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A connection-independent formulation of general relativity is presented, in which the dynamics does not
depend on the choice of connection. The gravity action in this formulation includes one additional scalar
term in addition to the Einstein-Hilbert action. No conditions on the connection are imposed. Nevertheless,
this formulation yields the Einstein equations, without adding the Gibbons-Hawking-York term even when
a manifold has a boundary. Furthermore, this formulation yields a unified description of general relativity,
teleparallel gravity, and symmetric teleparallel gravity.
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I. INTRODUCTION

On any manifold, there are infinitely many affine
connections to define the covariant derivative, but a priori,
no one is better than the others. A choice of connections is
arbitrary, and hence it should play no role in the formu-
lation of any physical law including gravity.
However, in the conventional formulations of gravity

theories, a specific connection has been used by imposing
some conditions on the connection. For instance, the original
formulation of general relativity uses the Levi-Civita con-
nection by imposing two conditions, both metricity and
torsionfree. In the Palatini-Einstein formalism [1], where the
connection and the metric are taken as independent varia-
bles, a specific connection is not adopted. However, even in
that formalism, either metricity or torsionfree is imposed,
and then varying the action with respect to the connection,
one learns that the connection coincideswith the Levi-Civita
connection.
In this paper the connection-independent formulation of

the dynamics of general relativity is presented. No con-
ditions on the connection are imposed. This formulation
necessarily introduces one additional scalar term in addi-
tion to the Einstein-Hilbert action. The variation of the
action with respect to the connection identically vanishes,
and the variation of the action with respect to the metric
yields the Einstein equations. It is not necessary to add the
Gibbons-Hawking-York term [2,3] even when a manifold
has a boundary. Furthermore, the action in this formulation
yields general relativity, teleparallel gravity, symmetric
teleparallel gravity, and others.
The paper is organized as follows. In Sec. II the gravity

action is given, which defines the connection-independent
formulation. In Sec. III the variation of the action is

investigated. In Sec. IV it is shown that the action includes
the Gibbons-Hawking-York term. In Sec. V, the original
formulation of general relativity, the Palatini-Einstein for-
malism, and the formulation presented in this paper are
summarized for comparison. In Sec. VI, it is demonstrated
that the action yields general relativity, teleparallel gravity,
symmetric teleparallel gravity, and others. Section VII is
devoted to the conclusion.

II. CONNECTION INDEPENDENCE

Consider a vector field on a spacetime manifold M. We
denote the covariant derivative of a vector Vν as

∇μVν ¼ ∂μVν − Γλ
μνVλ: ð1Þ

Equation (1) remains a tensor if one adds any tensorΩλ
μν to

the affine connection Γλ
μν,

Γλ
μν → Γλ

μν þΩλ
μν: ð2Þ

Each choice of Ωλ
μν defines different affine connections.

This implies that there are infinitely many affine connec-
tions, because a tensor Ωλ

μν is arbitrary.
Of infinitely many possible affine connections, general

relativity uses a specific one, the Levi-Civita connection

Γ̄λ
μν ≡ 1

2
gλρð∂μgνρ þ ∂νgμρ − ∂ρgμνÞ: ð3Þ

This leads to nonzero spacetime curvature but zero torsion.
This is also compatible with the metric, ∇̄λgμν ¼ 0. A bar is
used to denote the quantities associated with the Levi-
Civita connection. It is convenient to use the Levi-Civita
connection as the reference for other connections. Then, an
arbitrary connection Γλ

μν can be written as*jharada@hoku-iryo-u.ac.jp

PHYSICAL REVIEW D 101, 024053 (2020)

2470-0010=2020=101(2)=024053(5) 024053-1 © 2020 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.024053&domain=pdf&date_stamp=2020-01-30
https://doi.org/10.1103/PhysRevD.101.024053
https://doi.org/10.1103/PhysRevD.101.024053
https://doi.org/10.1103/PhysRevD.101.024053
https://doi.org/10.1103/PhysRevD.101.024053


