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A central aspect of the cosmological constant problem is to understand why vacuum energy does not
gravitate. In order to account for this observation, while allowing for nontrivial dynamics of the quantum
vacuum, we motivate a novel background independent theory of gravity. The theory is an extension of
unimodular gravity that is described in geometric terms by means of a conformal (light-cone) structure and
differential forms of degrees one and two.We show that the subset of the classical field equations describing
the dynamics of matter degrees of freedom and the conformal structure of spacetime are equivalent to that of
unimodular gravity. The sector with vanishing matter fields and a flat conformal structure is governed by the
field equations of BF theory and contains topological invariants that are influenced by quantum vacuum
fluctuations. Perturbative deviations from this sector lead to classical solutions that necessarily display
relatively small values of the cosmological constant with respect to the would-be contribution of quantum
vacuum fluctuations. This feature that goes beyond general relativity (and unimodular gravity) offers an
interpretation of the smallness of the currently observed cosmological constant.
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I. INTRODUCTION

The conformal structure of spacetime plays an essential
role in the theory of general relativity. Light cones
determine the causality of propagating particles and fields
in any local region of spacetime. This notion of causality
is also dynamical, being itself affected by matter fields.
In general relativity, this geometric causal structure is
embedded into the notion of a (pseudo-)Riemannian
manifold by means of the introduction of a nowhere-
vanishing differential 4-form (the Riemannian volume
form) which, together with the causal structure, determines
the spacetime metric [1], whose dynamics is dictated by the
Einstein-Hilbert action.
Not only is this conformal structure arguably more

fundamental, but it has been pointed out that introducing
the Riemannian volume form is not necessary in order to
obtain the Einstein field equations. In this context, in
unimodular gravity (e.g., [2–10]) the gravitational degrees
of freedom are described by the conformal structure only,
with an auxiliary nondynamical volume form. The field
equations of unimodular gravity are invariant under con-
stant shifts of the matter Lagrangian [11–14], and the
effective cosmological constant is stable under radiative
corrections [15–17]. The mechanism that guarantees the

radiative stability of the cosmological constant can be
traced back to the nondynamical character of the volume
form. Hence, one may think that any attempt of going
beyond unimodular gravity to construct a background
independent theory would not preserve the radiative sta-
bility of the cosmological constant. This paper is devoted to
the analysis of this issue (see also the related works
[18–21]).
Our aim here is extending unimodular gravity to a

background independent theory, giving dynamics to the
nondynamical differential form in unimodular gravity so
that the resulting theory is not equivalent to the Einstein-
Hilbert action. To follow this path one would need a
dynamical theory of differential forms that does not require
a metric structure for its formulation, namely a topological
field theory. One of the best known theories in this category
is the so-called BF theory, described below. In this paper,
we combine unimodular gravity and BF theory in order to
construct a background independent theory and analyze its
main properties, paying particular attention to the cosmo-
logical constant problem.

II. THE SPACETIME ACTION

A. Constructing the action

Let us start with a brief review of the relevant properties
of BF theory [22–29], a topological field theory formulated
on the principal bundle of a group G over the spacetime
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manifold M. In this principal bundle we can define a
connection A and the corresponding curvature, a 2-form F.
To construct the action let us define a 2-form B taking
values in the adjoint representation of G, hence displaying
both spacetime and group indices. If the Lie algebra of the
group G is semisimple, the Killing form is nondegenerate,
and it can be used as an internal metric tensor in order to
raise and lower group indices and to construct invariants
with respect to the action of the group. In the following,
trð∘Þ will denote the trace operation on these internal
indices.
With these differential forms we can construct two

spacetime 4-forms (we will always be working in D ¼ 4
dimensions), namely trðB ∧ BÞ and trðB ∧ FÞ, and the
action of BF theory:

SBF ¼
Z
M

trðB ∧ FÞ þ μtrðB ∧ BÞ: ð1Þ

The first term plays the role of a kinetic term, while the
second one is a potential term.
The idea we pursue here is to couple the differential

forms in BF theory to the conformal structure of spacetime
and matter fields in order to construct a background
independent action. In order to do so, let us notice that
the space of conformal structures is isomorphic to the space
of tensor densities jgj−1=4gab, with gab a nondegenerate
metric field and g its determinant [1,30,31]. The differential
form trðB ∧ BÞ, which in coordinates takes the form

trðB ∧ BÞ ¼
ffiffiffiffiffiffi
jωj

p
dx0 ∧ dx1 ∧ dx2 ∧ dx3; ð2Þ

permits one to uniquely define a pseudo-Riemannian
metric

ĝab ¼
�
ω

g

�
1=4

gab: ð3Þ

Let us note that the map between ĝab and gab is not
invertible, as the determinant g cannot be expressed as a
function of ĝab. Hence, we are just using ĝab as a notational
device, but we must keep in mind that it is a composite
object of the gravitational field gab and B.
From the transformation properties of the Levi-Civita

tensor one can check that

ffiffiffiffiffiffi
jωj

p
¼ 1

4
ϵabcdtrðBabBcdÞ ð4Þ

indeed transforms as expected, so that the quotient ω=g is a
true scalar and ĝab defined in Eq. (3) is a tensor field.
The Riemann curvature tensor of ĝab is defined as usual.

This motivates us to investigate the following background
independent action:

S ¼
Z
M

trðB ∧ BÞ
�
1

2κ
RðĝÞ þ Λ̄

κ

�

þ
Z
M

trðB ∧ FÞ þ SMðĝ;ΦÞ: ð5Þ

The term SMðĝ;ΦÞ ¼ R
M trðB ∧ BÞLM is the matter action

(with the matter fields collectively denoted by Φ), mini-
mally coupled to the metric (3), and we have written
μ ¼ Λ̄=κ for later convenience. By construction, all the
terms in action (5) can be put in correspondence with a
theory of a pseudo-Riemannian metric ĝab, except for the
term trðB ∧ FÞ.1 In other words, there is no way of
constructing an invertible map between the variables
ðgab;B;AÞ and a new set of variables in which the first
line of Eq. (5) takes the form of the Einstein-Hilbert action.

B. Symmetries

The action defined in Eq. (5) is background independent;
consequently, the theory we are analyzing is diffeomor-
phism invariant. Aside from diffeomorphisms, Weyl trans-
formations are also symmetries, defined as

gab → Ω2ðxÞgab ð6Þ

(note that matter fields are not affected by Weyl trans-
formations), leaving invariant ĝab and therefore all the
terms in the action.
Weyl transformations are symmetries of the gravitational

and matter sectors of the action and do not act on the
fields A and B. As a consequence, these transformations
would still be symmetries even if dropping the term
proportional to the 4-form B ∧ F in the Lagrangian density
that defines the dynamics of these fields. The subgroup of
transverse diffeomorphisms also enjoys this property,
which may be useful in order to make the connection with
unimodular gravity more explicit. Transverse diffeomor-
phisms are defined in a coordinate-free manner exploiting
the definition of the divergence of a vector field with
respect to the differential form trðB ∧ BÞ. If Lξ is the Lie
derivative along ξa, a vector field ξa is transverse if and
only if LξðB ∧ BÞ ¼ 0. Transverse diffeomorphisms are
defined as those whose generators are transverse and can be
written infinitesimally as

Lξĝab ¼ ∇̂aξb þ ∇̂bξa; ∇̂aξ
a ¼ 0; ð7Þ

where ∇̂a is the Levi-Civita connection associated with ĝab.
The connection ∇̂a can also be understood as an integrable
Weyl connection [32–35], as the associated connection

1Hence, it the term giving the name to BF theory is the one that
breaks this equivalence and makes the theory defined by action
(5) interesting (we will see this more explicitly in the study of its
equations of motion).

