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A novel criterion to determine the presence of gravitational radiation arriving to, or departing from, null
infinity of any weakly asymptotically simple spacetime with vanishing cosmological constant is given. The
quantities involved are geometric, of tidal nature, with good gauge behavior and univocally defined at null
infinity. The relationship with the classical characterization using the news tensor is analyzed in detail.
A new balance law at infinity is presented, which may be useful to define “radiation states.”
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I. INTRODUCTION AND SETTING

Confidence in the existence of gravitational waves
received a tremendous boost during the 1950s–1960s with
the works of Trautman [1], Pirani [2], Bel [3], Bondi [4],
Sachs [5], Newman [6], and others (see, e.g., [7]). A robust,
covariant approach to the gravitational radiation and the
structure of the conformal boundary (timelike, spacelike,
and null infinity) of asymptotically flat spacetimes was then
developed by Penrose [8,9] and nicely formulated by
Geroch [10]. Furthermore, a description of the radiative
degrees of freedom in terms of the intrinsic geometry of
null infinity was given by Ashtekar [11]. As a main
outcome of those works the presence of gravitational
radiation “escaping” from—or “entering” into—the space-
time was successfully characterized by means of the so-
called news tensor.
However, this formalism only applies to the case with

vanishing cosmological constant and we wonder if an
alternative description of the radiation at infinity is feasible,
in particular, one that may perform equally well in the
presence of a positive cosmological constant too. The aim
of this communication is to present our proposal, based on
the Bel-Robinson tensor [12], for such an alternative in the
well-established asymptotically flat case; the correspond-
ing situation for a positive cosmological constant will be
considered in a subsequent paper [13].
From a physical point of view, the news tensor carries the

information about the energy-momentum radiated away by
an isolated system, while the Bel-Robinson tensor
describes the energy-momentum of the tidal gravitational
field—for historical reasons, one uses the name “super-
energy” for this. It is a fundamental fact, due to the

equivalence principle, that there does not exist any notion
of local, pointwise gravitational energy-momentum. There
are, however, several notions of quasilocal energy-momen-
tum, usually associated to closed two-dimensional surfaces
[14]. On the other hand, the supermomentum constructed
from the Bel-Robinson tensor is local and its vanishing is
unambiguous at any point of the spacetime, stating whether
or not the tidal forces vanish there—in vacuum. Given that
actual measurements of gravitational waves are basically of
tidal nature, it seems like a good idea to explore the Bel-
Robinson tensor as a viable object detecting the existence
of gravitational radiation. This is our main argument, and
we prove that it does work. Actually, the relationship
between superenergy and quasilocal energy has been
analyzed for many years [14–16] in vacuum.
Throughout the paper, we work in the conformal

completion ðM; gαβÞ with boundary J, null infinity, of
any weakly asymptotically simple spacetime ðM̂; ĝαβÞ with
zero cosmological constant Λ ¼ 0 (for a detailed descrip-
tion of these completions see, e.g., [17] or [18]).1 Both
metrics are related by gαβ ¼ Ω2ĝαβ on M̂, where the
conformal factor Ω is a function on M satisfying Ω > 0

on M̂, Ω ¼ 0 at J and nα ≔ ∇αΩ ≠ 0 at J. There exists a
conformal rescaling freedom, Ω → ωΩ with ω > 0 every-
where. We fix partially this freedom by considering only

those conformal factors satisfying ∇αnβ¼J0. The remaining
allowed transformations are those preserving the condition