Γλ
μν ¼ Γ̄λ

μν þWλ
μν; ð4Þ

whereWλ
μν is a tensor, because the difference between two

affine connections is a tensor.
The Riemann curvature tensor is defined by

Rρ
μλν ¼ ∂λΓρ

νμ − ∂νΓρ
λμ þ Γρ

λσΓσ
νμ − Γρ

νσΓσ
λμ; ð5Þ

and this transforms under the transformation (2) as

Rρ
μλν → Rρ

μλν þ Ωρ
λσΩσ

νμ −Ωρ
νσΩσ

λμ

þWρ
λσΩσ

νμ −Wσ
λμΩρ

νσ −Wρ
νσΩσ

λμ þWσ
νμΩρ

λσ

þ ∇̄λΩρ
νμ − ∇̄νΩρ

λμ; ð6Þ

where ∇̄μ is the covariant derivative with respect to the
Levi-Civita connection (3), rather than an arbitrary one.
Then, the Ricci scalar R≡ gμνRλ

μλν transforms under the
transformation (2) as

R → RþΩλ
λνΩνμ

μ −Ωμν
λΩλ

μν

þWλ
λνΩνμ

μ −Wλ
μνΩμν

λ −Wμν
λΩλ

μν þWνμ
μΩλ

λν

þ ∇̄μðΩμν
ν −Ων

νμÞ: ð7Þ

This indicates that the Einstein-Hilbert action

SEH ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p
R ð8Þ

is not invariant under the transformation (2).
We now want to find a gravity action which is invariant

under the transformation (2). For this purpose, the follow-
ing scalar W should be defined,

W ≡Wμν
λWλ

μν −Wλ
λνWνμ

μ: ð9Þ

Under the transformation (2), the Wλ
μν transforms as

Wλ
μν → Wλ

μν þ Ωλ
μν, and then the W transforms as

W → W þ Ωμν
λΩλ

μν − Ωλ
λνΩνμ

μ þWμν
λΩλ

μν þWλ
μνΩμν

λ

−Wλ
λνΩνμ

μ −Wνμ
μΩλ

λν: ð10Þ

Thus, neither the Ricci scalar R nor the scalarW is invariant
under the transformation (2).
However, we learn from (7) and (10) that the RþW

transforms under the transformation (2) as

RþW → RþW þ ∇̄μðΩμν
ν − Ων

νμÞ: ð11Þ

This indicates that the RþW is invariant under the
transformation (2) up to the divergence term. The trans-
formation law (11) implies that the following action

S ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ðRþWÞ ð12Þ

defines a connection-independent formulation of gravity.
We can take (12) as the gravity action rather than (8).

III. VARIATION OF THE ACTION

We investigate the variation of the action (12) with
respect to the connection and the metric independently. It is
convenient to rewrite (12), instead of varying (12) itself.
Using (11), we can write the RþW as

RþW ¼ R̄þ ∇̄μðWμν
ν −Wν

νμÞ; ð13Þ

where R̄ is the Ricci scalar of the Levi-Civita connection.
This identity is useful, because it is valid for any con-
nection. It indicates that the RþW differs from R̄ in only
the divergence term. Substituting (13) into (12), we obtain

S ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p
R̄

þ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ∇̄μðWμν
ν −Wν

νμÞ; ð14Þ

where

Wμν
ν−Wν

νμ¼gρσΓμ
ρσ−gμνΓλ

λν−gρσΓ̄μ
ρσþgμνΓ̄λ

λν: ð15Þ

Varying (14) with respect to the connection, we immedi-
ately find that the variation δΓS identically vanishes,

δΓS ¼ 0; ð16Þ

under the boundary condition δΓλ
μν ¼ 0. This implies that

the connection Γ is not a dynamical variable.
Varying (14) with respect to the metric, we can write

δgS ¼ δgSGR þ δgSB; ð17Þ

where SGR and SB denote the first term and the boundary
term in (14), respectively. As usual, δgSGR is

