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Normally one thinks of the observed cosmological constant as being so small that it can be utterly
neglected on typical astrophysical scales, only affecting extremely large-scale cosmology at gigaparsec
scales. Indeed, in those situations where the cosmological constant only has a quantitative influence on the
physics, a separation of scales argument guarantees the effect is indeed negligible. The exception to this
argument arises when the presence of a cosmological constant qualitatively changes the physics. One
example of this phenomenon is the existence of outermost stable circular orbits (OSCOs) in the presence
of a positive cosmological constant. Remarkably the size of these OSCOs is of a magnitude to be
astrophysically interesting. For instance, for galactic masses the OSCOs are of order the intergalactic
spacing; for galaxy cluster masses the OSCOs are of order the size of the cluster.
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I. INTRODUCTION

There are many physically interesting situations where a
positive cosmological constant, no matter how small,
introduces qualitatively new effects into general relativity,
astrophysics, and cosmology [1]. One place where quali-
tatively new physics arises is in the existence of outermost
stable circular orbits (OSCOs).
Some previous work on these OSCOs has been performed

both in quite abstract settings [2–4], and within the more
limited frameworks of accretion disks [5,6], tori [7], galaxies
[8,9], ring systems [10], and axisymmetric spacetimes [11].
Further afield, related calculations have also been reported in
modified gravity [12], inhomogeneous Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmologies [13], and higher
dimensions [14–16], but we feel there is still more to be said
in this regard. In this article we shall emphasize simple
calculations, robust estimates of the relevant distances scales,
and the broad astrophysical relevance of these OSCOs.
In particular we shall compare and contrast the distance

scale set by these OSCOs in the quasi-Newtonian,
Paczyński-Wiita [17,18], and general relativistic analyses.
We shall also compare these OSCOs with the distance scale
set by the Jeans instability. While the underlying physics is

very different (cosmological constant versus thermal pres-
sure gradients) we shall nevertheless see that there are
interesting connections between these ideas.

II. BACKGROUND

Schwarzschild spacetime is well known to have an ISCO
(innermost stable circular orbit) for massive particles at
r ¼ 6m, and a two-sided unstable photon orbit at r ¼ 3m.
What happens if we now add a (positive) cosmological
constant, and consider Schwarzschild–de Sitter (Kottler)
spacetime?
One can recast the original Kottler metric [19] in the

form:

ds2 ¼ −
�
1 −

2m
r

−
r2

l2

�
dt2 þ dr2

1 − 2m
r − r2

l2

þ r2ðdθ2 þ sin2θdϕ2Þ: ð1Þ
As usual m ¼ GNmphysical=c2 is the central mass expressed
as a distance, whereas Λ ¼ 3

l2 reexpresses the (positive)
cosmological constant as an equivalent distance scale.
Locating the (massive particle) ISCOs and OSCOs exactly
requires solving a quartic, but we shall see that extremely
good estimates for the locations of the ISCOs/OSCOs are
not too difficult to achieve.
We shall first present a quasi-Newtonian analysis to

set the scale of the effect, then very briefly consider
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Schwarzschild spacetime, before focusing attention on
Schwarzschild–de Sitter (Kottler) spacetime. Note that
by using Schwarzschild–de Sitter spacetime we are implic-
itly assuming that orbital periods are short compared to the
Hubble time 1=H0; a more refined analysis might try to
analyze a version of Schwarzschild–de Sitter spacetime
embedded into a FLRW cosmology.
We shall see that to very high accuracy rOSCO≈ffiffiffi
3

p
ml2=4, and we shall then estimate the size of these

OSCOs for a number of astrophysically relevant objects.
One particular reason this is astrophysically interesting

is that when taking galactic masses m ∼ 1
20

pc, and
reasonable estimates for the cosmological constant
l ∼ 5 Gpc, the radius of the OSCOs are of order rOSCO≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

p
∼ 7

10
Mpc, comparable to the distance to the

Andromeda Galaxy, and so potentially small enough to
affect galaxy clustering.

