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Canonical analysis of n-dimensional Palatini action
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We carry out the canonical analysis of the n-dimensional Palatini action with or without a cosmological
constant (n > 3) introducing neither second-class constraints nor resorting to any gauge fixing. This is
accomplished by providing an expression for the spatial components of the connection that allows us to
isolate the nondynamical variables present among them, which can later be eliminated from the action by
using their own equation of motion. As a result, we obtain the description of the phase space of general
relativity in terms of manifestly SO(n—1,1) [or SO(n)] covariant variables subject to first-class
constraints only, with no second-class constraints arising during the process. Afterwards, we perform,
at the covariant level, a canonical transformation to a set of variables in terms of which the above
constraints take a simpler form. Finally, we impose the time gauge and make contact with the SO(n — 1)

ADM formalism.
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I. INTRODUCTION

The canonical analysis of general relativity has a very
long history starting with attempts by Dirac himself (see for
instance Refs. [1,2]). However, it was not until the dis-
covery of the ADM variables for general relativity [3] that
the program to canonically quantize gravity acquired a
suitable and feasible form. These variables arise from the
canonical analysis of the Einstein-Hilbert action through
the parametrization of the spacetime metric g,, in terms
of the lapse function N, the shift vector N¢ and the
spatial metric g, = ¢,5- It turns out that in the resulting
Hamiltonian form of the action both N and N play the role
of Lagrange multipliers imposing the scalar (or Hamiltonian)
and diffeomorphism constraints, respectively, whereas ¢,
and its canonically conjugate momentum jp*’—an object
related to the extrinsic curvature—constitute the canoni-
cal variables that label the points of the phase space.
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Even though the canonical quantization program emerging
from this approach has failed [4], the ADM variables have
been extensively used in other instances of general rela-
tivity such as initial value problems, spacetime symmetries,
asymptotic behavior of gravitational fields, numerical
relativity, etc.

On the other hand, the metric formulation is not the
appropriate theoretical framework to couple fermion fields
to general relativity, for which we have to use the first-order
formalism of the theory, where the fundamental variables
are an orthonormal frame of 1-forms e/ (vielbein) and an
SO(n—1,1) or SO(n) connection 1-form w!; depending
on whether the spacetime metric has Lorentzian or
Euclidean signature. The equations of motion of the theory
are then obtained from the Palatini (also called Einstein-
Cartan or Hilbert-Palatini) action.

The standard canonical analysis of the Palatini action
involves second-class constraints, which must be either
handled with the Dirac bracket [5], or explicitly solved.
In 4-dimensional spacetimes, the second-class constraints
are irreducible [6] and can be explicitly solved in a
manifestly SO(3,1) [or SO(4)] covariant fashion [6,7],
whereas in dimensions higher than four they are reducible
but can be handled using the approach of Refs. [8,9], where
the original second-class constraints are replaced with an
equivalent (irreducible) set of constraints that can be
explicitly solved. The second-class constraints in dimensions

Published by the American Physical Society


https://orcid.org/0000-0002-4936-9170
https://orcid.org/0000-0001-5815-4748
https://orcid.org/0000-0001-8258-6647
https://orcid.org/0000-0002-3519-4736
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.024042&domain=pdf&date_stamp=2020-01-22
https://doi.org/10.1103/PhysRevD.101.024042
https://doi.org/10.1103/PhysRevD.101.024042
https://doi.org/10.1103/PhysRevD.101.024042
https://doi.org/10.1103/PhysRevD.101.024042
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

MONTESINOS, ESCOBEDO, ROMERO, and CELADA

PHYS. REV. D 101, 024042 (2020)

equal or higher than four can also be solved using the
approach of Ref. [10]—where the second-class constraints
emerging from the canonical analysis of the Holst action [11]
are explicitly solved in a manifestly SO(3,1) [or SO(4)]
covariant fashion—because that technique is generic and is
not restricted to 4-dimensional spacetimes. However, it was
recently shown in Ref. [12] that it is possible to perform a
manifestly SO(3, 1) [or SO(4)] covariant canonical analysis
of the Holst action involving first-class constraints only, i.e.,
without introducing second-class constraints whatsoever in
the Hamiltonian formalism. It is clear from that approach
that the second-class constraints are unnecessary and super-
fluous for doing the canonical analysis of the Holst action,
and thus they are also unnecessary for doing the Hamiltonian
analysis of the 4-dimensional Palatini action as can be seen
from taking the limit y — oo in Ref. [12], where y is the
Immirzi parameter [13].

In this paper we extend the theoretical approach of
Ref. [12] to higher dimensions and perform from scratch
the canonical analysis of the n-dimensional Palatini action
with a cosmological constant. In this framework, the origi-
nal frame variables e,’ are parametrized in terms of the
momentum variables, the lapse function, and the shift
vector, whereas the original connection variables ®,’ ;
are expressed in terms of the configuration variables,
some auxiliary fields, and some Lagrange multipliers.
The outstanding aspect of this parametrization is that it
straightforwardly leads to the Hamiltonian form of the
n-dimensional Palatini action after getting rid of the
auxiliary fields involved in the action. Moreover, the result-
ing canonical formulation is manifestly SO(n —1,1) [or
SO(n)] covariant and features first-class constraints only.

