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We carry out the canonical analysis of the n-dimensional Palatini action with or without a cosmological
constant (n ≥ 3) introducing neither second-class constraints nor resorting to any gauge fixing. This is
accomplished by providing an expression for the spatial components of the connection that allows us to
isolate the nondynamical variables present among them, which can later be eliminated from the action by
using their own equation of motion. As a result, we obtain the description of the phase space of general
relativity in terms of manifestly SOðn − 1; 1Þ [or SOðnÞ] covariant variables subject to first-class
constraints only, with no second-class constraints arising during the process. Afterwards, we perform,
at the covariant level, a canonical transformation to a set of variables in terms of which the above
constraints take a simpler form. Finally, we impose the time gauge and make contact with the SOðn − 1Þ
ADM formalism.
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I. INTRODUCTION

The canonical analysis of general relativity has a very
long history starting with attempts by Dirac himself (see for
instance Refs. [1,2]). However, it was not until the dis-
covery of the ADM variables for general relativity [3] that
the program to canonically quantize gravity acquired a
suitable and feasible form. These variables arise from the
canonical analysis of the Einstein-Hilbert action through
the parametrization of the spacetime metric gμν in terms
of the lapse function N, the shift vector Na, and the
spatial metric qab ≔ gab. It turns out that in the resulting
Hamiltonian form of the action both N and Na play the role
of Lagrange multipliers imposing the scalar (or Hamiltonian)
and diffeomorphism constraints, respectively, whereas qab
and its canonically conjugate momentum p̃ab—an object
related to the extrinsic curvature—constitute the canoni-
cal variables that label the points of the phase space.

Even though the canonical quantization program emerging
from this approach has failed [4], the ADM variables have
been extensively used in other instances of general rela-
tivity such as initial value problems, spacetime symmetries,
asymptotic behavior of gravitational fields, numerical
relativity, etc.
On the other hand, the metric formulation is not the

appropriate theoretical framework to couple fermion fields
to general relativity, for which we have to use the first-order
formalism of the theory, where the fundamental variables
are an orthonormal frame of 1-forms eI (vielbein) and an
SOðn − 1; 1Þ or SOðnÞ connection 1-form ωI

J depending
on whether the spacetime metric has Lorentzian or
Euclidean signature. The equations of motion of the theory
are then obtained from the Palatini (also called Einstein-
Cartan or Hilbert-Palatini) action.
The standard canonical analysis of the Palatini action

involves second-class constraints, which must be either
handled with the Dirac bracket [5], or explicitly solved.
In 4-dimensional spacetimes, the second-class constraints
are irreducible [6] and can be explicitly solved in a
manifestly SOð3; 1Þ [or SOð4Þ] covariant fashion [6,7],
whereas in dimensions higher than four they are reducible
but can be handled using the approach of Refs. [8,9], where
the original second-class constraints are replaced with an
equivalent (irreducible) set of constraints that can be
explicitly solved. The second-class constraints in dimensions
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equal or higher than four can also be solved using the
approach of Ref. [10]—where the second-class constraints
emerging from the canonical analysis of the Holst action [11]
are explicitly solved in a manifestly SOð3; 1Þ [or SOð4Þ]
covariant fashion—because that technique is generic and is
not restricted to 4-dimensional spacetimes. However, it was
recently shown in Ref. [12] that it is possible to perform a
manifestly SOð3; 1Þ [or SOð4Þ] covariant canonical analysis
of the Holst action involving first-class constraints only, i.e.,
without introducing second-class constraints whatsoever in
the Hamiltonian formalism. It is clear from that approach
that the second-class constraints are unnecessary and super-
fluous for doing the canonical analysis of the Holst action,
and thus they are also unnecessary for doing the Hamiltonian
analysis of the 4-dimensional Palatini action as can be seen
from taking the limit γ → ∞ in Ref. [12], where γ is the
Immirzi parameter [13].
In this paper we extend the theoretical approach of

Ref. [12] to higher dimensions and perform from scratch
the canonical analysis of the n-dimensional Palatini action
with a cosmological constant. In this framework, the origi-
nal frame variables eμI are parametrized in terms of the
momentum variables, the lapse function, and the shift
vector, whereas the original connection variables ωμ

I
J

are expressed in terms of the configuration variables,
some auxiliary fields, and some Lagrange multipliers.
The outstanding aspect of this parametrization is that it
straightforwardly leads to the Hamiltonian form of the
n-dimensional Palatini action after getting rid of the
auxiliary fields involved in the action. Moreover, the result-
ing canonical formulation is manifestly SOðn − 1; 1Þ [or
SOðnÞ] covariant and features first-class constraints only.
This paper is organized as follows. In Sec. II we per-

form the ðn − 1Þ þ 1 decomposition of the n-dimensional
Palatini action with or without a cosmological constant
(n ≥ 3) and provide the appropriate parametrizations of the
frame and the connection. We then identify the auxiliary
fields present in the action and eliminate them, thus getting
the Hamiltonian form of the n-dimensional Palatini action
with manifest local SOðn − 1; 1Þ [or SOðnÞ] symmetry that
involves just first-class constraints. In Sec. III we perform a
canonical transformation to new SOðn − 1; 1Þ [or SOðnÞ]
variables that simplify the expressions of the constraints.
In Sec. IV we impose the time gauge and obtain the
SOðn − 1Þ ADM formulation of general relativity. In
Sec. V we give some conclusions. In addition, in
Appendix A we discuss in detail the 3-dimensional
Palatini action (for which the auxiliary fields are absent
from the very beginning), and in Appendix B we depict an
alternative approach for the 4-dimensional case.

II. MANIFESTLY LORENTZ-COVARIANT
CANONICAL ANALYSIS

Let M be a n-dimensional Lorentzian or Riemannian
manifold. Points of M are labeled with coordinates xα,

where Greek letters α; β;… represent spacetime indices. To
carry out the canonical analysis, we assume that M can be
foliated by spacelike leaves diffeomorphic to Σ so thatM is
diffeomorphic toR × Σ, with Σ being an orientable (n − 1)-
dimensional spatial manifold without boundary. We use
local coordinates ðxαÞ ¼ ðt; xaÞ adapted to this foliation of
spacetime, where t and xa (a; b;… ¼ 1;…; n − 1) label
points on R and Σ, respectively. In the first-order formal-
ism, the fundamental variables are an orthonormal frame
of 1-forms eI and a connection 1-form ωI

J compatible
with the metric ðηIJÞ ≔ diagðσ; 1;…; 1Þ, dηIJ − ωK

IηKJ −
ωK

JηIK ¼ 0, and thus ωIJ ¼ −ωJI because frame indices
I; J;… ¼ 0;…; n − 1 are raised and lowered with ηIJ. For
σ ¼ −1 the frame rotation group is the Lorentz group
SOðn − 1; 1Þ, whereas for σ ¼ þ1 it is the rotation group
SOðnÞ. The weight of tensor densities is either denoted
with a tilde “∼” or explicitly mentioned somewhere in the
paper. The SOðn − 1; 1Þ [or SOðnÞ] totally antisymmetric
tensor ϵI1���In is such that ϵ01���n−1 ¼ 1. Likewise, the totally
antisymmetric spacetime tensor density of weight þ1 (−1)
is denoted as η̃α1���αn (η

