

This is a direct consequence of the gauge invariance
of the theory, which implies that the second-order scalar
parts of the field equations are linearly dependent. We are
left with the transverse, tracefree part, from which we find

△g
2 †
ij ¼ 0 ⇒ g

2 †
ij ¼ 0: ð68Þ

Next, we consider the third-order mixed components of the
field equations (52a), which read

−
1

2
Ψð△Xg

3

0i−Xg
3

0j;ijþXg
2

jj;0i−Xg
2

ij;0jÞ−Xψ
2

;0i¼ κ2XT
3

0i:

ð69Þ

Again it is the virtue of the gauge-invariant decomposition
that, once we substitute the metric components (20), the left
hand side of these equations greatly simplifies. On the right
hand side we substitute the energy-momentum tensor (26)
and thus

X T
3

0i ¼ T
3

0i ¼ T
3 ⋄
i þ ∂iT

3
♦ ¼ −ρvi; ð70Þ

from which we obtain

−
1

2
Ψð△g

3 ⋄
i þ 2g

2 •
;0iÞ − ψ

2

;0i ¼ κ2ðT
3 ⋄
i þ ∂iT

3
♦Þ ¼ −κ2ρvi:

ð71Þ

This equation evidently splits into a pure divergence
and a divergencefree part. Starting with the former, which
reads

−Ψg
2 •
;0i − ψ

2

;0i ¼ κ2∂iT
3
♦ ¼ −

κ2

4π
U;0i; ð72Þ

we find that it is already solved identically by the second-
order gauge-invariant components we determined above.
This is another consequence of the gauge invariance of the
theory, by which this equation becomes linearly dependent
on the previously solved equations. We are thus left with
the divergencefree part, which leads to

−
1

2
Ψ△g

3 ⋄
i ¼ κ2T

3 ⋄
i ¼ κ2

8π
△ðVi þWiÞ ⇒

g
3 ⋄
i ¼ −

κ2

4πΨ
ðVi þWiÞ ¼ −

2ω0 þ 3

ω0 þ 2
ðVi þWiÞ:

ð73Þ

Finally, we solve the fourth-order temporal part of the
metric field equation (52a), which takes the form

−
1

2
X ψ

2
△X g

2

00 −
1

2
Ψ
�
△X g

4

00 þ X g
2

ii;00 − 2X g
3

0i;0i þ
1

2
X g

2

00;iðX g2 00;i − 2X g
2

ij;j þ X g
2

jj;iÞ − X g
2

ij
X g

2

00;ij

�

− X ψ
2

;00 −
1

2
X g

2

00;i
X ψ

2

;i −
ω1

4ω0 þ 6
X ψ

2

;i
X ψ

2

;i ¼ κ2
�
X T

4

00 −
ω0 þ 1

2ω0 þ 3
X g

2

00ðX T
2

ii − X T
2

00Þ

þ ω1

ð2ω0 þ 3Þ2
X ψ

2 ðX T2 ii − X T
2

00Þ þ
ω0 þ 1

2ω0 þ 3
ðX T4 ii − X T

4

00 − X g
2

ij
X T

2

ij − X g
2

00
X T

2

00Þ
�
: ð74Þ

Again we make use of the substitution (20) for the metric components and (26) for the energy-momentum tensor in an
arbitrary gauge. After applying these substitutions the field equation (74) takes the simpler form
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−
1

2
ψ
2
△g

2 ⋆− 1

2
Ψ
�
△g

4 ⋆þðX2 ♦
;i þX

2 ⋄
i Þ△g

2 ⋆
;iþ 3g

2 •
;00þ

1

2
g
2 ⋆
;iðg

2 ⋆
;iþg

2 •
;iÞ−g

2 ⋆
;ijðg

2 •δijþg
2 †
ijÞ
�
−ψ

2

;00−
1

2
g
2 ⋆
;iψ
2

;i−
ω1

4ω0þ 6
ψ
2

;iψ
2

;i

¼ κ2
�
T
4 ⋆þðX2 ♦

;i þX
2 ⋄
i ÞT

2 ⋆
;iþ

ω0þ 1

2ω0þ 3
½3T4 •−T

4 ⋆− ðX2 ♦
;i þX

2 ⋄
i ÞT

2 ⋆
;i�−

ω1

ð2ω0þ 3Þ2ψ
2
T
2 ⋆

	
ð75Þ

in terms of the gauge-invariant quantities. In this case we find that also the components X
2
♦ and X