This paper is organized as follows. In Sec. II we per-
form the (n — 1) 4+ 1 decomposition of the n-dimensional
Palatini action with or without a cosmological constant
(n > 3) and provide the appropriate parametrizations of the
frame and the connection. We then identify the auxiliary
fields present in the action and eliminate them, thus getting
the Hamiltonian form of the n-dimensional Palatini action
with manifest local SO(n — 1, 1) [or SO(n)] symmetry that
involves just first-class constraints. In Sec. III we perform a
canonical transformation to new SO(n —1,1) [or SO(n)]
variables that simplify the expressions of the constraints.
In Sec. IV we impose the time gauge and obtain the
SO(n—1) ADM formulation of general relativity. In
Sec. V we give some conclusions. In addition, in
Appendix A we discuss in detail the 3-dimensional
Palatini action (for which the auxiliary fields are absent
from the very beginning), and in Appendix B we depict an
alternative approach for the 4-dimensional case.

II. MANIFESTLY LORENTZ-COVARIANT
CANONICAL ANALYSIS

Let M be a n-dimensional Lorentzian or Riemannian
manifold. Points of M are labeled with coordinates x%,

where Greek letters a, f3, ... represent spacetime indices. To
carry out the canonical analysis, we assume that M can be
foliated by spacelike leaves diffeomorphic to X so that M is
diffeomorphic to R x X, with X being an orientable (n — 1)-
dimensional spatial manifold without boundary. We use
local coordinates (x*) = (z,x“) adapted to this foliation of
spacetime, where ¢ and x* (a,b,... =1,...,n—1) label
points on R and X, respectively. In the first-order formal-
ism, the fundamental variables are an orthonormal frame
of 1-forms ¢! and a connection 1-form w’; compatible
with the metric (7’][]) = diag(a, 1, ey 1), d}’]]_] - O)KITIKJ -

o® ;n;x = 0, and thus w;; = —w,; because frame indices
I,J,...=0,...,n—1 are raised and lowered with 7;;. For
o = —1 the frame rotation group is the Lorentz group

SO(n —1,1), whereas for 6 = +1 it is the rotation group
SO(n). The weight of tensor densities is either denoted
with a tilde “~” or explicitly mentioned somewhere in the
paper. The SO(n —1,1) [or SO(n)] totally antisymmetric
tensor €;,...;, is such that €;...,_; = 1. Likewise, the totally
antisymmetric spacetime tensor density of weight +1 (—1)
is denoted as 7™ (y, ) and satisfies =l =1

®,,..,—, = 1. The symmetrizer and the antisymmetrizer

are defined by V(g == (Vs + Vi) /2 and Vigg = (Vo —
Vs)/2, tespectively. “A” and “d” stand for the wedge
product and the exterior derivative of differential forms,
correspondingly.

In the first-order formalism, general relativity with a
vanishing or nonvanishing cosmological constant A is
described by the Palatini (or Einstein-Cartan) action'

Sle, w] :KA/I[*(eI Ael) A Frp—2Ap], (1)

where F!; := do'; + o' A @X; is the curvature of '},
p=(1/nl)ey ;' A --- A el is the volume form of M, k
is a constant related to Newton’s constant, and “x” is the
Hodge dual map given by

*(e /\/\e)-: 1 € elk+l/\.../\e]n
I Iy | Iy Dy -1, :

(n—k)
(2)

To perform the canonical analysis of the action (1), we
first make the (n — 1) + 1 decomposition of it by express-
ing the frame and the connection respectively as e/ =
e/ldt+ e, dx* and o'; = w,!,dt + w,' ;dx*. Tt is also
convenient to introduce the unit normal to each leaf X,
n = nge!, that fulfills n'n; = ¢ and n(9d,) = 0 (or, equiv-
alently, ea’ n; = 0), which has the following explicit form:

'"The equations of motion obtained from this action are
equivalent—for nondegenerate orthonormal frames—to Ein-
stein’s equations Rz — 5 Rg,s + Ages = 0.
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1
nli=———¢

(n=1!/q

with g := det(g,;) > 0 (of weight +2), q,;, = e,;e," being
the induced metric on X, whose inverse is denoted by ¢?”.
This object allows us to introduce the projector on the
orthogonal plane to n’ as

11,0, | Ay,
1l ptay--ay, lealll e 1 s (3)

q'y=q"e ey, = 85 —on'ny. (4)
Therefore, the (n — 1) + 1 decomposition of the action

(1) is given by (we recall that all spatial boundary terms will
be neglected because X has no boundary)

S = K'/ dtd" ' x(=2001 1’ 0,0, + w,1,G" + e, C'),
RxZ

(5)
where we have defined
M« := \/C_Iqabebly (6a)
GV = —2615710, (11K nk) + 2, K, 1M L], (6b)

él = [ZﬁalﬁbjnKngjK + ny (ﬁajﬁbKFabJK - ZAQ)]’

Sl-

(6¢)

with F,; = 0,0, = 0y, + 0, k0, X ) = 0, ko,
being the curvature of w,’, and where we have also
suppressed a wedge product between dt and d"'x :=
dx' A --- A dx"!in (5) to simplify notation.

To continue our analysis, we express ¢,/ in terms of the
lapse function N and the shift vector N* [3] as

el = Nn! + Née,!, (7)

and compute the inverse of the expression (6a)

eal = hz(”izjhabnba (8)

where /1, is the inverse of B = e rand h = det(ﬁab)

has weight 2(n — 2). Notice that the right-hand side of (8)
is a function of IT” only. As a consequence of this, n’
in (3) can also be expressed in terms of 1 as

1

_— ! ...~an—ln—
DR g T T (9

ny =

Substituting (8) and (9) into the right-hand side of (7) we
can reinterpret e,/ as a function of the n? variables N, N¢,
and I1%. With this in mind, relations (7) and (8) define a

one-to-one map from the n? variables N, N¢, and I1% to the
original n*> frame components e,’. The inverse map that
sends e,/ to N, N%, and I1% is given by (6a) together with

N = ce,'n,, (10a)

N =q"e/ey, (10b)
where n; must be understood as that given by (3).