˜
α1���αn ) and satisfies η̃t1���n−1 ¼ 1

(η
˜
t1���n−1 ¼ 1). The symmetrizer and the antisymmetrizer

are defined by VðαβÞ ≔ ðVαβ þ VβαÞ=2 and V ½αβ� ≔ ðVαβ −
VβαÞ=2, respectively. “∧” and “d” stand for the wedge
product and the exterior derivative of differential forms,
correspondingly.
In the first-order formalism, general relativity with a

vanishing or nonvanishing cosmological constant Λ is
described by the Palatini (or Einstein-Cartan) action1

S½e;ω� ¼ κ

Z
M
½⋆ðeI ∧ eJÞ ∧ FIJ − 2Λρ�; ð1Þ

where FI
J ≔ dωI

J þ ωI
K ∧ ωK

J is the curvature of ωI
J,

ρ ≔ ð1=n!ÞϵI1���IneI1 ∧ � � � ∧ eIn is the volume form ofM, κ
is a constant related to Newton’s constant, and “⋆” is the
Hodge dual map given by

⋆ðeI1 ∧ � � � ∧ eIkÞ ≔
1

ðn − kÞ! ϵI1���IkIkþ1���Ine
Ikþ1 ∧ � � � ∧ eIn :

ð2Þ

To perform the canonical analysis of the action (1), we
first make the ðn − 1Þ þ 1 decomposition of it by express-
ing the frame and the connection respectively as eI ¼
etIdtþ eaIdxa and ωI

J ¼ ωt
I
Jdtþ ωa

I
Jdxa. It is also

convenient to introduce the unit normal to each leaf Σ,
n ≔ nIeI , that fulfills nInI ¼ σ and nð∂aÞ ¼ 0 (or, equiv-
alently, eaInI ¼ 0), which has the following explicit form:

1The equations of motion obtained from this action are
equivalent—for nondegenerate orthonormal frames—to Ein-
stein’s equations Rαβ − 1

2
Rgαβ þ Λgαβ ¼ 0.
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nI ≔
1

ðn − 1Þ! ffiffiffi
q

p ϵII1���In−1 η̃ta1���an−1ea1I1 � � � ean−1In−1 ; ð3Þ

with q ≔ detðqabÞ > 0 (of weight þ2), qab ≔ eaIebI being
the induced metric on Σ, whose inverse is denoted by qab.
This object allows us to introduce the projector on the
orthogonal plane to nI as

qIJ ≔ qabeaIebJ ¼ δIJ − σnInJ: ð4Þ

Therefore, the ðn − 1Þ þ 1 decomposition of the action
(1) is given by (we recall that all spatial boundary terms will
be neglected because Σ has no boundary)

S ¼ κ

Z
R×Σ

dtdn−1xð−2Π̃aInJ∂tωaIJ þ ωtIJG̃
IJ þ etI C̃

IÞ;

ð5Þ

where we have defined

Π̃aI ≔
ffiffiffi
q

p
qabebI; ð6aÞ

G̃IJ ≔ −2δ½IKδ
J�
L ½∂aðΠ̃aKnLÞ þ 2ωa

K
MΠ̃a½MnL��; ð6bÞ

C̃I ≔
1ffiffiffi
q

p ½2Π̃a
IΠ̃bJnKFabJK þ nIðΠ̃aJΠ̃bKFabJK − 2ΛqÞ�;

ð6cÞ

with Fab
I
J ≔ ∂aωb

I
J − ∂bωa

I
J þ ωa

I
Kωb

K
J − ωb

I
Kωa

K
J

being the curvature of ωa
I
J and where we have also

suppressed a wedge product between dt and dn−1x ≔
dx1 ∧ � � � ∧ dxn−1 in (5) to simplify notation.
To continue our analysis, we express etI in terms of the

lapse function N and the shift vector Na [3] as

etI ¼ NnI þ NaeaI; ð7Þ

and compute the inverse of the expression (6a)

eaI ¼ h
1

2ðn−2Þh
˜̃
abΠ̃bI; ð8Þ

where h
˜̃
ab is the inverse of

˜̃h
ab ≔ Π̃aIΠ̃b

I and h ≔ detð ˜̃habÞ
has weight 2ðn − 2Þ. Notice that the right-hand side of (8)
is a function of Π̃aI only. As a consequence of this, nI

in (3) can also be expressed in terms of Π̃aI as

nI ¼
1

ðn − 1Þ! ffiffiffi
h

p ϵII1���In−1η
˜ ta1���an−1

Π̃a1I1 � � � Π̃an−1In−1 : ð9Þ

Substituting (8) and (9) into the right-hand side of (7) we
can reinterpret etI as a function of the n2 variables N, Na,
and Π̃aI . With this in mind, relations (7) and (8) define a

one-to-one map from the n2 variables N, Na, and Π̃aI to the
original n2 frame components eαI . The inverse map that
sends eαI to N, Na, and Π̃aI is given by (6a) together with

N ¼ σetInI; ð10aÞ

Na ¼ qabetIebI; ð10bÞ

where nI must be understood as that given by (3).
Therefore, using (7), (8), and (9), the action (5) acquires

the form2

S ¼ κ

Z
R×Σ

dtdn−1xð−2Π̃aInJ∂tωaIJ þ ωtIJG̃
IJ

− NaṼa − N
˜

˜̃CÞ; ð11Þ

with

Ṽa ≔ −2Π̃bInJFabIJ; ð12aÞ

˜̃C ≔ −σΠ̃aIΠ̃bJFabIJ þ 2σh
1

n−2Λ; ð12bÞ

N
˜
≔ h−

1
2ðn−2ÞN: ð12cÞ

For future purposes, we introduce the covariant deriva-
tive ∇a defined on each leaf Σ that annihilates eaI through

∇aebI ≔ ∂aebI þ Γa
I
JebJ − Γc

abecI ¼ 0; ð13Þ

with ΓaIJ ¼ −ΓaJI and Γa
bc ¼ Γa

cb. These are nðn − 1Þ2
inhomogeneous linear equations for nðn − 1Þ2=2
unknowns ΓaIJ and nðn − 1Þ2=2 unknowns Γa

bc, so that
the solution is unique. It turns out that Γa

bc are the
Christoffel symbols associated with the induced metric
qab on Σ, whereas the explicit solution for ΓaIJ is given by

ΓaIJ ¼ qbceb½Ijð∂aecjJ� − ∂ceajJ�Þ þ σqbceb½InJ�nK

× ð∂aecK þ ∂ceaKÞ þ qbcqdfeaKeb½IejdjJ�∂fecK:

ð14Þ

Furthermore, from (6a) and (13), we find that the operator
∇a annihilates Π̃aI as well

∇aΠ̃bI ¼ ∂aΠ̃bI þ Γa
I
JΠ̃bJ þ Γb

acΠ̃cI − Γc
acΠ̃bI ¼ 0:

ð15Þ

Either by solving this equation similarly as we did for (13)
or simply by substituting (8) into the right-hand-side of
(14), we find

2From (8) we get h ¼ qn−2, and thus
ffiffiffi
q

p ¼ h
1

2ðn−2Þ.
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ΓaIJ ¼ h
˜̃
abΠ̃c½I∂ jcjΠ̃b

J� þ h
˜̃
abh

˜̃
cdΠ̃c

KΠ̃b½IΠ̃f
J�∂fΠ̃dK

þ h
˜̃
bcΠ̃b½I∂ jajΠ̃c

J� − h
˜̃
abh

˜̃
cdΠ̃b

KΠ̃c½IΠ̃f
J�∂fΠ̃dK

− σh
˜̃
abΠ̃c½InJ�nK∂cΠ̃bK þ σh

˜̃
bcΠ̃b½InJ�nK∂aΠ̃cK:

ð16Þ

Now, following the same approach of Refs. [10,12],
we realize that the term involving ∂tωaIJ in (11) can be
written as

−2Π̃aInJ∂tωaIJ ¼ 2Π̃aI∂tðWa
b
IJKωb

JKÞ; ð17Þ

with Wa
b
IJK ¼ −Wa

b
IKJ given by

Wa
b
IJK ≔ −ðδbaηI½JnK� þ nIh

˜̃
acΠ̃c½JΠ̃b

K�Þ: ð18Þ

It is worthwhile to remark that the equality (17) is exact.
That is to say, neither temporal nor spatial boundary terms
have been neglected. The relation (17) clearly suggests to
define the nðn − 1Þ configuration variables

QaI ≔ Wa
b
IJKωb

JK; ð19Þ

which thus are canonically conjugate to Π̃aI. The variables
QaI embody the combination of the components of the
connection ωa

IJ contributing to the dynamical variables of
the theory; those variables are precisely singled out by the
object Wa

b
IJK. We can interpret (19) as nðn − 1Þ linear

equations for nðn − 1Þ2=2 unknowns ωaIJ. In consequence,
the solution for ωaIJ must involve nðn−1Þ2=2−nðn−1Þ¼
nðn−1Þðn−3Þ=2 free variables. Let us call these variables
λ
˜̃
abc, which satisfy λ

˜̃
abc ¼ −λ

˜̃
acb and the traceless condition

λ
˜̃
abc

˜̃h
ab ¼ 0; both conditions guarantee the right amount of

independent variables that λ
˜̃
abc must contain. The solution

for ωaIJ can be expressed as

ωaIJ ¼ Ma
b
IJKQb

K þ ˜̃Na
bcd

IJλ
˜̃
bcd; ð20Þ

with

Ma
b
IJK ≔

2σ

ðn − 2Þ ½ðn − 2Þδban½IηJ�K þ h
˜̃
acΠ̃c½IΠ̃b

J�nK�;

ð21Þ
˜̃Na

bcd
IJ ≔

�
δbaδ

½c
e δ

d�
f −

2

n − 2
h
˜̃
ae
˜̃h
b½c
δd�f

�
Π̃e½IΠ̃f

J�: ð22Þ

Notice thatMa
b
IJK and ˜̃Na

bcd
IJ satisfyMa

b
IJK¼−Ma

b
JIK,

˜̃Na
bcd

IJ ¼ − ˜̃Na
bcd

JI ¼ − ˜̃Na
bdc

IJ, and h
˜̃
bc

˜̃Na
bcd

IJ ¼ 0. We

point out that the variables λ
˜̃
abc are present in (20) only for

n ≥ 4. When n ¼ 3, there are no variables λ
˜̃
abc in (20)

because in that case both the number of equations contained
in the expression (19) and the number of unknowns ωaIJ
are equal to six. Despite the fact that there are no variables
λ
˜̃
abc for n ¼ 3, we will show in Appendix A that the

final canonical analysis for n ¼ 3 has exactly the same
form as the case n ≥ 4. Let us consider n > 3 from now on
in this section. For the sake of completeness, we define the
tensor density U

˜̃
abc

dIJ with the properties U
˜̃
abc

dIJ ¼
−U
˜̃
acb

dIJ ¼ −U
˜̃
abc

dJI and ˜̃h
ab
U
˜̃
abc

dIJ ¼ 0 as follows:

U
˜̃
abc

dIJ≔
�
δdah

˜̃
e½bh

˜̃
c�f−

2

n−2
h
˜̃
a½bh

˜̃
c�fδde

�
Π̃e½IΠ̃jfjJ�: ð23Þ

It is related to ˜̃Na
bcd

IJ by

˜̃h
ea ˜̃h

gb ˜̃h
hc
h
˜̃
fdU

˜̃
abc

dIJ ¼ ˜̃Nf
eghIJ: ð24Þ

The objects (18), (21), (22) and (23) all together fulfill the
orthogonality relations

Wa
cIKLMc

b
KLJ ¼ δbaδ

I
J; ð25aÞ

U
˜̃
cde

gIJ ˜̃Ng
fab

IJ ¼ δfcδ
½a
d δ

b�
e −

1

n− 2
ðh
˜̃
cd
˜̃h
f½a
δb�e −h

˜̃
ce
˜̃h
f½a
δb�d Þ;

ð25bÞ

Wa
f
IJK

˜̃Nf
bcdJK ¼ 0; ð25cÞ

U
˜̃
abc

dIJMd
e
IJK ¼ 0: ð25dÞ

The presence of the second term on the right-hand side of
(25b) is a consequence of both traceless conditions
h
˜̃
bc

˜̃Na
bcd

IJ ¼ 0 and ˜̃h
ab
U
˜̃
abc

dIJ ¼ 0. Using (20) together

with the relations (25a) and (25b), we get (19) as well as

λ
˜̃
abc ¼ U

˜̃
abc

dIJωdIJ; ð26Þ

which shows that QaI and λ
˜̃
abc are independent variables

among themselves. Furthermore, we have the completeness
relation

Ma
c
IJMWc

bMKL þ ˜̃Na
cdf

IJU
˜̃
cdf

bKL ¼ δbaδ
K
½Iδ

L
J�: ð27Þ

Now, we replace ωa
I
J with QaI and λ

˜̃
abc by substituting

(20) into the action principle (11) and obtain

S ¼ κ

Z
R×Σ

dtdn−1xð2Π̃aI∂tQaI þ ωtIJG̃
IJ−NaṼa − N

˜

˜̃CÞ;
ð28Þ

with
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G̃IJ ¼ 2Π̃a½IQa
J� þ 4δI½Kδ

J
L�Π̃

a½KnM�Γa
L
M; ð29aÞ

Ṽa ¼ 2ð2Π̃bI∂ ½aQb�I −QaI∂bΠ̃bIÞ þ G̃IJðMa
bIJKQbK þ ˜̃Na

bcdIJ
λ
˜̃
bcdÞ; ð29bÞ

˜̃C ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�½QaIQbJ þ 2QaIΓbJKnK þ ΓaILΓbJKnKnL� þ 2σΛh
1

ðn−2Þ þ 2Π̃aInJ∇aG̃IJ

−
ðn − 3Þ
ðn − 2Þ σn

IG̃J
KnKG̃IJ þ σ ˜̃h

db ˜̃h
cf ˜̃h

eaðλ
˜̃
abc −U

˜̃
abc

h
KLΓh

KLÞðλ
˜̃
dfe −U

˜̃
dfe

g
IJΓg

IJÞ; ð29cÞ

where Rab
I
J ≔ ∂aΓb

I
J − ∂bΓa

I
J þ Γa

I
KΓb

K
J − Γb

I
KΓa

K
J

is the curvature of the connection Γa
I
J.

