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A passing gravitational wave causes a deflection in the apparent astrometric positions of distant stars.
The effect of the speed of the gravitational wave on this astrometric shift is discussed. A stochastic
background of gravitational waves would result in a pattern of astrometric deflections which are correlated
on large angular scales. These correlations are quantified and investigated for backgrounds of gravitational
waves with sub- and superluminal group velocities. The statistical properties of the correlations are depicted
in two equivalent and related ways: as correlation curves and as angular power spectra. Sub-(super-)luminal
gravitational wave backgrounds have the effect of enhancing (suppressing) the power in low-order angular
modes. Analytical representations of the redshift-redshift and redshift-astrometry correlations are also
derived. The potential for using this effect for constraining the speed of gravity is discussed.

DOI: 10.1103/PhysRevD.101.024038

I. INTRODUCTION

In his seminal papers on gravitational waves (GWs),
Einstein demonstrated that the speed of those waves in the
theory of general relativity is equal to the speed of light
[1–3]. The near-simultaneous observation of the GW signal
GW170817 in the frequency band 20–2000 Hz and the
gamma-ray burst GRB 170817A provided a spectacular
confirmation of this prediction [4–6]. This article considers
the astrometric effects of a nonluminal propagation speed
for stochastic backgrounds of much lower frequency GWs.
Investigations into the effects of GWs on the observed

properties of light have a long history. For example, the
periodic change in the brightness of a light source—GW-
induced scintillation—was considered as early as 1966 by
[7]. GWs also cause astrometric changes in the positions of
distant objects; the dominant effect is a distortion of the sky
due to the local metric perturbation around the observer,

although there is a secondary effect due to the metric
perturbation at the light source [8] (see also [9,10]). Low
frequency GWs induce apparent proper motions in distant
objects; this effect has been used previously to constrain the
energy in low frequency GWs by observing quasar proper
motions [11,12], but can also be used in the futurewithGaia
data. The advantage ofGaia is that it retains its sensitivity at
higher frequencies too (up to ∼1 × 10−6 Hz) [13,14].
GWs in Einstein’s theory of general relativity have only

two polarization states which travel at the speed of light.
Modified theories of gravity may contain up to six pola-
rizations traveling at a range of speeds [15]. The authors
have previously explored the astrometric effects of a
stochastic GW background with non-Einsteinian polar-
izations [10]; the background produces a stochastic vector
field of astrometric deflections correlated across the sky.
This effect was also studied by [16] who also considered
decomposing the astrometric deflection in terms of vector
spherical harmonics (VSH). This article studies these cross-
correlations, both at the level of correlations between the
components of the astrometric deflection vector field and
correlations between the components in its VSH decom-
position, for GWs with arbitrary polarization and propa-
gating at sub- or superluminal group velocities.
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While within the theory of General Relativity (GR)
gravitational waves move at the speed of light, modified
theories of gravity permit endowing the GW degrees of
freedom with a mass, in which case they would propagate
at a speed lower than the speed of light. The group velocity
of the GW vGW may be parametrized by ϵ ∈ ½−1; 1�
according to ϵ ¼ 1 − vGW=c. There are currently no experi-
mental constraints on the propagation of low frequency
GWs, i.e., f < 10−6 Hz, where Gaia and pulsar timing
arrays are sensitive [9,17]. LIGO/Virgo observations have
placed constraints at higher frequencies and verified that
the propagation of the observed GWs in the range
101 Hz–103 Hz is in accordance with the predictions of
GR. As an example of the type of test possible using the
LIGO/Virgo observations, consider the possibility that
gravitons are dispersed in vacuum as massive particles;
in this case the speed parameter ϵ > 0 is a function of both
the graviton mass and the GW frequency,

ϵ ¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

m2
gc4

ℏ2ω2

s
: ð1Þ

Under this assumption, the combined LIGO/Virgo obser-
vations of GW15914, GW151226, and GW170104 con-
strain the graviton mass to bemg ≤ 7.7 × 10−23 eV=c2 [18]
which gives the impressively tight constraint ϵ≲ 10−20 at
f ≈ 100 Hz. Continuing to assume that GWs are dispersed
in vacuum as massive particles, and using Eq. (1) to
extrapolate this constraint across ∼10 orders of magnitude
in frequency gives the weakest possible constraint of ϵ≲ 1

at a frequency of f ≈ 10−8 Hz (no sensible constraint is
possible at lower frequencies, though). The scaling of ϵ
with the GW frequency in Eq. (1) means that ϵ is only
weakly constrained (or not constrained at all) across the
frequency range of interest for pulsar timing and astro-
metric observations; consequently, any new bound that
these techniques are able to place will likely represent an
improvement.
In addition to subluminal group velocities (ϵ > 0),

modified theories of gravity also predict additional GW
polarization states to those present in GR. For a massive
graviton, with spin s ¼ 2 there are 2sþ 1 ¼ 5 different
polarization states available (as stated above, the most
general theories have six polarization states; however,
massive gravity has one less, as the two scalar modes
are indistinguishable; see [19–21]), versus just the two
transverse polarization states in GR. A recent review of
such theories [22] demonstrates how these modes corre-
spond to unusual emission mechanisms (monopole and
dipole) and emphasizes that the best range for measuring
these effects from real objects will be the ultralow frequen-
cies f ≈ 10−9 Hz, which is well suited to pulsar timing and
astrometric observations. Additional polarization modes
occur in other modified gravity theories as well, such as the

additional longitudinal mode found in some fðRÞ theories
[23]. For these reasons, this article considers nonluminal
GW group velocities in the full set of non-Einsteinian
polarizations, as discussed e.g., in [10].
The above discussion assumed that gravitons disperse as

massive particles and it was this assumption that allowed
the LIGO/Virgo constraint to be extrapolated across many
orders of magnitude. This is an extremely restrictive
assumption seeing as there are a plethora of plausible
theoretical reasons (besides a simple graviton mass) why
GWsmay propagate at nonluminal group velocities (e.g., in
theories violating Lorentz invariance such as Einstein-ether
[24,25] or chronometric [26] theories). Any of these
alternative possibilities would invalidate the above extrapo-
lation. Therefore the above constraints on the parameter ϵ at
low frequencies should be treated with a large degree of
caution. The conservative point of view, and the view
adopted in this paper, is to consider the speed parameter ϵ
as currently being effectively unconstrained in the fre-
quency band of interest and to view pulsar timing or
astrometry as providing a test of GR in a new dynamical
regime with a much longer timescale.
A mismatch between the speed of the GWand the speed

of the photons would incur a qualitative difference in the
astrometric response. For the correlated astrometric pattern
due to a stochastic background, this will translate into a
different pattern of correlated astrometric deflections over
the sky. Therefore, astrometric observations in principle
allow the speed of GWs to be constrained from both sides,
both sub- and superluminal, and could provide an impor-
tant, relatively model independent test of general relativity
at low frequencies.
Ever since the general theory of relativity was estab-

lished, there have been attempts to measure the speed of
gravity and deviations from the predicted value. The first
high-accuracy method which was used involved binary
pulsars (such as the one studied by Hulse and Taylor). The
orbits of binary pulsars decay due to the emission of energy
as gravitational radiation, and the rate of this decay depends
on the speed of gravity. This measurement indirectly
confirmed that this speed is within 1% of the speed of
light [15] in the vicinity of 102 Hz (where LIGO operates
too).
Currently, the most stringent limits on the speed of GWs

come from the distant GW170104 binary black hole
merger, with variation in the GW speed to below a few
parts in 1015 [18]. Such recent attempts to measure the
speed of gravity have, however, dealt with the effect at high
GW frequency only, and in the case of binary neutron star
mergers have depended on a particular model for the time
delay between GW and gamma-ray burst emission; the
speed of gravity remains to be tested in the low-frequency
regime and in a model-independent manner.
Recently, ultraprecise astrometric measurements from

theGaiamission [27–29] have renewed interest in pursuing
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astrometric detection of GWs [9,11–14,30,31]. This
approach allows probing for both individual monochro-
matic events, as well as traces of stochastic GW back-
grounds. Backgrounds of astrophysical or cosmological
origin can be understood as the result of the superposition
of a large number of uncorrelated and random individual
events (e.g., binary mergers). A stationary, isotropic,
unpolarized, Gaussian stochastic background of GWs
would result in a stochastic pattern of astrometric mea-
surements on the sky. In [10] the authors have shown that
the correlation between the astrometric response at two
points is completely specified by two functions which
depend solely on the angular separation of these two points.
Previous studies have investigated the possibility of

using pulsar timing array (PTA) observations to constrain
the speed of GWs (and the graviton mass) [32–34]. PTAs
are sensitive to GWs in a similar low frequency bandwidth
to Gaia, and it has been predicted that a 0.4% limit on the
deviation of the speed of GWs from the speed of light may
be attainable [32,33]. In practice, pulsar timing arrays and
astrometry measurements may complement each other by
independently providing evidence for a GW background at
low frequencies. In addition, it might be possible to cross-
correlate astrometric and redshift effects to further accel-
erate and verify detection prospects [10]. The effect of a
nonluminal GW group velocity on these methods is also
considered in this article.
The current article uses the theoretical framework

developed in [10]; however, alternative analytic approaches
for obtaining these results exist. Notably, resolving the
apparent proper motions of the stars along (spin-weighted)
spherical harmonics has been used to address some of these
problems before (especially in the context of PTAs) and has
been found to confirm the results presented here and in
previous publications. The reader is invited to consult e.g.,
[35] for an introduction to the specifics of this method.
In this article the authors extend earlier calculations of

[10,16] of the spatial correlation of astrometric deflections
due to GW backgrounds of an arbitrary polarization to the
case where the GWs propagate at nonluminal group
velocities. These calculations are performed both in terms
of the correlations between components of the astrometric
deflection vector field on the sky and in terms of the
correlations between the coefficients in the vector spherical
harmonic decomposition of the vector field; the relation-
ship between these two equivalent descriptions is also

clearly described. Section II introduces the theoretical
background necessary to explain the results of the article.
Section III A discusses the results for the tensorial plus and
cross polarizations (i.e., the familiar transverse traceless
modes). The corresponding results for the alternative
polarizations are presented in the following sections: the
transverse scalar “breathing mode” is investigated in
Sec. III B, the two vectorial modes are discussed in
Sec. III C, and the scalar longitudinal mode results are
described in Sec. III D. Section IV presents the analytical
results for redshift-redshift and redshift-astrometry corre-
lations. The article concludes with a discussion of the
results in Sec. V.