Therefore, using (7), (8), and (9), the action (5) acquires
the form

S =x / dtd™ ' x(=211 n? 0,01 + w,,G"
RxX

- NV, =NC). (11)
with
V, = =211""n'F (12a)
C = —ol1TI" F,,;, + 20hi5A, (12b)
N :=h" 3N (12¢)

For future purposes, we introduce the covariant deriva-
tive V,, defined on each leaf ¥ that annihilates ¢,’ through

vuebl = aaehl =+ FaIJehJ - FCaheL'I = 0’ (13)

with Iy, = =T, and T'%,, =T“,,. These are n(n — 1)?
inhomogeneous  linear equations for n(n—1)?/2
unknowns I',;; and n(n —1)%/2 unknowns I'%;,, so that
the solution is unique. It turns out that I'“,. are the
Christoffel symbols associated with the induced metric
q.» On Z, whereas the explicit solution for I',;; is given by

Fal] = theh[l\ (auec\J] - aceu\f]) + Uqbceb[an]nK
X (8aecK + 8ceaK) + thqdfeal(eb[le\dmafecK'
(14)

Furthermore, from (6a) and (13), we find that the operator
V,, annihilates T as well

vaﬁbl _ auﬁbl 4 Fuljﬁbj + Fbacl:[d _ Fcacﬁbl =0.
(15)
Either by solving this equation similarly as we did for (13)

or simply by substituting (8) into the right-hand-side of
(14), we find

*From (8) we get h = ¢"2, and thus Vi = hﬁ_
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Cory = hapT130,4 1% gy + hoph o1 117V 50, 117K
+ I;lbcl:[b[la|a|ﬁcl] - ’}ahlgcdﬁblfﬁc[lﬁfj]afﬁdk
- algabﬁc[lnj]nKﬁcl:IbK + algbcﬁb[lnj]nlgaaﬁc’(.
(16)

Now, following the same approach of Refs. [10,12],
we realize that the term involving 0,@,;; in (11) can be
written as

2001 Qg = 20 9,(W P 50,5, (17)
Wlth Wabl./K - —Wab[KJ giVen by

WabIJK = _(52771[1”1(] + HIQaCﬁC[JﬁbK])- (18)

It is worthwhile to remark that the equality (17) is exact.
That is to say, neither temporal nor spatial boundary terms
have been neglected. The relation (17) clearly suggests to
define the n(n — 1) configuration variables

Qur = WabUwaJK’ (19)

which thus are canonically conjugate to I1%/. The variables
Q,; embody the combination of the components of the
connection w,!’/ contributing to the dynamical variables of
the theory; those variables are precisely singled out by the
object W,?,,x. We can interpret (19) as n(n — 1) linear
equations for n(n — 1)?/2 unknowns w,;;. In consequence,
the solution for w,;; must involve n(n—1)?/2—n(n—1)=
n(n—1)(n—3)/2 free variables. Let us call these variables
Aabe- Which satisfy 1, = —Aacp and the traceless condition

Zab . .
@abcha = 0; both conditions guarantee the right amount of
independent variables that 4,,. must contain. The solution

for w,;; can be expressed as

Wary = MLy Qp* + N adeIngbcd’ (20)

20

-2 [(n = 2)84nymyx + ho 1T g,

1)

2 7hle odl \ e T
n—2£"”h & eyt . (22)

ﬁabmu = <5Z‘S[€C‘S;] -

. 2 bed .
Notice that M,”;,x and N,”“,; satisfy M ,*;;x = =M, 1k

=~ bed =~ bed & bdc =~ bed
N, y=-N, j=-N, 5, and ﬁlcha v =0.We

point out that the variables 4, are present in (20) only for

n>4. When n =3, there are no variables 4,,. in (20)

because in that case both the number of equations contained
in the expression (19) and the number of unknowns w,;;
are equal to six. Despite the fact that there are no variables
Aave for n =3, we will show in Appendix A that the

final canonical analysis for n = 3 has exactly the same
form as the case n > 4. Let us consider n > 3 from now on
in this section. For the sake of completeness, we define the
tensor density U,,." with the properties U, 4 =

~ab
U™ = -Ugpe ¥ and h" U,y = 0 as follows:

2 - o~
U = <5§f£le[bilc1f —mbawi’dﬁ?) vl (23)

It is related to ﬁade, 7 by

= eghl]

=, = b :h
heahg h C{;lfdgabcd” — Nf (24)

The objects (18), (21), (22) and (23) all together fulfill the
orthogonality relations

WadKLMchKLJ = 52519 (253)

Uese! RS = olsiast - ﬁ (hea flastl _ » ilegtl).

(25b)
W,/ IJKA:/ bedJK =0, (25¢)
UahchMdelJK =0. (25d)

The presence of the second term on the right-hand side of
(25b) is a consequence of both traceless conditions

hpeN, =0 and KU, = 0. Using (20) together
with the relations (25a) and (25b), we get (19) as well as

dl

ﬂvabc - Uabc JCUd[]» (26)

which shows that Q,; and 4, are independent variables

among themselves. Furthermore, we have the completeness
relation

5 cdf
M W PMEE N Y l:]cdfbKL = 525655]- (27)

Now, we replace w,!; with Q,; and A, by substituting
(20) into the action principle (11) and obtain

S =« / drd" ' x(2110,Q; + w,,G” =NV, — 1y5),
RxX
(28)

with
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G" =2m1Q,” + 48} 87 1KLLy, (29a)
]}a = 2(21:[1718[“ Qh]l - Qalabﬁbl) + QIJ (MabIJK QbK + Nadeljélhcd)’ (ng)
C= —oTITIP Ry + 20UTTPMIQ Q) 4 2Qu T yyien® + Typ Tpyxn®nt] + 26AKT + 2110’V Gy,
n-3 ~ ~ =db Ref =
- En — 23 on'G nk Gy + oh™ h h (abe = Uape" k1. U™5) (Aage = Uape1i04"). (29¢)
|
where Rap's = 0aT'y's — 8;,1"(,.11 * F‘,‘IKFhKJ ~ 0l @y = =N+ NY(M 1 Q™ + Nadeuﬂbcd)
is the curvature of the connection I',’;.
It is remarkable that G'/—given by (29a)-involves no - -3 -
. . glven by 12 — 2010, V,N — 513 NngGnxnk.  (32)
Aabe- It is also surprising that 1V, and C—given correspond- - (n—2)~

ingly by (29b) and (29c)—contain no spatial derivatives of
Aabes because (12a) and (12b) contain spatial derivatives of

w,';. By inspection, it is pretty obvious that the variables
Aape are auxiliary fields [14]. At this point, there are two,

equivalent, ways to continue. The first way consists in to
first fix the variables 1, by using their equation of motion

and then to substitute them back into the action (28). Next,
a redefinition of the Lagrange multiplier in front of the
Gauss constraint G/ is required (this way was followed in
Ref. [12]). The second way consists in first to redefine the

Lagrange multiplier in front of G/ and then to get rid of
the auxiliary fields 4,,.. We will follow the second way.

Then, factoring out all terms in V', and ¢ involving G,
we get

S = K/ dtd”_lx(ZﬁalatQal - AIJQIJ—ZNWE“—N g),
RxXZ

(30)
with
GV —onil 9,7 + 45fK5i]ﬁa[KnM]raLM, (31a)
T)a = 2ﬁbla[a Qb]l - Qalabﬁbl’ (31b)
§ = —GﬁalﬁbJRab” + 2ﬁa[1ﬁ|bm(gal QbJ

+2Q,Upyxn® + T g Upyn®nt) + 20hi2 A

+ O'/:l:dbﬁth:ea (lj’ahc -~ abchKLFhKL)

X (édfe - ydfegl./rg”)’ (31C)

where D, and S are the diffeomorphism and Hamiltonian
constraints, respectively. Also, as promised, we have
replaced w,;; with A;; via the field redefinition

Therefore, the original connection variables w,’/ have been
replaced with the independent variables Q,/, Aape (satisfy-

ing the properties already mentioned for them), and A;;. It
is clear by now that 1, are auxiliary fields that can be

eliminated by using their own equation of motion. In fact,
by making the variation of the action (30) with respect to
Aape (taking into account the properties for them), we have

=d[b Zcle Faf
RPRR f@dfe — Uy yTy") =0,

2

(33)

which implies

Aabc - abchJFdH‘ (34)

Substituting back 4., into (30), we arrive at the

Hamiltonian form of the n-dimensional Palatini action
with a cosmological constant A:

S=x / d1d"="x (2114 9,0, — A;,G" —2N“D,~N H),
RxX

(35)

with the Gauss, diffeomorphism and scalar constraints
given by

Gl =21,/ + 45fK5£]ﬁa[KnM]raLM, (36a)
Tjtl = 2ﬁbla[a Qb][ - Qalabﬁbh (36b)
'ﬁ[ = —GﬁalﬁhJRab]J -+ zﬁa[lﬁ\bm (QaIQbJ
+ 29, T pyxn®™ + Tyyxlpyn®nt) + 20hiA,
(36¢)

respectively. It is worth mentioning that, although the
spacetime dimension n shows up in the term involving
the (n — 2)-th root of 4 in (36¢), the constraints (36a)—(36¢)
take exactly the same form in all spacetime dimensions. For
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A = 0, the form of the constraints is actually independent
of the spacetime dimension.

Therefore, we have obtained a manifestly Lorentz-
covariant Hamiltonian formulation (35) for the Palatini
action (1). This Hamiltonian form of the action emerged
from parametrizing the original frame variables e,/ in
terms of the momentum variables I1%, the lapse N, and
the shift N* as given by (7)—(8), whereas the original
connection variables w,’; have been parametrized in
terms of the configuration variables Q,’, the auxiliary
fields 4,,., and the Lagrange multipliers A;; as depicted

in (20) and (32).

Notice that the map from w,!; to Q,! and 1, through
(19) and (26), with inverse map given by (20), can be
seen as a change of variables. Nevertheless, as is clear
from (17) and (19), the presymplectic structure present
in (11) becomes the canonical symplectic structure
present in (28) when such a map is used. Therefore,
we reach a smaller phase-space and simultaneously
parametrize it with manifestly Lorentz-covariant canoni-
cal variables (Q,’, T1¢)). The reduction map is given by
(w,';,114)) — (Q,!,T1%)) using (19). This reduction
process leaves the null directions of the presymplectic
structure (11) out of the canonical symplectic structure
present in (28). The null directions are clearly along 1.,

which turn out to be auxiliary fields that can be
eliminated from the action by using their own equation
of motion. The variables A;;, N, and N are Lagrange

multipliers imposing the SO(n — 1, 1) [or SO(n)] Gauss,
diffeomorphism, and scalar constraints; respectively.
These constraints depend on the phase space variables
(Q,!,11%,) satisfying the Poisson brackets

(91,2, 10 1,3)} = 5 o33! (). (37)

We close this section with two remarks:

(i) For 4-dimensional spacetimes, the canonical de-
scription of general relativity with a cosmological
constant given in (35) is the same as the one obtained
from the canonical variables for the Holst action
through a canonical transformation (see Sec. IV
of Ref. [12]).

(i1)) As shown in Appendix A, for 3-dimensional space-
times there are no auxiliary fields 1,,. (notice that
U identically vanishes for n = 3, as for any

object with the same symmetries of 4, in three of

its spatial indices). In spite of this, the resulting
Hamiltonian form of the theory has exactly the same
structure given by (35).

III. OTHER MANIFESTLY LORENTZ-
COVARIANT PHASE-SPACE VARIABLES

It is important to emphasize that the manifestly Lorentz-
covariant canonical analysis of general relativity with a
cosmological constant embodied in the action (35) is not
the canonical description of the Palatini action given in
Refs. [8,9]. We show in what follows that the latter can be
obtained from our Hamiltonian formulation through a very
simple canonical transformation leaving the momentum
[ unchanged: (Q,;, 1) — (Q,;,11%'). Both configu-
ration variables are related to each other by

Qal - Qal - WabIJKFbJK' (38)
This transformation is indeed canonical because
20,0, = 2110,Q, + 0,(2n,0,11),  (39)

and since X has no boundary, the last term of the equality
(39) does not contribute to the Hamiltonian action. More
precisely, using (38), the action (35) acquires the form

S=x / dtd"="x(21199,0,, — A, GY — 2N“D, = NH).
RxX

(40)
with
G" =omlg,”, (41a)
jju = 2I:‘Ibla[th]I - Qulahﬁbl’ (41b)

ﬁ == _O'l:[all:[bJRablj + 2ﬁa[1ﬁ‘b“l] QalQbJ + ZO'h(”ITZ)A
(41c)

This is the formulation obtained in Ref. [8,9] through a
lengthy process of solving the second-class constraints
involved there. Notice also that the canonical variables
(Qg,11%") are SO(n —1,1) [or SO(n)] vectors.

Alternatively, the  manifestly  Lorentz-covariant
Hamiltonian formulation (40) can also be directly obtained
from (11) by following an analogous procedure to that
developed in Sec. II. To achieve this, we have to handle the
equality (17) as follows:

=200 n! O,y = =200 8,041y = Tary + Tary)
= =2Mn’0,(w,1) — Tary)
—20,(n,0,11)
= 20140, [W bk (w, 'K —T,7K)]
— 20, (m 0,11, (42)

The reason to keep I',;; with the minus sign is because
w,’® —T,’K is an SO(n—1,1) [or SO(n)] vector. The
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next step is to define the expression inside the brackets as
the configuration variables

OQur = WabIJK(waK - FbJK), (43)

and so
20007 0,41y = 200,00y = 20, (n,0,11).  (44)

The following step is to solve (43) for w,;;, which gives

= bed
Wary = Tary + M,y Q5 + N, ° peas  (45)

with M,?,,x and N,"¢,, given by (21) and (22), respec-
tively; and the variables u . satisfy Uabe = —Uach and the

. Zab
traceless condition yabcha = 0. The cases n = 3 (that does
not involve u,,.) and n > 4 must be analyzed separately as

we already explained. The next step is to substitute (45)
into the action (11) and then redo the analysis performed in
Sec. II to eliminate the auxiliary fields u .. and thus obtain

(40). This is done as follows. Substituting (45) into (11),
we get

S = K/ dtd”_lx(ZI:[“IatQal + CUIIJGIJ—N“D“—NC:),
RxZ

(46)
with
GV =17, (47a)
]}a = 2(2ﬁb18 Qb - QalabﬁM)
+ Gy (T + MK Qe + N [ndulfbcd)’ (47b)
= —oT1TI" Ry + 211U TPV Q 1 Q)
+ 2O'Ah("+2) + Zﬁalnjvagu
n—3 =db =cf ~ea
— En — 2; on g Kanlj + h hh uabclzldfg.
(47¢)
Factoring out G" in 17a and C: we obtain
S—=k / dtd""x(21198,0,; — 4,,G" ~2N“D,~N ).
RxX
(48)

with

Gl — o1ielig, /), (49a)
@a = Zﬁbla[aQb][ _ Qalabﬁblv (49b)

§ = O'HaIHbJRabIJ + 2Ha [H‘bv Q IQbJ
1 20hiA + oh™ R R UabcUdfes (49¢)

and where we have also replaced w,;; with 4;; through

a = bed
Wy = =Ay + NCapy + Mo 1y 0  + Ny yttpea)
211 VN - (n—3) N 50
- (17 G(n 2) " n[ng]K” (50)

The action (48) depends on the phase space variables
(Q,;, 114", the Lagrange multipliers (1,;, N N), and the

auxiliary fields u,,.. Now, we can get rid of the variables
U,y by using their own equation of motion, which is

given by

wu

N dlb ~C]e/’7aflz4dfe =0. (51)

Given that N # 0, its solution for u . is
Uagpe = 0. (52)

Substituting this into the constraints of (48) we get
precisely the Hamiltonian formulation (40).

IV. TIME GAUGE

We shall fix the boost freedom to reduce the gauge group
SO(n—1,1) [or SO(n)] to the rotation group SO(n — 1).
This is achieved by imposing by hand the gauge condition
1% ~ 0, which forms a second-class set [5] with the boost
constraint G% ~ 0 because

~ ~: c ~ .

