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In this paper, we study the weak gravitational deflection angle of relativistic massive particles by the
Kerr-like black hole in the bumblebee gravity model. In particular, we focus on weak-field limits and
calculate the deflection angle for a receiver and source at a finite distance from the lens. To this end, we use
the Gauss-Bonnet theorem of a two-dimensional surface defined by a generalized Jacobi metric. The
spacetime is asymptotically nonflat due to the existence of a bumblebee vector field. Thus, the deflection
angle is modified and can be divided into three parts: the surface integral of the Gaussian curvature, the path
integral of a geodesic curvature of the particle ray, and the change in the coordinate angle. In addition, we
also obtain the same results by defining the deflection angle. The effects of the Lorentz breaking constant
on the gravitational lensing are analyzed. In particular, we correct a mistake in the previous literature.
Furthermore, we consider the finite-distance correction for the deflection angle of massive particles.
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I. INTRODUCTION

In physics, fundamental interactions can be described
mathematically by field theories. Gravitation is defined as a
classic field in curved spacetime by Einstein’s general
relativity (GR). The other three interactions are described
as quantum fields by the standard model (SM) of particle
physics. GR and the SM have an intersection at the Planck
scale (approximately 10" GeV), and modern physics is
committed to unifying these two theories. For this purpose,
some quantum gravitational theories have been proposed;
however, it is currently impossible directly to test these
theories through experimentation. Fortunately, some signals
of quantum gravity can emerge at sufficiently low energy
scales, and their effects can be observed in experiments
carried out at current energy levels. One of these signals may
be associated with the breaking of Lorentz symmetry [1].

In 1989, Kostelecky and Samuel [2] proposed the bumble-
bee gravity theory as the simplest model for studying the
spontaneous Lorentz symmetry breaking (LSB), in which a
bumblebee field with a vacuum expectation value leads to
spontaneous breaks in Lorentz symmetry. The interest in
bumblebee gravity theory has increased over the years
[3—15]. In particular, some new exact solutions have been
recently found. In 2018, Casana et al. obtained an exact
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Schwarzschild-like black hole solution in this bumblebee
gravity model and then studied it with some classical tests
[1]. The gravitational deflection angle of light [16] and the
Hawking radiation [17] in this Schwarzschild-like spacetime
were also studied recently. Earlier in 2019, Ovgiin et al.
adroitly obtained a traversable wormhole solution that can
deduce the Ellis wormhole [18] and studied the gravitational
lensing of light. Within the same time frame, Ding et al.
found a Kerr-like solution in this bumblebee gravity model
and studied its shadow and accretion disk [19,20].

On the other hand, as a powerful tool of astrophysics and
cosmology, the gravitational lensing has been used to test the
fundamental theory of gravity [21,22], to measure the mass of
galaxies and clusters [23-25], to detect dark matter and dark
energy [26-31], and so on. The analysis of the signatures of
the gravitational lensing of light or massive particles may be
useful in testing the bumblebee gravity model and detecting
the LSB effects. Thus, this paper will study the gravitational
lensing in the bumblebee gravity model.

Recently, Gibbons and Werner proposed a geometrical
and topological method of studying weak gravitational
lensing [32,33]. In this method, the Gauss-Bonnet (GB)
theorem is applied to the corresponding optical geometry,
and the deflection angle is calculated by integrating the
Gaussian curvature of the optical metric. In particular, the
Gibbons-Werner method shows that the deflection angle
can be viewed as a global topological effect. By using
Gibbons-Werner method, many studies have explored the
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gravitational deflection angle of light from different lens
objects within the different gravitational theories [34-54].
Furthermore, some authors utilized this method to study the
deflection angle of light from asymptotically nonflat
gravitational sources [16,55-58], the deflection angle of
light in a plasma medium [59,60], and the deflection angles
of neutral and charged massive particles [59-62].

By using the GB theorem, some authors were able to
compute the finite-distance gravitational deflection angle of
light. In this case, the receiver and source are assumed to be
at finite distance from a lens object, which is different from
the usual consideration where the receiver and source are at
an infinite distance from the lens. First, Ishihara et al. used
the GB theorem to study the finite-distance deflection of
light in static and spherically symmetric spacetime [63,64].
Then, Ono et al. proposed the generalized optical metric
method and investigated the finite-distance deflection angle
of light in stationary, axisymmetric spacetime [65-67]. In
these studies, the possible astronomical application accord-
ing to finite-distance correlations was considered. As well,
Ono and Asada gave a comprehensive review on finite-
distance deflection of light [68]. In addition, Arakida
applied different definitions of the deflection angle to
study the finite-distance deflection of light [69]. Very
recently, Crisnejo et al. considered the finite-distance
deflection of light in a spherically symmetric gravitational
field with a plasma medium [70].

The aim of this paper is to investigate the finite-distance
deflection of massive particles by the Kerr-like black hole in
the bumblebee gravity model within the weak-field limits.
To this end, we will apply the definition of the deflection
angle given by Ono et al. [65]. In order to use the GB
theorem, we shall apply the Jacobi metric method [71,72].
For stationary spacetime, the corresponding Jacobi metric is
the Jacobi-Maupertuis Randers-Finsler metric (JMRF).

This paper is organized as follows. In Sec. II, we review
the Kerr-like black hole solution in the bumblebee gravity
theory and then solve the motion equation of massive
particles moving on the equatorial plane. In Sec. III, we
study the deflection angle of the massive particles by the
Kerr-like black hole for a receiver and source at finite
distance using the GB theorem. In Sec. IV, we compute the
finite-distance deflection angle by definition. Section V
analyzes the results and considers the finite-distance
correction of the gravitational deflection angle of massive
particles. Finally, we comment on our results in Sec. VI.
Throughout this paper, we take the unitof G =fi=c =1
and the spacetime signature (—, +, +, +).

II. KERR-LIKE BLACK HOLE IN THE
BUMBLEBEE GRAVITY MODEL

A. Black hole solution

The bumblebee gravity theory is a typical model of
studying the spontaneous Lorentz symmetry breaking. The

bumblebee field B, acquires a nonzero vacuum expectation
value,

) = by (1)

where b, is a constant vector. Its action reads [19,20]

1 1
Sp= / d*x\/=g [ﬂ(R—l—QB”B”RW)—ZB/“’BM—V(B") ,
(2)

where ¥ = 8z, ¢ is the coupling constant (with mass
dimension —1). The bumblebee field strength B,, and
the potential V are defined by

B,, = 0,B,— 0,B

L M ,B,, V=V(B'B,+ a2), (3)

where d? is a positive real constant. The gravitational field
equation in vacuum reads

1
R,, =«T8, + 2xg,,V + EKg”UB“ﬂBaﬁ — kg, B*B, V'

Q x Q x
+Zg;wv2(B( Ba) + Eg/wvavﬁ(B( Bl})? (4)
where Tf,, denotes the bumblebee energy momentum tensor.

The Kerr-like black hole solution to the field equation (4)
was derived in Refs. [19,20]

2M 4MarJsin*0
ds> = — <1 - 2r> drr = T ar
p p
2 2
P Asin~60
+ Ka’r2 + p?dO* + ———de?, (5)

where
A=VI1+1,
p? = r* + A2a*cos’d.
r2—2Mr
A=——p—+d,

A =[P + 22a®)? — Al*a’sin®6.

In the above, M and a are the mass and rotating angular
momentum of the black hole, respectively, and [ is Lorentz
violation parameter. For [ =0, the Kerr-like solution
leads to the Kerr solution in GR [73]. In addition, the
Schwarzschild-like solution in the bumblebee gravity
model is covered as a = 0 [1].

The event horizons and ergosphere of black hole are
located at
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re =M+ \/M?—a*(1+1),

S = M M2 - (14 D)eos,

where the positive and negative signs are for the outer
horizon and inner horizon/ergosphere, respectively. The
existence of black holes requires [19,20]

ol <%
al £ —.
A
B. Motion of massive particles
on the equatorial plane
The relativistic Lagrangian for a free particle moving on
the equatorial plane (6 = z/2) of the Kerr-like black hole is

2L = —mg,, x*x"

2M\ . 4Mal. 2 A
—m<1——)t2+m ? t(i)—mr—iz—m—z(})z, (6)
r r A r

where a dot denotes the differentiation with respect to an
arbitrary parameter. Then, one can obtain two conserved
quantities as follows,

po=5 =m(1-2 )i n% e 1)
ot r r

_%_mZMall
Pe =% ="+

. A

where £ and J are the conserved energy and angular
momentum of the particle, respectively. They can be
measured at infinity for an asymptotic observer by

m muvb
E= , = , 9
V1—1? J V1=1? ©)

where v is the particle velocity and b is the impact
parameter defined by

bv

J
= (10)

For convenience, we can choose an appropriate parameter
so that 2L =m. Then, using Egs. (6)-(9), the orbit equation
of the massive particle can be obtained by the following

du\> 1 /(1 2Mu(l — v* + b*u*v?)
dg) “E\BT") T e

dMau
b3

+ O(M?, a?), (11)

where u = 1/r is the inverse radial coordinate. Considering
the condition Z—Z) | g—i= = 0, the above equation can be solved
iteratively as

sin(2) 14 v2cos?(% 2Mal,
_ (1)4_ (l)M— a +

O(M2.a?).
b b202 by TOMEa)

u(e)
(12)

In addition, we can obtain the iterative solution for ¢ in the
above equation as

. ix.
B if [p| <4

- (13)

{¢1—M€02+0M§03+'“»
=@+ Mpy—aMes +---, if |p| >4,

where

@, = Aarcsin (bu),

(1 + v* = b*u*v?)A
b2V 1 — b2u2r?

o

SN

Py =

ITII. GRAVITATIONAL DEFLECTION ANGLE
USING THE GAUSS-BONNET THEOREM

A. Jacobi-Maupertuis Randers-Finsler metric

As mentioned in the Introduction, we need the Jacobi
metric of curved spacetime in order to use the GB theorem
to study the deflection angle of massive particles. In
particular, the Jacobi metric of stationary spacetime cor-
responds to the JMRF metric. The trajectories of neutral
particles moving in a stationary spacetime are seen as the
geodesics of the corresponding JMRF metric space.
The JMRF metric in our spacetime signature can be
written [72]

E* + m? o o
ds; = Myijdx’dxf —_ g0 gy
—900 oo

where the spatial metric y,; is defined by

90i90j
Vij = 9ij — = (15)
oo

In Eq. (14), @;; is a Riemannian metric, and f; is a one-
form, which satisfies the positivity and convexity [74]

\ aiBip; < 1. (16)

From the Kerr-like metric (6), one has
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(1 ZMr) 2Marlsin%6
Yoo = — - ’ L[ R E—
ﬂ2 @ /)2

2
yijdx'dx] = %drz + p?d6?

Asi 29 4 212M2 2.3 49
Sll’zl i a 2[‘; Sllj d(pz. (17)
p (1—==25)p

Then, by Eq. (14), we find the following JMFR metric:

2 dr?
m2> {p—Ar + pRde?

(Asin26’ 4a2/12M2r25in4¢9> 4 2]
P’ (1=2)p" ’
20EMarsin?0

r(r —2M) + a*A*cos*0

2

dxidxl = —
a;;dx'dx’ = <1_2Mr
_pz

pidx' = —

de. (18)

Note that this equation can lead to the optical Finsler-
Randers metric when £ =1 and m = 0.

B. Generalized Jacobi metric method

By replacing the optical metric with the Jacobi metric,
one can extend the generalized optical method to calculate
the deflection of massive particles [75]. We call the positive
Riemannian metric «;; the generalized Jacobi metric and
suppose that the particles live in the Remannian space M
defined by the generalized Jacobi metric, that is

do® = a;;dx'dx’. (19)

By the way, the particle ray now is not the geodesic in M,
and its geodesic curvature can be calculated by [65]

ky=— Lo (20)

. Vdetaa®’

where the comma denotes the partial derivative.
The deflection angle can be defined by [65]

a=¥, —Ys + @gs, (21)

where Wy and Wy are angles between the particle ray tangent
and the radial direction from the lens in the receiver and
source, respectively, and the coordinate angle gprs = @r — @s.
Next, we shall use GB theorem to study the gravitational
lensing. The GB theorem reveals the relation between the
geometry and topology of the surface. Suppose that D is a
subset of a compact, oriented surface, with Gaussian
curvature K and Euler characteristic y(D). Its boundary
0D is a piecewise smooth curve with geodesic curvature k.
In the ith vertex for D, the jump angle denotes ¢;, in the
positive sense. Then, the GB theorem states that [32,76]

/A KdS + éD kdo + ;qﬁi —2my(D),  (22)

where dS is the area element of the surface and do is the
line element along the boundary.

Then, we consider the quadrilateral Y1 C (M, @;;), as
shown in Fig. 1. It is bounded by four curves: the trajectory
of particle connection source (S) and receiver (R); two
spatial geodesics of outgoing radial lines from R and S,
respectively; and a circular arc segment C,, where Cy
denotes C, (ry — oo) and C, is defined by r(p) = ry =
constant. For curve C, we have kdl = %dgo and thus
f c. kdl = }1(pR . In addition, the Euler characteristic of this
quadrilateral is unity. Notice that the sum of two jump angles
in infinite is #. In addition, we have ¢y =7 —¥g and
¢r = Y. Finally, using the GB theorem to the quadrilateral
leads to

R 1
// KdS—/ kqd1+*(0RS+“PR—lPS:0. (23)
w05 s 4

By this expression, Eq. (21) can be rewritten as

R |
a= —// KdS+/ kydo + <1 ——)(pRS. (24)
i s A

This expression is different with the asymptotically flat case
[75] due to the existence of the third part to the right of the
equal sign. It obvious that the term ¢@gg vanishes if 1 =1
(I = 0). In the above, the Gaussian curvature of generalized
Jacobi metric can be calculated by [33]

C

FIG. 1.

The quadrilateral FI¢
the receiver, the source and the lens, respectively. Wp and Wy are
angles between the particle ray tangent and the radial direction
from the lens in R and S, respectively. The curve C,, denotes
C,,(rg = ), and C, is defined by r(¢) = ry = constant. Note
that each outer angle at the intersection of the radial direction
curves and C, is 7/2.

C (M, a;;). R, S, and L denote
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_ Rrprg
deta

_ 1 i \/detal;w _g \/detaI_W (25)
\ deta 840 Ay " r Ay v ’

where a bar is added above the quantities associated with
Jacobi metric a;;. Notice that in Eq. (25) we only need the
two-dimensional generalized Jacobi metric due to this paper
only considering the equatorial plane case.

C. Gravitational deflection angle of massive particles

In this subsection, we shall apply Eq. (24) to compute the
deflection angle.

1. @gs part

We first consider the part of ¢rg. By the lensing setup,
Eq. (13) leads to

(14 0% = b*ukv?)A
/1 = B2l

+ O(M?, a?), (26)

@s = Aarcsin (bug) —

2Maj?

+—
b2\/1 - b2u§v

(14 v? = b*uzv?)A
by/1 — b*ukr?
2Mar?

- L O(M*, ). (27)

b*\/1 = b*uzv

@r = Alm — arcsin (bug)| +

It is convenient to use uyp and ug to express the finite-
distance deflection angle. Then, we can get

Prs = Pr — Ps

= ntA — Alarcsin(bug) + arcsin(bug)]
Y T
b \\/T=0%d /1 - b
MA
+7 <\/1 — b2uy + \/1 —b2u§>

2aM > < 1 1 >
- + . (28
V1=buk o /1 -b%ud (28)

2. Gaussian curvature

Considering Eq. (18), we can find the generalized Kerr-
like Jacobi metric in the equatorial plane (6 = z/2) as
follows,

do® = a;;dx'dx’/
2ridr?

1
252 -1 2
(1 —% T ) L{z/lz—l—r(r—ZM)

2024 2 oy
r(a*2* +r r) d(pz], (29)

r—2M

where we use Eq. (9). Bringing the corresponding metric
components in Eq. (29) into Eq. (25), we can obtain the
Gaussian curvature up to leading order as follows:

(14 )M

K=- 23402

+O(M2, a%). (30)

Then, the surface integral of Gaussian curvature is given by

—//DmKdS /W/ {H” FOM?,a?) | drdg
M(\/1=b*u}+ /1= b*u2)(1+v?)
+O(M?,a?), " (31)

where we have used Eqgs. (12), (26), and (27). Note that the
integration of the Gaussian curvature is independent of A.

3. Geodesic curvature

Now, we calculate the geodesic curvature of the particle
ray. Substituting corresponding quantities in Eq. (18) into
Eq. (20), the geodesic curvature of the particle ray can be
obtained as

P 2aM

)=~ + OM.a). (32)

where we use Eq. (9). In addition, Eq. (29) deduces the
zeroth-order parameter transformation

do = Ebvesc? <%> dp + O(M, a), (33)

where we have used r = b/sin(%). Then, one can get
the part of deflection angle related with the path integral
of geodesic curvature of the particle ray. Considering
Egs. (32) and (33), we have

R
/ kydo = —
S

2aM
c12 " sin(? do + O(M?, a?)
b*v 2
_ 2aMi, \/1 —buy + /1 -
b*v
+ O(M?, a?), (34)

where we use Egs. (12), (26), and (27).
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4. Deflection angle

Considering Eqgs. (31), (28), and (34), the finite-distance
deflection angle of massive particles in Kerr-like spacetime
can be obtained as follows:

R 1
HEG s A

=(A—1)[z—arcsin(buy)—arcsin(buyg)]
N [(1+112)/1—b2u§(1+122/1)
V1=b*u?
+(1+112)/1—b2u§(1+vzﬂ) M
Ji-oig b
2aMﬂ< A—b*u% N A—b*u?
b*v \/l—bzulze \/l—bzu?g

>+0(M2,a2). (35)

IV. GRAVITATIONAL DEFLECTION
ANGLE BY DEFINITION

In the previous section, we calculated the deflection
angle by the GB theorem from the perspective of geometry
and topology. This section will directly calculate the
deflection angle by the definition in Eq. (21),

a=Yg— Y5+ @gs. (36)

Notice that @pg has been obtained in Eq. (28). Now, we
calculate the angles W, and Ws. We still suppose that the
particles lives in the generalized Jacobi metric space
(M. a;;). Then, the unit tangent vector of particle ray in
the equatorial plane can be written as

o odx! dr _dg
l=—=(—,0,—. 37
R (da da) (37)

Choosing the outgoing direction, the unit radial vector in
the equatorial plane can be written as

R = <¢%_ ,o,o). (38)

Then, we have

cos ¥ = a;;e'R/

dr

= (04 —_—
v (5)
SR Ve — (39)
d
a,, + Ay (d_(f)z

where we used a;;e’e/ = 1 and o;;R'R’ = 1. This can be
rewritten as

(04
o0 . (40)
Ay (5_;)2 T Qyy

sin¥ =

Bringing the corresponding metric components in Eq. (29)
into Eq. (40) and using Eq. (12), we finally arrive at

Sin¥ = sin <%) | Meos(@) [(1 T )eos? @)

bv?
7 2aMcos? (%)
- 27}2 COS (ﬂ)] —Tl
+O(M2, ). (41)

Then, we obtain the following results:

M 7 b*u?
Wy = 7 — arcsin(bug) + — [21;2 cos <—) I S
va 21 m
S
2aMu?i
- SIS L om2,a), (42)
V1 =bufw
M e b*u?
W, = arcsin(b — 207 ) =
x = arcsin( MR)+byz|: v C°S<2,1> m}
2aMu%)

+ -~
v 1= bzu%ﬂ
Thus, the gravitational angle is

a=¥p—Ys+pps
=(A—1)[zr—arcsin(bug) —arcsin(bug)]

(1+02)A=b2up(1+0%2)

[ i

+(1+vz)/1—b2u§(1+1)2/1)]£
V1-b%u} bv?
_2aMl< A—b*uy N A—b*u?
b’v \\1=b2ud /1-b*i%

) +O(M?,a%). (44)

This result is exactly the same as Eq. (35).

V. FINITE-DISTANCE CORRECTIONS

In our calculation, the particle orbits are assumed as
prograde relative to the rotation of the Kerr-like black hole.
The sign of the term including angular momentum a
changes if the particles ray is a retrograde orbit. In short,
the deflection angle can be written as
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a = (A —1)[x — arcsin(bug) — arcsin(bug)]
N {(1 + 1) = b*un(1 + v%2)
V1= b2ub
N (14 v?)A=b*u3(1 + M)] M

V1= b bv?

2aM2 ( A= b*uz A—b%uk )
_|_
v \\/T=b%d  /1-bi
+OM2, ), (45)

where the + signs correspond to retrograde and prograde
particle orbits, respectively. For 1 =1 (I =0), Eq. (45)
agrees with the result in the Kerr spacetime [75].

|

1 1
a= (E - §> I[z — arcsin(bug) — arcsin(bug)]

In Fig. 2, we plot finite-distance deflection angle &
against 1g(rg/M). Here and henceforth, we have supposed
v=09c, M =1,a=09M, b = 10°M, and rp = 10*M.
Figures 2(a) and 2(b) are the deflection angle of
prograde and retrograde particle orbits, respectively.
We chose Lorentz breaking constant / =0, [ = £0.001,
and [/ = £0.002 to picture five lines, from which we can
see that the deflection angle monotonically increases
as rg increases. The deflection angle also increases
as [ increases. Furthermore, the deflection angle is larger
than it in Kerr spacetime as / > 0, while it is smaller
as [ < 0.

The deflection angle up to second order in Lorentz
breaking constant / reads

+M(\/1 — b2up + /1= b*u2)(1 +1?) iZMa(\/l — b2uy + /1 —b*u2)

bv?

b2v

(4-1)MI {1 + (1 = b*u)v?
8bv? V1= b*ub
aM? Uy 2

(s
4v \V1-b%uq /1 -b%uj

+

Obviously, these terms excluding angular momentum a are
positive if they are at the order in [/, whereas they are
negative if they at the order in /%, Interestingly, the terms
containing a are both positive (retrograde orbits) or
negative (prograde orbits), regardless of whether they are
at the order in / or the order in /2. In general, the deflection
angle increases as [ increases, as shown in Fig. 2.

Now, we consider several limits. First, Eq. (45) leads to
the finite-distance deflection of light (v = 1),

a,—1 = (A—1)[x — arcsin(bug) — arcsin(bug)]
{2& —Vud(1+4)  24—bud(l + /1)} M
b

V1 =b%ub
L P >
V1= b?u3

|, 2aMA ( b*u% — 2
+O(M?,d%). (47)

b \\/1-b%

Second, for up — 0 and ug — 0, Eq. (45) leads to the
infinite-distance deflection of massive particles,

IM(1+v9)A  4aMi?
Utv)h 4aME | oo ), (48)

oo = (A1
oo = ( )zt bv? b2y

1+ (1 —bzug)vz] iaMl( 2 - b*u?
1 —b*u3

2 - b*uk )

+
o \\/1=b"k  /1-b%u

) +O(M?, %, ). (46)

[
which agree with the result obtained by Werner’s Finsler
geometry method, given in Appendix. Finally, for a = 0,
Eq. (45) leads to the finite-distance deflection of massive
particles by Schwarzschild-like solution in the bumblebee
gravity model,

as = (A —1)[x — arcsin(bug) — arcsin(buy)]
(14 v?)A = b*u3 (1 + v22)
V1 =b%ub

U e o 0) I BPOTIVES TS

NI T

It is worth pointing out that Egs. (47), (48), and (49) are
also obtained for the first time. Furthermore, considering
the infinite-distance deflection of light in Schwarzschild-
like spacetime, we correct a mistake in Ref. [16]. By
Eq. (49), we have

_al 4M 2MI al> MP

2 3
2+ b + b 2 b +O(M=,P°). (50)

asw(vzl)

The first two terms of the expression are consistent with
Refs. [1,16]. However, the third term is different from the
positive and negative signs of Ref. [16].
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v=0.9c, M=1, a=0.9M, b=10?M, rg=10*M
0.050 b

0.045

Py

,,,,,,, 1=-0.002 1
,,,,, 1=-0.001
—— Kerr
_____ 1=0.001 1
........ 1=0.002

35 40 45 5.0
Ig (rs/M)
(a)

v=0.9¢c, M=1, a=0.9M, b=10?M, rg=10*M

0.050 [ J

0.045
(BE VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
0.040 1=-0.002 i
77777 1=-0.001
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FIG. 2. The finite-distance deflection angle &. The vertical axis
denotes &, and the horizontal axis denotes Ig(rg/M). We suppose
v=09c,M =1,a =09M,b = 10°M,and rg = 10*M. The red
solid line, thin purple dotted line, thin blue dashed line, thick blue
dashed line, and thick purple dotted line correspond to [ = 0 (Kerr
spacetime), [ = —0.002, [ = —0.001, [ = 0.001, and / = 0.002,
respectively. The deflection angle of prograde particle orbit
corresponds to (a), and retrograde particle orbit corresponds to (b).

After obtaining the finite-distance and infinite-distance
deflection angles, let us consider their difference described
by the finite-distance corrections [65,67],

0

IS

- (51)
ring Egs. an into the above equation, we have
Bring Egs. (45) and (48) into the above equati h
Sa= (A—1)[arcsin(bug) + arcsin(bug)]
(1+02)A=b2uk(1+v%2)
V1=b%ub
(L )A=buz(1+02)] M
V1=b bv?
Vud-) | brud—i
2aM <2/1+ Tt

b2v

- {—2(1 +0?2)A+

+

) +OM?.a?). (52)

v=0.9¢, M=1, a=0.9M, b=10?M, rg=10*M

-2 ; ; ; ; .
[ - 1=-0.002
&S N 1=-0.001 ]
[ —— Kerr
P N 1=0.001
B N N\ S — 1=0.002 .
gt
o [ NN T,
-sf Lo [
_6l ]
L S S S P S S S S S EE S S S S S
2.5 3.0 3.5 4.0 45 5.0
Ig (rs/M)
(@)
v=0.9c, M=1, a=0.9M, b=10%M, rg=10*M
_af
& 4
<
o |
_sL
_ek
Ig (rs/M)
()
FIG. 3. The finite-distance corrections in Eq. (52). The vertical

axis denotes lg 6@, and the horizontal axis denotes 1g(rg/M).
(a) denotes the prograde particle deflection, and (b) denotes the
retrograde particle deflection.

In Fig. 3, we use the same parameters as in Fig. 2 and
plot the finite-distance corrections in Eq. (52), where the
vertical axis denotes g & and the horizontal axis denotes
lg(rg/M). We can see that the effect of the Lorentz
breaking constant / on the finite-distance correction is
similar to the deflection angle when the receiver distance ry
and source distance rg are not too large.

In addition, we can use buy and bug to expand (52), and
the result reads

bM (u%+u%)(2—A+v*2)
202

da=b(ug+ug)(A—1)—

aM (u%+u%)(2—2)4
v

+

+O(M2,a2,b3u?e,b3u§). (53)

It is interesting to point out that the term including aM is
independent of the impact parameter.
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VI. CONCLUSION

In the weak-field limits, we have studied the deflection
angle of massive particles for an observer and source at a
finite distance from the Kerr-like black hole in the bumble-
bee gravity theory. For this purpose, we used a geometric and
topological approach first proposed by Gibbons and Werner
[32,33] and then extended by Ono et al. to study the finite-
distance deflection of light [65-67]. This method involves
the application of the Gauss-Bonnet theorem. To apply this
method, we used the Jacobi-Maupertuis Randers-Finsler
metric. Furthermore, since the spacetime is asymptotically
nonflat the calculation of the deflection angle is modified in
Eq. (24). In addition, we directly computed the deflection
angle using its definition proposed in Refs. [65-67]. The
results obtained by the two methods are the same and are
shown in Eq. (24). Our results can also deduce some new
results; for example, the finite-distance deflection angle of
light in Eq. (47), the infinite-distance deflection angle of a
massive particle in Eq. (48), and the finite-distance deflec-
tion angle of a massive particle by a Schwarzschild-like
black hole in the bumblebee gravity theory in Eq. (49). In
particular, when considering the limit of deflection of light in
Schwarzschild-like spacetime, in Eq. (50), we correct a
mistake in Ref. [16]. Furthermore, we also obtained the
finite-distance correlation of the gravitational deflection
angle of massive particles.

Our result shows the deviation from general relativity:
when Lorentz breaking constant / > 0, the deflection angle
is larger than it by a Kerr black hole (I = 0); when / < 0,
the deflection angle is smaller than it by a Kerr black hole.
On the whole, the deflection increases as [ increases.
Interestingly, the same relationship applies to finite-distance
correlations when receiver distance r and source distance
rg are not too large, as shown in Fig. 3.
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APPENDIX: THE GRAVITATIONAL
DEFLECTION ANGLE OF MASSIVE
PARTICLES USING WERNER’S METHOD

In this Appendix, we shall compute the infinite-distance
gravitational deflection angle of massive particles by a
Kerr-like black hole in the bumblebee gravity model using
Werner’s Finsler geometry method [33]. The Hessian of
Finsler metric F(x,y) reads [74]

19°F%(x,y)

=2 vy (A1)

gi;(x.y)

where (x,y) € TM with TM being the tangent bundle of
smooth manifold M. In Ref. [33], Werner applied Nazim’s
method to construct an osculating Riemannian manifold
(M, g) of Finsler manifold (M, F). Following Werner, we
can choose a smooth nonzero vector field Y tangent to the
geodesic yp, ie., Y(yr) =y, and thus the osculating
Riemannian metric can be obtained by Hessian

9ij(x) = gi;(x, Y (x)). (A2)

In this construction, the geodesic in (M, F) is also a
geodesic in (M,g) [33]. On the equatorial plane, our
Randers-Finsler metric in Eq. (18) leads to

1 222 r(a®2* 4+ r* = 2Mr)
F(r.p. Y, Y?) = | & -1+ 0? Y")? Y?)?
(r.o ) \/ < —wm +v>[a212+r(r—2M)( S+ r—2M (¥?)
2)EMar
- — ye. A3
r(r—2M) (A3)
In order to obtain the leading-order deflection angle, we 2EM(1 +12) 2 2aM E*rvA3sin® (%)

) k G — S22 _ p
only need the zeroth-order particle ray r = b/sin(%). Near ~ 9rr , D[cos?(2) + L sin* ()]
the particle ray, one can choose the vector field as follows: Ay 4

+O(M?,a?), (AS)
d cos(? dp sin*(¢
yrodr__cosQ) oy, _de_sin() (A4)
do Elv do Ebv
3 2aME*vA*cos’ (%) 5,
According Egs. (Al)-(A4), we can get the osculating 9o =~ rlcos?(2) + ;_i sin4(%)]3/2 +OM*,a%), (A6)

Riemannian metric as follows:
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Jpp = EV* 17 +28Mr
~ 2aME*rvisin®(%)[3 cos? (%) + 2 ’2 sin*(%)]
blcos*(%) + g—zzsm (#))3/2
+ O(M?, a?).

(A7)
|

sin (%)

f(r.p) =

Then, the corresponding Gaussian curvature can be com-
puted by Eq. (25), and the result up to leading order is

- (1+v*)M 3aM

[cos2(2) 1 Esin (@) 2 {2°°s6 G) [_2 +5sn (9]

2 2 2
+2£COS (f)sm (?) {2—%4—%%5(?) +4£sin(%>]
3
+ cos? (f)smz </1> { 2+9—s1n((5> - lo%sm3 (f)]

2 2
—1—% [—%sm (/1> +2E51n“<%> + sin? (7('0)} }

In the infinite-distance case, we consider the area enclosed
by particle lines and curve C,, instead of quadrilateral
ZLI$. Notice that now the particle ray is a geodesic in
(M, 3) and thus k, = 0. Then, by using Gauss-Bonnet
theorem, the infinite-distance deflection angle can be

calculated by
Qe = (A— l)ﬂ—l/ Kds.

Then, the infinite-distance deflection angle of massive
particles can be calculated by

(A10)
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