δgSGR ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R̄μν −

1

2
R̄gμν

�
δgμν

þ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p
gμνδR̄μν; ð18Þ

where δgμν ¼ δg ¼ 0 on the boundary to be understood.
The second term in (18) is nonzero when a manifold has a
boundary [3]. Then, the variation δgSB is obtained as
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δgSB ¼ −
1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ∇̄μðgρσδΓ̄μ
ρσ − gμνδΓ̄λ

λνÞ

¼ −
1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p
gμνδR̄μν; ð19Þ

where we have used the Palatini identity,

δR̄μν ¼ ∇̄λδΓ̄λ
μν − ∇̄νδΓ̄λ

λμ: ð20Þ

Thus, (19) exactly cancels the second term in (18). As the
result, the variation δgS is given by

δgS ¼ 1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R̄μν −

1

2
R̄gμν

�
δgμν: ð21Þ

Here, it should be noted that we have not introduced the
Gibbons-Hawking-York term to obtain (21).

IV. THE GIBBONS-HAWKING-YORK TERM

In general relativity, the usual procedure to cancel the
second term in (18) is to add the Gibbons-Hawking-York
term [2,3] in addition to the Einstein-Hilbert action.
However, in Sec. III, we have shown that (19) cancels
the second term in (18). It means that (19) plays the
role of the variation of the Gibbons-Hawking-York term.
Therefore, in the present formulation, there is no need to
add the Gibbons-Hawking-York term. Furthermore, we can
show that (12) includes the Gibbons-Hawking-York term
itself. This can be shown as follows.
The Gibbons-Hawking-York term is defined by

SGHY ≡ ϵ

8π

I
∂M

d3y
ffiffiffiffiffiffi
jhj

p ∇̄μnμ; ð22Þ

where nμ is a unit vector normal to the boundary, h is the
determinant of the induced metric on the boundary, y are
the coordinates on the boundary, ϵ≡ nμnμ is equal to þ1

where ∂M is timelike and −1 where ∂M is spacelike, and
∇̄μnμ ≡ K is the trace of the extrinsic curvature. We show
that SB includes SGHY in the following.
The dynamical term in SB is given by

1

16π

Z
M
d4x

ffiffiffiffiffiffi
−g

p ∇̄μð−gρσΓ̄μ
ρσ þ gμνΓ̄λ

λνÞ; ð23Þ

where the nondynamical term including Γ is omitted,
because it does not affect the variation and field equations.
Using the Stokes’ theorem, we learn that (23) equals to

ϵ

16π

I
∂M

d3y
ffiffiffiffiffiffi
jhj

p
nμð−gρσΓ̄μ

ρσ þ gμνΓ̄λ
λνÞ

¼ ϵ

8π

I
∂M

d3y
ffiffiffiffiffiffi
jhj

p ∇̄μnμ: ð24Þ

This is identical to the Gibbons-Hawking-York term (22).
Thus, in our formulation, it is not necessary to add SGHY,
because the action (12) includes it.

V. THREE FORMULATIONS

It would be useful to summarize the three formulations,
the original formulation of general relativity, the Palatini-
Einstein formalism, and the formulation of this paper.
(1) Original formulation of general relativity: The

action is defined by the first term in (14). The
Levi-Civita connection is used by imposing two
conditions on the connection, metricity, and torsion-
free. When a manifold has a boundary, the Gibbons-
Hawking-York term has to be added to the action.

(2) Palatini-Einstein formalism: The action is defined
by (8). The connection and the metric are regarded
as independent variables. Either the metricity or the
torsionfree condition is imposed rather than both
of them. Varying the action with respect to the
connection, one learns that the connection to be
the Levi-Civita connection. Thus, in the Palatini-
Einstein formalism, either the metricity condition or
the torsionfree condition is unnecessary.

(3) The formulation of this paper: The action is defined
by (12). The connection and the metric are regarded
as independent variables. No conditions on the
connection are imposed. The variation of the action
with respect to the connection identically vanishes.
Thus, in this formulation, both the metricity con-
dition and the torsionfree condition are unnecessary.
Even when a manifold has a boundary, it is unnec-
essary to add the Gibbons-Hawking-York term,
because the action includes it.