2 ⋄
i of the gauge defining

vector fields appear on both sides of the field equations. This is not surprising, since the field equations (74) are expressed in

an arbitrary gaugeX , and thus differ from the gauge-invariant field equations by a term of the form ðX2 ♦
;i þ X

2 ⋄
i ÞE;i, whereE

are the second-order field equations (57). Indeed, we find that the occurrence of X in the field equation (75) is exactly of this
form. Imposing that the second-order field equation is already satisfied by the solution we constructed above, we may thus
drop these terms and retain the gauge-invariant fourth-order field equation

−
1

2
ψ
2
△g

2 ⋆ − 1

2
Ψ
�
△g

4 ⋆ þ 3g
2 •
;00 þ

1

2
g
2 ⋆
;iðg

2 ⋆
;i þ g

2 •
;iÞ − g

2 ⋆
;ijðg

2 •δij þ g
2 †
ijÞ
�
− ψ

2

;00 −
1

2
g
2 ⋆
;iψ
2

;i −
ω1

4ω0 þ 6
ψ
2

;iψ
2

;i

¼ κ2
�
T
4 ⋆ þ ω0 þ 1

2ω0 þ 3
ð3T4 • − T

4 ⋆Þ − ω1

ð2ω0 þ 3Þ2 ψ
2
T
2 ⋆

�
: ð76Þ

In order to solve this equation for the final remaining metric component g
4 ⋆, we move all other terms to the right hand side

and insert the previously found lower order solutions, as well as the energy-momentum tensor (32). This yields the equation

△g
4 ⋆ ¼ 8π

�
3

ω0 þ 2
þ ω1Ψ
ð2ω0 þ 3Þðω0 þ 2Þ2

�
ρU − 8π

2ω0 þ 3

ω0 þ 2
ρv2 − 8πρΠ − 24π

ω0 þ 1

ω0 þ 2
p − 2

3ω0 þ 4

ω0 þ 2
U;00

−
�
4þ ω1Ψ

ð2ω0 þ 3Þðω0 þ 2Þ2
�
U;iU;i

¼ 3ω0 þ 4

ω0 þ 2
△ðAþBÞ þ△Φ1 þ

�
4ω0 þ 2

ω0 þ 2
−

ω1Ψ
ð2ω0 þ 3Þðω0 þ 2Þ2

�
△Φ2 þ 3△Φ3 þ 6

ω0 þ 1

ω0 þ 2
△Φ4

− 2

�
1þ ω1Ψ

4ð2ω0 þ 3Þðω0 þ 2Þ2
�
△U2; ð77Þ

together with the straightforward solution

g
4 ⋆ ¼ 3ω0 þ 4

ω0 þ 2
ðAþBÞ þΦ1 þ

�
4ω0 þ 2

ω0 þ 2
−

ω1Ψ
ð2ω0 þ 3Þðω0 þ 2Þ2

�
Φ2 þ 3Φ3 þ 6

ω0 þ 1

ω0 þ 2
Φ4

− 2

�
1þ ω1Ψ

4ð2ω0 þ 3Þðω0 þ 2Þ2
�
U2: ð78Þ

By comparison of the full solution (59), (66), (68), (73) and (78) with the gauge-invariant PPN metric (37) one now finds
that it does indeed possess the standard PPN form, where the PPN parameters are given by

γ ¼ ω0 þ 1

ω0 þ 2
; β ¼ 1þ ω1Ψ

4ð2ω0 þ 3Þðω0 þ 2Þ2 ; α1 ¼ α2 ¼ α3 ¼ ζ1 ¼ ζ2 ¼ ζ3 ¼ ζ4 ¼ ξ ¼ 0: ð79Þ

This is of course the well-known post-Newtonian limit of
scalar-tensor gravity with a massless scalar field [27].
We finally remark that instead of using the full metric

perturbations (20) in an arbitrary gauge X and the corre-
sponding energy-momentum tensor (26) we could also

have assumed X
k ¼ 0 from the beginning, thus effectively

working in the distinguished gauge X ¼ S used to define

the gauge-invariant metric components, since the gauge

defining vector fields X
k

do not contribute to the field
equations, and so any gauge choice is valid. However, we
chose to work in an arbitrary gauge here in order to
demonstrate this fact, i.e., to explicitly show that the vector

fields X
k

cancel and the field equations yield gauge-invariant
quantities only.
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C. Solution in tetrad formulation