{01, %), G (1, y)} = 2 06" (x,y) - (53)
defines an invertible (n—1) x (n— 1) matrix for non-
degenerate I1%, something that we assume. This
assumption combined with 1~ 0 in turn implies

n' ~0. So, making the second-class constraints strongly
equal to zero, we get from (29a)

Qu = —noﬁ”iabﬂai, (54)

where II; denotes the inverse of 1% [we also recall that

(16) implies I',o; = 0, whereas I',;; is a function of I1* and
their derivatives]. So, the action (35) becomes
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S =x / dtd"'x(2119,Q,; — A;;G'-2N“D,~N H),
RxX

(55)
with
Gij — oreli aj]’ (56a)
D, = 21170, Q4 — Q011" (56b)
H = —oT1TIPIR ;; + 21T Q,, Q.
+ 26[det(IT%)|7=A. (56¢)

In analogy with the 4-dimensional case [6], this formu-
lation could be called the SO(n — 1) ADM formulation of
general relativity [2]. On the other hand, if the gauge fixing
is imposed directly in the action (40), we have Q,, = 0 and
we get exactly the action (55) with Q,; taking the place of
Q.- The fact that Q,; = Q,; can be easily seen from the
relation (38). Therefore, in the time gauge, the same
formulation (55) arises from both (35) and (40).

V. CONCLUSIONS

In this paper we performed, in an SO(n—1,1) [or
SO(n)] covariant fashion, the canonical analysis of the n-
dimensional Palatini action with or without a cosmological
constant (1). We followed an strategy akin to that used in
Ref. [12], where the introduction of second-class con-
straints in the canonical analysis of the Holst action was
entirely avoided. To that end, we expressed the components
of the connection w,;; in terms of the variables Q,;
and A, as shown in the relation (20). The construction

underlying these variables is laid out in Sec. II, which
entails a reduction of the presymplectic structure of the
theory to a canonical symplectic structure. It turns out that
the variables Q,; play the role of the configuration variables
of the resulting theory, whereas the variables A,,. are

auxiliary fields that can be eliminated from the action by
using their own dynamics. The final phase space is thus
parametrized by the canonical pair (Q,;, [1*), where [T is
related to the spatial components of the orthonormal frame
by the expression (6a), subject to the Gauss, diffeomor-
phism, and scalar constraints (36a)—(36c), which are first-
class and make up the full set of constraints of the theory.
Therefore, the introduction of second-class constraints and
the subsequent elimination of them is completely bypassed
in our approach.

In addition, we have also performed the canonical trans-
formation (38), which maps (Q,;,11¢/) into (Q,;.11); in
terms of these variables, the diffeomorphism constraint
remains the same, whereas the Gauss and scalar constraints
get much simpler [see the expressions (4la)—(41c)].
The ensuing canonical formulation (40) is actually the

one obtained in Refs. [8,9] for the higher-dimensional
Palatini action after eliminating the second-class con-
straints arising in the canonical analysis carried out by
the authors. This procedure is long and highly nontrivial,
since the resulting second-class constraints are not inde-
pendent (and thus reducible) for n > 4. In contrast, our
approach is quite straightforward and leads to the
Hamiltonian action (40) in no time. For the sake of
completeness, we detail the case n = 3 (where there are
no variables 4,,.) in Appendix A, and also present an

alternative approach for the case n =4 in Appendix B.
Finally, we imposed the time gauge on both actions (35)
and (40), and obtained as a result the SO(n—1) ADM
formulation of general relativity embodied in the
action (55).

It is worth stressing the simplicity and tidiness of our
approach to arrive at the Hamiltonian action (35). What is
really remarkable is that such a decomposition (20) of the
connection exists for general relativity in all dimensions
n >3 (recall that in n = 3 there are no variables A,p.),

something that enormously simplifies the canonical analy-
sis of the theory, as we have shown in this paper. This
decomposition is not only convenient for pure gravity, but
can also be employed to build up the Hamiltonian formu-
lation of general relativity coupled to matter fields. Perhaps
the most interesting case would be the coupling of a spin
1/2 field, because given that it couples directly to the
SO(n—1,1) connection, then the variables 1,,. are

expected to get nontrivial contributions from this matter
field. On the other hand, given that the diffeomorphism and
scalar constraints can be combined into a single constraint
H,; = h~"/P0-21(210%, D, 4 on;H), it would be really
interesting to investigate how this covariant constraint is
related to the Lagrangian gauge symmetry unveiled in
Ref. [15] for the n-dimensional Palatini action. We finally
remark that the approach of this paper can also be used to
do deal with the so-called “space gauge” following the
same ideas of Ref. [16].
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APPENDIX A: CANONICAL ANALYSIS
FOR n=3

To perform the canonical analysis for 3-dimensional
general relativity with a cosmological constant, we start
from the definition (19), which defines a system of 6 linear
equations for the unknowns w,’; whose solution is
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Wypy = MabIJKQbKv (Al)
with

Mtk = 20(52"[1'7111( + Qacﬁc[lﬁbj]nk)- (A2)

Notice that there are no A4, variables involved.