It is remarkable that G̃IJ–given by (29a)–involves no

λ
˜̃
abc. It is also surprising that Ṽa and ˜̃C–given correspond-

ingly by (29b) and (29c)–contain no spatial derivatives of
λ
˜̃
abc, because (12a) and (12b) contain spatial derivatives of

ωa
I
J. By inspection, it is pretty obvious that the variables

λ
˜̃
abc are auxiliary fields [14]. At this point, there are two,

equivalent, ways to continue. The first way consists in to
first fix the variables λ

˜̃
abc by using their equation of motion

and then to substitute them back into the action (28). Next,
a redefinition of the Lagrange multiplier in front of the
Gauss constraint G̃IJ is required (this way was followed in
Ref. [12]). The second way consists in first to redefine the
Lagrange multiplier in front of G̃IJ and then to get rid of
the auxiliary fields λ

˜̃
abc. We will follow the second way.

Then, factoring out all terms in Ṽa and ˜̃C involving G̃IJ,
we get

S ¼ κ

Z
R×Σ

dtdn−1xð2Π̃aI∂tQaI − ΛIJG̃
IJ−2NaD̃a−N

˜

˜̃SÞ;

ð30Þ

with

G̃IJ ¼ 2Π̃a½IQa
J� þ 4δI½Kδ

J
L�Π̃

a½KnM�Γa
L
M; ð31aÞ

D̃a ≔ 2Π̃bI∂ ½aQb�I −Qa
I∂bΠ̃b

I; ð31bÞ

˜̃S ≔ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�ðQaIQbJ

þ 2QaIΓbJKnK þ ΓaIKΓbJLnKnLÞ þ 2σh
1

n−2Λ

þ σ ˜̃h
db ˜̃h

cf ˜̃h
eaðλ

˜̃
abc −U

˜̃
abc

h
KLΓh

KLÞ
× ðλ

˜̃
dfe − U

˜̃
dfe

g
IJΓg

IJÞ; ð31cÞ

where D̃a and ˜̃S are the diffeomorphism and Hamiltonian
constraints, respectively. Also, as promised, we have
replaced ωtIJ with ΛIJ via the field redefinition

ωtIJ ¼ −ΛIJ þ NaðMa
b
IJKQb

K þ ˜̃Na
bcd

IJλ
˜̃
bcdÞ

− 2Π̃a½InJ�∇aN
˜
− σ

ðn − 3Þ
ðn − 2ÞN˜ n½IG̃J�KnK: ð32Þ

Therefore, the original connection variables ωα
IJ have been

replaced with the independent variables Qa
I , λ

˜̃
abc (satisfy-

ing the properties already mentioned for them), and ΛIJ. It
is clear by now that λ

˜̃
abc are auxiliary fields that can be

eliminated by using their own equation of motion. In fact,
by making the variation of the action (30) with respect to
λ
˜̃
abc (taking into account the properties for them), we have

N
˜

˜̃h
d½b ˜̃hc�e ˜̃hafðλ

˜̃
dfe − U

˜̃
dfe

g
IJΓg

IJÞ ¼ 0; ð33Þ

which implies

λ
˜̃
abc ¼ U

˜̃
abc

d
IJΓd

IJ: ð34Þ

Substituting back λ
˜̃
abc into (30), we arrive at the

Hamiltonian form of the n-dimensional Palatini action
with a cosmological constant Λ:

S ¼ κ

Z
R×Σ

dtdn−1xð2Π̃aI∂tQaI − ΛIJG̃
IJ−2NaD̃a−N

˜

˜̃HÞ;

ð35Þ
with the Gauss, diffeomorphism and scalar constraints
given by

G̃IJ ¼ 2Π̃a½IQa
J� þ 4δI½Kδ

J
L�Π̃

a½KnM�Γa
L
M; ð36aÞ

D̃a ¼ 2Π̃bI∂ ½aQb�I −Qa
I∂bΠ̃b

I; ð36bÞ
˜̃H ≔ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�ðQaIQbJ

þ 2QaIΓbJKnK þ ΓaIKΓbJLnKnLÞ þ 2σh
1

n−2Λ;

ð36cÞ
respectively. It is worth mentioning that, although the
spacetime dimension n shows up in the term involving
the (n − 2)-th root of h in (36c), the constraints (36a)–(36c)
take exactly the same form in all spacetime dimensions. For
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Λ ¼ 0, the form of the constraints is actually independent
of the spacetime dimension.
Therefore, we have obtained a manifestly Lorentz-

covariant Hamiltonian formulation (35) for the Palatini
action (1). This Hamiltonian form of the action emerged
from parametrizing the original frame variables eαI in
terms of the momentum variables Π̃aI , the lapse N, and
the shift Na as given by (7)–(8), whereas the original
connection variables ωα

I
J have been parametrized in

terms of the configuration variables Qa
I , the auxiliary

fields λ
˜̃
abc, and the Lagrange multipliers ΛIJ as depicted

in (20) and (32).
Notice that the map from ωa

I
J to Qa

I and λ
˜̃
abc through

(19) and (26), with inverse map given by (20), can be
seen as a change of variables. Nevertheless, as is clear
from (17) and (19), the presymplectic structure present
in (11) becomes the canonical symplectic structure
present in (28) when such a map is used. Therefore,
we reach a smaller phase-space and simultaneously
parametrize it with manifestly Lorentz-covariant canoni-
cal variables (Qa

I , Π̃a
I). The reduction map is given by

ðωa
I
J; Π̃a

IÞ ⟼ ðQa
I; Π̃a

IÞ using (19). This reduction
process leaves the null directions of the presymplectic
structure (11) out of the canonical symplectic structure
present in (28). The null directions are clearly along λ

˜̃
abc,

which turn out to be auxiliary fields that can be
eliminated from the action by using their own equation
of motion. The variables ΛIJ, Na, and N

˜
are Lagrange

multipliers imposing the SOðn − 1; 1Þ [or SOðnÞ] Gauss,
diffeomorphism, and scalar constraints; respectively.
These constraints depend on the phase space variables
ðQa

I; Π̃a
IÞ satisfying the Poisson brackets

fQa
Iðt; xÞ; Π̃b

Jðt; yÞg ¼ 1

2κ
δbaδ

I
Jδ

n−1ðx; yÞ: ð37Þ

We close this section with two remarks:
(i) For 4-dimensional spacetimes, the canonical de-

scription of general relativity with a cosmological
constant given in (35) is the same as the one obtained
from the canonical variables for the Holst action
through a canonical transformation (see Sec. IV
of Ref. [12]).

(ii) As shown in Appendix A, for 3-dimensional space-
times there are no auxiliary fields λ

˜̃
abc (notice that

U
˜̃
abc

dIJ identically vanishes for n ¼ 3, as for any

object with the same symmetries of λ
˜̃
abc in three of

its spatial indices). In spite of this, the resulting
Hamiltonian form of the theory has exactly the same
structure given by (35).