III. OSCOS IN QUASI-NEWTONIAN PHYSICS

We first start with a simple quasi-Newtonian argument
for why an OSCO might be interesting once one has a
positive cosmological constant. Consider the potential

ΦðrÞ ¼ −
m
r
−

r2

2l2
: ð2Þ

The − r2

2l2 term in the potential above is a quasi-Newtonian
approximation to the effect of a positive cosmological
constant. Then

Φ0ðrÞ ¼ m
r2

−
r
l2

¼ ml2 − r3

r2l2
: ð3Þ

Note that Φ0 → 0 and changes sign at the critical radius
rOCCO ¼

ffiffiffiffiffiffiffiffiffi
ml23

p
, which we shall soon see corresponds

to an outermost conceivable circular orbit (OCCO).
Furthermore

Φ00ðrÞ ¼ −
2m
r3

−
1

l2
¼ −

2ml2 þ r3

r3l2
; ð4Þ

and

Φ00ð
ffiffiffiffiffiffiffiffiffi
ml23

p
Þ ¼ −

3ml2

ðml2Þl2
¼ −

3

l2
: ð5Þ

We can construct a quasi-Newtonian argument for the
existence of OSCOs by using the two conserved quantities

E ¼ v2

2
þΦ ¼ _r2 þ r2 _θ2

2
þΦ and L ¼ r2 _θ ð6Þ

to write

_r2

2
¼ E −Φ −

L2

2r2
: ð7Þ

Thence, the Newtonian effective potential is

VðrÞ ¼ Φþ L2

2r2
¼ −

m
r
−

r2

2l2
þ L2

2r2
: ð8Þ

Furthermore

V 0ðrÞ ¼ þm
r2

−
r
l2

−
L2

r3
; ð9Þ

and

V 00ðrÞ ¼ −
2m
r3

−
1

l2
þ 3L2

r4
: ð10Þ

Circular orbits correspond to _r ¼ 0 and ̈r ¼ 0. So one must
solve VðrÞ ¼ E to find Eðr;m; L;lÞ, and solve V 0ðrÞ ¼ 0
to find Lðr;m;lÞ. We have

LðrÞ2 ¼ ðml2 − r3Þr
l2

: ð11Þ

That is, circular orbits can exist only for r ∈ ð0; rOCCOÞ,
with rOCCO ¼

ffiffiffiffiffiffiffiffiffi
ml23

p
; beyond this point the angular

momentum required to support the circular orbit becomes
imaginary. This specifies the OCCO. Substituting L2 back
into V 00ðrÞ we have

V 00ðrÞ ¼ ml2 − 4r3

l2r3
: ð12Þ

This can now be used to test the stability of these circular
orbits for r ∈ ð0; rOCCOÞ. By solving for V 00ðrÞ ¼ 0 we can
identify the (quasi-Newtonian) OSCO as

rOSCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

q
¼ 2−2=3

ffiffiffiffiffiffiffiffiffi
ml23

p
¼ 2−2=3rOCCO ≈ 0.62996rOCCO: ð13Þ

Note that at the OSCO and OCCO

V 00ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

q
Þ ¼ 0; V 00ð

ffiffiffiffiffiffiffiffiffi
ml23

p
Þ ¼ −

3

l2
: ð14Þ

While the OCCO is certainly unstable, the instability
timescale is extremely long

τ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijV 00ðrOCCOÞj
p ¼ lffiffiffi

3
p ∼ 9 × 109 yr: ð15Þ

A full general relativity calculation will modify some of the
details, but many qualitative features of this quasi-
Newtonian analysis will survive. Note that there is no
ISCO or ICCO (innermost conceivable circular orbit) for
quasi-Newtonian gravity; that aspect of the quasi-
Newtonian analysis will certainly change.
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IV. ISCOS IN SCHWARZSCHILD SPACETIME

Let us very briefly discuss Schwarzschild spacetime in
the usual coordinates. Take an affine parametrization (either
timelike or null) for which

gab
dxa

dλ
dxb

dλ
¼ −

�
1 −

2m
r

��
dt
dλ

�
2

þ
�

1

1 − 2m
r

�
dr
dλ

�
2

þ r2
�
dϕ
dλ

�
2
�

¼ ϵ ∈ f−1; 0g: ð16Þ

Killing symmetries imply two conserved quantities (energy
and angular momentum)

�
1 −

2m
r

��
dt
dλ

�
¼ E; r2

�
dϕ
dλ

�
¼ L: ð17Þ

Thence

1

1 − 2m
r

�
−E2 þ

�
dr
dλ

�
2
�
þ L2

r2
¼ ϵ: ð18Þ

That is

�
dr
dλ

�
2

¼ E2 þ
�
1 −

2m
r

��
ϵ −

L2

r2

�
: ð19Þ

This defines the “effective potential”

VϵðrÞ ¼ −
1

2

�
1 −

2m
r

��
ϵ −

L2

r2

�
: ð20Þ

(i) For ϵ ¼ 0 (massless particles such as photons), the
effective potential is

V0ðrÞ ¼
1

2

�
1 −

2m
r

�
L2

r2
: ð21Þ

Note

V 0
0ðrÞ ¼

L2ð3m − rÞ
r4

; ð22Þ

and

V 00
0ðrÞ ¼

3L2ðr − 4mÞ
r5

: ð23Þ

This effective potential has a single peak at r ¼ 3m.
At the peak

V 00
0ð3mÞ ¼ −

L2

81m4
< 0: ð24Þ

Thus there is an unstable photon sphere at r ¼ 3m.
This photon orbit is unstable in both directions.