£n⃗ω¼J0, which are the only ones considered from now on.
One can prove that the one-form nα, clearly normal toJ,

is null there, nαnα¼J0, and in our conventions nα is future
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pointing. Hence, J is a lightlike hypersurface whose first
fundamental form, denoted by ḡab ≔ gμνeμaeνb, is degen-
erate (we use latin indices on J, a; b;… ¼ 1, 2, 3). Here
feαag, defined only on J, is a basis of the set of vector

fields tangent to J, nαeαa ¼ 0; obviously nα¼Jnaeαa, and
na is the degeneration vector field: naḡab ¼ 0. Thus, na is
the null generator ofJ. It follows from our choice of gauge
that the second fundamental form ofJ, Kab ≔ eμaeνb∇μnν
(which is intrinsic to J, as £n⃗ḡab ¼ 2Kab), vanishes. This
implies that the Levi-Civita connection of gαβ induces a
torsion-free connection on J by means of [10,11]

∀X; Y ∈ TJðMÞ; ∇̄XY ≔ ∇XY

or equivalently eαa∇αeβb ¼ γ̄cabe
β
c, γ̄cab being the connec-

tion coefficients in the chosen basis. Avolume form ϵabc for
J is also defined through the one of the spacetime, ηαβγδ,
by (e.g., [19])

−nαϵabc ¼J ηαμνσeμaeνbeσc: ð1Þ

The choice of gauge implies ∇̄anb ¼ 0 and one also has

∇̄cḡab ¼ 0; £n⃗ḡab ¼ 0; ∇̄dϵabc ¼ 0; ð2Þ

so that the connection is volume preserving. This allows us
to use the Gauss law at J to present the balance equa-
tion (21) below.
The topology of J is R × S2 [9,20], and it has two

disconnected parts representing future and past null infin-
ity. Our results apply to both of them but, for the sake of
shortness and clarity, we just consider outgoing gravita-
tional radiation at future null infinity; the past results are
simply analogous by time reversal. A cross section S on J
is any closed (compact with no boundary) surface trans-
versal to na everywhere; we call these cross sections cuts,
and they are topological spheres S2 and spacelike surfaces
in ðM; gαβÞ. Because of (2) all possible cuts are isometric,
with a first fundamental form that is essentially the non-
degenerate part of ḡab; such an inherited positive-definite
metric on each S is denoted by qAB (capital latin indices are
used on the cuts, A; B;… ¼ 2, 3), and its covariant
derivative by DA. Given any cut S, there is a unique
lightlike vector field lα orthogonal to S and normalized as

nμlμ¼S − 1. Thus, fn⃗; l⃗g is a basis of the normal space to
the cut. Let fEμ

Ag denote a couple of linearly independent

vector fields tangent to S. Since Eμ
Anμ¼S 0, one has

Eμ
A¼SEa

Aeμa, where fEa
Ag is a basis of vector fields

tangent to S considered within J.
In order to put our results in context it is convenient to

recall the definitions and properties of the news tensor and
of the Bel-Robinson tensor. We devote the next subsections

to this purpose—for further details see [10,16], respec-
tively, and references therein.

A. The news tensor

Concerning the news tensor field, usually denoted by
Nab, one of its possible definitions is the projection to J of
the Schouten tensor Sμν ≔ ðRμν − ðR=6ÞgμνÞ=2, gauge
corrected [10,11]. It is a symmetric and gauge-invariant
tensor field on J satisfying naNab ¼ 0. In general, how-
ever, £n⃗Nab ≠ 0, so that Nab may change from one cut
to another, which is a key point. Given a cut S ⊂ J, the
pullback of the news tensor to S is denoted2 by

NAB¼SNabEa
AEb

B, which is a symmetric and traceless
(qABNAB ¼ 0) tensor field on S. We use the notation

_NAB ≔
S
Ea

AEb
B£n⃗Nab ð3Þ

and qAB _NAB ¼ 0 as is easily seen.
The classical radiation condition states that there is no

gravitational radiation on a given cut if and only if the news
tensor, or equivalently NAB, vanishes on that cut.