Instead of solving the PPN expansion of the field equa-
tions (52) for themetricperturbations (18), onemayalsomake
use of the relations (43) and express the field equations

through tetrads instead, and then solve for the tetrad compo-
nents (46) in order to determine the PPN parameters from the
expression (50). We will not perform this procedure here in
detail, and only note that the result is given by

θ
2 ⋆ ¼ U; θ

2
• ¼ ω0 þ 1

ω0 þ 2
U; θ

2 †
ij ¼ 0; θ

3 ⋄
i ¼ −

2ω0 þ 3

2ω0 þ 4
ðVi þWiÞ; θ

4 ⋆ ¼ 3ω0 þ 4

2ω0 þ 4
ðAþBÞ

þ 1

2
Φ1 þ

�
2ω0 þ 1

ω0 þ 2
−

ω1Ψ
2ð2ω0 þ 3Þðω0 þ 2Þ2

�
Φ2 þ

3

2
Φ3 þ 3

ω0 þ 1

ω0 þ 2
Φ4 −

�
1

2
þ ω1Ψ
4ð2ω0 þ 3Þðω0 þ 2Þ2

�
U2: ð80Þ

By comparison with the gauge-invariant PPN tetrad (50)
one obtains the same PPN parameters (79) as by using the
metric formulation detailed above. Of course, in the case of
the scalar-tensor theory detailed in Sec. VA these two
approaches are exactly equivalent, since the field equa-
tions (52) are fully expressed in terms of the metric, and so
there is no benefit in using the tetrad formulation. Here we
use it only as a proof of concept. Its full virtue can be
exploited by applying the formalism to theories which have
a more natural formulation in terms of tetrads, such as
bimetric gravity [28,29] or teleparallel gravity [30,31],
where also the remaining, antisymmetric components of the
tetrad perturbations will enter the field equations as
auxiliary fields and must be solved for [24–26]. We will
not discuss the details of this procedure here, as this would
exceed the scope of this article.

VI. CONCLUSION

We have applied the theory of gauge-invariant higher
order perturbations to the PPN formalism and developed a
formulation which is independent of the choice of the gauge,
i.e., the coordinate system in which the post-Newtonian
approximation is performed. We provided explicit formulas
for the metric perturbations and energy-momentum tensor in
an arbitrary gauge and expressed their gauge-invariant
components in terms of the well-known PPN parameters
and PPN potentials. In addition to the standard metric
formulation, we also devised a tetrad formulation, which
is more suitable for gravity theories in which the funda-
mental field is a tetrad. We finally demonstrated the practical
use of the gauge-invariant PPN formalism by applying it to
an example class of scalar-tensor gravity theories and re-
deriving its PPN parameters.
Possibilities for future research arise mainly from applying

our formalism to gravity theories and deriving their PPN
parameters. The virtue of the gauge-invariant approach lies
in the fact that it isolates the physical, gauge-invariant
degrees of freedom, while removing any gauge or coordinate
dependence from the equations, which may otherwise clutter
the calculation. This potentially leads to a significant

simplification of the equations to be solved. Further, it
removes the arbitrariness in a priori choosing a gauge, which
is necessary to solve the field equations in the standard PPN
formalism. This fact may be used by employing computer
algebra in order to automatize solving the field equations,
without any further input such as the choice of gauge.
Various extensions andmodifications of this formalism are

possible. For example, one may adapt the gauge-invariant
formalism to amodified version of the PPN formalism,which
makes use of a different density variable [7, Sec. 4]. Another
possibility is to consider theories with more than one
dynamical metric (or tetrad) and perform a post-Newtonian
expansion for bothmetrics [32–34]. In this case onemust pay
attention to the fact that once the gauge-invariant variables for
one of the metrics are chosen, following the prescription
shown in this article, there is no further possibility to eliminate
certain components of other dynamical metrics by gauge
transformations, and so all components must be expressed in
terms of gauge-invariant quantities. Further possibilities are
including the Vainshtein mechanism [35] or the time depend-
ence of PPN parameters in a cosmological background
spacetime [36]. Finally, additional PPN parameters and
potentials may be included, in order to accommodate, e.g.,
for massive fields leading to Yukawa-type terms [37,38],
terms of higher derivative order [39] or parity-violating terms
as in Chern-Simons gravity [7, Sec. 5.6].
Further, one may include even higher perturbation

orders, and apply the gauge-invariant perturbation theory
to the calculation of gravitational radiation from compact
sources [40]. While the conventional approach heavily
relies on the choice of the gauge, also here a gauge-
invariant formulation may lead to new insights and a
simplified approach.
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