III. OTHER MANIFESTLY LORENTZ-
COVARIANT PHASE-SPACE VARIABLES

It is important to emphasize that the manifestly Lorentz-
covariant canonical analysis of general relativity with a
cosmological constant embodied in the action (35) is not
the canonical description of the Palatini action given in
Refs. [8,9]. We show in what follows that the latter can be
obtained from our Hamiltonian formulation through a very
simple canonical transformation leaving the momentum
Π̃aI unchanged: ðQaI; Π̃aIÞ ⟼ ðQaI; Π̃aIÞ. Both configu-
ration variables are related to each other by

QaI ¼ QaI −Wa
b
IJKΓb

JK: ð38Þ
This transformation is indeed canonical because

2Π̃aI∂tQaI ¼ 2Π̃aI∂tQaI þ ∂að2nI∂tΠ̃aIÞ; ð39Þ
and since Σ has no boundary, the last term of the equality
(39) does not contribute to the Hamiltonian action. More
precisely, using (38), the action (35) acquires the form

S¼ κ

Z
R×Σ

dtdn−1xð2Π̃aI∂tQaI −ΛIJG̃
IJ − 2NaD̃a −N

˜

˜̃HÞ;

ð40Þ
with

G̃IJ ¼ 2Π̃a½IQa
J�; ð41aÞ

D̃a ¼ 2Π̃bI∂ ½aQb�I −Qa
I∂bΠ̃b

I; ð41bÞ
˜̃H ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�QaIQbJ þ 2σh

1
ðn−2ÞΛ:

ð41cÞ

This is the formulation obtained in Ref. [8,9] through a
lengthy process of solving the second-class constraints
involved there. Notice also that the canonical variables
ðQaI; Π̃aIÞ are SOðn − 1; 1Þ [or SOðnÞ] vectors.
Alternatively, the manifestly Lorentz-covariant

Hamiltonian formulation (40) can also be directly obtained
from (11) by following an analogous procedure to that
developed in Sec. II. To achieve this, we have to handle the
equality (17) as follows:

−2Π̃aInJ∂tωaIJ ¼ −2Π̃aInJ∂tðωaIJ − ΓaIJ þ ΓaIJÞ
¼ −2Π̃aInJ∂tðωaIJ − ΓaIJÞ
− 2∂aðnI∂tΠ̃aIÞ

¼ 2Π̃aI∂t½Wa
b
IJKðωb

JK − Γb
JKÞ�

− 2∂aðnI∂tΠ̃aIÞ: ð42Þ

The reason to keep ΓaIJ with the minus sign is because
ωb

JK − Γb
JK is an SOðn − 1; 1Þ [or SOðnÞ] vector. The
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next step is to define the expression inside the brackets as
the configuration variables

QaI ≔ Wa
b
IJKðωb

JK − Γb
JKÞ; ð43Þ

and so

−2Π̃aInJ∂tωaIJ ¼ 2Π̃aI∂tQaI − 2∂aðnI∂tΠ̃aIÞ: ð44Þ

The following step is to solve (43) for ωaIJ, which gives

ωaIJ ¼ ΓaIJ þMa
b
IJKQb

K þ ˜̃Na
bcd

IJu
˜̃
bcd; ð45Þ

with Ma
b
IJK and ˜̃Na

bcd
IJ given by (21) and (22), respec-

tively; and the variables u
˜̃
abc satisfy u

˜̃
abc ¼ −u

˜̃
acb and the

traceless condition u
˜̃
abc

˜̃h
ab ¼ 0. The cases n ¼ 3 (that does

not involve u
˜̃
abc) and n ≥ 4 must be analyzed separately as

we already explained. The next step is to substitute (45)
into the action (11) and then redo the analysis performed in
Sec. II to eliminate the auxiliary fields u

˜̃
abc and thus obtain

(40). This is done as follows. Substituting (45) into (11),
we get

S ¼ κ

Z
R×Σ

dtdn−1xð2Π̃aI∂tQaI þ ωtIJG̃
IJ−NaṼa−N

˜

˜̃CÞ;

ð46Þ

with

G̃IJ ¼ 2Π̃a½IQa
J�; ð47aÞ

Ṽa ¼ 2ð2Π̃bI∂ ½aQb�I −QaI∂bΠ̃bIÞ
þ G̃IJðΓa

IJ þMa
bIJKQbK þ ˜̃Na

bcdIJu
˜̃
bcdÞ; ð47bÞ

˜̃C ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�QaIQbJ

þ 2σΛh
1

ðn−2Þ þ 2Π̃aInJ∇aG̃IJ

−
ðn − 3Þ
ðn − 2Þ σn

IG̃J
KnKG̃IJ þ σ ˜̃h

db ˜̃h
cf ˜̃h

ea
u
˜̃
abcu

˜̃
dfe:

ð47cÞ

Factoring out G̃IJ in Ṽa and ˜̃C, we obtain

S ¼ κ

Z
R×Σ

dtdn−1xð2Π̃aI∂tQaI − λIJG̃
IJ−2NaD̃a−N

˜

˜̃SÞ;

ð48Þ

with

G̃IJ ¼ 2Π̃a½IQa
J�; ð49aÞ

D̃a ≔ 2Π̃bI∂ ½aQb�I −QaI∂bΠ̃bI; ð49bÞ
˜̃S ≔ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�QaIQbJ

þ 2σh
1

n−2Λþ σ ˜̃h
db ˜̃h

cf ˜̃h
ea
u
˜̃
abcu

˜̃
dfe; ð49cÞ

and where we have also replaced ωtIJ with λIJ through

ωtIJ ¼ −λIJ þ NaðΓaIJ þMa
b
IJKQb

K þ ˜̃Na
bcd

IJu
˜̃
bcdÞ

− 2Π̃a½InJ�∇aN
˜
−σ

ðn − 3Þ
ðn − 2Þ N˜ n½IG̃J�KnK: ð50Þ

The action (48) depends on the phase space variables
ðQaI; Π̃aIÞ, the Lagrange multipliers ðλIJ; Na; N

˜
Þ, and the

auxiliary fields u
˜̃
abc. Now, we can get rid of the variables

u
˜̃
abc by using their own equation of motion, which is

given by

N
˜

˜̃h
d½b ˜̃hc�e ˜̃hafu

˜̃
dfe ¼ 0: ð51Þ

Given that N
˜
≠ 0, its solution for u

˜̃
abc is

u
˜̃
abc ¼ 0: ð52Þ

Substituting this into the constraints of (48) we get
precisely the Hamiltonian formulation (40).

IV. TIME GAUGE

We shall fix the boost freedom to reduce the gauge group
SOðn − 1; 1Þ [or SOðnÞ] to the rotation group SOðn − 1Þ.
This is achieved by imposing by hand the gauge condition
Π̃a0 ≈ 0, which forms a second-class set [5] with the boost
constraint G̃0i ≈ 0 because

fΠ̃a0ðt; xÞ; G̃0iðt; yÞg ¼ σ

2κ
Π̃aiδn−1ðx; yÞ ð53Þ

defines an invertible ðn − 1Þ × ðn − 1Þ matrix for non-
degenerate Π̃ai, something that we assume. This
assumption combined with Π̃a0 ≈ 0 in turn implies
ni ≈ 0. So, making the second-class constraints strongly
equal to zero, we get from (29a)

Qa0 ¼ −n0Π̃bi∂bΠ̃ai; ð54Þ

where Π̃ai denotes the inverse of Π̃ai [we also recall that

(16) implies Γa0i ¼ 0, whereas Γaij is a function of Π̃ai and
their derivatives]. So, the action (35) becomes
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S ¼ κ

Z
R×Σ

dtdn−1xð2Π̃ai∂tQai − ΛijG̃
ij−2NaD̃a−N

˜

˜̃HÞ;

ð55Þ

with

G̃ij ¼ 2Π̃a½iQa
j�; ð56aÞ

D̃a ¼ 2Π̃bi∂ ½aQb�i −Qai∂bΠ̃bi; ð56bÞ

˜̃H ¼ −σΠ̃aiΠ̃bjRabij þ 2Π̃a½iΠ̃jbjj�QaiQbj

þ 2σ½detðΠ̃aiÞ� 2
n−2Λ: ð56cÞ

In analogy with the 4-dimensional case [6], this formu-
lation could be called the SOðn − 1Þ ADM formulation of
general relativity [2]. On the other hand, if the gauge fixing
is imposed directly in the action (40), we haveQa0 ¼ 0 and
we get exactly the action (55) with Qai taking the place of
Qai. The fact that Qai ¼ Qai can be easily seen from the
relation (38). Therefore, in the time gauge, the same
formulation (55) arises from both (35) and (40).

V. CONCLUSIONS

In this paper we performed, in an SOðn − 1; 1Þ [or
SOðnÞ] covariant fashion, the canonical analysis of the n-
dimensional Palatini action with or without a cosmological
constant (1). We followed an strategy akin to that used in
Ref. [12], where the introduction of second-class con-
straints in the canonical analysis of the Holst action was
entirely avoided. To that end, we expressed the components
of the connection ωaIJ in terms of the variables QaI
and λ

˜̃
abc as shown in the relation (20). The construction

underlying these variables is laid out in Sec. II, which
entails a reduction of the presymplectic structure of the
theory to a canonical symplectic structure. It turns out that
the variablesQaI play the role of the configuration variables
of the resulting theory, whereas the variables λ

˜̃
abc are

auxiliary fields that can be eliminated from the action by
using their own dynamics. The final phase space is thus
parametrized by the canonical pair ðQaI; Π̃aIÞ, where Π̃aI is
related to the spatial components of the orthonormal frame
by the expression (6a), subject to the Gauss, diffeomor-
phism, and scalar constraints (36a)–(36c), which are first-
class and make up the full set of constraints of the theory.
Therefore, the introduction of second-class constraints and
the subsequent elimination of them is completely bypassed
in our approach.
In addition, we have also performed the canonical trans-

formation (38), which maps ðQaI; Π̃aIÞ into ðQaI; Π̃aIÞ; in
terms of these variables, the diffeomorphism constraint
remains the same, whereas the Gauss and scalar constraints
get much simpler [see the expressions (41a)–(41c)].
The ensuing canonical formulation (40) is actually the

one obtained in Refs. [8,9] for the higher-dimensional
Palatini action after eliminating the second-class con-
straints arising in the canonical analysis carried out by
the authors. This procedure is long and highly nontrivial,
since the resulting second-class constraints are not inde-
pendent (and thus reducible) for n > 4. In contrast, our
approach is quite straightforward and leads to the
Hamiltonian action (40) in no time. For the sake of
completeness, we detail the case n ¼ 3 (where there are
no variables λ

˜̃
abc) in Appendix A, and also present an

alternative approach for the case n ¼ 4 in Appendix B.
Finally, we imposed the time gauge on both actions (35)
and (40), and obtained as a result the SOðn − 1Þ ADM
formulation of general relativity embodied in the
action (55).
It is worth stressing the simplicity and tidiness of our

approach to arrive at the Hamiltonian action (35). What is
really remarkable is that such a decomposition (20) of the
connection exists for general relativity in all dimensions
n ≥ 3 (recall that in n ¼ 3 there are no variables λ

˜̃
abc),

something that enormously simplifies the canonical analy-
sis of the theory, as we have shown in this paper. This
decomposition is not only convenient for pure gravity, but
can also be employed to build up the Hamiltonian formu-
lation of general relativity coupled to matter fields. Perhaps
the most interesting case would be the coupling of a spin
1=2 field, because given that it couples directly to the
SOðn − 1; 1Þ connection, then the variables λ

˜̃
abc are

expected to get nontrivial contributions from this matter
field. On the other hand, given that the diffeomorphism and
scalar constraints can be combined into a single constraint

H̃I ≔ h−1=½2ðn−2Þ�ð2Π̃a
ID̃a þ σnI

˜̃HÞ, it would be really
interesting to investigate how this covariant constraint is
related to the Lagrangian gauge symmetry unveiled in
Ref. [15] for the n-dimensional Palatini action. We finally
remark that the approach of this paper can also be used to
do deal with the so-called “space gauge” following the
same ideas of Ref. [16].
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APPENDIX A: CANONICAL ANALYSIS
FOR n= 3

To perform the canonical analysis for 3-dimensional
general relativity with a cosmological constant, we start
from the definition (19), which defines a system of 6 linear
equations for the unknowns ωa

I
J whose solution is
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ωaIJ ¼ Ma
b
IJKQb

K; ðA1Þ

with

Ma
b
IJK ¼ 2σðδban½IηJ�K þ h

˜̃
acΠ̃c½IΠ̃b

J�nKÞ: ðA2Þ

Notice that there are no λ
˜̃
abc variables involved.

Substituting (A1) into the action (11), we obtain

S ¼ κ

Z
R×Σ

dtd2xð2Π̃aI∂tQaI þ ωtIJG̃
IJ − NaṼa − N

˜

˜̃CÞ;

ðA3Þ

where

G̃IJ ¼ 2Π̃a½IQa
J� þ 4δI½Kδ

J
L�Π̃

a½KnM�Γa
L
M; ðA4aÞ

Ṽa ¼ 2ð2Π̃bI∂ ½aQb�I −QaI∂bΠ̃bIÞ þ G̃IJMa
bIJKQbK;

ðA4bÞ
˜̃C ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�ðQaIQbJ þ 2QaIΓbJKnK

þ ΓaILΓbJKnKnLÞ þ 2σΛhþ 2Π̃aInJ∇aG̃IJ: ðA4cÞ

Factoring out G̃IJ in Ṽa and
˜̃C, we arrive at the Hamiltonian

formulation of the 3-dimensional Palatini action with a
cosmological constant

S ¼ κ

Z
R×Σ

dtd2xð2Π̃aI∂tQaI − ΛIJG̃
IJ−2NaD̃a−N

˜

˜̃HÞ;

ðA5Þ

where

G̃IJ ¼ 2Π̃a½IQa
J� þ 4δI½Kδ

J
L�Π̃

a½KnM�Γa
L
M; ðA6aÞ

D̃a ≔ 2Π̃bI∂ ½aQb�I −Qa
I∂bΠ̃b

I; ðA6bÞ
˜̃H ≔ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�ðQaIQbJ

þ 2QaIΓbJKnK þ ΓaIKΓbJLnKnLÞ þ 2σhΛ ; ðA6cÞ

are the SOð2; 1Þ [or SOð3Þ] Gauss, diffeomorphism and
scalar constraints, respectively; and where we have rede-
fined the Lagrange multiplier ωtIJ through

ωtIJ ¼ −ΛIJ þ NaMa
b
IJKQb

K − 2Π̃a½InJ�∇aN
˜
: ðA7Þ

It is worth mentioning that the action (A5) is precisely
the same Hamiltonian formulation (35) obtained in Sec. II
for n > 3 (when the auxiliary fields λ

˜̃
abc are present).

Therefore, the Hamiltonian formulation (35) holds for
n ≥ 3.

1. Canonical transformations

To close this appendix, we perform a canonical trans-
formation–depending on two real parameters α and β–that
leave the momentum Π̃aI unchanged. The transformation
from ðQaI; Π̃aIÞ to the phase space variables ðYaI; Π̃aIÞ is
such that the configuration variables YaI are defined by

YaI ≔ QaI −
�
αWa

b
IJK þ σβ

2
δbaϵIJK

�
Γb

JK; ðA8Þ

where Wa
b
IJK has been defined in (18). This transforma-

tion is indeed canonical because

2Π̃aI∂tYaI ¼ 2Π̃aI∂tQaI

þ ∂a½−2σβϵIJKΠ̃a
JΠ̃b

K∂tðh
˜̃
bcΠ̃c

IÞ

þ 2αnI∂tΠ̃aI�: ðA9Þ

Hence, in terms of the canonical variables ðYaI; Π̃aIÞ, the
action (A5) becomes

S ¼ κ

Z
R×Σ

dtd2xð2Π̃aI∂tYaI − 2σΛIG̃
I−2NaD̃a−N

˜

˜̃HÞ;

ðA10Þ

with

G̃I ≔ −
1

2
ϵIJKG̃JK ¼ ðβ∂aΠ̃aI þ ϵIJKYa

JΠ̃aKÞ − 2ð1 − αÞϵIJKΓa
K
LΠ̃a½JnL�; ðA11aÞ

D̃a ¼ 2Π̃bI∂ ½aYb�I − Ya
I∂bΠ̃b

I; ðA11bÞ
˜̃H ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�½YaIYbJ þ ð1 − αÞΓbJKnKð2YaI þ σβϵILMΓa

LM þ ð1 − αÞΓaILnLÞ
þ σβϵIKLΓa

KLYbJ þ σβ2Γa
K
JΓbIK� þ 2σhΛ ; ðA11cÞ

and ΛI ≔ − 1
2
ϵIJKΛJK .

CANONICAL ANALYSIS OF N-DIMENSIONAL PALATINI … PHYS. REV. D 101, 024042 (2020)

024042-9



These ugly-looking expressions acquire a more familiar
form for particular choices of the parameters α and β:

(i) Case α ¼ 1 ¼ β. Let us denote AaI ≡ YaIjα¼1;β¼1.
Then the action (A10) takes the form

S ¼ κ

Z
R×Σ

dtd2xð2Π̃aI∂tAaI − 2σμIG̃
I

− 2NaD̃a − N
˜

˜̃HÞ; ðA12Þ

with

G̃I ¼ ∂aΠ̃aI þ ϵIJKAa
JΠ̃aK; ðA13aÞ

D̃a ¼ 2Π̃bI∂ ½aAb�I − Aa
I∂bΠ̃b

I; ðA13bÞ
˜̃H ¼ σϵIJKΠ̃aIΠ̃bJFab

K þ 2σhΛ; ðA13cÞ

where we have used the relation between the
curvature Rab

I
J and the curvature of the SOð2; 1Þ

[or SOð3Þ] connection Aa
I, Fab

I ¼ ∂aAb
I−

∂bAa
I þ ϵIJKAa

JAb
K , given by

− σΠ̃aIΠ̃bJRabIJ

¼ σϵIJKΠ̃aIΠ̃bJFab
K þ 2σΠ̃aI∇aG̃I

− 2Π̃a½IΠ̃jbjJ�ðAaIAbJ þ σΓa
K
JΓbIK

þ σϵIKLΓa
KLAbJÞ; ðA14Þ

and we have also redefined the Lagrange multiplier
ΛI as μI ≔ ΛI − Π̃a

I∇aN
˜
. The action (A12) embod-

ies the 3-dimensional Ashtekar formalism [7].
(ii) Case α ¼ 1 and β ¼ 0. From the transformation

(A8) it is clear that YaIjα¼1;β¼0 becomes the SOð2; 1Þ
[or SOð3Þ] vector QaI given in the relation (38), i.e.,
QaI ¼ YaIjα¼1;β¼0 and so the action (A10) takes the
form (40) for n ¼ 3 as already explained in Sec. III.

The relationship between AaI and QaI is
AaI ¼ ΓaI þQaI , with ΓaI ¼ −ðσ=2ÞϵIJKΓaJK .

APPENDIX B: ALTERNATIVE CANONICAL
ANALYSIS FOR n= 4

When n ¼ 4 the solution (20) for ωaIJ can, alternatively,
be expressed as

ωaIJ ¼ Ma
b
IJKQb

K þ Ñb
IJλ

˜
ab; ðB1Þ

with Ma
b
IJK still given by (21), whereas

Ña
IJ ≔ ϵIJKLΠ̃aKnL: ðB2Þ

There are six independent variables λ
˜
ab in (B1) because

λ
˜
ab ¼ λ

˜
ba. The expression (B1) comes from substituting

λ
˜̃
abc ¼ ϵIJKLh

˜̃
bdh

˜̃
ecΠ̃dIΠ̃eJΠ̃fKnLλ

˜
af

¼ −
σffiffiffi
h

p η
˜
tbcd

˜̃h
de
λ
˜
ae ðB3Þ

into (20). Notice that this expression for λ
˜̃
abc explicitly

satisfies λ
˜̃
abc ¼ −λ

˜̃
acb and the traceless condition

λ
˜̃
abc

˜̃h
ab ¼ 0. The parametrization (B1) is analogous to that

used in Refs. [10,12].
Note that the objects Wa

b
IJK , Ma

b
IJK, Ñ

b
IJ, and

U
˜
ab

cIJ ≔
1

2
ϵIJKLδcðah

˜̃
bÞeΠ̃e

KnL; ðB4Þ

satisfy the orthogonality relations

Wa
cIMNMc

b
MNJ ¼ δbaδ

I
J; ðB5Þ

U
˜
ab

cIJÑd
IJ ¼ δa

ðcδbdÞ; ðB6Þ

Wa
ðb
IJKÑcÞJK ¼ 0; ðB7Þ

U
˜
ab

cIJMc
d
IJK ¼ 0: ðB8Þ

The transformation (B1), ðQaI; λ
˜
abÞ ⟼ ðωaIJÞ, is

invertible, with inverse map ðωaIJÞ ⟼ ðQaI; λ
˜
abÞ given

by (19) and

λ
˜
ab ¼ U

˜
ab

cIJωcIJ; ðB9Þ

establishing thatQaI and λ
˜
ab are independent of each other.

Therefore, we can replace the variables ωaIJ with
ðQaI; λ

˜
abÞ by substituting (B1) into the action (11). By

doing this, we get

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI∂tQaI þ ωtIJG̃
IJ − NaṼa − N

˜

˜̃CÞ

ðB10Þ
with

G̃IJ ¼ 2Π̃a½IQa
J� þ 4δI½Kδ

J
L�Π̃

a½KnM�Γa
L
M; ðB11aÞ

Ṽa ¼ 2ð2Π̃bI∂ ½aQb�I −QaI∂bΠ̃bIÞ þ G̃IJðMa
bIJKQbK þ λ

˜
abÑbIJÞ; ðB11bÞ
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˜̃C ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�½QaIQbJ þ 2QaIΓbJKnK þ ΓaILΓbJKnKnL� þ 2σΛ
ffiffiffi
h

p
þ 2Π̃aInJ∇aG̃IJ

−
σ

2
nIG̃J

KnKG̃IJ þ σGabcdðλ
˜
ab − U

˜
ab

eIJΓeIJÞðλ
˜
cd −U

˜
cd

fKLΓfKLÞ; ðB11cÞ

where Gabcd ≔ ˜̃h
ab ˜̃h

cd − ˜̃h
ðajc ˜̃hjbÞd has weight þ4. Now,

factoring out the Gauss constraint G̃IJ in Ṽa and ˜̃C, and
redefining the Lagrange multiplier ωtIJ, the action becomes

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI∂tQaI − ΛIJG̃
IJ−2NaD̃a−N

˜

˜̃SÞ;

ðB12Þ
where

G̃IJ ¼ 2Π̃a½IQa
J� þ 4δI½Kδ

J
L�Π̃

a½KnM�Γa
L
M; ðB13aÞ

D̃a ≔ 2Π̃bI∂ ½aQb�I −Qa
I∂bΠ̃b

I; ðB13bÞ
˜̃S ≔ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�½QaIQbJ

þ 2QaIΓbJKnK þ ΓaIKΓbJLnKnL� þ 2σ
ffiffiffi
h

p
Λ

þ σGabcdðλ
˜
ab −U

˜
ab

eIJΓeIJÞðλ
˜
cd − U

˜
cd

fKLΓfKLÞ;
ðB13cÞ

and

ωtIJ ¼ −ΛIJ þ NaðMa
b
IJKQb

K þ λ
˜
abÑb

IJÞ

−2Π̃a½InJ�∇aN
˜
−
σ

2
N
˜
n½IG̃J�KnK: ðB14Þ

Thus, the action (B12) depends on the Lagrange
multipliers ΛIJ, Na, and N

˜
as well as on QaI , Π̃aI ,

and λ
˜
ab. As expected, the variables λ

˜
ab are auxiliary

fields that can be fixed by using their own equation of
motion

2σN
˜
Gabcdðλ

˜
cd − U

˜
cd

eIJΓeIJÞ ¼ 0; ðB15Þ

which implies, since N
˜
≠ 0 and Gabcd is invertible [12],

that

λ
˜
ab ¼ U

˜
ab

cIJΓcIJ: ðB16Þ

Substituting this back into the constraints of the action
(B12), we obtain precisely the canonical formulation (35)
for n ¼ 4.

1. Canonical transformations

Now, we consider a canonical transformation–depending
on some parameters α, β, and γ (the latter corresponds to the
Immirzi parameter)–that leaves the momentum variables
unchanged, whereas the configuration variables are pro-
moted to

XaI ¼ QaI −Wa
b
IJK

�
αΓb

JK þ ðβ − 1Þ
γ

� Γb
JK

�
; ðB17Þ

where �VIJ ≔ ð1=2ÞϵIJKLVKL. We recall that the variables
XaI were introduced in Ref. [12]. This transformation is
canonical because the symplectic term in the action (35)
changes by a total derivative:

2Π̃aI∂tQaI ¼ 2Π̃aI∂tXaI þ ∂a

�
−2αnI∂tΠ̃aI

þ σðβ − 1Þ
γ

ffiffiffi
h

p
η̃tabch

˜̃
bdh

˜̃
cfΠ̃f

I∂tΠ̃dI

�
:

ðB18Þ

In terms of the new phase-space variables ðXaI; Π̃aIÞ, the
action (35) for n ¼ 4 acquires the form

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI∂tXaI − ΛIJG̃
IJ−2NaD̃a−N

˜

˜̃HÞ;

ðB19Þ

with

G̃IJ ¼ 2Π̃a½IXa
J� þ 4

�
ð1 − αÞδI½KδJL� þ

ð1 − βÞ
2γ

ϵIJKL

�
Π̃a½KnM�Γa

L
M; ðB20aÞ

D̃a ¼ 2Π̃bI∂ ½aXb�I − XaI∂bΠ̃bI; ðB20bÞ

˜̃H ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�
�
XaIXbJ þ

�
1 − β

γ

�
2

qKLΓaIKΓbJL þ 2XaI

�
ð1 − αÞΓbJK þ ð1 − βÞ

γ
� ΓbJK

�
nK

þ ð1 − αÞ
�
ð1 − αÞΓaIK þ 2

γ
ð1 − βÞ � ΓaIK

�
ΓbJLnKnL

�
þ 2σΛ

ffiffiffi
h

p
: ðB20cÞ
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This Hamiltonian formulation becomes more familiar for particular values of the parameters:
(i) For α ¼ 1 ¼ β, the configuration variable is XaIjα¼1;β¼1 ¼ QaI, for which we recover the formulation (40) for n ¼ 4.
(ii) For α ¼ 1 and β ¼ 0, the configuration variable is XaIjα¼1;β¼0 ¼ KaI. The action becomes

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI∂tKaI − ΛIJG̃
IJ − 2NaD̃a−N

˜

˜̃HÞ; ðB21Þ

with

G̃IJ ¼ 2Π̃a½IKa
J� þ 2

γ
ϵIJKLΠ̃a½KnM�Γa

L
M; ðB22aÞ

D̃a ¼ 2Π̃bI∂ ½aKb�I − KaI∂bΠ̃bI; ðB22bÞ

˜̃H ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�
�
KaIKbJ þ

1

γ2
qKLΓaIKΓbJL þ 2

γ
KaI � ΓbJKnK

�
þ 2σΛ

ffiffiffi
h

p
: ðB22cÞ

This formulation was also obtained after applying a canonical transformation on the Hamiltonian theory resulting
from the Holst action [10].

(iii) For α ¼ 0 ¼ β, the configuration variable is XaIjα¼0;β¼0 ¼ CaI. The action acquires the form

S ¼ κ

Z
R×Σ

dtd3xð2Π̃aI∂tCaI − ΛIJG̃
IJ−2NaD̃a−N

˜

˜̃HÞ; ðB23Þ

with

G̃IJ ¼ 2Π̃a½ICa
J� þ 4

�
δI½Kδ

J
L� þ

1

2γ
ϵIJKL

�
Π̃a½KnM�Γa

L
M; ðB24aÞ

D̃a ¼ 2Π̃bI∂ ½aCb�I − CaI∂bΠ̃bI; ðB24bÞ

˜̃H ¼ −σΠ̃aIΠ̃bJRabIJ þ 2Π̃a½IΠ̃jbjJ�
�
CaICbJ þ

1

γ2
qKLΓaIKΓbJL þ 2CaI

�
ΓbJK þ 1

γ
� ΓbJK

�
nK

þ
�
ΓaIK þ 2

γ
� ΓaIK

�
ΓbJLnKnL

�
þ 2σΛ

ffiffiffi
h

p
: ðB24cÞ

This Hamiltonian formulation was originally obtained in Ref. [10] by performing the canonical analysis of the Holst
action.
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