NAB ¼ 0 ⇔ Nab¼S 0 ⇔ no gravitational radiation onS:

Observe that, Nab being a tensor field onJ, its vanishing at
any given point is independent of any basis and thus a fully
local—pointwise—statement. Nevertheless, as argued in
[21], one cannot aspire to localize gravitational energy at a
point onJ. Hence, the vanishing ofNab at a given point has
no meaning in principle, but its vanishing on a closed
surface, on a cut, does. In this sense, the news tensor field is
related to the quasilocal energy-momentum properties of
the gravitational field at J.

B. The Bel-Robinson tensor

Consider now the Bel-Robinson tensor, defined by
[3,12,16,22]

T αβγδ ≔ Cαμγ
νCδνβ

μ þ �Cαμγ
ν�Cδνβ

μ; ð4Þ

where Cαμγ
ν is the Weyl tensor on ðM; gμνÞ and �Cαμγ

ν ≔
ð1=2ÞηαμρσCρσ

γ
ν its dual. T αβγδ is a conformally invariant,

fully symmetric and traceless tensor field, and it is also
divergence free in Einstein spaces; it is assumed to describe
tidal energy-momentum properties of the pure gravitational
field. Given an arbitrary unit, future-pointing vector field
vα, one can define the supermomentum relative to vα,

Pα ≔ −vβvγvδT μ
βγδ ¼ Wvα þ Pα; ð5Þ

2As stated, NAB depends on the cut; generally, we do not use
any label to make this explicit to avoid a messy notation, but we
use it when it is necessary.
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whose timelike component W along vα is called the
superenergy density and its spatial part (with respect to
vα) Pα is called the super-Poynting vector field, relative to
vα [3,16,23,24],

W ≔ vαvβvγvδT αβγδ; ð6Þ

Pα ≔ −ðδαν þ vαvμÞvβvγvδT μ
βγδ: ð7Þ

The Bel-Robinson tensor satisfies a dominant property [16]
that implies that Pα is always causal and future pointing, so
that, in particular, the superenergy density is always non-
negative W ≥ 0. Actually, its vanishing is equivalent to the
absence of the Weyl tensor at any point of the spacetime,

T αβγδ ¼ 0 ⇔ W ¼ 0 ⇔ Cα
βγδ ¼ 0: ð8Þ

Concerning the vanishing of the super-Poynting vector Pα,
Bel gave the following criterion [3]:
Definition 1. There is a state of intrinsic gravitational

radiation at a point pwhen Pαjp ≠ 0 for all unit timelike vα.
Equivalently, there is no intrinsic state of gravitational

radiation at a point p if there exists a unit timelike vα such
that Pαjp ¼ 0. Observe that this criterion is purely local,
valid at any spacetime point. The idea behind the criterion
is that Pα provides the spacetime direction of propagation
of gravity for the observer vα, and thus Pα proportional to
vα implies that there is only superenergy, but no spatial
momentum. For more details on Bel’s criterion see [25].
Even though the supermomentum cannot be identified with
a momentum vector for gravity pointwise, there is a relation
between supermomentum and quasilocal momentum, for
instance on closed surfaces [14,15], that we would like to
exploit. As we presently see, our proposal inherits the spirit
of Bel’s criterion and leads to an intrinsic characterization
of the presence of gravitational radiation at infinity com-
pletely equivalent to the classical one.

II. RADIANT SUPERMOMENTUM

Since we want to study the gravitational field at infinity,
and the standard Bel-Robinson tensor (4) vanishes at J,

due to the known property Cβγδ
α¼J0 [10], we introduce the

rescaled Bel-Robinson tensor,

Dαβγδ ≔ Ω−2T αβγδ ¼ dαμγνdδνβμ þ �dαμγν�dδνβμ; ð9Þ

where dβγδα ≔ Ω−1Cβγδ
α is the rescaled Weyl tensor. Dαβγδ

is conformally invariant, fully symmetric, and traceless,

and, using the property ∇ρdμντρ¼M̂ð1=ΩÞ∇̂ρĈμντ
ρ, its diver-

gence vanishes at J if the Cotton tensor 2∇̂½αŜβ�γ on
ðM̂; ĝαβÞ has appropriate decaying conditions towards
infinity. Dαβγδ is regular at J, nonvanishing in general.
Its gauge behavior is

Dαβγδ → Dαβγδ=ω2:

One can argue that there may be incoming radiation atJ
propagating along na [26]. Hence, if one wishes to study
gravitational radiation at J with the standard supermo-
mentum (5) for an observer vα, this contains information
about incoming and outgoing radiation. Choose then a
family of accelerated observers whose velocity vectors uα

approach (incoming) null cones as they are further away;
and thus they “reach”J, in the limit to infinity, such that uα

becomes collinear with nα there. Then, this limit observer is
lightlike and tangent to J. Qualitatively, we could say that
the limit observer travels alongside the incoming radiation
and thus is insensible to it. Therefore, the unique contri-
bution to the gravitational radiation that she could detect
comes from the outgoing components of the gravitational
field. This motivates us to define the fundamental object in
this work, which we call the radiant supermomentum,

Qα ≔ −nμnνnρDα
μνρ: ð10Þ

This definition is similar to that of the standard super-
momentum (5); however, there are three important remarks
to be made. The first one is that the radiant supermomen-
tum is defined using the rescaled Bel-Robinson tensor,
which makes it regular and in general nonvanishing at J,
while (5) vanishes identically at J. The second one is that
nα is lightlike at J and, therefore, (10) corresponds to a
lightlike decomposition of the rescaled Bel-Robinson
tensor at J, in contrast to the usual 3þ 1 splitting.
Finally, and perhaps this is its most distinguishing attribute,
the radiant supermomentum is geometrically well and
uniquely defined at J, nα being tangent to the null
generators of J; in contrast, (5) is observer dependent.
Remarkably, it can be shown that, as a consequence of the
peeling theorem [5,21], every supermomentum vector field
(5) on the physical spacetime ðM̂; ĝαβÞ converges in
direction to Q̂α ≔ −nμnνnρD̂α

μνρ in the limit to infinity.
This by itself strongly suggests that Qα contains informa-
tion relative to the states of intrinsic gravitational radiation
in the limit to infinity.
Some further relevant properties of the radiant super-

momentum are as follows:
(1) Qμ is null QμQμ¼J0 and future pointing at J, as

follows from known properties of Bel-Robinson
tensors [16,27].3

(2) Qα ¼ Q̂α and Qα ¼ Ω−2Q̂α on M̂.
(3) Under gauge transformations it transforms as

Qα → ω−7
�
Qα − 3

Ω
ω
Dα

βρτnβnρ∇τω

�
þOðΩ2Þ:

ð11Þ

3This is most easily seen using spinors [21], because in
spinorial form Dαβγδ ↔ dABCDd̄A0B0C0D0 where dABCD is the fully
symmetric spinor equivalent to dμντρ.
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(4) If the energy-momentum tensor of the physical
spacetime ðM̂; ĝμνÞ behaves approaching J as
T̂αβjJ ∼OðΩ3Þ (which includes the vacuum case
T̂αβ ¼ 0), then

∇μQμ ¼J 0:

From (11) one can derive the gauge change

∇μQμ→
J
ω−7∇μQμ, so that the statement of property 4 is

gauge invariant and leads to a balance law atJ; see Sec. IV.
The condition on the energy-momentum tensor can be
replaced by a pure geometrical condition, namely that the
rescaled Cotton tensor vanishes at J, which avoids using
any field equations.
On a given cut S, one can split the radiant super-

momentum into its null transverse (along lα) and tangent
parts to J,

Qα ¼S Wlα þ Q̄α ¼ Wlα þ Q̄aeαa; ð12Þ
where

W ≔ −nμQμ; ð13Þ

Q̄a ≔S Zna þ Q̄AEa
A with Z≔S − lμQμ ≥ 0: ð14Þ

Notice that these quantities are analogous to the standard
super-Poynting (7) and superenergy density (6) but with the
advantage of being observer independent and correspond-
ing to a lightlike decomposition: Z and Q̄A depend only on
the cut, while W is fully intrinsic to J. We refer to WjJ as
the radiant superenergy density and to Q̄ajS as the radiant
super-Poynting vector at S. The former satisfies WjJ ≥ 0

and vanishes only if Qα is aligned with nα, as follows from
property 1. Actually, note that property 1 implies

Q̄AQ̄A¼S 2WZ, so that the vanishing of either Z or W
implies Q̄A ¼ 0.
The Bianchi identity for the Weyl tensor, projected to J

and written in terms of the news tensor, implies [10,11]

2∇̄½aNb�c ¼ −Habc; Habc∶¼Jeαaeβbeγcdαβγμnμ: ð15Þ
By using this equation and some properties associated with
the lightlike decomposition of the rescaled Bel-Robinson
tensor, a straightforward calculation provides the relation
between the radiant supermomentum and the news tensor
on a given cut S [using (3)],

W¼S 2 _NRT _NRT ≥ 0; ð16Þ

Z¼S 4D½MNN�CD½MNN�C ¼ 2DCNC
ADBNBA ≥ 0; ð17Þ

Q̄A¼S 8 _NMCD½MNA�C ¼ −4 _NMADENE
M: ð18Þ

It is significant that the radiant supermomentum contains
the information quadratic in the first derivatives of the news
tensor.

III. THE RADIATION CONDITION

As our main result, we prove a theorem characterizing
the presence of radiation at J.
Theorem 1: (Radiation condition) There is no gravita-

tional radiation on a given cut S ⊂ J if and only if the
radiant super-Poynting Q̄a vanishes on that cut,

NAB ¼ 0 ⇔ Q̄a ¼S 0ð⇔ Z ¼ 0Þ:

Proof: Consider Eq. (17). Since the right-hand side is a
square, it follows that Z ¼ 0 ⇔ D½ANB�C ¼ 0. Using now
Eq. (18) together with (14), this happens if and only if
Q̄a ¼ 0. But D½ANB�C ¼ 0, which is equivalent to
DANA

B ¼ 0, states that NAB is a symmetric and traceless
Codazzi tensor on the compact two-dimensional S, and
then it necessarily vanishes (e.g., [28] and references
therein). Equivalently, NAB is a traceless symmetric diver-
gence-free tensor on the closed S, which implies that
NAB ¼ 0. Hence NAB ¼ 0 ⇔ Q̄a ¼ 0 on S. ▪
Remark 1: This theorem can be equivalently stated,

using property 1, as follows: there is no gravitational
radiation on a given cut S ⊂ J if and only if the radiant
supermomentum is orthogonal to S everywhere and not

colinear with nα. That is to say, NAB ¼ 0 ⇔ Qα¼SWlα.
Notice that, given a cut, this statement is totally
unambiguous.
Therefore, the presence of gravitational radiation is

characterized equivalently with Qα or with Nab. Let Δ ⊂
J denote an open portion of J with topology S2 × R.
Theorem 2: (No radiation on Δ) There is no gravita-

tional radiation on the open portionΔ ⊂ J if and only if the
radiant supermomentum Qα vanishes on Δ,

Nab ¼Δ 0 ⇔ Qα ¼Δ 0:

Proof: According to remark 1 of theorem 1, absence of
radiation onΔ requires thatQα¼SWlα on every possible cut

S included in Δ. But this is only possible ifQα¼Δ0. Another
route to derive this result is to note that NAB ¼ 0 on every

cut within Δ, and thus Nab¼Δ0. In particular, £n⃗Nab¼Δ0 so
that _NAB vanishes too at any cut within Δ. ▪
Remark 2. The conditionQα¼Δ0 implies [29,30] that nα

is a multiple principal null direction of dβγδα on Δ, which is
in accordance with the discussion in [31].
Remark 3. A practical good property of the novel

characterization provided by theorems 1 and 2 is that the
condition Qα ¼ 0 is computation friendly, avoiding the
calculation of the news tensor.
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A. The case of sandwich waves

Let now Δ ⊂ J be an open portion of J as before,
connected and limited by two cuts S1 and S2, with S2

entirely to the future of S1. We assume that Nab is at least
continuous on J. A sandwich wave is defined by the
existence of radiation inside the open connected portion Δ,
but not outside it (locally). This case is characterized by
nonvanishing functions Z, equivalently by a nonvanishing
Qα, on Δ.
The generic situation for sandwich waves has W ≠ 0

everywhere on Δ. However, a special situation arises if W
vanishes somewhere on Δ. On such regions the radiant
supermomentum aligns with the generators of J, and nα is
a simple principal null direction of dβγδα there. Notice that
this alignment occurs where £n⃗Nab ¼ 0. Observe that, by
continuity, Nab vanishes at the two boundary cuts S1 and
S2, but one must have £n⃗Nab ≠ 0 (ergo _NAB ≠ 0) there.

IV. A BALANCE LAW AT NULL INFINITY

As a second result, we present a balance law at J at the
superenergy level. We use the same notation as before for
the connected Δ ⊂ J and its bounding cuts S1 and S2. On
S1;2 we have the corresponding null vector fields lα

1 and l
α
2

and news 1NAB and 2NAB. We denote by Lα any null vector
field defined on Δ such that

nαLα¼Δ − 1; Lα ¼S1 lα
1; Lα ¼S2 lα

2: ð19Þ

Observe that there is a large freedom to choose Lα. The
computation of the projected derivative of Qα at Δ ⊂ J,
together with property 4, leads to4

Lμ∇μW þWψa
a¼Δ − ∇̄aQ̄a; ð20Þ

where ψa
b is a tensor field on Δ defined by

eμa∇μLν≔Δψb
aeνb. Equation (20) has the form of a con-

tinuity law and, moreover, we can integrate and bring it into
a flux form,

Z
Δ
ðLμ∇μW þWψa

aÞϵ ¼
Z
S2

Zϵ
∘
−
Z
S1

Zϵ
∘
; ð21Þ

where ϵ
∘
is the canonical volume 2-form associated to qAB

on the cuts. Interestingly, the left-hand side represents the
flux of radiant superenergy escaping from the spacetime in
any outgoing null direction Lα and this is controlled by the
positive quantity

R
S Z evaluated at the boundaries of Δ.

Note that the left-hand side is independent of the choice of
Lμ. To see this, take any other possible L̃μ subject to (19),

so that necessarily sμ ≔ L̃μ − Lμ is such that nμsμ ¼ 0;

ergo sμ ¼ saeμa with sa ¼S1;2
0. Hence ψ̃b

a ¼ ψb
a þ ∇̄asb and

then

Z
Δ
ðL̃μ∇μW þWψ̃a

aÞϵ −
Z
Δ
ðLμ∇μW þWψa

aÞϵ

¼
Z
Δ
∇̄aðWsaÞ ¼ 0:

On the other hand, neither of the integrals in the balance
formula (21) is gauge invariant (as the integrands change by
a factor ω−4); nevertheless (21) holds true in any gauge.
For the situation in theorem 2, the balance law is trivially

satisfied. For sandwich waves as defined in Sec. III A, the
integrals on the right-hand side vanish and, therefore,

Z
Δ
ðLμ∇μW þWψa

aÞϵ∘ ¼ 0 for sandwich waves: ð22Þ

This is actually always the case when 1NAB ¼ 2NAB (as all
cuts are isometric, this equality makes sense).

A. Relation to the Bondi-Trautman energy loss

By inserting Eq. (17) into the right-hand side of (21) and
manipulating the integrand a little, it is possible to write the
following alternative version:
Z
Δ
ðLμ∇μWþWψa

aÞϵ¼
Z
S
NABð2KNAB−DCDCNABÞϵ∘

����
S2

S1

;

ð23Þ
where K is the Gaussian curvature of the cuts.
Let F ∈ C∞ðJÞ be any smooth function on J such that

φ ≔ £n⃗F ≠ 0 everywhere. Any such F defines a foliation
of J by smooth cuts, each cut given by F ¼ C with
constant C. Let EBTðCÞ denote the Bondi-Trautman energy
[4,10,14,32] of these cross sections relative to a chosen
infinitesimal translation [10] αna, where α is a function that

necessarily satisfies £n⃗α¼J0. In our conventions, the infini-
tesimal Bondi-Trautman energy loss on a cut is given by

dEBT

dC
¼ −

1

8π

Z
S

α

φ
NABNABϵ

∘
: ð24Þ

Without restricting the gauge freedom to any particular
choice, it is always possible to adapt the foliation to the
generators of J by setting £n⃗φ ¼ 0. Comparing (24) with
the first term on the right-hand side of formula (23), we see
that the Bondi-Trautman energy-loss term appears in the
balance law for cuts satisfying Kφ=α ¼ constant—in
particular, this holds by choosing an appropriate gauge,
which is always possible after selecting an adapted foli-
ation. Under such a choice (23) can be written as

4One may be tempted to rewrite the left-hand side in (20) as
∇μðWLμÞ, but this would require extending Lμ outside J, for
instance geodesically, Lμ∇μLν ¼ 0.
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Z
Δ
ðLμ∇μW þWψa

aÞϵ

¼
�
−16πK

φ

α

dEBT

dC
−
Z
S
NABDCDCNABϵ

∘
�����

S2

S1

: ð25Þ

This nice formula allows us to perform a quick check of the
physical units5: ½EBT � ¼ ML2T−2 so that ½dEBT=dC� ¼
ML2T−2½C�−1. As ½φ� ¼ ½C�L−2 and taking into account
½α� ¼ L the right-hand side of (25) has dimensions of
½Kφ=α�ML2T−2½C�−1 ¼ ML−3T−2. Concerning the left-
hand side, using that ½Lμ� ¼ L and that ½W� ¼
½T αβγδ�L−4, we need to know the units of the volume
integral on J but, according to (1), these are ½ϵ� ¼ L4.
Hence, ½Dαβγδ� ¼ MT−2L−3 and the physical units of the
Bel-Robinson tensor are

½T αβγδ� ¼ MT−2L−3:

Even though the units of Dαβγδ depend on the dimensions
of the conformal factor, the result for the Bel-Robinson
tensor is independent of this choice. This is in agreement
with [15,33], see also [14,16], because the Bel-Robinson
tensor has physical dimensions of energy density per unit

surface, so that to recover physical units in the equations
where it appears one should write

c4

G
T αβγδ:

V. DISCUSSION

We have introduced the radiant supermomentum, which
is an observer-independent, geometrically well-defined
quantity at J, containing information quadratic in the first
derivatives of the news tensor. We have proven that an
alternative characterization of gravitational radiation at null
infinity exists at the superenergy level, and that it is
completely equivalent to the usual news tensor criterion.
Moreover, we have obtained a new balance law at infinity
that describes the outgoing flux of superenergy density due
to the presence of gravitational waves arriving at a region of
J. Remarkably, this flux depends on the news tensor on the
cuts that bound this region. This fact suggests defining some
general radiation states on the cuts, the flux of superenergy
between two sections ofJ representing the fail of the system
to recover its initial state. Equation (22) may be seen as a
condition for the system to recover its initial state.
We will extend these ideas in forthcoming work and,

particularly, we will address the Λ > 0 case in [13].
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