(ii) For ϵ ¼ −1 (massive particles such as atoms, aste-
roids, planets, or even larger objects), the effective
potential is

V1ðrÞ ¼
1

2

�
1 −

2m
r

��
1þ L2

r2

�
: ð25Þ

Furthermore

V 0
1ðrÞ ¼

ð3mL2 − rL2 þmr2Þ
r4

; ð26Þ

and

V 00
1ðrÞ ¼ −

12mL2 − 3rL2 þ 2mr2

r5
: ð27Þ

Let us solve V 0ðrÞ ¼ 0 for L:

LðrÞ2 ¼ mr2

r − 3m
: ð28Þ

This has viable solutions (L real and finite) for
r ∈ ð3m;∞Þ. So there is an ICCO at r ¼ 3m (the
photon sphere), corresponding to infinite angular
momentum for the massive particle. Then at this
value for the angular momentum one has

V 00
1ðrÞ →

m
r3
ðr − 6mÞ
ðr − 3mÞ : ð29Þ

Note V 00
1ðrÞ → 0 and changes sign at r ¼ 6m; this

is the standard Schwarzschild ISCO for massive
particles.

A. The Paczyński-Wiita potential

The Paczyński-Wiita potential [17,18]

ΦðrÞ ¼ −
m

r − 2m
ð30Þ

is a completely ad hoc but surprisingly effective way of
mimicking ISCO/ICCO behavior in a quasi-Newtonian
context. Adding angular momentum we have the effective
potential

VðrÞ ¼ Φþ L2

2r2
¼ −

m
r − 2m

þ L2

2r2
; ð31Þ

with

V 0ðrÞ ¼ m
ðr − 2mÞ2 −

L2

r3
; ð32Þ
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and

V 00ðrÞ ¼ −
2m

ðr − 2mÞ3 þ
3L2

r4
: ð33Þ

Solving V 0ðrÞ ¼ 0 for LðrÞ we have

LðrÞ2 ¼ mr3

ðr − 2mÞ2 : ð34Þ

We thus have a real and finite angular momentum for the
two branches r ∈ ð2m;∞Þ and r ∈ ð0; 2mÞ. We should not
trust the Paczyński-Wiita analysis for r < 2m since that
would be inside the Schwarzschild radius, and it is a well-
known limitation of the Paczyński-Wiita analysis that it
should not be fully trusted once orbital speeds approach or
exceed the speed of light.
If instead we focus on the r ∈ ð2m;∞Þ branch, then

there is an ICCO at rICCO ¼ 2m where the angular
momentum diverges. (The ICCO is not at 3m where it
would be for Schwarzschild).
The fact that the ICCO is not exactly at the right place is

a side effect of the fact that the Paczyński-Wiita analysis is
entirely nonrelativistic. Nevertheless it is impressive to see
just how good a job the Paczyński-Wiita potential does.
Inserting LðrÞ back into V 00ðrÞ we see

V 00ðrÞ → mðr − 6mÞ
rðr − 2mÞ3 : ð35Þ

So we can identify the ISCO for the Paczyński-
Wiita potential as rISCO ¼ 6m, exactly as for the
Schwarzschild geometry.

V. ISCOS AND OSCOS FOR KOTTLER
SPACETIME

With both the quasi-Newtonian and Schwarzschild
discussions now in hand, the analysis for Kottler spacetime
is in principle straightforward—the only tricky issue is to
find suitable approximate roots for certain quartic equa-
tions. To determine the ISCOs and OSCOs, consider the
affinely parametrized tangent vector to the worldline of a
massive or massless particle

gab
dxa

dλ
dxb

dλ
¼ −

�
1 −

2m
r

−
r2

l2

��
dt
dλ

�
2

þ 1

1 − 2m
r − r2

l2

�
dr
dλ

�
2

þ r2
�
dϕ
dλ

�
2

¼ ϵ ∈ f−1; 0g: ð36Þ

The Killing symmetries again imply the existence of two
conserved quantities (the energy and angular momentum),