Substituting (A1) into the action (11), we obtain

S =« / dtdPx (20191 9,Q, + w,,G — NV, — N C),
RxX

(A3)
where
G" =211 Q" + 45/ 5 1K nMIr by, (Ada)
941 = 2(2ﬁb15[a Qb]l - Qalabﬁbl) + gleab”K k>
(Adb)

= —oTTTIY R 1y + 201U TTPV(Q,, Qs + 2Q T e
—+ FaILFbJKnKnL) —+ 26A\h + Zﬁalnjvag”. (A4C)

Factoring out G" in V, and C, we arrive at the Hamiltonian
formulation of the 3-dimensional Palatini action with a
cosmological constant

S=x / dtdx(2118,0,; — A, G —2N“D,~NH),
RxX

are the SO(2,1) [or SO(3)] Gauss, diffeomorphism and
scalar constraints, respectively; and where we have rede-
fined the Lagrange multiplier w,;; through

Wy = =Ny + NMP Q% - Zﬁa[lnl]va]y' (A7)

It is worth mentioning that the action (A5) is precisely
the same Hamiltonian formulation (35) obtained in Sec. II
for n > 3 (when the auxiliary fields Aabe are present).

Therefore, the Hamiltonian formulation (35) holds for
n>3.

1. Canonical transformations

To close this appendix, we perform a canonical trans-
formation—depending on two real parameters a and f—that
leave the momentum I1%/ unchanged. The transformation
from (Q,;,11%') to the phase space variables (Y,;,T1¢) is
such that the configuration variables Y ,; are defined by

of
Yo = Qu— (awabIJK + 7525111() r,’%, (A8)

where W,”,,x has been defined in (18). This transforma-
tion is indeed canonical because

2ﬁalalYa1 - 2ﬁala,Qa1
+ aa [_Zo-ﬁeIJKﬁaJﬁbKat(];lhcl:[cl)

(A5) + 2an,;0,11]. (A9)
where Hence, in terms of the canonical variables (Y, G ), the
- A ek e L action (A5) becomes
GV =214 g,/ + 45[K5L]na[ M,y (A6a)

D, =201"0,,Qp — Q,'0,11"}, (A6b) S=x A | didx(M10,Y oy = 20A,G'-2N“D,~N H).
=z J—— o Al
H = —JHaIHbJRab” + 2Ha[1H|bm(QalQbJ (A10)
+ ZQaIFbJKnK + Fa”(Fb]LnKnL) + 20hA\ s (A6C) with
|
- 1 ~ - - -
g= —§€”KgJK = (BONI + € g Y JTIK) = 2(1 — a)elJKFaKLHa[JnL]v (Alla)
D, = 211"19,,Y,;, — ¥,19,11°}, (A11b)
= —oTITIP Ry + 2TUTTPNY Yy 4 (1 = a)Txn® (2Y o + el + (1 — @)l gy nt)
+ operki T X Yy + 0T K Tyix] + 20hA (Allc)

and A] = —%eleAJK.
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These ugly-looking expressions acquire a more familiar
form for particular choices of the parameters a and S
(i) Case a =1=p. Let us denote Ay, =Y yylpey poi-
Then the action (A10) takes the form

S == K/ dtdzx(zﬁalatAal - 20'/1151
RxXZ

—2N“D, - NH), (A12)
with

G =014 + € A, TIK (A13a)

D, = 211" 9, Ap; — A,10,117 ), (A13b)

H = e, Y F K +20hA,  (Al3c)

where we have used the relation between the
curvature R,,’; and the curvature of the SO(2,1)
[or SO(3)] connection A,/, Fu,'=0,A,"-
0pA, + €' kA ALK, given by

- GﬁalﬁbJRabu
= JeleﬁalﬁbJFabK + Zgﬁalvag[
— 2MUTTPVI(A Ay + oT K Ty

+ o€k TP Ay), (Al14)

and we have also redefined the Lagrange multiplier
Ajasp; == A, —T1%,V,N. The action (A12) embod-

ies the 3-dimensional Ashtekar formalism [7].
(i) Case a =1 and p = 0. From the transformation
(A8)itis clear that Y|, 5_o becomes the SO(2, 1)
[or SO(3)] vector Q,; given in the relation (38), i.e.,
Qur = Yaila=1 p—o and so the action (A10) takes the
form (40) for n = 3 as already explained in Sec. III.
The relationship between A,; and Q, is
Ay =T4y + Qqp with Ty = —(6/2)e/"*T k.

APPENDIX B: ALTERNATIVE CANONICAL
ANALYSIS FOR =4

When n = 4 the solution (20) for w,;; can, alternatively,
be expressed as

_ gy b K | fb
@u17 = M7 1y Q" + N7 jhap

G” _ 2ﬁa[1QaJ] + 487 5’ ﬁa[KnM]l—‘aLM’

(K7L)

with M,?,x still given by (21), whereas

]\7“11 = €IJKL1:[aKnL- (BZ)

There are six independent variables 1,, in (B1) because

Aap = Apa- The expression (B1) comes from substituting

labc = €IJKL]gbd]gecﬁdlﬁejﬁfkn["luf

o Zde
- ﬁ 'Zrbcdh 4

~ae
into (20). Notice that this expression for 4, explicitly

(B3)

satisfies A, = =4, and the traceless condition

Aave H” = 0. The parametrization (B1) is analogous to that

used in Refs. [10,12]. y
Note that the objects W,?,,x, M,”;;x, N?;;, and

1
cl) .— _ JIKL§e

Uab (aélb)eﬁeKnL7 (B4)
satisfy the orthogonality relations
WaCIMNMCbMNJ - 5Z5§’ (BS)
U™ Ny = 8,8,%, (B6)
W, NOK =0, (B7)
UzthCUMcdllK =0. (BS)

The transformation (B1), (Qu;,A4) > (@uy), is
invertible, with inverse map (w,;;) — (Quz,445) given

by (19) and

% ab — U abc”a)clls (B9)

establishing that Q,; and 4, are independent of each other.

Therefore, we can replace the variables w,; with
(Qur, Aap) by substituting (B1) into the action (11). By

doing this, we get

S =« / dtd*x(2119,0,; + w,, G — N“V, — N C)
RxX

(B10)
(B1) with
|
(Blla)
(B11b)

v, = 2(2ﬁb18[a Qi — QuOpT1!) + Gy (M VK Quie + 1 4, N?1),
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C= —oTI¥MIY Ry + 201UV, Q) ) + 209 Tpyn® + Loy Ty nt] + 26AVH + 210’V Gy

o .~ -
- Enlgjﬂll(gu + 606G X gy = U ap™To1)) (A ca = U cd™ T pir),

where Ged i= { R — RN pag weight +4. Now,

factoring out the Gauss constraint G* in ¥V, and C, and
redefining the Lagrange multiplier w,;;, the action becomes

S =k / dtd®x(2119,Q,; — A;,GY —2N*D,~N §),
RxX

(B12)
where
G" =20 Q") + 4 57 KMy, (B13a)
D, = 211"0,,Q,; — Q,'0,11%,, (B13b)

§ = —ol1TI?' R, + 211U TI0V] [Q41Ops
+ 29, T pyxn® + TyyxUpyn®nt] + 20 VhA
+ 0GP (Qap = U ap™Tery) (A ea = UcdeerKL>’
(B13c)
and

Wiy = =N+ N ML QX + 2 NP yy)

~ o ~
—zna[lnj]valy_§N”[1gJ]K”K- (B14)

Thus, the action (B12) depends on the Lagrange
multipliers A;;, N% and N as well as on Q,, I%,
and 4,,. As expected, the variables 1, are auxiliary

fields that can be fixed by using their own equation of
motion

26N G ca = U ca'Tery) = 0, (B15)

which implies, since N # 0 and G**“? is invertible [12],
that

~ - 1-— ~
gIJ _ 2Hu[1XaJ] 14 |:(1 _ 0)51 5i] +M€HKL:| Hu[KnM]FaLM,

(K 2y

T)a = 2fIbIa[ava]l - Xalabﬁb17

(Bllc)

_ 1J
Aab - Uabc FCIJ‘

~ (B16)
Substituting this back into the constraints of the action
(B12), we obtain precisely the canonical formulation (35)
for n = 4.

1. Canonical transformations

Now, we consider a canonical transformation—depending
on some parameters «, 3, and y (the latter corresponds to the
Immirzi parameter)-that leaves the momentum variables
unchanged, whereas the configuration variables are pro-
moted to

#-1)

Xal = Qal - WabIJK (anJK + y

x rﬂ), (B17)

where *V; == (1/2)e;;x, VEE. We recall that the variables
X, were introduced in Ref. [12]. This transformation is
canonical because the symplectic term in the action (35)
changes by a total derivative:

ZﬁalatQal = 21:[“18,Xa1 + aa [—2(17118,1:[“1

-1 ~r o~
+ U(ﬁy ) \/Eﬁmhczhhd{]cfnflatnd[ )

(B18)

In terms of the new phase-space variables (X,;, 1), the
action (35) for n = 4 acquires the form

u

S=x / didPx(2110,X ,; — Ay, GY =2N*D,~NH),
RxX
(B19)

with

(B20a)
(B20b)

(1-5)

= - - iy~ 1 - 2
H = —oT1“/TI" Ry + 211U 1TV {XaIXbJ + (Tﬂ> " CarkTosr +2Xar (1 = )Tk + — * Ty | n®

+(1-a) [(1 — )Lk + % (1-p) = FaIK:| FbJLnKnL} +20AVh.

(B20c)
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This Hamiltonian formulation becomes more familiar for particular values of the parameters:
(i) Fora =1 = p, the configuration variable is X |, =1 = Qar, for which we recover the formulation (40) for n = 4.
(i) For @ =1 and f# = 0, the configuration variable is X,;|,— s_o = K- The action becomes

S=x / dtd*x(2099,K oy — Ay, G — 2N“D,—~NH),
RxX

with
~ ~ 2 ~
gIJ _ 2Ha[IKaJ] + ;€1JKLHH[KHM]FGLM,

ﬁa = 21:[“8[(11(1)]1 - Kalabﬁblv

= o -~ 1 2
H = —UHa[HbJRab]J + 2Ha[lnlb“l] <Ka[KbJ + P qKLFaIKFbJL + ; Ka] k FbJKnK> + 26/\\//;

(B21)

(B22a)
(B22b)

(B22¢)

This formulation was also obtained after applying a canonical transformation on the Hamiltonian theory resulting

from the Holst action [10].

(iii) For a = 0 = f, the configuration variable is Xa,|0£:0.ﬂ:0 = C,;. The action acquires the form

S=x / dtdx(21199,C,y — A, G —2N“D,~NH).
RxX

with
- - 1
¢ =ondlic,’l 4+ 4 {5{,(5{] 5 e

Z5(1 = 2ﬁb18[acb]l - Calabﬁbl’

}l:[“[KnM]F

(B23)

v (B24a)

(B24b)

= S o s 1 1
H = —ol1'T1" Ry + 20141V {CaICbJ + 7 g Turklpsr +2Cy; |:FbJK + " * FbJK:| n¥

2
+ |:FaIK + — % an(] FbjLnKnL} + 26/\\/%.
4

(B24c)

This Hamiltonian formulation was originally obtained in Ref. [10] by performing the canonical analysis of the Holst

action.
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