II. THEORETICAL BACKGROUND

A passing GW causes an astrometric deflection—a time-
dependent shift in the apparent position of a star (or other
distant light source). This effect was considered by many,
including [8–10]; the notation of [10] is used in this article.
The astrometric deflection is a two-dimensional (2D)
vector dependent on the polarization, amplitude, direction,
and group velocity of the GW, as well as the direction and
distance to the star; however, it will be most convenient to
express it using three-dimensional (3D) Cartesian coordi-
nates (as a vector orthogonal to the direction to the star).
The astrometric deflection is a linear function of the GW
metric perturbation

δni ¼ ℜfΔi
jkhjkg; ð2Þ

where hij is the GW metric perturbation at the Earth
(x ¼ 0), which is taken to be that of a plane wave,
hijðt; xÞ ¼ ℜfHij expðikμxμÞg. Hereafter, the restriction
to the real part will be left implicit. Two expressions for
the tensor Δi

jk are presented here; each of them is
applicable in a different regime. The first, in Eq. (3), is
the more general expression which depends on the direction
of the unit vector n and the distance d to the star (expressed
in units of GW wavelengths), as well as on the direction to
the source of the GWs q. For a more thorough derivation
and discussion of this formula, including the result’s
applicability to cosmological spacetimes, the reader is
encouraged to consult [9] or [10]; the latter of these follows
the same formalism as the current article:

Δi
jkðn;q; dÞ ¼

��
1þ ið2 − qrnrÞ

dð1 − qlnlÞ
ð1 − expð−idð1 − qsnsÞÞÞ

�
ni

−
�
1þ i

dð1 − qlnlÞ
ð1 − expð−idð1 − qsnsÞÞÞ

�
qi

�
njnk

2ð1 − qlnlÞ

−
�
1

2
þ i
dð1 − qlnlÞ

ð1 − expð−idð1 − qsnsÞÞÞ
�
njδki : ð3Þ
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The second expression for Δi
jk, in Eq. (4), is the limiting

value when the light source is a large distance away, if such
a limit is well defined. In this case the expression simplifies
and is independent of the distance parameter:

lim
d→∞

Δi
jkðn;q; dÞ ¼ 1

2

�
ni − qi
1 − qlnl

njnk − njδki

�
: ð4Þ

Care must be taken when using the result for the distant-
source limit in Eq. (4); as discussed below this limit is not
always well defined when the denominator 1 − q · n
vanishes. In this article, q is opposite in direction to the
GW wave three-vector k and is allowed to have a nonunit
magnitude, signifying the GW traveling at nonluminal
speed:

kμ ¼ −ωð1; ð1 − ϵÞqÞ; ð5Þ

where the phase velocity of the GWs is vph ¼ 1=ð1 − ϵÞ. In
the case of massive gravity, with ϵ > 0, the group velocity
is subluminal while the phase velocity is superluminal. The
two cases will be distinguished from here on by their group
velocities: the case ϵ > 0 will be referred to as subluminal
while ϵ < 0 will be referred to as superluminal.
It is important to note that when ϵ > 0 (subluminal GWs)

the distant-source limit of the astrometric deflection
given in Eq. (4) is always well defined because
1 − q · n > 0. However, when ϵ < 0 (superluminal GWs)
the distant-source limit is divergent when 1 − q · n ¼ 0.
Geometrically, this divergence takes the form of a ring on
the sky, at an angle of arcsecð1 − ϵÞ from the direction to
the source of the GWs. This divergence is regularized by
using instead the full astrometric response formula in
Eq. (3), which includes the effects of a finite distance to
the star. This is suitably illustrated in the Appendix A.
The astrometric response to a single monochromatic GW

is given by Eqs. (3) and (4). A stochastic background of
GWs would produce a pattern of astrometric deflections
which are highly correlated at large angular scales. This
section summarizes the formalism for deriving the corre-
lation matrix for a background with an arbitrary polariza-
tion and calculating the power spectra coefficients from
them. The reader can find a more in-depth presentation of
this in [10].
The GW perturbation due to a stochastic background

of GWs may be decomposed and expressed as a sum of
Fourier modes; the astrometric response to each Fourier
mode can be expressed using Eq. (2), and the total response
is given by

δniðn; tÞ ¼ R

�X
P

Z
∞

0

dfe−2πift

×
Z
S2
dΩqAPðq; fÞΔi

jkðn;q; dÞϵPjkðqÞ
�
; ð6Þ

where Δi
jkðn;q; dÞ is given by Eq. (3), the sum over P

includes all different GW polarizations, and the spatial
integral is over the entire sphere of the sky. In general
relativity, only the transverse þ and × modes are allowed;
however, modified theories of gravity could include up to
four additional polarizations: the transverse scalar S mode,
the vectorial X and Y modes, and the scalar longitudinal L
mode. For a stochastic, Gaussian, zero-mean, stationary,
isotropic, and unpolarized background the Fourier coef-
ficients satisfy the following expectation relations:

hAPðq; fÞi ¼ 0; ð7aÞ

hAPðq; fÞA�
P0 ðq0; f0Þi ¼ PðfÞδPP0δS2ðq;q0Þδðf − f0Þ; ð7bÞ

where the angle brackets denote an average over all
possible realizations of the GW background, and the
function PðfÞ is related to the critical energy density of
the Universe, ΩGWðfÞ, via the normalization [36,37]

PðfÞ ¼ 3H2
0ΩGWðfÞ
8π3f3

: ð8Þ

Consider two stars at positions on the sky n and m. The
astrometric deflection of each star is a linear function of the
GW perturbation [cf. Eq. (2)] and therefore is also a zero-
mean Gaussian random variable whose statistics are fully
specified by the two-point expectation. The two-point
expectation of the astrometric deflection factorizes into a
term that depends on the relative times of the measurements
Tðt; t0Þ and a geometric factor that depends on the locations
of the stars on the sky Γijðn;mÞ:

hδniðn; tÞδnjðm; t0Þi ¼ Tðt; t0Þ
X
P

ΓP
ijðn;mÞ: ð9Þ

T is defined explicitly in Eq. (31) of [10] but is not needed
here. It is only the geometric factor Γ that is interesting here
as it is only this part that depends on the details of the GW
polarization and propagation speed.
While Eq. (9) is conceptually the necessary result, in

practice it is useful to find a geometrically intuitive
interpretation of this correlation matrix. Since the astro-
metric deflection lies in the tangent space of the sphere, it
can be fully specified by two orthogonal components, and
therefore one of the dimensions of the 3 × 3 matrix on the
right-hand side of Eq. (9) is redundant. The statistical
rotational invariance of the background can be used to set
n ¼ ð0; 0; 1Þ and m ¼ ðsinðΘÞ; 0; cosðΘÞÞ, with Θ ¼
arccosðn ·mÞ. If the astrometric response at each of the
two stars is resolved parallelly and perpendicularly to the
arc connecting the stars on the sphere, the correlation
becomes a 2 × 2matrix instead [cf. Fig. (4) of [10] ]. In this
gauge, in the case of an isotropic background the off-
diagonal entries of the matrix vanish, and the remaining
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correlation functions depend solely on the angular separa-
tion of the two stars Θ [when Δi

jk is given by Eq. (4)].
Thus, ΓP

ijðn;mÞ reduces to

ΓPðn;mÞ ¼
�ΓP

xθðΘÞ 0

0 ΓP
yϕðΘÞ

�
: ð10Þ

The functions ΓabðΘÞ are obtained by integrating compo-
nents of the astrometric deflection over the sphere of all
possible directions to the GW source:

ΓP
xθðΘÞ ¼

Z
S2
dΩqδnP

xðqÞδmP
θðqÞ; ð11aÞ

ΓP
yϕðΘÞ ¼

Z
S2
dΩqδnP

yðqÞδmP
ϕðqÞ; ð11bÞ

where the shorthands δnaðn;qÞ≡ δnaðqÞ and δnbðm;qÞ≡
δmbðqÞ have been used. The components δnP

x, δnP
y, δmP

θ ,
and δmP

ϕ are defined in Eqs. (41) and (42) of [10]. The two
correlation functions ΓP

xθ and ΓP
yϕ have the geometric

significance of describing the correlation between the
components of the astrometric deflection vectors which
lie parallel and perpendicular, respectively, to the great
circle joining n and m. Alternatively, these two functions
can be thought of as describing the divergence and curl
parts of the astrometric deflection vector field, respectively.
For a detailed description of the geometric construction the
reader is referred to [10].
In this article, the functions from Eq. (11) are derived,

plotted, and examined in detail for positive and negative
values of ϵ: Γþ;×

ab in Figs. 1 and 3, ΓS
ab in Figs. 5 and 7, Γ

X;Y
ab

in Figs. 9 and 11, and ΓL
ab in Figs. 13 and 15, respectively.

Instead of dealing with the astrometric deflection vector
field directly, it may be convenient to decompose it into
VSH. This has been considered for regular GWs in general
relativity by [9] and for alternative GW polarizations
(traveling at the speed of light) by [16]. Any vector field
on the surface of a sphere can be decomposed into a sum of
“electric” E and “magnetic” B VSH functions (where the
conventions in e.g., [38] are used)

δnP
i ðn;qÞ ¼

X
Q∈fE;Bg

X∞
l¼1

Xl
m¼−l

aPQlmðqÞYQ
lmiðnÞ: ð12Þ

Because the transformation between the δnP
i ðn;qÞ and

expansion coefficients aPQlm ðqÞ is linear, the coefficients
are also distributed as a zero-mean Gaussian random
variable. The two-point expectation of the expansion
coefficients is given by (as quoted by e.g., [16])

haPQ
lma

P0Q0�
l0m0 i ¼ CP;Q

l δPP0δQQ0δll0δmm0 : ð13Þ

The coefficients CP;Q
l are given by (valid individually for

each polarization P)

FIG. 1. The Γþ;×
xθ and Γþ;×

yϕ cross-correlation functions for a
background of subluminal (ϵ > 0) tensorial transverse-traceless
GWs for four different values of ϵ ∈ f0; 0.1; 0.2; 0.5g using the
distant-source limit of the astrometric response. While the x − θ
and y − ϕ curves are the same in the ϵ ¼ 0 case, the degeneracy
breaks down for any ϵ > 0. The ϵ ¼ 0 case is predominantly
quadrupole (l ¼ 2) in the sense that the curves have two zeros in
the range shown; the curve is not a pure quadrupole; see Fig. 2.

FIG. 2. The Cþ;×
l angular power spectra for a background of

subluminal (ϵ > 0) tensorial transverse-traceless GWs for four
different values of ϵ ∈ f0; 0.1; 0.2; 0.5g, corresponding to each
of the curves in Fig. 1. A higher value of ϵ has the effect of
suppressing the higher multipole moments, thus making the
resultant pattern increasingly dominated by the quadrupole
(l ¼ 2).
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CE
l ¼ 1

2lðlþ 1Þ
Z

π

0

dΘ sinΘPlðcosΘÞ
�
−Γ00

xθðΘÞ þ
1

sinΘ
Γ0
yϕðΘÞ − 2

cosΘ
sinΘ

Γ0
xθðΘÞ þ ΓxθðΘÞ

�
; ð14aÞ

CB
l ¼ 1

2lðlþ 1Þ
Z

π

0

dΘ sinΘPlðcosΘÞ
�
−Γ00

yϕðΘÞ þ
1

sinΘ
Γ0
xθðΘÞ − 2

cosΘ
sinΘ

Γ0
yϕðΘÞ þ ΓyϕðΘÞ

�
; ð14bÞ

where the primes denote derivatives with respect toΘ. They
measure the power stored in a particular VSH YQ

lm, while
the isotropy of the GW background ensures there is no
dependence on the m index. These expressions are equiv-
alent to the ones given in [16] but include a corrected
normalization factor.
It is important to explain that Eqs. (11) and (14) are

equivalent representations of the same information and are
thus interchangeable. The former describes the correlation
pattern of astrometric deflections by specifying the corre-
lations between their components as a function of the
angular separation on the sky, Θ. The latter describes the
same correlated pattern by computing the correlations
between the coefficients of the VSH decomposition of
the vector field of astrometric deflections on the sky.
In practice, CE

l and CB
l are combined to produce a single

spectrum which quantifies the angular power distribution of
a correlation function,

Cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCE

lÞ2 þ ðCB
lÞ2

2

r
; ð15Þ

which is valid separately for each polarization content P. In
this article, the coefficients from Eq. (15) are plotted and
examined in detail for positive and negative values of ϵ:
Cþ;×
l in Figs. 2 and 4, CS

l in Figs. 6 and 8, CX;Y
l in Figs. 10

and 12, and CL
l in Figs. 14 and 16, respectively.

The statistics of the stochastic pattern of astrometric
deflections are completely described by either Eq. (9) or
Eq. (13). The former describes the correlations in terms of
the components of the astrometric deflection vector field
while the latter describes the correlations in terms of the
coefficients of the VSH expansion. The two descriptions

are equivalent, and Eqs. (14) describe the relationships
between the two.

III. NONLUMINAL ASTROMETRIC
CORRELATION FUNCTIONS

AND POWER SPECTRA

This section examines the sub- and superluminal cases of
the four relevant polarization states of a GW background:
tensorial, scalar transverse, vectorial, and scalar longi-
tudinal. For each of these four cases, the correlation
functions for ϵ > 0 and ϵ < 0 are presented, compared,
and discussed. The corresponding angular power spectra
are also shown, and the effects of the value of ϵ are
explained.

A. Tensorial transverse-traceless polarizations

The most familiar results are those for transverse-
traceless GW backgrounds, for which P ∈ fþ;×g. These
are the backgrounds expected to be found inGR, and as such
it is interesting to examine them in the context of probing the
speed of gravity. The ϵ ¼ 0 casewas investigated in detail in
[10], and here it is used as a reference point to establish the
effect of positive and negative values of ϵ.
For ϵ > 0, Appendix B 1 explains how to evaluate the

integrals Γþ
xθðΘ; ϵÞ, Γþ

yϕðΘ; ϵÞ, Γ×
xθðΘ; ϵÞ, and Γ×

yϕðΘ; ϵÞ
defined by Eqs. (11). The spatial correlation matrix in a
background with multiple polarizations is the sum of
individual spatial correlations; hence Γþ;×

xθ ðΘ; ϵÞ ¼
Γþ
xθðΘ; ϵÞ þ Γ×

xθðΘ; ϵÞ, and similar for Γþ;×
yϕ ðΘ; ϵÞ. The two

functions Γþ;×
xθ ðΘ; ϵÞ and Γþ;×

yϕ ðΘ; ϵÞ are given explicitly
below inEqs. (16a) and (16b).All correlation function results
in this article are expressed in terms of SðΘÞ ¼ sinðΘ=2Þ:

Γþ;×
xθ ðΘ; ϵÞ ¼ 2π

3

ð1 − 6ϵ − ϵ2 þ 4ϵ3 − ϵ4Þ − ð7 − 20ϵþ 10ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4

þ π

2

2ϵ2ð2 − ϵÞ2 þ ϵð2 − ϵÞð4 − 14ϵþ 7ϵ2ÞS2ðΘÞ þ 2ð4 − 12ϵþ 18ϵ2 − 12ϵ3 þ 3ϵ4ÞS4ðΘÞ
ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

− π
ðϵ2ð2 − ϵÞ2 þ 8ϵð2 − ϵÞð1 − ϵÞ2S2ðΘÞ þ 8ð1 − ϵÞ4S4ðΘÞÞSðΘÞ

ð1 − ϵÞ5ð1 − S2ðΘÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p

× ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
; ð16aÞ
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Γþ;×
yϕ ðΘ; ϵÞ ¼ π

3

ð2 − 12ϵþ 10ϵ2 − 4ϵ3 þ ϵ4Þ − 2ð1 − ϵÞ2ð7 − 2ϵþ ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4

þ π

2

2ϵ2ð2 − ϵÞ2 þ ϵð2 − ϵÞð12 − 26ϵþ 13ϵ2ÞS2ðΘÞ þ 4ð1 − ϵÞ2ð2 − 6ϵþ 3ϵ2ÞS4ðΘÞ
ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

− π
ðϵ2ð2 − ϵÞ2 þ 8ϵð2 − ϵÞð1 − ϵÞ2S2ðΘÞ þ 8ð1 − ϵÞ4S4ðΘÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
ð1 − ϵÞ5ð1 − S2ðΘÞÞ

× ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
: ð16bÞ

While these two functions were identical for luminal GW
backgrounds [cf. Eq. (45) of [10] ], one effect of a nonzero
ϵ is that the x − θ and y − ϕ correlations are now not equal
to each other. This is illustrated in a plot in Fig. 1, for four
different values of ϵ: 0,0.1,0.2, and 0.5. The overall shape
of the curves evolves as the value of ϵ is increased from 0.
This is the effect which could in principle be utilized in
order to place a constraint on the speed of gravity using
measurements of the astrometric patterns due to a stochas-
tic gravitational wave background.
As an alternative way to quantify the differences between

those correlation functions, the angular power spectraCl for
Eqs. (16a) and (16b) can be computed through Eqs. (14). In
the case ϵ ¼ 0, a closed form expression can be derived, and
the result is given in Appendix C 1. For ϵ > 0, even though
analytical expressions for the coefficients can be found, it is
computationally cheaper to calculate them numerically.
The values obtained are shown in Fig. 14.
In the case of ϵ < 0, as explained before, the correlation

function integral Eqs. (11) can no longer be evaluated with
the distant-source limit of the astrometric deflection.
Instead, one has to use the exact formula which includes
the “star term” perturbation by invoking the distance to the
star d. One consequence is that the integrals in Eqs. (11)
cannot be evaluated analytically any longer, and one has to
resort to numerical tools in order to obtain the results in
this case. Some details of the calculation are offered in
Appendix B 1, and the results are shown in Fig. 3 for the
mirrored four values of ϵ: 0, −0.1, −0.2, and −0.5. The
difference between the ϵ ¼ 0 curve in this case and in Fig. 1
is that here the “star” term is included in the astrometric
responses for both stars, with d ¼ 100 wavelengths.
The angular power spectrum coefficients in the case

ϵ < 0 cannot be calculated analytically either, but can be
computed numerically through Eqs. (14). The four power
spectra corresponding to the curves in Fig. 3 were calcu-
lated numerically and are presented in Fig. 4.
Special attention ought to be paid to the relationship

between the results in Figs. 1 and 2 (and Figs. 3 and 4 alike).
The correlation curve plots fully describe the correlated
pattern of astrometric deflections by giving the correlation
between particular components of the astrometric deflection

vector field as a function ΓP
ab of the angular separation on

the sky, Θ. The angular power spectra plots describe the
correlated pattern of astrometric deflections by specifying
the correlations between the coefficients in the VSH
decomposition of the astrometric deflection vector field.
The two descriptions are of course completely equivalent
and interchangeable, and Eqs. (14) give the necessary
relations for converting from the former to the latter.

FIG. 3. The Γþ;×
xθ and Γþ;×

yϕ cross-correlation functions for a
background of superluminal (ϵ < 0) tensorial transverse-traceless
GWs for four different values of ϵ ∈ f0;−0.1;−0.2;−0.5g using
the astrometric response with d ¼ 100. The vertical lines mark
the angles of the cones on which the astrometric response would
be divergent if the distant-source limit formula was used. See
Fig. 4 for the spectral composition of these curves.
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It is expected that GR is the correct description of gravity,
and therefore the measured correlation patterns should
correspond to the ones predicted here. In particular, the
astrometric deflection correlation curve should be the blue
curve plotted in Fig. 1. However, if the speed of gravity does
not match the speed of light (ϵ ≠ 0), there would be a
discrepancy between the actual correlation curve and the
blue curve (ϵ ¼ 0) in Fig. 1: the new correlation would look
like one of the other curves in Figs. 1 or 3. This change
could equivalently be analyzed from the spectral point of
view. The correlation spectrum would change: the power
would shift toward (away from) l ¼ 2 for sub-(super-)
luminal GWs; see the plots in Figs. 2 and 4.

B. Scalar transverse (breathing) polarization

The most prominent candidates for a modified theory of
gravity are scalar-tensor theories, for which the force of
gravity is mediated by a combination of the metric (as in
GR) plus a real scalar field. Such theories usually have an
additional GW polarization degree of freedom, in addition
to the two transverse-traceless states of GR. For the
following discussion, it is assumed that the GW back-
ground consists solely of transverse scalar S mode GWs.
The analysis in this case is similar to theone in theprevious

section. The correlation functions for ϵ > 0 are given by
Eqs. (B10a) and (B10b) in Appendix B 2 along with brief
notes on their derivation, and are plotted in Fig. 5. It is
important to note that the y − ϕ correlation function, which
used to be constant for luminal isotropic backgrounds
[cf. Eq. (47b) from [10] ], is now variable with the angular
separation Θ, corresponding to breaking the purely dipole
pattern. The angular power spectra are shown in Fig. 6, with
the luminal case considered in more detail in Appendix C 2.
As expected, for ϵ ¼ 0 only the l ¼ 1 coefficient is nonzero

FIG. 5. The ΓS
xθ and ΓS

yϕ cross-correlation functions for a
background of subluminal (ϵ > 0) scalar transverse GWs for
four different values of ϵ ∈ f0; 0.1; 0.2; 0.5g using the distant-
source limit of the astrometric response. The y − ϕ correlation in
the ϵ ¼ 0 case is constant, which means the pattern is a pure
dipole (l ¼ 1; see Fig. 6); this symmetry breaks down as ϵ
increases.

FIG. 6. The CS
l angular power spectra for a background of

subluminal (ϵ > 0) transverse scalar GWs for four different
values of ϵ ∈ f0; 0.1; 0.2; 0.5g. The ϵ ¼ 0 spectrum has a single
nonzero mode (l ¼ 1), while nonzero ϵ excites higher-order
multipoles; however, increasing ϵ has the effect of concentrating
the power at lower-order modes.

FIG. 4. The Cþ;×
l angular power spectra for a background of

superluminal (ϵ < 0) tensorial transverse-traceless GWs for four
different values of ϵ ∈ f0;−0.1;−0.2;−0.5g. A lower value of ϵ
has the effect of increasing the power at higher multipoles. The
oscillations which are visible in all of the spectra are due to the
phases of the star terms in the astrometric shift formula.
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(corresponding to a dipole pattern), while for ϵ > 0 power is
redistributed to higher-order multipoles.
For ϵ < 0, the correlation functions cannot be computed

analytically, only numerically; they are plotted in Fig. 7 and
a brief explanation is given in Appendix B 2. The trans-
verse scalar y − ϕ correlation is again no longer constant
and evolves as ϵ changes value. Similarly, the angular
power spectra for ϵ < 0 can be computed only numerically
using the same method as earlier and are plotted in Fig. 8.
If GWs were scalar transverse instead of tensorial, the

astrometric deflection correlation curve would change
from that plotted in Fig. 1 to that plotted in Fig. 5 (blue
curves in both figures). This change could equivalently be
explained through the corresponding angular power spec-
tra. The correlation spectrum would change from being
predominantly quadrupolar for a tensorial GW background
to a dipolar (l ¼ 1) for a scalar background; see the blue
curves in Figs. 2 and 6. Note that the angular power
spectrum for a scalar background is strictly unimodal (i.e.,
only has a single nonzero angular mode) when ϵ ¼ 0.

Additionally, if GWs were to propagate at a speed lower
or larger than the speed of light, then the correlation pattern
would generally fail to match the previously established
predictions. The effects of ϵ ≠ 0 are best explained through
Figs. 6 and 8. The luminal case is always unimodal;
however, nonluminal GWs would induce angular power
at higher multipole orders. As the magnitude of ϵ is
increased, this new power distribution concentrates power
at lower-order modes for subluminal GWs and increases
power at higher-order modes for superluminal GWs.

C. Vectorial polarizations

Some modified theories of gravity may also contain GW
polarizations which have a mixture of transverse and
longitudinal components. The two polarization states of
such nature are described as “vectorial” modes (because
they transform with spin weight 1 under rotations around
the GW wave vector), and their effect has to be considered
together, as their signatures are rotational variants of each
other. In this subsection are considered backgrounds that
consist solely of vectorially polarized GWs; i.e., the
parameter P runs over the set fX; Yg.
The subluminal correlation functions can be found

analytically in an analogous way to before. Details of
the derivation are given in Appendix B 3, and the results are
given by Eqs. (B14a) and (B14b). These are plotted for four
representative values of ϵ in Fig. 9. The angular power
spectra for these values of ϵ are shown in Fig. 10, with the
luminal case considered in further detail in Appendix C 3.
Similar to the previous cases of interest, here the super-

luminal correlation functions cannot be computed analyti-
cally, but only numerically; they are presented in Fig. 11,

FIG. 8. The CS
l angular power spectra for a background of

superluminal (ϵ < 0) transverse scalar GWs for four different
values of ϵ ∈ f0;−0.1;−0.2;−0.5g. The ϵ ¼ 0 spectrum again
has a single nonzero mode (l ¼ 1), while nonzero ϵ excites
higher-order multipoles; however, decreasing ϵ has the effect of
building up the power at higher-order modes. The oscillations
which are visible in some of the spectra are due to the phases of
the star terms in the astrometric shift formula.

FIG. 7. The ΓS
xθ and ΓS

yϕ cross-correlation functions for a
background of superluminal (ϵ < 0) scalar transverse GWs for
four different values of ϵ ∈ f0;−0.1;−0.2;−0.5g using the full
form of the astrometric response with d ¼ 100. The vertical lines
mark the angles of the cones on which the astrometric response
would be divergent if the distant-source limit formula was used.
The y − ϕ correlation in the ϵ ¼ 0 case is constant, which means
the pattern is a pure dipole (l ¼ 1; see Fig. 8); this symmetry
breaks down as ϵ decreases.

ASTROMETRIC EFFECTS OF GRAVITATIONAL WAVE … PHYS. REV. D 101, 024038 (2020)

024038-9



and some brief notes on calculating them are provided in
Appendix B 3. The angular power spectra for ϵ < 0 can
likewise be computed using the same numerical method as
before, and are presented in Fig. 12.
For a background of vectorially polarized GWs, the

astrometric deflection correlation curve would no longer
look like the one plotted in Fig. 1, but would change to that
presented in Fig. 9 (blue curves in both figures). From a
spectral perspective, the angular power spectrum of the
correlation would shift from being predominantly quad-
rupolar for tensorial modes to sharing most of the spectral
power between the dipole and the quadrupole (l ¼ 1, 2) in
the vectorial case; see blue curves in Figs. 2 and 10).
Moreover, if the GWs were to propagate at a speed lower

(larger) than the speed of light, then the correlation pattern
would again no longer follow the prediction for ϵ ¼ 0 in
Fig. 9. In this case the change would mean a reduction
(enhancement) of the spectral power at higher multipole
orders (see Figs. 10 and 12), compared to the ϵ ¼ 0 case.

D. Scalar longitudinal polarization

The L polarization state is a purely longitudinal, scalar
mode. For a massive theory of gravity, its effect is

FIG. 11. The ΓX;Y
xθ and ΓX;Y

yϕ cross-correlation functions for a
background of superluminal (ϵ < 0) vectorial GWs for four
different values of ϵ ∈ f0;−0.1;−0.2;−0.5g using the full form
of the astrometric response with d ¼ 100. The vertical lines mark
the angles of the cones on which the astrometric response would
be divergent if the distant-source limit formula was used. See
Fig. 12 for the angular power spectra of these functions.

FIG. 10. The CX;Y
l angular power spectra for a background of

subluminal (ϵ > 0) vectorial GWs for four different values of
ϵ ∈ f0; 0.1; 0.2; 0.5g. The ϵ ¼ 0 case is equal parts dipole and
quadrupole, while increasing ϵ has the effect of suppressing the
power at higher multipoles (and of the l ¼ 1 mode), making the
spectra more quadrupolar.

FIG. 9. The ΓX;Y
xθ and ΓX;Y

yϕ cross-correlation functions for a
background of subluminal (ϵ > 0) vectorial GWs for four differ-
ent values of ϵ ∈ f0; 0.1; 0.2; 0.5g using the distant-source limit
of the astrometric response. While the x − θ and y − ϕ curves are
the same in the ϵ ¼ 0 case, the degeneracy breaks down for any
ϵ > 0. The angular power spectra are shown in Fig. 10.
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indistinguishable from the effect of the transverse scalar
mode. In this subsection is considered a stochastic back-
ground of purely L-polarized GWs. In the limit d → ∞ the

astrometric response δnL
i ðn;q; dÞ is divergent for nkq;

however, this is alleviated by including a positive ϵ in the
equation.
The subluminal correlation functions can be obtained

analytically in an analogous way to before. Details of their
derivation are presented in Appendix B 4, and the final
results are given by Eqs. (B16a) and (B16b). The corre-
lation curves are plotted for four representative values of ϵ
in Fig. 13. The subluminal angular power spectra for the
same values of ϵ are shown in Fig. 14, with the luminal case
considered in additional detail in Appendix C 4.
The superluminal correlation functions cannot be

derived analytically; they can only be computed numeri-
cally; these are plotted in Fig. 15, and brief notes on
calculating them are supplied in Appendix B 4. The angular
power spectra for ϵ < 0 can be computed by numerically
integrating Eqs. (14) and are plotted in Fig. 16.
If the stochastic background was composed of scalar

longitudinal GWs, the astrometric deflection correlation
curve would have the shape of the one plotted in Fig. 13
(blue curve). Additionally, the angular spectrum of the
correlation would appear to be predominantly quadrupole
in this case, with smaller dipolar and octopolar contribu-
tions (l ¼ 1, 2, 3; see blue curve in Fig. 14).
Finally, if these GWswere to propagate with a nonluminal

group velocity, the astrometric correlation pattern would
again differ from the ϵ ¼ 0 prediction in Fig. 13. For sub-
(super-)luminal velocities, this changewould induce a reduc-
tion (enhancement) of the spectral power at higher multipole
orders (see Figs. 14 and 16), compared to the ϵ ¼ 0 case.

IV. CONNECTION TO PULSAR
TIMING METHODS

In the previous sections of the article, analytical results
for the subluminal correlation functions of astrometric

FIG. 13. The ΓL
xθ and ΓL

yϕ cross-correlation functions for a
background of subluminal (ϵ > 0) scalar longitudinal GWs for
four different values of ϵ ∈ f0; 0.1; 0.2; 0.5g using the distant-
source limit of the astrometric response. The angular power
spectra of these functions are shown in Fig. 14.

FIG. 14. The CL
l angular power spectra for a background of

subluminal (ϵ > 0) scalar longitudinal GWs for four different
values of ϵ ∈ f0; 0.1; 0.2; 0.5g. Increasing ϵ has the effect of
suppressing the power at higher multipoles (and of the l ¼ 1
mode), making the spectra more quadrupolar.

FIG. 12. The CX;Y
l angular power spectra for a background of

superluminal (ϵ < 0) vectorial GWs for four different values of
ϵ ∈ f0;−0.1;−0.2;−0.5g. A lower value of ϵ has the effect
of increasing the power at higher multipoles. The oscillations
which are visible in all of the spectra are due to the phases of the
star terms in the astrometric shift formula.
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deflections due to a stochastic GW background were
presented. However, these were not the only correlations
which are of interest in the context of GW backgrounds.
The correlations of redshift of millisecond pulsars are in the
core of the PTA-based method to probe for such back-
grounds, and in [10] the authors presented the case for
cross-correlating the redshift of a pulsar with the astro-
metric deflection of a star, opening up the new possibility of
combined pulsar timing and astrometric GW searches. In
all previous literature, the PTA correlation functions for a
background of subluminal GWs have been explored only
numerically. In this section, analytic results for both types
of correlations are presented. The derivations are performed
in a similar way to the results presented in Secs. III A–III D.

A. Redshift correlations

The redshift correlations arising from a background of
subluminal GWs has been studied previously in the context
of pulsar timing [32–34,39–41]. The dependence of the
correlation curves on ϵ has been investigated and discussed
before, notably in [39]. In their calculation the correlation
integral was evaluated numerically—that was necessary
because [39] considered a stochastic background of GWs
with a power-law spectrum in frequency. Each frequency
component of the background is a stochastic process and
propagates with its own speed parameter ϵ given by Eq. (1).
Integrating over the entire frequency spectrum to calculate
the resultant correlation curve may only be performed
numerically. In this paper the background is assumed to be
characterized by a single speed parameter; this is equivalent
to assuming that the background only has power in a
narrow frequency band Δf which is small compared to the
reciprocal of the observation duration T. The results of
this calculation are shown in Fig. 18 and Appendix D; in
particular, it is interesting to compare the top left panel of
this figure with Fig. 2 of [39] which shows that the two
approaches give results which are in excellent agreement.
The PTA-PTA correlation is defined through the follow-

ing integral, in analogy to the definition in Eqs. (11):

ΓP
zzðΘÞ ¼

Z
S2
dΩqzPðn;qÞzPðm;qÞ; ð17Þ

where zPðn;qÞ is the redshift of a pulsar at n due to a GW
coming from q in a background of P-polarized GWs,

zPðn;q;d;tÞ¼ ninj

2ð1−qlnlÞ
ð1−expð−idð1−qsnsÞÞÞhijðtÞ:

ð18Þ

The temporal dependence in Eq. (17) has been factored out
analogously to Eq. (9). While in the astrometric case the
star term was commonly discarded by assuming the distant-
source limit, here this is not possible as the Earth and pulsar
[the equivalent of the star term in Eq. (3), i.e., the value of

FIG. 16. The CL
l angular power spectra for a background of

superluminal (ϵ < 0) longitudinal scalar GWs for four different
values of ϵ ∈ f0;−0.1;−0.2;−0.5g. A lower value of ϵ has the
effect of increasing the power at higher multipoles. The oscil-
lations which are visible in all of the spectra are due to the phases
of the star terms in the astrometric shift formula.

FIG. 15. The ΓL
xθ and ΓL

yϕ cross-correlation functions for a
background of superluminal (ϵ < 0) longitudinal scalar GWs for
four different values of ϵ ∈ f0;−0.1;−0.2;−0.5g using the full
form of the astrometric response with d ¼ 100. The vertical lines
mark the angles of the cones on which the astrometric response
would be divergent if the distant-source limit formula were used.
See Fig. 16 for the angular power spectra of these functions.
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the GW perturbation at the pulsar] terms have the same
relative weight [see the brackets in Eq. (18)]. However,
since the distances from Earth to the pulsars on the sky are
essentially uncorrelated, the pulsar term in Eq. (18) can be
left out when doing the correlation integral. The well-
known Hellings-Downs curve is derived from Eq. (17) by
restricting P ∈ fþ;×g and ϵ ¼ 0 [42]. Thus, the integral in
Eq. (17) can be solved analytically for each separate
polarization content. The results are given in Appendix D.

B. Redshift-astrometry correlations

In [10] the authors presented correlation functions between
redshift and astrometry measurements, for a stochastic back-
ground of luminal GWs. Similar to the other two cases
already presented in the current article, that of astrometry-
astrometry and redshift-redshift correlation, it is possible to
expand on these results by deriving the corresponding
functions for ϵ > 0, defined by [cf. Eqs. (11) and (17)]

ΓP
zbðΘÞ ¼

Z
S2
dΩqzPðn;qÞδmP

bðqÞ; ð19Þ

where the pulsar term in the redshift and the star term in the
astrometric deflection are ignored. This is the cross correla-
tion between the redshift in direction n and the two
components [b ∈ ðθ;ϕÞ] of the astrometric deflection in
directionm. The results are shown in Fig. 19 in Appendix E.

V. DISCUSSION AND CONCLUSIONS

A GW produces small perturbations in the apparent
position (observable as an astrometric deflection) and
redshift (observable as an integrated timing residual) of
a distant object on the sky. Furthermore, an isotropic,
stochastic background of GWs produces a correlated,
stochastic pattern of redshifts and of astrometric deflections
over the sphere of the sky. Within the theory of general
relativity GWs exist in only two polarization states and
propagate in vacuum at the speed of light. If additionally it
is assumed that the GW background is statistically sta-
tionary, isotropic, unpolarized, etc., then GR makes a
unique prediction for these correlation patterns—the pre-
diction contains no free parameters. The GR prediction for
the redshift correlation between two points on the sky
separated by an angle Θ is known as the Hellings-Downs
function [42]. Similarly, the correlation between the com-
ponents of the astrometric deflections at two points is also
completely described by a single function of Θ, the
astrometric analog of the HD curve (see the blue curve
in Fig. 1 and [9,10,16]).
Instead of describing the correlations as functions of the

angular separation, it is convenient to decompose the
redshift and astrometric deflection (scalar and vector fields
over the sphere) in terms of (vector) spherical harmonics
and to study the correlations between the coefficients of
this expansion. Translated into this description, the unique
GR prediction for these correlations is that they are

predominantly quadrupolar, meaning the dominant corre-
lation is between the l ¼ 2 modes (see, e.g., Fig. 2). These
two methods of description, correlation curve or spectral
structure, are completely equivalent; Sec. II of this paper
describes how to relate the two descriptions.
While the theory of general relativity predicts only two

polarization modes, propagating at the speed of light,
modified metric theories of gravity can predict up to four
additional GW polarizations propagating at either sub- or
superluminal speeds. Recent observations of GWs with
frequency of ∼102 Hz with LIGO and Virgo have placed
constraints on the speed [18] and polarization content
[43,44] of GWs; future results from Earth-based detectors
will further improve these constraints. Pulsar timing and
astrometric measurements offer the possibility to test the
propagation of GWs with considerably lower frequency. As
discussed in the Introduction of this article, if gravitons are
dispersed in vacuumlike massive particles, then the GW
group velocity is controlled by the ratio ðmg=ωÞ2, so the
effect of the graviton mass is exaggerated at lower frequen-
cies. The advent of low-frequency GW astronomy would
make it possible for this effect to be examined from a fresh
perspective and place a new model-independent constraint
on the value of the speed of GWs. This work extends the
earlier calculations in [9,10,16] by calculating the expected
redshift and astrometric deflection correlation patterns
generated by stochastic GW backgrounds with arbitrary
polarizations and propagating with arbitrary speeds.
Section III presents the theoretical predictions for the

correlation patterns for each polarization content. The
standard GR case is covered in Sec. III A: the astrometric
correlation function is given by the blue curve in Fig. 1. In
addition, the same subsection covers the case of the
tensorial modes propagating at a nonluminal group
velocity; see Figs. 1 and 3 for the sub- and superluminal
correlation curves, respectively. Furthermore, the same
results are presented from the standpoint of angular power
spectra: Figs. 2 and 4 show the spectral distributions in the
sub- and superluminal regimes, and the luminal case for
comparison. The same analysis is then repeated for the
additional polarization contents: Sections III B, III C, and
III D explore the cases of scalar transverse, vectorial, and
scalar longitudinal stochastic GW backgrounds. In each
subsection are presented the findings for the shape of the
correlation curves, in the luminal, subluminal, and super-
luminal cases, plus the angular power spectra distributions
which correspond to each correlation function.
The results in Sec. III reveal the effect of a nonluminal

group velocity of the GWs in a stochastic background: in
general, subluminal speeds enhance the power in low-order
modes, while superluminal speeds increase the power in
high-order modes. Some cases (e.g., the scalar transverse
polarization; see Sec. III B) are more involved, but the
general trend holds everywhere.
The results presented in Sec. III can be summarized in the

following manner: the astrometric two-point correlation
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function on the sky depends on the polarization content and
the propagation speed of the stochastic gravitational wave
background. The formalism of angular power distribution
makes it more straightforward to compare these results with
future observations, from Gaia or other astrometric cata-
logues. Assuming such a measurement can be made, then the
observed correlations should naturally be compared against
the GR predictions. Should a deviation be found, then the
results of thispaperwouldhelp to relate theobserveddeviation
to a theoretical description of the type of departure from GR.
Alternatively, if no deviation is foundwithin the experimental
uncertainties, then the results in this paper will be necessary
when attempting to convert the observed correlations into
constraints on the possible deviations from GR.
Section IV presents some additional results which would

be of interest to the reader: Section IVA revisits the case
of pulsar timing correlations. Section IV B, on the other
hand, investigates the cross-correlation between the timing
residual of a pulsar, and the astrometric deflection of a star,
first introduced in [10]. In each case, the correlation
formalism is introduced and explicit expressions are

calculated for the subluminal regime. These results would
provide methods for testing the predictions of the astro-
metric correlations from Sec. III.
Future developments on this topic would include incor-

porating these theoretical predictions into a numerical
analysis tool to test the upcoming Gaia Data Releases.
Further work could include testing the anisotropy of the
background or placing constraints on the stochastic back-
ground using the proper motions of quasistellar objects.
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APPENDIX A: THE ASTROMETRIC SHIFT

The astrometric shift, specified in Sec. II has been used
throughout this article. To better illustrate its properties, it is
useful to showhow it depends on its parameters. In Fig. 17 are

FIG. 17. Relative amplitude of the astrometric shift as a function of the angle from the direction q to the GW source, for all possible
polarization contents and for different regimes of the parameter ϵ. In the distant-source limit, for ϵ ¼ 0 the astrometric shift is
nondivergent in all cases except for P ¼ fLg. A positive value of ϵ ¼ 0.5 removes the divergence in this case. For negative ϵ ¼ −0.5 the
astrometric shift is always divergent in the distant-source limit, at an angle of α ¼ arcsecð1 − ϵÞ (marked with a vertical line on the
plots). This divergence is unphysical and can be removed by including the star term in the astrometric shift formula, here demonstrated
with d ¼ 10 gravitational wavelengths.
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shownplots of themagnitude of the astrometric shift jδnPj for
all four possible polarization contents. The plot serves to
demonstrate what has already been explained through equa-
tions in the main text—the long-distance limit of the
astrometric shift, defined through Eq. (4), is unphysically
divergent for all polarizations at α ¼ arcsecð1 − ϵÞ when
ϵ < 0, and in the scalar longitudinal case at α ¼ 0 when
ϵ ¼ 0. The full formula for the astrometric shift, specified by
Eq. (3) is regular for all polarization contents, and for all
values of ϵ and α, although it peaks strongly around the angle
of the cone on which the distant source expression diverges.

APPENDIX B: THE ASTROMETRIC
CORRELATION INTEGRALS AND RESULTS

In Secs. III A to III D, the details of the evaluations of the
spatial correlation integrals for the different polarization
modes were omitted for brevity; these details and corre-
sponding results are presented in this Appendix.

1. Tensorial transverse-traceless correlations

In Sec. II of the main body of the text, it was explained
why the spatial correlation matrix in Eq. (10) is strictly two-
dimensional. The nonzero components of this correlation
matrix are specified by two scalar integrals over the sky;
one involving x and θ components, and one involving y and
ϕ components. In this Appendix the method for evaluating
these two integrals will be shown, first for the þ mode and
then for the × mode.
First, the x − θ and y − ϕ correlation integrals for the

þ polarized GW state are considered; the correlation
integrals are defined in Eqs. (11a) and (11b) as

Γþ
xθðΘ; ϵÞ ¼

Z
S2
dΩqδnþx ðqÞδmþ

θ ðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnþx ðϵ; θ;ϕÞδmþ
θ ðϵ; θ;ϕÞ;

ðB1aÞ

Γþ
yϕðΘ; ϵÞ ¼

Z
S2
dΩqδnþy ðqÞδmþ

ϕ ðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnþy ðϵ; θ;ϕÞδmþ
ϕ ðϵ; θ;ϕÞ;

ðB1bÞ
where the vector q ¼ ð1 − ϵÞðsin θ cosϕ; sin θ sinϕ; cos θÞ
is the direction on the sky from which the GW originates.
The components of the astrometric deflection, δnþx ðϵ; θ;ϕÞ,
δmþ

y ðϵ; θ;ϕÞ, δnþθ ðϵ; θ;ϕÞ, and δmþ
ϕ ðϵ; θ;ϕÞ, may be

evaluated using the formula in Eq. (2), the distant-source
limit in Eq. (4), and the prescription described in
Appendix B of [10]. Using Fþ

ab to denote the aggregated
integrand, Eqs. (B1) take the form

Γþ
xθðΘ; ϵÞ ¼

Z
2π

0

dϕ
Z

π

0

dθFþ
xθðΘ; ϵ; θ;ϕÞ; ðB2aÞ

Γþ
yϕðΘ; ϵÞ ¼

Z
2π

0

dϕ
Z

π

0

dθFþ
yϕðΘ; ϵ; θ;ϕÞ; ðB2bÞ

where the Θ dependence originates from the orientation of
the vector m̂ relative to the vector n̂. For ϵ > 0, these two
double integrals may now be evaluated by applying
consecutively the techniques described in Appendixes 1 a
and 1 b to obtain functional forms for Γþ

xθðΘ; ϵÞ and
Γþ
yϕðΘ; ϵÞ.
Second, the x − θ and y − ϕ correlation integrals for the

× polarized GW state are considered; the correlation
integrals are defined in Eqs. (11), the vector q is the
direction on the sky from which the GWoriginates, and the
components of the astrometric deflection may be evaluated
in analogous way to before. Therefore, these take the form

Γ×
xθðΘ; ϵÞ ¼

Z
S2
dΩqδn×x ðqÞδm×

θ ðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδn×x ðϵ; θ;ϕÞδm×
θ ðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθF×
xθðΘ; ϵ; θ;ϕÞ; ðB3aÞ

Γ×
yϕðΘ; ϵÞ ¼

Z
S2
dΩqδn×y ðqÞδm×

ϕðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδn×y ðϵ; θ;ϕÞδm×
ϕðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθF×
yϕðΘ; ϵ; θ;ϕÞ: ðB3bÞ

For ϵ > 0, these two double integrals may now be
evaluated by applying consecutively the techniques
described in Appendixes 1 a and 1 b to obtain functional
forms for Γ×

xθðΘ; ϵÞ and Γ×
yϕðΘ; ϵÞ. For an unpolarized

background containing equal power of both þ and ×
polarization states the combined spatial correlation func-
tions may be defined as Γþ;×

xθ ðΘ; ϵÞ ¼ Γþ
xθðΘ; ϵÞ þ

Γ×
xθðΘ; ϵÞ and Γþ;×

yϕ ðΘ; ϵÞ ¼ Γþ
yϕðΘ; ϵÞ þ Γ×

yϕðΘ; ϵÞ. These
new functions may be evaluated by taking the sums of the
expression derived above to give the result which appeared
in the main text, Eqs. (16a) and (16b).
For ϵ < 0, the double integrals in Eqs. (B2) and (B3)

could not be evaluated as the astrometric response is
divergent at Θ ¼ arcsecð1 − ϵÞ (see Appendix A). In order
to find a meaningful interpretation of the correlation
function Γþ;×

ab , one has to include the star terms in the
astrometric response at each star, i.e., use Eq. (2) with
Eq. (3). The resulting integrals would also depend on the
distance to the star in units of GW wavelengths, d:
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Γþ;×
xθ ðΘ; ϵ; dÞ ¼

Z
S2
dΩqδn

þ;×
x ðq; dÞδmþ;×

θ ðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFþ;×
xθ ðΘ; ϵ; d; θ;ϕÞ; ðB4aÞ

Γþ;×
yϕ ðΘ; ϵ; dÞ ¼

Z
S2
dΩqδn

þ;×
y ðq; dÞδmþ;×

ϕ ðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFþ;×
yϕ ðΘ; ϵ; d; θ;ϕÞ: ðB4bÞ

These integrals, however, were not found to have
analytical solutions and could only be evaluated numeri-
cally. Numerical integration (for a specific ϵ and d) yields
the curves shown in Fig. 3.

a. Azimuthal integral

The following integral appears in all spatial correlation
integrals in this article:

Jnðθ;Θ; ϵÞ ¼
Z

2π

0

dϕ
cosðnϕÞ

1 − ð1 − ϵÞ cosΘ cos θ − ð1 − ϵÞ sinΘ sin θ cosϕ
: ðB5Þ

It can be solved by referring to result (B17a) in Appendix A I of [10]:

Jnðθ;Θ; ϵÞ ¼
2πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − ð1 − ϵÞ cosΘ sin θÞ2 − sin2Θsin2θ
p

×

�
1 − ð1 − ϵÞ cosΘ sin θ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ð1 − ϵÞ cosΘ sin θÞ2 − sin2Θsin2θ

p
ð1 − ϵÞ sinΘ sin θ

�n

: ðB6Þ

b. Polar integral

The polar integrals which come up in the derivation of
the subluminal correlation functions (see Sec. II) all have
the following form:

KnðΘ; ϵÞ ¼
Z

π

0

dθ sinnðθÞJmðθ;Θ; ϵÞ; ðB7Þ

where Jmðθ;Θ; ϵÞ is defined in Appendix 1 a and (lþm) is
an even number, which guarantees that the overall sinðθÞ
factor has even power. This integral can be most readily
addressed using the substitution

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ−ϵ2

p
sinðΘÞsinhðuÞ¼

ð1−ϵÞsinðθÞ−cosðΘÞ, using which the square root in
Eq. (B6) becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ð1 − ϵÞ cosΘ sin θÞ2 − sin2Θ sin2 θ

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ϵ − ϵ2

p
sinðΘÞ coshðuÞ; ðB8Þ

and the integrand of (B7) is now a rational function of
hyperbolic functions of u. Finally, using the substitution
v ¼ eu, the integrand becomes a rational function of v,
which can then be analytically integrated.

2. Scalar transverse correlations

In this Appendix the evaluation of spatial correlation
integrals for the transverse scalar GW polarization state, S,

is briefly described. The x − θ and y − ϕ correlation
integrals are defined in Eqs. (11), the vector q is the
direction on the sky from which the GWoriginates, and the
components of the astrometric deflection may be evaluated
in an analogous way to the one described in Appendix B 1.
Therefore, these take the form

ΓS
xθðΘ; ϵÞ ¼

Z
S2
dΩqδnS

xðqÞδmS
θðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnS
xðϵ; θ;ϕÞδmS

θðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFS
xθðΘ; ϵ; θ;ϕÞ; ðB9aÞ

ΓS
yϕðΘ; ϵÞ ¼

Z
S2
dΩqδnS

yðqÞδmS
ϕðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnS
yðϵ; θ;ϕÞδmS

ϕðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFS
yϕðΘ; ϵ; θ;ϕÞ: ðB9bÞ

For ϵ > 0, these two double integrals may now be
evaluated by applying consecutively the techniques
described in Appendixes 1 a and 1 b to obtain functional
forms for ΓS

xθðΘ; ϵÞ and ΓS
yϕðΘ; ϵÞ:
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ΓS
xθðΘ; ϵÞ ¼

π

3

ð1 − 8ϵ − 8ϵ2 þ 12ϵ3 − 3ϵ4Þ − 2ð1 − 8ϵþ 4ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4 þ π

2

ϵ2ð2 − ϵÞ2ð2 − 3S2ðΘÞ þ 2S4ðΘÞÞ
ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

− π
ϵ2ð2 − ϵÞ2SðΘÞ

ð1 − ϵÞ5ð1 − S2ðΘÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
;

ðB10aÞ

ΓS
yϕðΘ; ϵÞ ¼

π

3

1 − 8ϵþ 4ϵ2

ð1 − ϵÞ4 þ π

2

ϵ2ð2 − ϵÞ2ð2 − S2ðΘÞÞ
ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

− π
ϵ2ð2 − ϵÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
ð1 − ϵÞ5SðΘÞð1 − S2ðΘÞÞ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
: ðB10bÞ

Plots of these two functions for several different values
of ϵ ¼ f0; 0.1; 0.2; 0.5g are provided in Fig. 5.
For ϵ < 0, the double integrals in Eqs. (B9) could not be

evaluated as the astrometric response is divergent at Θ ¼
arcsecð1 − ϵÞ (see Appendix A). In order to find a mean-
ingful interpretation of the correlation function ΓS

ab, one has
to include the star terms in the astrometric response at each
star, i.e., use Eq. (2) with Eq. (3). The resulting integrals
would also depend on the distance to the star in units of
GW wavelengths, d:

ΓS
xθðΘ; ϵ; dÞ ¼

Z
S2
dΩqδnS

xðq; dÞδmS
θðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFS
xθðΘ; ϵ; d; θ;ϕÞ; ðB11aÞ

ΓS
yϕðΘ; ϵ; dÞ ¼

Z
S2
dΩqδnS

yðq; dÞδmS
ϕðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFS
yϕðΘ; ϵ; d; θ;ϕÞ: ðB11bÞ

These integrals, however, were not found to have
analytical solutions and could only be evaluated numeri-
cally. Numerical integration (for ϵ ¼ f0;−0.1;−0.2;−0.5g
and d ¼ 100) yields the curves shown in Fig. 7.

3. Vectorial correlations

In this Appendix the evaluation of spatial correlation
integrals for the vectorial GW polarization states, X and Y,
is briefly described. The integration is very similar to those
for the þ and × states described in Appendix B 1.
First, the x − θ and y − ϕ terms for the X polarized

GW state are considered; the correlation integrals are
defined in Eqs. (11), the vector q is the direction on the
sky from which the GW originates, and the components
of the astrometric deflection may be evaluated in an

analogous way to the one described in Appendix B 1.
Therefore, these take the form

ΓX
xθðΘ; ϵÞ ¼

Z
S2
dΩqδnX

xðqÞδmX
θðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnX
xðϵ; θ;ϕÞδmX

θðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFX
xθðΘ; ϵ; θ;ϕÞ; ðB12aÞ

ΓX
yϕðΘ; ϵÞ ¼

Z
S2
dΩqδnX

yðqÞδmX
ϕðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnX
yðϵ; θ;ϕÞδmX

ϕðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFX
yϕðΘ; ϵ; θ;ϕÞ: ðB12bÞ

For ϵ > 0, these two double integrals may now be
evaluated by applying consecutively the techniques
described in Appendixes 1 a and 1 b to obtain functional
forms for ΓX

xθðΘ; ϵÞ and ΓX
yϕðΘ; ϵÞ.

Second, the x − θ and y − ϕ terms for the Y polarized
GW state are considered; the correlation integrals are
defined in Eqs. (11), the vector q is the direction on the
sky from which the GW originates, and the components of
the astrometric deflection may be evaluated in an analogous
way to the one described in Appendix B 1. Therefore, these
take the form

ΓY
xθðΘ; ϵÞ ¼

Z
S2
dΩqδnY

xðqÞδmY
θðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnY
xðϵ; θ;ϕÞδmY

θðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFY
xθðΘ; ϵ; θ;ϕÞ; ðB13aÞ

ASTROMETRIC EFFECTS OF GRAVITATIONAL WAVE … PHYS. REV. D 101, 024038 (2020)

024038-17



ΓY
yϕðΘ; ϵÞ ¼

Z
S2
dΩqδnY

yðqÞδmY
ϕðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnY
yðϵ; θ;ϕÞδmY

ϕðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFY
yϕðΘ; ϵ; θ;ϕÞ: ðB13bÞ

For ϵ > 0, these two double integrals may now be
evaluated by applying consecutively the techniques

described in Appendixes 1 a and 1 b to obtain functi-
onal forms for ΓY

xθðΘ; ϵÞ and ΓY
yϕðΘ; ϵÞ. For an un-

polarized background containing equal power of both
X and Y polarization states the combined spatial
correlation functions may be defined as ΓX;Y

xθ ðΘ; ϵÞ ¼
ΓX
xθðΘ; ϵÞ þ ΓY

xθðΘ; ϵÞ and ΓX;Y
yϕ ðΘ; ϵÞ ¼ ΓX

yϕðΘ; ϵÞþ
ΓY
yϕðΘ; ϵÞ. These new functions may be evaluated by

taking the sums of the expression derived above to give
the results

ΓX;Y
xθ ðΘ; ϵÞ ¼

2π

3

ð2þ 18ϵ − 5ϵ2 − 4ϵ3 þ ϵ4Þ þ 4ð1 − 8ϵþ 4ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4

− π
ϵð6þ ϵ − 4ϵ2 þ ϵ3Þ þ ð4 − 18ϵþ 5ϵ2 þ 4ϵ3 − ϵ4ÞS2ðΘÞ þ 4ϵð2 − ϵÞS4ðΘÞ

ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

þ 4π
ðϵð2 − ϵÞ þ 2ð1 − ϵÞ2S2ðΘÞÞSðΘÞ

ð1 − ϵÞ5ð1 − S2ðΘÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
;

ðB14aÞ

ΓX;Y
yϕ ðΘ; ϵÞ ¼

2π

3

ð2þ 6ϵþ ϵ2 − 4ϵ3 þ ϵ4Þ þ 2ð1 − ϵÞ2ð2þ 2ϵ − ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4

− π
ϵð1þ ϵÞð3 − ϵÞð2 − ϵÞ þ ð4 − 6ϵ − 9ϵ2 þ 12ϵ3 − 3ϵ4ÞS2ðΘÞ − 2ϵð2 − ϵÞð1 − ϵÞ2S4ðΘÞ

ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

þ 4π
ðϵð2 − ϵÞ þ 2ð1 − ϵÞ2S2ðΘÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
ð1 − ϵÞ5SðΘÞð1 − S2ðΘÞÞ

× ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
: ðB14bÞ

Plots of these two functions for several different values
of ϵ ¼ f0; 0.1; 0.2; 0.5g are provided in Fig. 9.
For ϵ < 0, the double integrals in Eqs. (B12) and (B13)

could not be evaluated as the astrometric response is
divergent at Θ ¼ arcsecð1 − ϵÞ (see Appendix A). In order
to find a meaningful interpretation of the correlation
function ΓX;Y

ab , one has to include the star terms in the
astrometric response at each star, i.e., use Eq. (2) with
Eq. (3). The resulting integrals would also depend on the
distance to the star in units of GW wavelengths, d:

ΓX;Y
xθ ðΘ; ϵ; dÞ ¼

Z
S2
dΩqδn

X;Y
x ðq; dÞδmX;Y

θ ðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFX;Y
xθ ðΘ; ϵ; d; θ;ϕÞ; ðB15aÞ

ΓX;Y
yϕ ðΘ; ϵ; dÞ ¼

Z
S2
dΩqδn

X;Y
y ðq; dÞδmX;Y

ϕ ðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFX;Y
yϕ ðΘ; ϵ; d; θ;ϕÞ: ðB15bÞ

These integrals, however, were not found to have
analytical solutions and could only be evaluated numeri-
cally. Numerical integration (for ϵ ¼ f0;−0.1;−0.2;−0.5g
and d ¼ 100) yields the curves shown in Fig. 11.

4. Scalar longitudinal correlations

In this Appendix the evaluation of spatial correlation
integrals for the transverse scalar GW polarization state, L,
is briefly described. The x − θ and y − ϕ correlation
integrals are defined in Eqs. (11), the vector q is the
direction on the sky from which the GWoriginates, and the
components of the astrometric deflection may be evaluated
in an analogous way to the one described in Appendix B 1.
Therefore, these take the form

ΓL
xθðΘ; ϵÞ ¼

Z
S2
dΩqδnL

xðqÞδmL
θðqÞ

¼
Z

2π

0

dϕ
Z

π

0

dθ sin θδnL
xðϵ; θ;ϕÞδmL

θðϵ; θ;ϕÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFL
xθðΘ; ϵ; θ;ϕÞ; ðB16aÞ
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ΓL
yϕðΘ; ϵÞ ¼

Z
S2
dΩqδnL

yðqÞδmL
ϕðqÞ ¼

Z
2π

0

dϕ
Z

π

0

dθ sin θδnL
yðϵ; θ;ϕÞδmL

ϕðϵ; θ;ϕÞ ¼
Z

2π

0

dϕ
Z

π

0

dθFL
yϕðΘ; ϵ; θ;ϕÞ:

ðB16bÞ

For ϵ > 0, these two double integrals may now be evaluated by applying consecutively the techniques described in
Appendixes 1 a and 1 b to obtain functional forms for ΓL

xθðΘ; ϵÞ and ΓL
yϕðΘ; ϵÞ:

ΓL
xθðΘ; ϵÞ ¼ −

2π

3

ð5þ 2ϵ − ϵ2Þ − 2ð2þ 2ϵ − ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4 þ π

ð1þ 2ϵ − ϵ2Þ − 3ϵð2 − ϵÞS2ðΘÞ þ 2ϵð2 − ϵÞS4ðΘÞ
ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

− 2π
SðΘÞ

ð1 − ϵÞ5ð1 − S2ðΘÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
;

ðB17aÞ

ΓL
yϕðΘ; ϵÞ ¼ − 2π

3

2þ 2ϵ − ϵ2

ð1 − ϵÞ4 þ π
ð1þ 2ϵ − ϵ2Þ − ϵð2 − ϵÞS2ðΘÞ

ð1 − ϵÞ5ð1 − S2ðΘÞÞ ln

�
2 − ϵ

ϵ

�

− 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
ð1 − ϵÞ5SðΘÞð1 − S2ðΘÞÞ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
: ðB17bÞ

Plots of these two functions for several different values
of ϵ ¼ f0; 0.1; 0.2; 0.5g are provided in Fig. 13.
For ϵ < 0, the double integrals in Eqs. (B16) could not be

evaluated as the astrometric response is divergent at Θ ¼
arcsecð1 − ϵÞ (see Appendix A). In order to find a mean-
ingful interpretation of the correlation function ΓL

ab, one has
to include the star terms in the astrometric response at each
star, i.e., use Eq. (2) with Eq. (3). The resulting integrals
would also depend on the distance to the star in units of
GW wavelengths, d:

ΓL
xθðΘ; ϵ; dÞ ¼

Z
S2
dΩqδnL

xðq; dÞδmL
θðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFL
xθðΘ; ϵ; d; θ;ϕÞ; ðB18aÞ

ΓL
yϕðΘ; ϵ; dÞ ¼

Z
S2
dΩqδnL

yðq; dÞδmL
ϕðq; dÞ

¼
Z

2π

0

dϕ
Z

π

0

dθFL
yϕðΘ; ϵ; d; θ;ϕÞ: ðB18bÞ

These integrals, however, were not found to have ana-
lytical solutions and could only be evaluated numerically.

Numerical integration (for ϵ ¼ f0;−0.1;−0.2;−0.5g and
d ¼ 100) yields the curves shown in Fig. 15.

APPENDIX C: ANGULAR POWER SPECTRA
FOR LUMINAL GWS

The angular power spectrum coefficients can be derived
analytically through Eqs. (14) (as a function of the mode
number l) for the case when the gravitational wave is
propagating at the speed of light. Closed-form expressions
cannot be derived in the case when ϵ > 0, although
analytical solutions can still be found for specific l. For
ϵ < 0, analytical solutions are not possible, as the corre-
lation functions are tabulated numerically.

1. Tensorial transverse-traceless power spectra

In the luminal (ϵ ¼ 0) case, the transverse traceless
correlation functions Γþ;×

xθ ðΘÞ ¼ Γþ;×
yϕ ðΘÞ are equal

[cf. Eq. (45) from [10] ]; therefore the respective E and
B coefficients would be equal, and in turn equal to Cþ;×

l .
Using this, Eqs. (14) become

Cþ;×
l ¼ Cþ;×;E

l ¼ Cþ;×;B
l ¼ 1

2lðlþ 1Þ
Z

π

0

dΘ sinΘPlðcosΘÞ
�
16π

3
−
8π

3
S2ðΘÞ þ 32πS2ðΘÞ ln½SðΘÞ�

�
: ðC1Þ

The Θ integral could be solved exactly, as a function of the multipole order l to give

Cþ;×
l ¼ π

3

2lþ1

lðlþ 1Þ
Xl
k¼0

�
l

k

��
1=2ðlþ k − 1Þ

l

� ð−1Þlð2k − 1Þ þ 13þ 4k − 12ðkþ 2Þ3F2

� ð1; 1;−k − 1Þ
ð2; 2Þ ; 2

�

ðkþ 1Þðkþ 2Þ ; ðC2Þ
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where pFq is the generalized hypergeometric function. The
first 20 coefficients of this sequence are plotted in Fig. 2
and are tabulated in Table I.

2. Scalar transverse power spectra

In the luminal (ϵ ¼ 0) case, the transverse scalar corre-
lation functions ΓS

xθðΘÞ and ΓS
yϕðΘÞ are given by Eqs. (47)

of [10]. Using Eqs. (14), since Γþ;×
yϕ ðΘÞ is in fact a constant

(independent of Θ), the B coefficients vanish identically for
all l, and the CS

l are given by

CS
l ¼ CS;E

lffiffiffi
2

p ¼ 1

2lðlþ 1Þ
Z

π

0

dΘ sinΘPlðcosΘÞ

×

�
4π

3
ð1 − 2S2ðΘÞÞ

�
: ðC3Þ

The Θ integral is straightforward to evaluate in terms of the
multipole number l, yielding

CS
l ¼

π

3

2lþ1=2

lðlþ 1Þ
Xl
k¼0

�
l

k

��
1=2ðlþ k− 1Þ

l

�
1þ ð−1Þkþ1

kþ 2
:

ðC4Þ

This expression is nonzero only for l ¼ 1, corresponding
to a dipole in the astrometric pattern on the sky. This
spectrum is plotted in Fig. 6 and tabulated in Table I.

3. Vectorial power spectra

In the luminal (ϵ ¼ 0) case, the vectorial correlation
functions ΓX;Y

xθ ðΘÞ ¼ ΓX;Y
yϕ ðΘÞ are equal [cf. Eq. (49) from

[10] ]; therefore the respective E and B coefficients would
be equal, and in turn equal to CX;Y

l . Using this, Eqs. (14)
become

CX;Y
l ¼ CX;Y;E

l ¼ CX;Y;B
l

¼ 1

2lðlþ 1Þ
Z

π

0

dΘ sinΘPlðcosΘÞ

×

�
−
28π

3
þ 32π

3
S2ðΘÞ − 8π ln½SðΘÞ�

�
: ðC5Þ

The Θ integral could be solved exactly, as a function of the
multipole order l to give

CX;Y
l ¼ π

3

2lþ1

lðlþ 1Þ
Xl
k¼0

�
l
k

��
1=2ðlþ k− 1Þ

l

�

×
ð−1Þkðk− 2Þ− 7k− 10þ 3ð2H2bk=2cþ1 −Hbk=2cÞ

ðkþ 1Þðkþ 2Þ ;

ðC6Þ

where Hn is the nth harmonic number and bxc is the floor
function. The first 20 coefficients of this sequence are
plotted in Fig. 10 and are tabulated in Table I.

4. Scalar longitudinal power spectra

Naively plugging the (unphysical) ΓL
xθðΘÞ and ΓL

yϕðΘÞ
[given by Eq. (51) of [10] ] into Eqs. (14) yields negative
CL;E
l power spectrum coefficients (and vanishing CL;B

l ).
These results are clearly unphysical as variance cannot be
negative. An alternative approach, involving the resolution
of the astrometric response along VSH before calculating
the correlation coefficients between them produces reliable
and physical results. The derivation of these results is
beyond the scope of this article; however, the first 20
coefficients of this sequence are plotted in Fig. 14 and are
tabulated in Table I.

TABLE I. The first 20 angular power spectrum coefficients for each polarization content in the case ϵ ¼ 0. The closed form
expressions for Cþ;×

l , CS
l, and CX;Y

l are given in Appendixes C 1, C 2, and C 3, respectively. The transverse scalar power spectrum has a
single nonzero coefficient, l ¼ 2, corresponding to a dipole on the sky. The longitudinal scalar power spectrum was derived through
another method, which is described briefly in Appendix C 4.

l 1 2 3 4 5 6 7 8 9 10

Cþ;×
l =π 0 1=9 1=90 1=450 1=1575 1=4410 1=10584 1=22680 1=44550 1=81675

CS;E
l =π 2=9 0 0 0 0 0 0 0 0 0

CX;Y
l =π 1=9 1=9 1=36 1=100 1=225 1=441 1=784 1=1296 1=2025 1=3025

CL;E
l =π 1=9 1=3 1=6 1=10 1=15 1=21 1=28 1=36 1=45 1=55

l 11 12 13 14 15 16 17 18 19 20

Cþ;×
l =π 1=141570 1=234234 1=372645 1=573300 1=856800 1=1248480 1=1779084 1=2485485 1=3411450 1=4608450

CS;E
l =π 0 0 0 0 0 0 0 0 0 0

CX;Y
l =π 1=4356 1=6084 1=8281 1=11025 1=14400 1=18496 1=23409 1=29241 1=36100 1=44100

CL;E
l =π 1=66 1=78 1=91 1=105 1=120 1=136 1=153 1=171 1=190 1=210
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APPENDIX D: PTA-PTA CORRELATIONS

The PTA-PTA correlation functions in the subluminal
regime, defined by Eq. (17) in Sec. IVA, are presented in
analytical form for the first time in this Appendix. The
integrals were performed in an analogous fashion to the
method presented in Appendix B and are therefore not
described in detail here.

1. Tensorial transverse-traceless correlations

The PTA-PTA correlation for a background of sublumi-
nal tensorial transverse-traceless GWs Γþ;×

zz ðΘ; ϵÞ is given
below. The correlation function Γ×

zzðΘ; ϵÞ vanishes identi-
cally, so the correlation is given solely by the function
Γþ
zzðΘ; ϵÞ. The luminal limit (ϵ ¼ 0) of this function is the

Hellings-Downs curve [42]:

Γþ;×
zz ðΘ; ϵÞ ¼ π

3

ð4þ 10ϵ − 5ϵ2Þ − 2ð1þ 10ϵ − 5ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4 − 2π

ϵð2 − ϵÞ þ ð2 − 6ϵþ 3ϵ2ÞS2ðΘÞ
ð1 − ϵÞ5 ln

�
2 − ϵ

ϵ

�

þ π
ϵ2ð2 − ϵÞ2 þ 8ϵð2 − ϵÞð1 − ϵÞ2S2ðΘÞ þ 8ð1 − ϵÞ4S4ðΘÞ

ð1 − ϵÞ5SðΘÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
:

ðD1Þ

This correlation function is plotted in the upper left panel of Fig. 18.

FIG. 18. The subluminal PTA-PTA correlations for four different values of ϵ ∈ f0; 0.1; 0.2; 0.5g. Upper left panel: The tensorial
transverse-traceless correlation function Γþ;×

zz ðΘ; ϵÞ ¼ Γþ
zzðΘ; ϵÞ given by Eq. (D1). The Γ×

zzðΘ; ϵÞ correlation vanishes. The curve
Γþ;×
zz ðΘ; 0Þ is the well-known Hellings-Downs curve [42]. Upper right panel: The scalar transverse correlation function ΓS

zzðΘ; ϵÞ given
by Eq. (D2). Lower left panel: The vectorial correlation function ΓX;Y

zz ðΘ; ϵÞ ¼ ΓX
zzðΘ; ϵÞ given by Eq. (D3). The ΓY

zzðΘ; ϵÞ correlation
vanishes. The correlation ΓX;Y

zz ðΘ; 0Þ is computed numerically with both pulsars placed at d ¼ 100. Lower right panel: The scalar
longitudinal correlation function ΓL

zzðΘ; ϵÞ given by Eq. (D4). The correlation ΓL
zzðΘ; 0Þ is computed numerically with both pulsars

placed at d ¼ 100.
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2. Scalar transverse correlations

The PTA-PTA correlation for a background of subluminal scalar transverse GWs ΓS
zzðΘ; ϵÞ is given below:

ΓS
zzðΘ; ϵÞ ¼

π

3

ð4þ 10ϵ − 5ϵ2Þ − 2ð1þ 10ϵ − 5ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4 − 2π

ϵð2 − ϵÞð1 − S2ðΘÞÞ
ð1 − ϵÞ5 ln

�
2 − ϵ

ϵ

�

þ π
ϵ2ð2 − ϵÞ2

ð1 − ϵÞ5SðΘÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
: ðD2Þ

This correlation function is plotted in the upper right panel of Fig. 18.

3. Vectorial correlations

The PTA-PTA correlation for a background of subluminal vectorial GWs ΓX;Y
zz ðΘ; ϵÞ is given below. The correlation

function ΓY
zzðΘ; ϵÞ vanishes identically, so the correlation is given solely by the function ΓX

zzðΘ; ϵÞ. The luminal limit
(ϵ ¼ 0) of this function does not exist unless the pulsar terms are included, and the correlation cannot be derived
analytically:

ΓX;Y
zz ðΘ; ϵÞ ¼ −

4π

3

ð7þ 4ϵ − 2ϵ2Þ − 4ð2þ 2ϵ − ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4 þ 4π

ð1þ 2ϵ − ϵ2Þ − 2ϵð2 − ϵÞS2ðΘÞ
ð1 − ϵÞ5 ln

�
2 − ϵ

ϵ

�

− 4π
ϵð2 − ϵÞ þ 2ð1 − ϵÞ2S2ðΘÞ

ð1 − ϵÞ5SðΘÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
: ðD3Þ

This correlation function is plotted in the lower left panel of Fig. 18.

4. Scalar longitudinal correlations

The PTA-PTA correlation for a background of subluminal scalar longitudinal GWs ΓL
zzðΘ; ϵÞ is given below. The luminal

limit (ϵ ¼ 0) of this function does not exist unless the pulsar terms are included, and the correlation cannot be derived
analytically:

ΓL
zzðΘ; ϵÞ ¼

2π

3

ð10 − 2ϵþ ϵ2Þ − 2ð7 − 2ϵþ ϵ2ÞS2ðΘÞ
ð1 − ϵÞ4 − 4π

1 − S2ðΘÞ
ð1 − ϵÞ5 ln

�
2 − ϵ

ϵ

�

þ 2π
1

ð1 − ϵÞ5SðΘÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð2 − ϵÞ þ ð1 − ϵÞ2S2ðΘÞ

p
þ ð1 − ϵÞSðΘÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵð2 − ϵÞp
�
: ðD4Þ

This correlation function is plotted in the lower right panel of Fig. 18.

APPENDIX E: PTA-astrometry Correlations

The PTA-astrometry correlation functions were proposed and examined in the luminal case in [10]. These results were
extended to the subluminal case, as defined by Eq. (19) in Sec. IV B. The integrals were performed in an analogous fashion
to the method presented in Appendix B and are therefore not described in detail here. All correlations of the form ΓP

zϕðΘ; ϵÞ
vanish.

1. Tensorial transverse-traceless correlations

The PTA-astrometry correlation for a background of subluminal tensorial transverse-traceless GWs Γþ;×
zθ ðΘ; ϵÞ is

given below. The correlation function Γ×
zθðΘ; ϵÞ vanishes identically, so the correlation is given solely by the function

Γþ
zθðΘ; ϵÞ:
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Γþ;×
zθ ðΘ; ϵÞ ¼ π

3

ð8 − 10ϵþ 5ϵ2ÞSðΘÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S2ðΘÞ

p
ð1 − ϵÞ4

−
π

2

ð2ϵð4 − 6ϵþ 4ϵ2 − ϵ3Þ þ ð8 − 24ϵþ 24ϵ2 − 12ϵ3 þ 3ϵ4ÞS2ðΘÞÞSðΘÞ
ð1 − ϵÞ5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S2ðΘÞ

p ln

�
2 − ϵ

ϵ

�

þ π
ϵ2ð2 − ϵÞ2 þ 8ϵð2 − ϵÞð1 − ϵÞ2S2ðΘÞ þ 8ð1 − ϵÞ4S4ðΘÞ

ð1 − ϵÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − S2ðΘÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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This correlation function is plotted in the upper left panel of Fig. 19.

2. Scalar transverse correlations

The PTA-astrometry correlation for a background of subluminal scalar transverse GWs ΓS
zθðΘ; ϵÞ is given below:
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FIG. 19. The subluminal PTA-astrometry correlations cases for four different values of ϵ ∈ f0; 0.1; 0.2; 0.5g. The ΓP
zϕðΘ; ϵÞ

correlations vanish for all polarization contents P. Upper left panel: The tensorial transverse-traceless correlation function Γþ;×
zθ ðΘ; ϵÞ ¼

Γþ
zθðΘ; ϵÞ given by Eq. (E1). The Γ×

zθðΘ; ϵÞ correlation vanishes. Upper right panel: The scalar transverse correlation function ΓS
zθðΘ; ϵÞ

given by Eq. (E2). Lower left panel: The vectorial correlation function ΓX;Y
zθ ðΘ; ϵÞ ¼ ΓX

zθðΘ; ϵÞ given by Eq. (E3). The ΓY
zθðΘ; ϵÞ

correlation vanishes. Lower right panel: The scalar longitudinal correlation function ΓS
zθðΘ; ϵÞ given by Eq. (E4).
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This correlation function is plotted in the upper right panel of Fig. 19.

3. Vectorial correlations

The PTA-astrometry correlation for a background of subluminal vectorial GWs ΓX;Y
zθ ðΘ; ϵÞ is given below. The correlation

function ΓY
zθðΘ; ϵÞ vanishes identically, so the correlation is given solely by the function ΓX

zθðΘ; ϵÞ:

ΓX;Y
zθ ðΘ;ϵÞ¼−
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This correlation function is plotted in the lower left panel of Fig. 19.

4. Scalar longitudinal correlations

The PTA-astrometry correlation for a background of subluminal scalar longitudinal GWs ΓL
zθðΘ; ϵÞ is given below. The

luminal limit (ϵ ¼ 0) of this function does not exist unless the pulsar terms are included, and the correlation cannot be
derived analytically:

ΓL
zθðΘ;ϵÞ¼
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This correlation function is plotted in the lower right panel of Fig. 19.
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