STEPHON ALEXANDER and RAÚL CARBALLO-RUBIO PHYS. REV. D 101, 024058 (2020)

024058-2



coefficients can be written in terms of that of the Levi-
Civita connection associated with gab, Γc

ab, as

Γ̂c
ab ¼ Γc

ab þ
1

8
½δcb∂a lnðω=gÞ þ δca∂b lnðω=gÞ

− gab∂c lnðω=gÞ�: ð8Þ

The equation above implies, in particular, that

∇̂agbc ¼ −
1

4
gbc∂a lnðω=gÞ: ð9Þ

This is the usual compatibility condition of an integrable
Weyl connection, which illustrates that we have arrived
naturally to a particular kind of Weyl geometry. That a
Weyl connection appears naturally is another manifestation
of the invariance under Weyl transformations (6). Using
Eqs. (7) and (8), infinitesimal transverse diffeomorphisms
can be alternatively written as

Lξgab ¼ ∇aξb þ∇bξa; ∇aξ
a ¼ −

1

2
ξa∂a lnðω=gÞ:

ð10Þ

On the other hand, the sector of the action involving the
B and F differential forms is invariant under internal gauge
transformations, given g ∈ G:

A → g−1Agþ g−1dg; B → g−1Bg: ð11Þ

Under these transformations, F → g−1Fg so that the two
forms occurring in the action are invariant:

trðF ∧ BÞ → trðg−1F ∧ BgÞ ¼ trðF ∧ BÞ: ð12Þ

The usual BF theory with action (1) is invariant under the
following infinitesimal transformations:

δA ¼ −2
Λ̄
κ
η; δB ¼ dAη; ð13Þ

where dA is the covariant derivative associated with the
connection A. This symmetry renders the solutions for B in
the theory wit action (1) trivial, i.e., gauge-equivalent
(locally) to the identically zero solution. However, this
symmetry is broken in Eq. (5) due to the couplings with the
causal structure of spacetime as well as matter fields.
An additional partial symmetry that will be of relevance

later is the shift of the matter Lagrangian

LM → LM þ C0; C0 ∈ R: ð14Þ

This transformation leaves invariant the sector composed of
matter fields and the causal spacetime structure, and
modifies only the potential term in the action for the

differential form B. The existence of this partial symmetry
is intertwined with the Weyl symmetry (6): in the absence
of the latter, shifting the matter Lagrangian would not be a
symmetry of this sector of the action. We will discuss in
detail the meaning of this shift transformation in Secs. II C
and III B.

C. Semiclassical renormalization group

The renormalization group of the action (5) when the
matter fields are quantized (defining a semiclassical theory)
can be straightforwardly evaluated using standard results:
the combination ĝab defined in Eq. (3) is a pseudo-
Riemannian metric, so that all the machinery of standard
techniques, such as the heat-kernel expansion, can be
directly imported. Let us just quote the results that can
be obtained using procedures that are thoroughly described
in [36–39], as explained in [15].
The semiclassical path integral has external fields gab, B,

and A and an integration measure that contains all
the matter fields Φ, and can be evaluated using the heat-
kernel expansion. Specifically, radiative semiclassical cor-
rections affect the coupling constants Λ̄ and κ in Eq. (5).
The corresponding renormalization group equations are
given by

Λ̄ − Λ̄0 ¼ C1α
4 þ C2α

2 þ C3 ln

�
α2

C4

�
;

1

κ
−

1

κ0
¼ C5α

2 þ C6 ln

�
α2

C7

�
; ð15Þ

where fCig7i¼1 are constants with the necessary physical
dimensions and α a cutoff. The values of these constants
depend on the particle content of the matter sector (see, e.g.,
[37] for explicit expressions). On the other hand, the bare
coupling constants are given by Λ̄0 and κ0. There also
appear the usual higher-order corrections [36] which are
not of particular relevance for our discussion (these will just
lead to higher-derivative corrections to the trace-free
gravitational field equations discussed below).
The gravitational constant κ is renormalized as in general

relativity (namely, it satisfies the same renormalization
group equation). On the other hand, the coupling constant
Λ̄ satisfies the same renormalization group equation as the
cosmological constant in general relativity. In particular,
the usual arguments [40] stating that the typical value of the
cosmological constant in general relativity is determined by
the right-hand side of the renormalization group equation in
Eq. (15) (there is a subtlety regarding the regularization
scheme [40] that is nevertheless not important for our
purposes) apply in this scenario to the coupling constant Λ̄.
This will be of importance below when studying the role
that Λ̄ plays in the field equations; we can anticipate,
however, that Λ̄ does not play the role of the cosmological
constant.
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III. SOME PROPERTIES OF THE FIELD
EQUATIONS

A. Classical field equations

To obtain the field equations it is convenient to write
action (5) in a coordinate basis. For example, one has

trðB ∧ BÞ ¼
ffiffiffiffiffiffi
jωj

p
dx0 ∧ dx1 ∧ dx2 ∧ dx3; ð16Þ

with

ffiffiffiffiffiffi
jωj

p
¼ 1

4
ϵabcdtrðBabBcdÞ: ð17Þ

On the other hand,

trðB ∧ FÞ ¼ 1

4
ϵabcdtrðBabFcdÞdx0 ∧ dx1 ∧ dx2 ∧ dx3:

ð18Þ

The variation with respect to Bab leads then to

1

4
ϵabcdFI

cd

þ δ

δBI
ab

�Z
M
trðB∧BÞ

�
1

2κ
RðĝÞþ Λ̄

κ

�
þSMðĝ;ΦÞ

�
¼ 0:

ð19Þ

The metric field ĝab is a nontrivial function of the fields B
and gab. The variation of the action with respect to these
two fields can be evaluated using the chain rule, consid-
ering first variations δĝab, and expressing these in terms of
δBI

ab and δgab. Under a general variation δĝab,

δ

Z
M

trðB ∧ BÞRðĝÞ

¼
Z
M

d4x
ffiffiffiffiffiffi
jωj

p �
RcdðĝÞ −

1

2
RðĝÞĝcd

�
δĝcd: ð20Þ

Then, the second term in Eq. (19) is proportional to the
trace of the Einstein field equations (with cosmological
constant −Λ̄) evaluated on the composite metric ĝab:

δ

δBI
ab

�Z
M

trðB ∧ BÞ
�
1

2κ
RðĝÞ þ Λ̄

�
þ SMðĝ;ΦÞ

�

¼
ffiffiffiffiffiffijωjp
2κ

�
RcdðĝÞ −

1

2
RðĝÞĝcd − Λ̄ĝcd − κTcd

�
δĝcd

δBI
ab

¼ −
ffiffiffiffiffiffijωjp
8κ

½GcdðĝÞ − Λ̄ĝcd − κTcd�
jgj1=4
jωj5=4 g

cd δjωj
δBI

ab

¼ 1

8κ
½RðĝÞ þ 4Λ̄þ κT�ϵabcdBI

cd: ð21Þ

We have used ĝab ¼ ðω=gÞ−1=4gab and

δjωj
δBI

ab
¼

ffiffiffiffiffiffi
jωj

p
ϵabcdBI

cd; ð22Þ

which can be obtained from Eq. (17). Gab is the usual
Einstein tensor, and we follow the standard definition of the
Belinfante-Rosenfeld stress-energy tensor of matter fields:

Tab ¼ −
2ffiffiffiffiffiffijωjp δSMðĝ;ΦÞ

δĝab
¼ −2

∂LM

∂ĝab þ LMĝab: ð23Þ

Using the relations above, Eq. (19) can be written as

Fþ 1

2κ
½4Λ̄þ RðĝÞ þ κT�B ¼ 0: ð24Þ

Variations of the action with respect to A yield simply

dAB ¼ 0: ð25Þ
Last, variations with respect to gab lead to the trace-free
Einstein field equations:

δ

δgab

�Z
M

trðB ∧ BÞ
�
1

2κ
RðĝÞ þ Λ̄

κ

�
þ SMðĝ;ΦÞ

�

¼
ffiffiffiffiffiffijωjp
2κ

½GcdðĝÞ − Λ̄ĝcd − κTcd�
δĝcd

δgab

¼
ffiffiffiffiffiffijωjp
2κ

½Gcd − Λ̄ĝcd − κTcd�
jgj1=4
jωj1=4

�
δcaδ

d
b −

1

4
gcdgab

�

¼
ffiffiffiffiffiffijωjp
2κ

ðg=ωÞ1=4
�
Rab −

1

4
Rĝab − κ

�
Tab −

1

4
Tĝab

��
;

ð26Þ

where curvature tensors are evaluated on ĝab. The gravi-
tational field equations are therefore given by

RabðĝÞ −
1

4
RðĝÞĝab ¼ κ

�
Tab −

1

4
Tĝab

�
: ð27Þ

Equations (24), (25), and (27) are the field equations of the
theory.

B. Comparison with unimodular gravity
and general relativity

The field equations describe a generalization of unim-
odular gravity, with two new equations, Eqs. (24) and (25).
In this section we explain the implications of this extension,
highlighting the similarities and differences with both
unimodular gravity and general relativity.
An important property of unimodular gravity that makes

it different from general relativity is the invariance of
Eq. (27) is the invariance under the shift
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Tab → Tab þ C0gab; ð28Þ

which is nothing but the shift in the matter Lagrangian (14)
when expressed in terms of the stress-energy tensor of
matter. In general relativity, the shift above is not a
symmetry and in fact modifies the metric generating a
cosmological constant (e.g., [41] for an explicit discussion).
An additional symmetry of unimodular gravity is

Rab → Rab þ κD0gab: ð29Þ
In general relativity, these two transformations are not
symmetries of the classical field equations independently,
but only their combination with D0 ¼ −C0. This is another
way of stating the cosmological constant problem in
general relativity: quantum vacuum fluctuations leading
to a nonzero C0 produce spacetime curvatures that are
constrained to be proportional to D0 ¼ −C0.
However, in unimodular gravity the constants C0 andD0

in the symmetry transformations (28) and (29) are unre-
lated. These two independent symmetries are preserved in
the generalization of unimodular gravity that we are consi-
dering there. The transformations that extend Eqs. (28) and
(29) are given, respectively, by

Tab → Tab þ C0gab; FI
ab → FI

ab − 2C0BI
ab; ð30Þ

and

Rab → Rab þ κD0gab; FI
ab → FI

ab − 2D0BI
ab: ð31Þ

Hence, as in unimodular gravity, zero-point shifts of the
spacetime curvature and of the stress-energy tensor of
matter can be performed independently, so that there is no
link between these physical notions.
In general relativity, the stress-energy tensor of matter is

identically conserved due to diffeomorphism invariance.
We can show that a similar statement is valid for the theory
introduced in this paper. First of all, let us note that
Eqs. (24) and (25) together imply the constraint

d½RðĝÞ þ κT� ∧ B ¼ 0: ð32Þ

Let us define the exact one-form dS as

1

4
d½RðĝÞ þ κT� ¼ κdS; ð33Þ

so that Eq. (32) is equivalent to

dS ∧ B ¼ 0: ð34Þ

The interpretation of the one-form dS is the following.
Taking the divergence with respect to the Levi-Civita
connection of ĝab in Eq. (27), and using the Bianchi
identities satisfied by the Ricci tensor, it follows that the
divergence of the stress-energy tensor is given by

∇̂bTab ¼
1

4κ
∂a½RðĝÞ þ κT� ¼ ∂aS; ð35Þ

so that a nonzero S would describe the violation of energy
conservation [42–44]. We have to determine whether there
are classical solutions for which dS ≠ 0. However, as
explained in the Appendix, solutions with jωj ≠ 0 neces-
sarily satisfy dS ¼ 0. Therefore, it has to be

∇̂bTab ¼ 0: ð36Þ

It follows that the gravitational field equations (27) can be
written as

RabðĝÞ −
1

2
RðĝÞĝab þ Λĝab ¼ κTab; ð37Þ

where Λ is an integration constant. These equations are
manifestly invariant under Weyl transformations (6).
The similarity between Eq. (37) and the Einstein field

equations should not hide their important differences. First
of all, that Λ is fixed as an integration constant implies that
the shift (28) must necessarily modify the value of this
parameter as

Λ → Λþ κC0: ð38Þ

Hence, C0 drops from Eq. (37). Let us stress that this is
necessary by construction, as Eq. (37) is just a consequence
of Eqs. (27) and (36), which are both invariant under the
shift (28). A second difference (which is intimately
associated with the previous one) is that Eq. (37) contains
no trace of the coupling constant Λ̄, which in this theory
receives the radiative corrections that in general relativity
modify the value of the cosmological constant. As we have
seen before and discuss in more detail below, Λ̄ sources the
curvature FI

ab.
The form of the field equations can be simplified taking

into account that conservation of the stress-energy tensor of
matter or, equivalently, Eq. (36) implies that Eq. (24) can be
written as

Fþ 2

κ
ðΛ̄þ ΛÞB ¼ 0: ð39Þ

We see that the coupling constant Λ̄ shows up as a constant
source to the curvature F of the connection A. Unless the
groupG is Abelian, Eqs. (25) and (39) have to be solved for
A and B simultaneously, and then Eq. (37) can be used to
determine the gravitational field gab.
Hence, we have two constants Λ̄ and Λ that act as

constant sources of curvature, although for different cur-
vatures (FI

ab and Rab, respectively). Let us recall that, as
explained in Sec. II C, a straightforward application of
renormalization techniques shows that the quantity that is
renormalized due to the fluctuations of the quantum
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vacuum is Λ̄. On the other hand, the effective cosmological
constant Λ is an independent quantity, the value of which
depends on the local properties of matter and the gravita-
tional field (it is an integration constant that is determined
by the initial state of these fields). The splitting Λ̄þ Λ in
Eq. (39) can be seen as corresponding to the quantum and
classical parts, respectively, of what in general relativity is
understood as the cosmological constant that acts as a
source of the curvature Rab. However, here these two parts
have different dynamical effects: only Λ acts as a true
cosmological constant, sourcing the curvature Rab, while
the quantum contribution Λ̄ is funneled to the BF sector of
the theory, sourcing only the curvature FI

ab. This can be
alternatively seen by studying particular solutions, as we do
in the following.

C. Vacuum solutions with flat conformal structure

Let us first consider the solutions of the field equations
for field configurations with no local metric structure. That
is, we will consider test matter fields and zero Riemann
tensor; a nonzero Riemann tensor can be locally detected
by using trajectories of test particles over lengths of the
order of the (inverse) associated curvature. One has then

RðĝÞ ¼ κT ¼ 0; ð40Þ

leaving only the field equations of BF theory (1),

Fþ 2
Λ̄
κ
B ¼ 0; dAB ¼ 0: ð41Þ

Hence, in the absence of local physical excitations the
theory still displays nontrivial dynamics that describes
additional properties of the manifold that is locally
Minkowskian. In semiclassical general relativity this sector
of the theory is taken as the one describing the quantum
vacuum, void of excitations of the matter fields. However,
in general relativity the quantum vacuum energy renorm-
alizes the value of the cosmological constant and drives the
quantum vacuum away from Λ ¼ 0.
Because of the similarity with general relativity, we

consider in the following that this sector (or truncation) of
the theory, the dynamics of which is described by BF
theory, provides an effective description of the dynamical
properties of the quantum vacuum. A first indication that
this definition of the quantum vacuum is reasonable is that,
as explained in Sec. II C, quantum vacuum effects renorm-
alize the coupling constant Λ̄, thus modifying the state of
the connection AI

a associated with the quantum vacuum.
Hence, all the solutions in this sector have Λ ¼ 0 but
Λ̄ ≠ 0.
Let us consider a particular solution of the field equa-

tions for the Abelian case G ¼ Uð1Þ. The metric tensor and
Bab form are given by

ηab¼

0
BBB@
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; Bab¼

1

2

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA; ð42Þ

while the associated curvature form is given by

Fab ¼
Λ̄
κ

0
BBB@

0 −1 0 0

1 0 0 0

0 0 0 −1
0 0 1 0

1
CCCA: ð43Þ

A connection leading to this curvature is for instance

A ¼ Λ̄
κ
ðx1dx0 þ x3dx2Þ: ð44Þ

We see that the curvature Fab is of the order of the coupling
constant Λ̄=κ. Hence, this solution is characterized by
vanishing metric curvature but nonzero curvature Fab

proportional to Λ̄ which, in turn, would be of the order
of magnitude determined by quantum vacuum fluctuations
(due to the renormalization group equation discussed in
Sec. II C). We can consider for instance the topological
invariant given by the integral of the Chern-Weil form,Z

M
trðF ∧ FÞ ¼ 4

Λ̄2

κ2
VolðMÞ; ð45Þ

where we have defined VolðMÞ ¼ R
M trðB ∧ BÞ.

Equivalently, we can write

1

VolðMÞ
Z
M

trðF ∧ FÞ ¼ 4
Λ̄2

κ2
: ð46Þ

We see that the value of this invariant is determined by the
fluctuations of the quantum vacuum through the first
relation in Eq. (15). As discussed in detail in [40], one
has for the particle spectrum of the Standard Model
that Λ̄ ∼ 108 GeV4.
We can use these vacuum solutions to illustrate the main

difference between the theory discussed here and general
relativity. Under the shift (28), the metric in Eq. (42) is
unchanged,

ηab → ηab: ð47Þ
In general relativity, this shift transformation would take us
from flat spacetime to (A)dS spacetime (depending on the
sign of C0). In the present framework, however, this shift
modifies Fab instead:

Fab →
Λ̄þ κC0

Λ̄
Fab: ð48Þ

D. Perturbations of the quantum vacuum

The next step we want to describe is the introduction of
local metric structures that are perturbations of the sector of
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solutions described just above. The introduction of local
metric structures induces generally a nonzero cosmological
constant Λ. We can exploit the existence of invariants such
as Eq. (46) in order to provide a definition of what
“perturbative” means when Λ ≠ 0. Using Eq. (39) we
can write in general

1

VolðMÞ
Z
M

trðF ∧ FÞ ¼ 4

κ2
ðΛ̄þ ΛÞ2: ð49Þ

Perturbative deviations are characterized by

Fþ δF; δF ≪ F: ð50Þ
In particular, Eq. (46) must be modified only perturbatively.
This implies that Λ̄ plays the role of the scale to be
perturbed (which is reasonable as it is the only dimensional
constant that plays a role in the description of the vacuum).
We can read from Eq. (49) that perturbative deviations from
the vacuum must therefore satisfy

Λ ≪ Λ̄: ð51Þ
We can therefore define a special subset of classical
solutions in the following way: a given solution of the
field equations with Λ ≠ 0 is a perturbation of the vacuum
with Λ ¼ 0 if and only if the effective cosmological
constant Λ is small with respect to the scale Λ̄.
While the typical value of Λ̄ is determined by the

fluctuations of the quantum vacuum, in order to fix the
value of the integration constant Λ we have to resort to
observations. The observational value satisfies [40]

Λ
Λ̄
∼ 10−55 ⋘ 1: ð52Þ

It follows that, in this framework, the current state of the
universe would indeed be given by one of these solutions
satisfying Eq. (51). We can reverse this argument, thus
concluding that Eq. (52) is just a manifestation of the fact
that the universe is extremely close to the vacuum solution
described in Sec. III C, representing the quantum vacuum.
The mismatch between these two scales finds then this
natural interpretation in the framework being described.
These considerations are remarkably similar to Volovik’s
proposal to understand the value of the cosmological
constant as arising from a small displacement with respect
to (or perturbative deviation from) the equilibrium state of
the universe [45–50]. In fact, the present formalism could
be understood as an explicit realization of these ideas.
Regarding previous work, it is worth stressing that the

present formalism is different from scenarios in which the
cosmological constant is a dynamical variable (e.g., [51])
and also from the sequestering mechanism introduced in
[52,53] (see also [54]). The sequesteringmechanism is more
restrictive regarding the value of the cosmological constant,
as it fixes the latter in terms of a cosmological average even

in the classical theory (the introduction of this global
constraint is at the core of this mechanism). We can
discriminate between two elements (or two cosmological
problems): (i) radiative stability of the cosmological con-
stant (this is guaranteed in both our case and sequestering)
and (ii) fixing a particular value of the cosmological
constant. In our case, the classical theory does not fix the
value of the cosmological constant, although there are hints
that unimodular gravity should lead to similar cosmological
averages as the sequestering mechanism when the quanti-
zation of the gravitational field is carried out [11]. Due to its
relation to unimodular gravity, it would certainly be inter-
esting to study this aspect in the theory introduced here. This
is, however, out of the scope of this work.
Another difference with respect to the sequestering

mechanism arises when considering the effect of phase
transitions. We have stressed above that, in the framework
discussed in this paper, the cosmological constant is a
radiatively stable (and in fact, invariant) parameter that
must be fixed by matching with observations (as in unim-
odular gravity), similar to other fundamental constants such
as the electron charge. The present-day value of the
cosmological constant leads to Eq. (52) which, in our
framework, is naturally interpreted as the current state of
the universe representing a perturbative deviation with
respect to the quantum vacuum. However, cosmological
phase transitions do affect the value of the cosmological
constant in this scenario, and therefore may drive the
universe out of this near-equilibriumwhen going backwards
in time. From the discussion in [40], for instance, it is
straightforward to check that the cosmological QCD tran-
sition preserves the near-equilibrium condition but the
electroweak phase transition does not. Hence, in this theory
the state of the universe before the latter phase transition
cannot correspond to a perturbative deviationwith respect to
the vacuum. Let us stress that, as already emphasized by
Weinberg [55], there is no contradiction at all between
known astrophysical observations and a cosmological con-
stant that grows in the past due to phase transitions.

IV. CONCLUSIONS

Using the well-known BF theory, we have extended
unimodular gravity to a background independent theory
that displays a number of interesting properties. Our main
conclusions are the following: (1) it is possible to construct
background independent theories with dynamical volume
forms that still display the main properties of the trace-free
Einstein field equations; (2) this entails using and merging
together tools of topological field theory and Weyl geom-
etry; and (3) the new features beyond unimodular gravity
offer a natural interpretation of the smallness of the
observed cosmological constant when compared to the
would-be contribution of the quantum vacuum (although
not a prediction of its value). For future work it would be
interesting to study the cosmological and astrophysical
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implications of this theory, and also whether it may be
possible to naturally get a dark sector in this framework.
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APPENDIX: SOME BASIC ALGEBRA

For simplicity, let us consider G ¼ Uð1Þ in this
Appendix. In D ¼ 4 dimensions, the determinant of an
antisymmetric matrix verifies [56]

detðBabÞ ¼
�
1

4
ϵabcdBabBcd

�
2

¼ jωj: ðA1Þ

Hence, it follows that a nondegenerate metric structure
demands that detðBabÞ ≠ 0.
Let us now consider a one-form A and analyze the

content of the equation A ∧ B ¼ 0. If at least one compo-
nent of A is nonzero, which we initially take to be A0

without loss of generality, then only three of these
equations are independent:

B12 ¼
A1B02 − A2B01

A0

;

B13 ¼
A1B03 − A3B01

A0

;

B23 ¼
A2B03 − A3B02

A0

: ðA2Þ

It is straightforward to show that, if these three conditions
are satisfied, then detðBabÞ ¼ 0. Hence, it must be A0 ¼ 0.
We can then apply the same argument to the remaining
components of A recursively, thus concluding that A ¼ 0 as
long as detðBabÞ ≠ 0.
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