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Inspirals of stellar-mass compact objects into supermassive black holes are known as extreme mass ratio
inspirals. In the simplest approximation, the motion of the compact object is modeled as a geodesic in the
space-time of the massive black hole with the orbit decaying due to radiated energy and angular
momentum, thus yielding a highly regular inspiral. However, once the spin of the secondary compact body
is taken into account, integrability is broken and prolonged resonances along with chaotic motion appear.
We numerically integrate the motion of a spinning test body in the field of a nonspinning black hole and
analyze it using various methods. We show for the first time that resonances and chaos can be found even
for astrophysically relevant values of the spin of the test body. On the other hand, we devise a method to
analyze the growth of the resonances, and we conclude that the prolonged resonances we observe are only
caused by terms quadratic in spin and will generally stay very small in the small-mass-ratio limit. Last but
not least, we compute gravitational waveforms by numerically solving the Teukolsky equations in the time-
domain and establish that they carry information on the motion’s dynamics. In particular, we show that the
time series of the gravitational wave strain can be used to discern regular from chaotic motion of the source.
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I. INTRODUCTION

The last few years have witnessed the birth of gravita-
tional wave astronomy. Although the first indirect evidence
of gravitational waves has been known since the early
1980s [1], the first direct detection GW150914 was done
by the LIGO Scientific Collaboration [2]. Since then, ∼10
more events have been confirmed [3]. All of them have
been calculated to be mergers of compact binaries of
comparable masses between 101 M⊙ and 102 M⊙.
The Laser Interferometric Space Antenna (LISA) mis-

sion, the first dedicated space-based gravitational wave
detector, is expected to be launched in 2034 [4]. Unlike
ground-based detectors, the sensitivity of LISA will lie in
the range from 10−4 Hz to 10−2 Hz, allowing for obser-
vation of many different types of sources such as super-
massive black hole mergers [5] or stellar-mass compact
binaries long before merger [6]. Another exciting prospect
is to use these sources as independent standard sirens
that allow us to constrain cosmological models [7]. One
of the prime targets are also the inspirals of stellar-mass
(100 M⊙–10

1 M⊙) compact objects (black holes or neutron

stars) into supermassive black holes (105 M⊙–10
10 M⊙),

which are called extreme mass ratio inspirals (EMRIs). It is
expected that during its planned 4–10 year mission, LISA
will detect between 1 and 2000 EMRIs per year [4].
Predicting the evolution of a compact binary requires

solving the full nonlinear set of Einstein equations. Since
this is essentially impossible to do exactly, an obvious
choice is to use numerical relativity simulations instead,
which, on the other hand, come with a hefty computational
price tag. Even though the numerical computation of
gravitational-wave inspirals and mergers have been
achieved in the case of comparable-mass binaries [8], in
the case of an EMRI the corresponding computational cost
is prohibitive due to the huge separation of temporal and
spatial scales involved in the problem.
Instead, in the extreme mass ratio limit q ¼ μ=M ≪ 1,

where μ and M are the respective masses of the secondary
and primary compact object, one can model the dynamics
of the inspiral as the motion of a “particle” on the
background of the primary black hole and employ black
hole perturbation theory to compute the waveform and
radiation-reaction forces on the particle itself [9]. The force
on the test particle is then not only the gravitational self-
force due to the perturbation caused to the background,
but also finite-size effects; forces that come about due to
the fact that the real object in this model is not truly a
point particle.
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In this work we focus on the finite size effects at the
dipole level, which amounts to the model known as a
“spinning particle”. From the multipole expansion of the
secondary object [10–12] we ignore the quadrupole
and all the higher multipole moments. Moreover, we
treat the secondary as a test object, so we ignore also
the dynamical aspects of the self-force. To reproduce the
gravitational radiation emitted by the secondary object,
we numerically solve the Teukolsky equations [13] in
the time domain.
To model this secondary spinning test object, we

use the Mathisson-Papapetrou-Dixon (MPD) equations
[10–12,14,15]. These equations correspond in general to
a nonintegrable system, which exhibits chaotic behavior
and prolonged resonances [16–22]. However, when MPD
equations are linearized in spin, they become approxi-
mately separable under certain conditions [23]. It should
be verified whether this means that chaos and prolonged
resonances do not appear at linear order in spin [24–26].
Whether prolonged, spin-induced resonances play a
significant role in EMRIs still needs to be determined
in order to make accurate predictions for LISA
waveforms.
In this work, we consider the nonlinearized in spin

MPDs to describe the motion of a spinning particle in a
curved spacetime; we restrict ourselves to the motion of
an object moving in a nonspinning supermassive black
hole background, described by the Schwarzschild space-
time. We use Poincaré sections, the rotation number and
recurrence analysis to study the motion of the particle
and to demonstrate the emergence of chaos. Finally, to
establish a link between the dynamical features of the
spinning particle motion and the resulting gravitational
waveform, we employ the recurrence analysis on the
waveforms.
The organization of the paper is as follows: Sec. II

summarizes some basic theoretical results concerning
the equations of motion of spinning particles, regular
and chaotic behavior and the Schwarzschild spacetime.
Section III demonstrates how resonances grow with
spin. In Sec. IV, we compute gravitational waveforms
from the studied system and in Sec. V, we use
recurrence analysis to establish a link between chaos
in the motion and in the waveforms. Section VI sum-
marizes the work.
We use Greek indices μ; ν;… ¼ t; r; θ;ϕ to denote

coordinate components of tensors and capital latin indices
A;B;… ¼ 0; 1; 2; 3 to denote tetrad components. The
metric signature convention used is ð−;þ;þ;þÞ. A dot
above a symbol denotes the absolute derivative with respect
to the proper time _Aμ���

ν��� ¼ DAμ���
ν���=dτ and indices separated

by a comma or semicolon denote a partial or covariant
derivative, respectively. The sign convention for the
Riemann tensor is that 2ωρ;½μν� ≔ ωσRσ

ρμν for any covector
field ω.

II. SPINNING PARTICLES IN THE
SCHWARZSCHILD SPACETIME

A. Equations of motion for spinning particles

We model the EMRI on time-scales shorter than the
radiation-reaction timescale as the motion of an extended
body in the fixed spacetime background of a static black
hole. This motion can be described by a comprehensive
multipole formalism developed by Dixon [10–12]. If one
concerns oneself with only the gravitational interaction and
restricts the multipole expansion of the extended body to
the monopole and dipole terms by neglecting the quadru-
pole and higher-order moments, the MPD equations of
motion reduce to

_Pμ ¼ −
1

2
Rμ

νρσuνSρσ; ð1aÞ
_Sμν ¼ 2P½μuν� ¼ Pμuν − Pνuμ; ð1bÞ

where Sμν is the spin-tensor, Pμ is the four-momentum and
uμ ¼ dxμ=dτ is the four-velocity. The worldline of a particle
xμðτÞ is parameterized by the proper time defined by

dτ2 ≔ −gμνdxμdxν: ð2Þ

Neglecting the dipole term ðSμνÞ in the expansion would
yield geodesic motion.
If we define the mass with respect to the four-velocity

m ≔ −Pμuμ ð3Þ
and the mass with respect to the four-momentum

μ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−PμPμ

p
; ð4Þ

then Eq. (1b) can be rewritten as

Pμ ¼ muμ − uσ _S
μσ: ð5Þ

Another useful quantity is the spin magnitude

S ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
SμνSμν

r
: ð6Þ

For a continuous symmetry of the spacetime background
with the corresponding Killing vector field ξ, this system
admits an integral of motion in the form [27]

CðξÞ ¼ Pσξ
σ −

1

2
ξρ;σSρσ: ð7Þ

Specifically, when ξ corresponds to a time-translation
symmetry of the space-time, then CðξÞ is interpreted as
(minus) the total spin-orbital energy of the particle. On the
other hand, when ξ is a generator of a rotational symmetry
about an axis,CðξÞ corresponds to total spin-orbital angular
momentum about the same axis.
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1. Spin supplementary condition

The MPD equations do not fully determine the system’s
evolution. Therefore, it is necessary to specify an additional
spin supplementary condition (SSC)

VμSμν ≔ 0; ð8Þ

where V is a timelike vector. The meaning of a SSC is
related to the multipole formalism [10]: one describes the
extended body using its multipole moments and V in
Eq. (8) determines the frame used to calculate these
moments. Several different SSCs have been proposed
(see, e.g., [28,29]); however, the existence of a four-vector
V such that Eq. (8) is satisfied imposes already the
constraint ϵμνρσSμνSρσ ¼ 0 on the system, see, e.g., [30].
We choose the Tulczyjew-Dixon (TD) SSC [10,31]

PμSμν ¼ 0: ð9Þ

Due to this condition, the mass (4) and the spin magnitude
(6) are integrals of motion [27]. The system as given above
together with the SSC leads to the equation [32]

uμ ¼ dxμ

dτ
¼ m

μ2

�
Pμ þ 2SμνRνγκλPγSκλ

4μ2 þ RχηωξSχηSωξ

�
: ð10Þ

Since uμuμ ¼ −1 the mass (4) can be expressed as

m ¼ Aμ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2μ2 − BS2

p ; ð11Þ

where

A ¼ 4μ2 þ RαβγδSαβSγδ; ð12aÞ

B ¼ 4hκηRκιλμPιSλμRηνωπPνSωπ; ð12bÞ

hκη ¼
1

S2
SκρSηρ: ð12cÞ

Thus, the derivatives _xμ, _Pμ and _Sμν are uniquely expressed
and the system of ordinary differential equations (ODEs) is
complete.

2. Canonical formalism

While the system as discussed so far is a well-defined
dynamical system, it is simply a set of ODEs, whereas the
symplectic structure of a Hamiltonian system would
provide us with tools to identify reducible degrees of
freedom (d.o.f.) and eliminate them from the ODE system.
By reducing the d.o.f. we can understand and study
dynamical features of the system more easily. We will
use the formalism described in [28]. We only provide a very
concise summary here; for more details see [28].

We take an orthonormal tetrad eAμ, gμνeAμeBν ¼ ηAB and
define the “dual” tetrad as eAμ ≔ gμνeAν. The new phase
space coordinates are defined by

xμ; ð13aÞ

pμ ≔ Pμ þ
1

2
eAν;μeBνSAB; ð13bÞ

SAB ≔ eAμeBνSμν: ð13cÞ

With the Poisson brackets

fxμ; pνg ¼ δμν ; ð14aÞ

fSAB; SCDg ¼ ηACSBD − ηADSBC þ ηBDSAC − ηBCSAD;

ð14bÞ

fxμ;xνg¼fpμ;pνg¼fxμ;SABg¼fpμ;SABg¼ 0; ð14cÞ

the Hamiltonian

H ¼ m
2μ2

�
PμPμ −

4SνγRμ
γκλSκλPμPν

4μ2 þ RχηωξSχηSωξ
þ μ2

�
: ð15Þ

generates the system of MPD equations with the TD SSC.
By a further transformation, one obtains canonical variables
[28]; for the purposes of this work, the existence of these
canonical set of variables is enough. One of the interesting
realizations of this is that the addition of the spin to the
geodesic system in the case of the TD SSC leads to only
one additional d.o.f. [28].

B. Dynamical systems

This section summarizes elements of nonlinear dynami-
cal systems. For a more comprehensive insight into the
topic, see [33–35].

1. Integrable systems

An important notion is that of an integrable system,
which is closely connected to integrals of motion. Let us
consider an autonomous Hamiltonian system with N d.o.f.,
i.e., a 2N-dimensional phase space, and Hamiltonian H.
Let us also assume that there exist n nontrivial linearly
independent integrals of motion Ii, i ