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Connection independent formulation of general relativity
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A connection-independent formulation of general relativity is presented, in which the dynamics does not
depend on the choice of connection. The gravity action in this formulation includes one additional scalar
term in addition to the Einstein-Hilbert action. No conditions on the connection are imposed. Nevertheless,
this formulation yields the Einstein equations, without adding the Gibbons-Hawking-York term even when
a manifold has a boundary. Furthermore, this formulation yields a unified description of general relativity,
teleparallel gravity, and symmetric teleparallel gravity.

DOI: 10.1103/PhysRevD.101.024053

I. INTRODUCTION

On any manifold, there are infinitely many affine
connections to define the covariant derivative, but a priori,
no one is better than the others. A choice of connections is
arbitrary, and hence it should play no role in the formu-
lation of any physical law including gravity.

However, in the conventional formulations of gravity
theories, a specific connection has been used by imposing
some conditions on the connection. For instance, the original
formulation of general relativity uses the Levi-Civita con-
nection by imposing two conditions, both metricity and
torsionfree. In the Palatini-Einstein formalism [ 1], where the
connection and the metric are taken as independent varia-
bles, a specific connection is not adopted. However, even in
that formalism, either metricity or torsionfree is imposed,
and then varying the action with respect to the connection,
one learns that the connection coincides with the Levi-Civita
connection.

In this paper the connection-independent formulation of
the dynamics of general relativity is presented. No con-
ditions on the connection are imposed. This formulation
necessarily introduces one additional scalar term in addi-
tion to the Einstein-Hilbert action. The variation of the
action with respect to the connection identically vanishes,
and the variation of the action with respect to the metric
yields the Einstein equations. It is not necessary to add the
Gibbons-Hawking-York term [2,3] even when a manifold
has a boundary. Furthermore, the action in this formulation
yields general relativity, teleparallel gravity, symmetric
teleparallel gravity, and others.

The paper is organized as follows. In Sec. II the gravity
action is given, which defines the connection-independent
formulation. In Sec. III the variation of the action is
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investigated. In Sec. IV it is shown that the action includes
the Gibbons-Hawking-York term. In Sec. V, the original
formulation of general relativity, the Palatini-Einstein for-
malism, and the formulation presented in this paper are
summarized for comparison. In Sec. VI, it is demonstrated
that the action yields general relativity, teleparallel gravity,
symmetric teleparallel gravity, and others. Section VII is
devoted to the conclusion.

II. CONNECTION INDEPENDENCE

Consider a vector field on a spacetime manifold M. We
denote the covariant derivative of a vector V, as

v,v,=90,v,-T",V,. (1)

Equation (1) remains a tensor if one adds any tensor Q* 10
the affine connection I'*,,,,
2 A Y
F;w_)r‘;w—f—gmz' (2)
Each choice of Q‘W defines different affine connections.
This implies that there are infinitely many affine connec-
tions, because a tensor QAW is arbitrary.

Of infinitely many possible affine connections, general
relativity uses a specific one, the Levi-Civita connection

1
I_%m/ = Eglp(aygup + al/gﬂp - apg/w)' (3)

This leads to nonzero spacetime curvature but zero torsion.
This is also compatible with the metric, V,g,, = 0. A bar is
used to denote the quantities associated with the Levi-
Civita connection. It is convenient to use the Levi-Civita
connection as the reference for other connections. Then, an
arbitrary connection Fﬂw can be written as
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Fi/w = 1:%/41/ + Wiﬂw (4)

where W# v 18 @ tensor, because the difference between two
affine connections is a tensor.
The Riemann curvature tensor is defined by
P gy = aﬂrpw

- atzrpiﬂ =+ Fpﬂaraw - pro—rgﬂw (5)

and this transforms under the transformation (2) as

RP/ML/ - RP/M:/ + Qpﬂaggvﬂ - vaago/lﬂ
+ Wp/lagdw - Wﬁ/lugpvo' - WPL/O'QU/I,LJ + WO'WQPM_
+ vﬂgpuu - vbgpﬂw (6)

where v,, is the covariant derivative with respect to the
Levi-Civita connection (3), rather than an arbitrary one.
Then, the Ricci scalar R = g/‘”R’1 transforms under the
transformation (2) as

pAv

R—> R+ Q}»MQW” - Qﬂvlgﬁﬂy
+ WﬁMQW” _ ‘,Viwjgyw/1 _ Wﬂy/‘{.Q/{ﬂI/ + Wu;tﬂg/l/{y
+ vy(QMDL/ - Quw)' (7)

This indicates that the Einstein-Hilbert action

1
Sgn = — | d*x/—gR 8
EH = Jor ' XV—9 (8)
is not invariant under the transformation (2).
We now want to find a gravity action which is invariant
under the transformation (2). For this purpose, the follow-
ing scalar W should be defined,

W= W, W, — W, W . 9)

Under the transformation (2), the W#,, transforms as

Wll/w N W}'/w +Qﬂ

v

> and then the W transforms as

W—-> W+ Q“”iQﬂW - Q’IMQ”",, + W’%Qﬁw + W‘WQ’“’A
- W‘ADQ”/‘/J - WWMQQD. (10)

Thus, neither the Ricci scalar R nor the scalar W is invariant
under the transformation (2).

However, we learn from (7) and (10) that the R+ W
transforms under the transformation (2) as

R+W > R+W+V,(Q%,—Q). (11)
This indicates that the R + W is invariant under the

transformation (2) up to the divergence term. The trans-
formation law (11) implies that the following action

S= 16z || dxvEaR+W) (12)

defines a connection-independent formulation of gravity.
We can take (12) as the gravity action rather than (8).

III. VARIATION OF THE ACTION

We investigate the variation of the action (12) with
respect to the connection and the metric independently. It is
convenient to rewrite (12), instead of varying (12) itself.
Using (11), we can write the R + W as

R+W=R+V, (W, — W), (13)
where R is the Ricci scalar of the Levi-Civita connection.
This identity is useful, because it is valid for any con-

nection. It indicates that the R + W differs from R in only
the divergence term. Substituting (13) into (12), we obtain

4
J=gR
16 L x

e d4x,/—v (Wr, — W), (14)

where
W, =W = gparﬂpa - gﬂur‘lﬂv - gﬁgl:wpa + gﬂbl:%lv' (15)

Varying (14) with respect to the connection, we immedi-
ately find that the variation oS identically vanishes,

5SS =0, (16)

under the boundary condition 61“’1,,,, = 0. This implies that
the connection I" is not a dynamical variable.
Varying (14) with respect to the metric, we can write

048 = 64SGr + 6,58, (17)

where Sgr and Sy denote the first term and the boundary
term in (14), respectively. As usual, 5,Sgg is

1
5gSGR d4x\/—( Rg;w) 59,41/

T d4x. /=3¢"5R,,, (18)

where 6g,, = g = 0 on the boundary to be understood.
The second term in (18) is nonzero when a manifold has a
boundary [3]. Then, the variation 5,5 is obtained as
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1 - _ _
5,85 = — / dixy/ GV, (761", — gvsT,)
167 M

L[ ]
. —qgg"'oR 1
o de 99" oR,,, . (19)

where we have used the Palatini identity,

S8R, =V, 6%, =V, 6%, (20)
Thus, (19) exactly cancels the second term in (18). As the
result, the variation 5, is given by

1

1
5,8 = 1e d4x,/—< Rg,w>5gﬂv (21)
T

Here, it should be noted that we have not introduced the
Gibbons-Hawking-York term to obtain (21).

IV. THE GIBBONS-HAWKING-YORK TERM

In general relativity, the usual procedure to cancel the
second term in (18) is to add the Gibbons-Hawking-York
term [2,3] in addition to the Einstein-Hilbert action.
However, in Sec. III, we have shown that (19) cancels
the second term in (18). It means that (19) plays the
role of the variation of the Gibbons-Hawking-York term.
Therefore, in the present formulation, there is no need to
add the Gibbons-Hawking-York term. Furthermore, we can
show that (12) includes the Gibbons-Hawking-York term
itself. This can be shown as follows.

The Gibbons-Hawking-York term is defined by

€ —
Sguy = 37 7{ d3yv van", (22)
T Jom

where n, is a unit vector normal to the boundary, A is the
determinant of the induced metric on the boundary, y are
the coordinates on the boundary, e = n¥n, is equal to +1
where OM is timelike and —1 where OM is spacelike, and
vﬂnﬂ = K is the trace of the extrinsic curvature. We show
that Sy includes Sguy in the following.

The dynamical term in Sg is given by

16 | VAT T 2
where the nondynamical term including I'" is omitted,
because it does not affect the variation and field equations.

Using the Stokes’ theorem, we learn that (23) equals to

€
167 oM

€ 5 -
= — H, 24
e 748 d y\/|hW”n (24)

d3y |h|nﬂ (_g/ml:w/m' + gﬂyl:%ﬂb)

This is identical to the Gibbons-Hawking-York term (22).
Thus, in our formulation, it is not necessary to add Sgyy,
because the action (12) includes it.

V. THREE FORMULATIONS

It would be useful to summarize the three formulations,
the original formulation of general relativity, the Palatini-
Einstein formalism, and the formulation of this paper.

(1) Original formulation of general relativity: The
action is defined by the first term in (14). The
Levi-Civita connection is used by imposing two
conditions on the connection, metricity, and torsion-
free. When a manifold has a boundary, the Gibbons-
Hawking-York term has to be added to the action.

(2) Palatini-Einstein formalism: The action is defined
by (8). The connection and the metric are regarded
as independent variables. Either the metricity or the
torsionfree condition is imposed rather than both
of them. Varying the action with respect to the
connection, one learns that the connection to be
the Levi-Civita connection. Thus, in the Palatini-
Einstein formalism, either the metricity condition or
the torsionfree condition is unnecessary.

(3) The formulation of this paper: The action is defined
by (12). The connection and the metric are regarded
as independent variables. No conditions on the
connection are imposed. The variation of the action
with respect to the connection identically vanishes.
Thus, in this formulation, both the metricity con-
dition and the torsionfree condition are unnecessary.
Even when a manifold has a boundary, it is unnec-
essary to add the Gibbons-Hawking-York term,
because the action includes it.

VI. EXAMPLES

The W#,, and W can be written in terms of the metric and
the connection. Using (3) and (4), we obtain

W/l Tll;w + glpg/ngpu + gipngnpﬂ)

ViGup): (25)

1
/w:E(
+= gﬂp( p9uw — ﬂgvp_

where 7%, =T, —T*,,
(25) into (9), we find that

is a torsion tensor. Substituting

W= 19,00, + T4,0, = T, 0%,
_lT}» Tﬂ”+lTﬂD T/1 +T/1 T v
4 vt A D) At Autv
_lQm/ 0) 4 _|_1Q/w Q,1
4 A uv ) A
1 1
+ Z QIMAQ;/VD - 5 Q’ul}, ny/,u (26)
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where Q,,, =V,g,, is a nonmetricity tensor. Then, sub-
stituting (25) into (13), we obtain

R+W=R+V,QT»+0", -0, (27)

which is valid for any connection.
General relativity is obtained as the simplest example by
imposing two conditions on the connection,

metricity: Q,,, = V,g,, =0, (28)

no torsion: 7%, =T, —T*, = 0. (29)
Then, (25) and (26) reduce to W’lw =0and W = 0. This
means that the connection is uniquely determined as the
Levi-Civita connection. Therefore, the action (12) reduces
to Sgr, Which is given by the first term in (14).

If only the metricity condition (28) is imposed rather

than both (28) and (29), then (25) and (26) reduce to

W2, =

v

(Tl;u/ + glpgyoTapp + glpgvaTapu% (30)

[NSR

1 1
W=- 4 TA””TAM T 2 TWiTAW + T/I/lﬂTvW' (31)

In this case, the W* v 1s called the contorsion tensor, and the
W is the torsion scalar usually denoted by 7. Then, (27)
reduces to

R+T=R+2V, T/, (32)

where the Ricci scalar R and the torsion scalar T are in
general nonzero.

Teleparallel gravity [4] is a special case of (32). Its
theoretical structure, extensions, and physical appli-
cations have been studied in the literature [5—13]. It uses
the Weitzenbock connection [14—16], which leads to non-
zero torsion but zero curvature [15]. Then, (32) reduces to

T=R+2V, T, (33)

where a tilde is used to denote the quantities for the
Weitzenbock connection. Equation (33) defines tele-

parallel gravity, and hence teleparallel gravity is the case
of (32).

If only torsionfree condition (29) is imposed rather than
both (28) and (29), then (25) and (26) reduce to

1
Wﬂm/ = EgA/J(Q/J/w - Q;wp - Qbm))’ (34)
1 v A 1 w A
W= _ZQ# /IQ;w +§Q; /1Q uv
1 1
+ Z Q/MA Qﬂl/v - E QIM/I Qyu;r (35)

In this case, the W* w 1s called the disformation tensor, and
the W is the nonmetricity scalar usually denoted by Q.
Then, (27) reduces to

R+0= R + vﬂ(Qm/y - Qu/w)’ (36)

where the Ricci scalar R and a nonmetricity scalar Q are in
general nonzero. Furthermore, if zero curvature is assumed,
then only the nonmetricity scalar Q is nonzero, and that
case is the symmetric teleparallel gravity [17]. Its extension
and physical applications have been studied [18—21]. Thus,
by imposing some conditions on the connection, the action
(12) yields various cases. In this sense, the action (12) is
regarded as a unified description.

VII. CONCLUSION

The gravity action (12) has been presented by using the
connection-independence in gravity. The action contains
the scalar W in addition to the Ricci scalar R. The scalar W
can be written in terms of the torsion tensor and the
nonmetricity tensor, as shown in (26). In this formulation,
no conditions on the connection are imposed. Nevertheless,
the action yields the Einstein equations. It is not necessary
to add the Gibbons-Hawking-York term even when a
manifold has a boundary, because the action includes it
from the beginning. In this formulation, the dynamics is
independent of a choice of connection. Therefore, any
connection can be used if necessary, and hence the action
(12) yields general relativity, teleparallel gravity, symmetric
teleparallel gravity, and others.
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