�
1 −

2m
r

−
r2

l2

��
dt
dλ

�
¼ E and r2

�
dϕ
dλ

�
¼ L: ð37Þ

Thence

1

1 − 2m
r − r2

l2

�
−E2 þ

�
dr
dλ

�
2
�
þ L2

r2
¼ ϵ: ð38Þ

That is

�
dr
dλ

�
2

¼ E2 þ
�
1 −

2m
r

−
r2

l2

��
ϵ −

L2

r2

�
: ð39Þ

This defines the “effective potential”

VϵðrÞ ¼ −
1

2

�
1 −

2m
r

−
r2

l2

��
ϵ −

L2

r2

�
: ð40Þ

A. Unstable circular orbit for massless particles

For ϵ ¼ 0 (massless particles such as photons), the
effective potential is

V0ðrÞ ¼
1

2

ð1 − 2m=r − r2=l2ÞL2

r2

¼ ð1 − 2m=rÞL2

2r2
−

L2

2l2
: ð41Þ

There is a single peak at r ¼ 3m, corresponding to

V0;max ¼
L2

54m2
−

L2

2l2
; and V 00

0;max ¼ −
L2

81m4
< 0:

ð42Þ

Thus there is an unstable photon sphere at r ¼ 3m. (This is
exactly what we found for Schwarzschild.) For massless
particles there is a single circular orbit, which is unstable in
both directions.

B. ISCOs/OSCOs for massive particles

For ϵ ¼ −1 (massive particles such as atoms, asteroids,
or planets), we see that the effective potential is

V1ðrÞ ¼
1

2

�
1 −

2m
r

−
r2

l2

��
1þ L2

r2

�

¼ 1

2

�
1 −

2m
r

��
1þ L2

r2

�
−

r2

2l2
−

L2

2l2
: ð43Þ

We note
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V 0
1ðrÞ ¼

3mL2 − rL2 þmr2 − r5=l2

r4

¼ 3mL2 − rL2 þmr2

r4
−

r
l2

; ð44Þ

and

V 00
1ðrÞ ¼ −

12mL2 − 3rL2 þ 2mr2 þ r5=l2

r5

¼ −
12mL2 − 3rL2 þ 2mr2

r5
−

1

l2
: ð45Þ

Finding circular orbits (_r ¼ 0 and ̈r ¼ 0) as a function of
ðE;L;m;lÞ involves solving a quintic V 0ðrÞ ¼ 0 for
rðL;m;lÞ, which is not analytically feasible, so we
rearrange the calculation as follows. Finding L by solving
V 0ðrÞ ¼ 0 as a function of ðr;m;lÞ is much easier:

LðrÞ2 ¼ r2ðml2 − r3Þ
l2ðr − 3mÞ : ð46Þ

The angular momentum is real and finite for r ∈ ðrICCO;
rOCCO�, from the minimum conceivable circular orbit
(which coincides with the unstable photon orbit at
r ¼ 3m), out to a maximal conceivable orbit at rOCCO ¼ffiffiffiffiffiffiffiffiffi
ml23

p
. Substituting L2 back into V 00

0ðrÞ we see

V 00
1ðrÞ ¼

mðr − 6mÞ
r3ðr − 3mÞ −

ð4r − 15mÞ
ðr − 3mÞl2

¼ −4r4 þ 15mr3 þml2r − 6m2l2

ðr − 3mÞr3l2
: ð47Þ

Finding the ISCO and OSCO by solving V 00
1ðrÞ ¼ 0 exactly

requires solving a quartic; this is in principle doable but in
practice not particularly useful. Noting that

V 00
1ðr ¼ 6mÞ ¼ −

3

l2
< 0; and V 00

1ðrOCCOÞ ¼ −
3

l2
< 0;

ð48Þ

we see that the orbits at 6m and rOCCO are unstable, so that
the ISCO lies somewhere above 6m and the OSCO lies
somewhere below rOCCO. The instability timescale is

τ ¼ 1ffiffiffiffiffiffiffiffijV 00
1j

p ∼
lffiffiffi
3

p ∼ 9 × 109 yr; ð49Þ

so for most practical purposes we can get away with using
6m for the ISCO and rOCCO for the OSCO. Let us now find
approximate but robust estimates for the location of the
ISCO and OSCO using semianalytic methods.

1. Approximate location of the ISCO

To estimate the location of the ISCO we simply employ
one iteration of the Newton-Raphson method. Knowing
that the effect of the cosmological constant on gravitational
dynamics is negligible near the centralized mass, we may
assume an initial guess for the location of the ISCO is given
by the Schwarzschild value rISCO ≈ r0 ¼ 6m. The first
Newton-Raphson iteration yields

r1 ¼ r0 −
V 00
1ðr0Þ

V‴
1ðr0Þ

¼ 6mþ 1944m3

l2 þ 432m2

¼ 6m

�
1þ 324m2

l2 þ 432m2

�
: ð50Þ

Note that this is very close to 6m, but (as expected) slightly
further away from the central mass. Furthermore, we note

V 00
1ðr1Þ ¼ −

13608m2

l4
þO

�
m4

l6

�

¼ 4536V 00
1ðr0Þ

m2

l2
þO

�
m4

l6

�
: ð51Þ

That is, r1 is certainly a much better estimate for the
location of the ISCO defined by V 00

1ðrISCOÞ ¼ 0 than
the initial guess r0 ¼ 6m. Accordingly we estimate the
approximate location for the ISCO as

rISCO ≈ 6m

�
1þ 324m2

l2 þ 432m2

�

¼ 6m

�
1þ 324m2

l2
þO

�
m4

l4

��
: ð52Þ

In most astrophysically interesting situations this correction
to the naive rISCO ≈ 6m is so small as to be quite negligible.

2. Approximate location of the OSCO

In contrast, to determine the approximate location of our
OSCO, the Newton-Raphson technique proves insufficient.
Instead we adopt the following method: Let us define
r ¼ x · rOCCO ¼ x ·

ffiffiffiffiffiffiffiffiffi
ml23

p
and then write

V 00
1ðx;l2Þ ¼ −4ðm2lÞ23x4 þ 15m2x3 þ ðm2lÞ23x − 6m2

r3ðr − 3mÞ :

ð53Þ

Now perform a series expansion around l2 ¼ þ∞, corre-
sponding to Λ ¼ 0. We find

V 00
1ðx;l2Þ ¼ −8x4 þ 2x

x4l2
þ 1

l2
·O½ðm=lÞ2=3�: ð54Þ

The presence of fractional powers means that this not a
Taylor series expansion. It is instead a “generalized power
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series” [20], or “generalized Frobenius series” [21], also
called a Puiseaux series [22–24].
We can clearly see that the O½ðm=lÞ2=3� term is sub-

dominant, and as such may simply focus on the values of x
which make the dominant term vanish: 2xð4x3 − 1Þ ¼ 0.
This corresponds to x ∈ f0; 2−2=3g. We may immediately
discount the unphysical root at x ¼ 0, and take x ¼ 2−2=3.
Note

V 00
1ðx ¼ 2−2=3;l2Þ ¼ −

18m

l2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

p
− 3mÞ

¼ −
3

l2

6mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

p
− 3m

: ð55Þ

Thus V 00
1ðx ¼ 2−2=3;l2Þ, while nonzero, is certainly

extremely small compared to−3=l2, and the corresponding
instability timescale is extremely large, much larger than
the age of the Universe. That is, for all practical purposes
an adequate approximation to the location of the OSCO
is to take

rOSCO ≈ 2−2=3rOCCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

q
: ð56Þ

Note that the general relativity calculation (approximately)
matches the quasi-Newtonian calculation.

VI. PACZYŃSKI-WIITA POTENTIAL WITH
COSMOLOGICAL CONSTANT

For completeness, let us now add a cosmological
constant to the Paczyński-Wiita potential [17,18]. We set

ΦðrÞ ¼ −
m

r − 2m
−

r2

2l2
: ð57Þ

This is completely ad hoc, but as we shall soon see, this is a
surprisingly effective way of mimicking both ISCO/ICCO
and OSCO/OCCO behavior in a quasi-Newtonian context.
Now adding angular momentum we have the effective

potential

VðrÞ ¼ Φþ L2

2r2
¼ −

m
r − 2m

−
r2

2l2
þ L2

2r2
; ð58Þ

with

V 0ðrÞ ¼ m
ðr − 2mÞ2 −

r
l2

−
L2

r3
; ð59Þ

and

V 00ðrÞ ¼ −
2m

ðr − 2mÞ3 −
1

l2
þ 3L2

r4
: ð60Þ

Solving V 0ðrÞ ¼ 0 for LðrÞ we have

LðrÞ2 ¼ mr3

ðr − 2mÞ2 −
r4

l2
: ð61Þ

As per the previous discussion (which applied only in the
absence of a cosmological constant), from this we deduce
the presence of an ICCO at rICCO ¼ 2m, where LðrÞ → ∞.
There is now also an OCCO near rOCCO ≈

ffiffiffiffiffiffiffiffiffi
ml23

p
, where

LðrÞ becomes imaginary.
Inserting LðrÞ back into V 00ðrÞ we see

V 00ðrÞ → mðr − 6mÞ
rðr − 2mÞ3 −

4

l2
: ð62Þ

The stability region for these circular orbits is determined
by finding the (approximate) roots of V 00ðrÞ ¼ 0.
Accordingly the ISCO is near rISCO ≈ 6m and the OSCO

near rOSCO ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

p
. This is all qualitatively and quan-

titatively very similar to what we saw happen for the Kottler
spacetime. We could try to further refine the locations of
these roots (by Newton-Raphson or other means) but given
what we have already seen happen for the Kottler space-
time, such further refinements seem unnecessary.

VII. SOME ASTROPHYSICAL ESTIMATES

We now provide some OSCO estimates for astrophysi-
cally interesting situations; this requires using observatio-
nal estimates for both the cosmological constant and for the
relevant astrophysical masses.
First, we set l ¼ 5 Gpc, corresponding to taking

Λ ¼ 3
l2 ¼ 1.2 × 10−19 pc−2. Note that whileΩΛ ¼ 0.692�

0.012 is known at the 1% level, the roughly 10% discrepant
estimates of the Hubble parameter H0, and consequently
20% discrepant estimates of the Hubble density ρH ¼
3H2

0=ð8πGNÞ, imply a 20% uncertainty in the cosmological
constant Λ, and a 10% uncertainty in the cosmological
distance scale l. For this reason there is currently no point
in asserting more precision than l ¼ 5 Gpc.
In Table I we present a few typical masses (in parsecs),

calculate the corresponding rOSCO, and comment on the
astrophysical relevance of the resulting distance scale. Note
that many astrophysical masses are uncertain up to factors
of 2, some are uncertain up to factors of 10. Accordingly we
typically work to only one or at most two significant
figures. A remarkable aspect of the estimates reported in
Table I is that the OSCOs are not cosmologically large;
indeed some of them are suspiciously close to distance
scales relevant to the observed hierarchical behavior of
structure formation in the Universe.
More specifically, we emphasize
(i) For atomic masses the OSCO is of order 20 cm.
(ii) For planetary masses the OSCO is of order a parsec.
(iii) For galactic masses the OSCOs are of order the

intergalactic spacing.
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(iv) For galaxy cluster masses the OSCOs are of order
the size of the cluster.

Specifically, for atomic hydrogen dominated dust clouds
the fact that rOCCO ∼ 20 cm implies instability to cosmo-
logical-constant induced shredding once the number den-
sity drops below ncritical ∼ 60 m−3. For molecular clouds
this effect scales slowly with the cube root of the average
molecular mass.
Here is another way of looking at these results in a

somewhat more general setting: Let us consider an arbitrary
gravitationally bound object, of total mass m and size r�.
Then certainly r� ≤ rOSCO and so the average density
satisfies

ρ̄ ¼ m
4π
3
r3�

≥
m

4π
3
r3OSCO

¼ m
4π
3
ðml2=4Þ ¼

3

πl2
¼ Λ

π
¼ 8ρΛ:

ð63Þ

That is, ρ̄ ≥ 8ρΛ; a positive cosmological constant, no
matter how small, induces an overdensity gap.
That is, all gravitationally bound objects must exhibit an

average overdensity considerably higher than the equiv-
alent energy density ρΛ associated with the cosmological
constant. Diffuse systems are likely to be near saturating
this bound, implying r� ≲ rOSCO. Compact systems will
individually exhibit r� ≪ rOSCO; however collections of
compact systems are likely to be diffuse, with size
r� ≲ rOSCO, implying a spacing between compact objects
of order rOSCO.

VIII. COMPARISON WITH THE JEANS SCALE

We shall now briefly discuss the Jeans length as being
complementary to the OSCO/OCCO scale, giving you
somewhat different information.

(i) Comparing clouds with the same density and same
speed of sound, the Jeans length sets the minimum
scale for gravitational clustering in a gas cloud that
has a well-defined speed of sound.

(ii) The OSCO/OCCO sets a maximum scale for gravi-
tational clustering, and does not care about the speed
of sound.