VI. EXAMPLES

TheWλ
μν andW can be written in terms of the metric and

the connection. Using (3) and (4), we obtain

Wλ
μν ¼

1

2
ðTλ

μν þ gλρgμσTσ
ρν þ gλρgνσTσ

ρμÞ

þ 1

2
gλρð∇ρgμν −∇μgνρ −∇νgμρÞ; ð25Þ

where Tλ
μν ≡ Γλ

μν − Γλ
νμ is a torsion tensor. Substituting

(25) into (9), we find that

W ¼ Tμν
λQλ

μν þ Tλ
λνQμ

μν − Tλ
λνQνμ

μ

−
1

4
Tλ

μνTλ
μν þ 1

2
Tμν

λTλ
μν þ Tλ

λμTν
νμ

−
1

4
Qμν

λQμν
λ þ 1

2
Qμν

λQλ
μν

þ 1

4
Qμλ

λQμν
ν −

1

2
Qμλ

λQν
νμ; ð26Þ
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where Qλμν ≡∇λgμν is a nonmetricity tensor. Then, sub-
stituting (25) into (13), we obtain

RþW ¼ R̄þ ∇̄μð2Tν
μν þQμν

ν −Qν
μνÞ; ð27Þ

which is valid for any connection.
General relativity is obtained as the simplest example by

imposing two conditions on the connection,

metricity∶ Qλμν ≡∇λgμν ¼ 0; ð28Þ

no torsion∶ Tλ
μν ≡ Γλ

μν − Γλ
νμ ¼ 0: ð29Þ

Then, (25) and (26) reduce to Wλ
μν ¼ 0 and W ¼ 0. This

means that the connection is uniquely determined as the
Levi-Civita connection. Therefore, the action (12) reduces
to SGR, which is given by the first term in (14).
If only the metricity condition (28) is imposed rather

than both (28) and (29), then (25) and (26) reduce to

Wλ
μν ¼

1

2
ðTλ

μν þ gλρgμσTσ
ρν þ gλρgνσTσ

ρμÞ; ð30Þ

W ¼ −
1

4
Tλ

μνTλ
μν þ 1

2
Tμν

λTλ
μν þ Tλ

λμTν
νμ: ð31Þ

In this case, theWλ
μν is called the contorsion tensor, and the

W is the torsion scalar usually denoted by T. Then, (27)
reduces to

Rþ T ¼ R̄þ 2∇̄μTν
μν; ð32Þ

where the Ricci scalar R and the torsion scalar T are in
general nonzero.
Teleparallel gravity [4] is a special case of (32). Its

theoretical structure, extensions, and physical appli-
cations have been studied in the literature [5–13]. It uses
the Weitzenböck connection [14–16], which leads to non-
zero torsion but zero curvature [15]. Then, (32) reduces to

T̃ ¼ R̄þ 2∇̄μT̃ν
μν; ð33Þ

where a tilde is used to denote the quantities for the
Weitzenböck connection. Equation (33) defines tele-

parallel gravity, and hence teleparallel gravity is the case
of (32).
If only torsionfree condition (29) is imposed rather than

both (28) and (29), then (25) and (26) reduce to

Wλ
μν ¼

1

2
gλρðQρμν −Qμνρ −QνμρÞ; ð34Þ

W ¼ −
1

4
Qμν

λQμν
λ þ 1

2
Qμν

λQλ
μν

þ 1

4
Qμλ

λQμν
ν −

1

2
Qμλ

λQν
νμ: ð35Þ

In this case, the Wλ
μν is called the disformation tensor, and

the W is the nonmetricity scalar usually denoted by Q.
Then, (27) reduces to

RþQ ¼ R̄þ ∇̄μðQμν
ν −Qν

μνÞ; ð36Þ

where the Ricci scalar R and a nonmetricity scalar Q are in
general nonzero. Furthermore, if zero curvature is assumed,
then only the nonmetricity scalar Q is nonzero, and that
case is the symmetric teleparallel gravity [17]. Its extension
and physical applications have been studied [18–21]. Thus,
by imposing some conditions on the connection, the action
(12) yields various cases. In this sense, the action (12) is
regarded as a unified description.