One rather common formula (in physical units) for the
Jeans length in terms of speed of sound cs and density ρ is
this:

λJ ∼
csffiffiffiffiffiffi
Gρ

p : ð64Þ

This criterion comes from comparing the sound crossing
time ts ¼ r=cs with the Newtonian gravitational free-fall
time tff ¼ 1=

ffiffiffiffiffiffi
Gρ

p
. Here c2s ¼ ∂p=∂ρ. For a system in

internal thermal equilibrium c2s ∼ kBT=μ̄, where μ̄ is the
average molecular mass. Note that the Jeans criterion
makes sense only if the system of interest is more or less
homogeneous.
When comparing different size clouds with the same ρ

and same cs the system is pressure dominated (and so
uncollapsed) for r≲ λJ, but unstable to gravitational
collapse for r≳ λJ. Now let us rephrase this in a manner
more useful for our current purposes: If the system has total
mass m then using ρ ∼m=r3 we can rewrite the condition
for pressure domination as

r≲ csffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm=r3

p : ð65Þ

Thence

r2Gðm=r3Þ ≲ c2s : ð66Þ

That is

r≳Gm
c2s

: ð67Þ

So when rephrased in terms of comparing different size
clouds with the same speed of sound and the same total
mass, pressure dominance corresponds to a diffuse system

TABLE I. OSCOs as a function of mass (l ¼ 5 Gpc).

Object m (in parsec) rOSCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml2=43

p
(in parsec) Astrophysical relevance?

Hydrogen atom 4.2 × 10−71 6.5 × 10−18 (20 cm) Dust clouds
Earth 1.5 × 10−19 1 Rogue planets
Sun 5 × 10−14 70 Scale height of galactic disk
Stellar association 5 × 10−13 150 Size of association
Open stellar cluster 5 × 10−12 300 Open cluster spacing
Globular cluster 5 × 10−9 3 × 103 Globular cluster spacing
Sagittarius A� 2 × 10−7 104 Size of galaxy

Dwarf galaxies 5 × 10−5 7 × 104 Interdwarf spacing
Spiral galaxies 5 × 10−2 7 × 105 Intergalactic spacing
Galaxy clusters 50 7 × 106 Size of galaxy cluster
Observable universe 2.5 × 109 2.5 × 109 Observable universe
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r≳ λJ ∼
Gm
c2s

; ð68Þ

and gravitational collapse corresponds to a compact system

r≲ λJ ∼
Gm
c2s

; ð69Þ

with the Jeans stability criterion switching at

r ∼ λJ ∼
Gm
c2s

: ð70Þ

The naive apparent switch in the direction of the Jeans
inequality is a subtle one, and has to do with what is being
held fixed as one compares dust clouds with each other.
Therefore we have the perhaps unexpected relation

λJ ∼ ðSchwarzschild radiusÞ × ðspeed of lightÞ2
ðspeed of soundÞ2 ; ð71Þ

allowing us to interpret the Jeans length as an “acoustic
analog” of the Schwarzschild radius [25,26].
In short, when assuming the cosmological constant is

zero, in order for there to be nonempty region of pressure-
induced stability one must have cs > 0.
We now wish to consider the effect of a nonzero positive

cosmological constant, and compare and contrast the Jeans
scale with the OCCO, which in physical units is

rOCCO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGm=c2Þl23

q
: ð72Þ

In theoreticians units we would set G → 1 and use cs to
denote the dimensionless ratio of sound speed to light
speed so that

λJ ∼
m
c2s

; rOCCO ¼
ffiffiffiffiffiffiffiffiffi
ml23

p
: ð73Þ

Then when comparing different size clouds of fixed mass
and fixed speed of sound:

(i) For compact clouds r ∈ ð0; λJÞ one has gravitational
collapse.

(ii) For medium-scale clouds r ∈ ðλJ; rOCCOÞ one has
stability.

(iii) For diffuse clouds r ∈ ðrOCCO;∞Þ one has cosmo-
logical-constant induced shredding.

For the region of stability to be nonempty one requires

λJ < rOCCO: ð74Þ

That is

m
c2s

≲
ffiffiffiffiffiffiffiffiffi
ml23

p
: ð75Þ

This implies

m3

c6s
≲ml2: ð76Þ

Consequently in order for there to be a nonempty region of
pressure-induced stability in the presence of a positive
cosmological constant one must have

cs ≳
ffiffiffiffi
m
l

3

r
; equivalently m≲ lc3s : ð77Þ

To set the scale for this effect, with very few ex-
ceptions temperatures in the Universe are bounded below
by that of the cosmic microwave background (CMB),
so T ≳ TCMB ≈ 2.7 K.
For molecular hydrogen this corresponds to

cs ∼

ffiffiffiffiffiffiffiffiffiffi
kBT
2mH

s
∼ 3.4 × 10−7 → 100 m=s: ð78Þ

Then even at this lowest plausible temperature, taking m≲
4000 solar masses is enough to guarantee a nonempty
interval of pressure domination.

IX. DISCUSSION AND CONCLUSIONS

There are many situations in which the presence of an
arbitrarily small positive cosmological constant leads to
qualitatively new phenomena [1]. One such situation is the
presence of OSCOs a phenomenon that occurs in the
presence of a positive cosmological constant.
(No such effect arises for a negative cosmological

constant; these OSCO effects are not an issue in asymp-
totically anti–de Sitter space.) We have analyzed the
existence and sizes of OSCOs in both quasi-Newtonian
gravity and in standard general relativity (the
Schwarzschild–de Sitter [Kottler] black hole), and have
developed simple robust arguments for the existence of
OCCOs and OSCOs, and simple robust estimates for the
location of these OSCOs. The most interesting part of the
analysis is the observation that these OSCOs are not
cosmologically large; they are small enough to be astro-
physically interesting.

ACKNOWLEDGMENTS

This project was funded by the Ratchadapisek Sompoch
Endowment Fund, Chulalongkorn University (Sci-Super
2014-032), by a grant for the professional development of
new academic staff from the Ratchadapisek Somphot Fund
at Chulalongkorn University, by the Thailand Research
Fund, and by the Office of the Higher Education
Commission, Faculty of Science, Chulalongkorn
University (Grant No. RSA5980038). P. B. was addition-
ally supported by a scholarship from the Royal
Government of Thailand. T. N. was also additionally

BOONSERM, NGAMPITIPAN, SIMPSON, and VISSER PHYS. REV. D 101, 024050 (2020)

024050-8



supported by a scholarship from the Development and
Promotion of Science and Technology talent project. A. S.
acknowledges financial support via the Ph.D. doctoral
scholarship provided by Victoria University of

Wellington. A. S. is indirectly supported by the Marsden
Fund administered by the Royal Society of New Zealand.
M. V. was supported by the Marsden Fund, via a grant
administered by the Royal Society of New Zealand.

[1] A. Ashtekar, Implications of a positive cosmological constant
for general relativity, Rep. Prog. Phys. 80, 102901 (2017).

[2] R. J. Howes, Existence and stability of circular orbits in a
Schwarzschild field with non-vanishing cosmological con-
stant, Aust. J. Phys. 32, 293 (1979).

[3] Z. Stuchlik and S. Hledik, Some properties of the
Schwarzschild–de Sitter and Schwarzschild–anti-de Sitter
space-times, Phys. Rev. D 60, 044006 (1999).

[4] S. Nasereldin and K. Lake, Boundary orbits: 1 static
spacetimes, arXiv:1902.05129.

[5] L. Rezzolla, O. Zanotti, and J. A. Font, Dynamics of thick
discs around Schwarzschild–de Sitter black holes, Astron.
Astrophys. 412, 603 (2003).

[6] Z. Stuchlik, Influence of the relict cosmological constant on
accretion discs, Mod. Phys. Lett. A 20, 561 (2005).

[7] Z. Stuchlik, P. Slany, and J. Kovar, Pseudo-Newtonian and
general relativistic barotropic tori in Schwarzschild–de Sitter
spacetimes, Classical Quantum Gravity 26, 215013 (2009).

[8] Z. Stuchlik and J. Schee, Influence of the cosmological
constant on the motion of Magellanic Clouds in the
gravitational field of Milky Way, J. Cosmol. Astropart.
Phys. 09 (2011) 018.

[9] T. Sarkar, S. Ghosh, and A. Bhadra, Newtonian analogue of
Schwarzschild–de Sitter spacetime: Influence on the local
kinematics in galaxies, Phys. Rev. D 90, 063008 (2014).

[10] E. Y. Bannikova, The structure and stability of orbits in
Hoag-like ring systems, Mon. Not. R. Astron. Soc. 476,
3269 (2018).

[11] S. Beheshti and E. Gasperin, Marginally stable circular
orbits in stationary axisymmetric spacetimes, Phys. Rev. D
94, 024015 (2016).
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