VII. CONCLUSION

The gravity action (12) has been presented by using the
connection-independence in gravity. The action contains
the scalarW in addition to the Ricci scalar R. The scalarW
can be written in terms of the torsion tensor and the
nonmetricity tensor, as shown in (26). In this formulation,
no conditions on the connection are imposed. Nevertheless,
the action yields the Einstein equations. It is not necessary
to add the Gibbons-Hawking-York term even when a
manifold has a boundary, because the action includes it
from the beginning. In this formulation, the dynamics is
independent of a choice of connection. Therefore, any
connection can be used if necessary, and hence the action
(12) yields general relativity, teleparallel gravity, symmetric
teleparallel gravity, and others.

[1] M. Ferraris, M. Francaviglia, and C. Reina, Variational
formulation of general relativity from 1915 to 1925
“Palatini’s method” discovered by Einstein in 1925, Gen.
Relativ. Gravit. 14, 243 (1982).

[2] G.W. Gibbons and S.W. Hawking, Action integrals and
partition functions in quantum gravity, Phys. Rev. D 15,
2752 (1977).

[3] J. W. York, Role of Conformal Three Geometry in the
Dynamics of Gravitation, Phys. Rev. Lett. 28, 1082 (1972).

[4] R. Aldrovandi and J. G. Pereira, Teleparallel Gravity
(Springer, Dordrecht, 2013), Vol. 173.

[5] B. Li, T. P. Sotiriou, and J. D. Barrow, fðTÞ gravity and local
Lorentz invariance, Phys. Rev. D 83, 064035 (2011).

JUNPEI HARADA PHYS. REV. D 101, 024053 (2020)

024053-4

https://doi.org/10.1007/BF00756060
https://doi.org/10.1007/BF00756060
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevD.15.2752
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1103/PhysRevD.83.064035


[6] T. P. Sotiriou, B. Li, and J. D. Barrow, Generalizations of
teleparallel gravity and local Lorentz symmetry, Phys. Rev.
D 83, 104030 (2011).

[7] J. G. Pereira, Teleparallelism: A new insight into gravity, in
Springer Handbook of Spacetime, edited by A. Ashtekar
and V. Petkov (Springer, Berlin, Heidelberg, 2014),
pp. 197–212, https://doi.org/10.1007/978-3-642-41992-
8_11.

[8] M. Krššák and E. N. Saridakis, The covariant formulation
of fðTÞ gravity, Classical Quantum Gravity 33, 115009
(2016).

[9] A. Golovnev, T. Koivisto, and M. Sandstad, On the
covariance of teleparallel gravity theories, Classical Quan-
tum Gravity 34, 145013 (2017).

[10] N. Oshita and Y.-P. Wu, Role of spacetime boundaries
in Einstein’s other gravity, Phys. Rev. D 96, 044042
(2017).

[11] M. Krššák, R. J. van den Hoogen, J. G. Pereira, C. G.
Böhmer, and A. A. Coley, Teleparallel theories of gravity:
Illuminating a fully invariant approach, Classical Quantum
Gravity 36, 183001 (2019).

[12] M. Hohmann, L. Järv, M. Krššák, and C. Pfeifer, Modified
teleparallel theories of gravity in symmetric spacetimes,
Phys. Rev. D 100, 084002 (2019).

[13] J. G. Pereira and Y. N. Obukhov, Gauge structure of tele-
parallel gravity, Universe 5, 139 (2019).

[14] R.Weitzenböck, Invariantentheorie (P.Noordhoff,Groningen,
1923).

[15] A. Einstein, Riemann-geometrie mit aufrechterhaltung des
begriffes des fernparallelismus, Sitzungsber. Preuss. Akad.
Wiss. Phys. Math. Kl., 217 (1928).

[16] A. Unzicker and T. Case, Translation of Einstein’s attempt
of a unified field theory with teleparallelism, arXiv:
physics/0503046.

[17] J. M. Nester and H.-J. Yo, Symmetric teleparallel general
relativity, Chin. J. Phys. 37, 113 (1999).
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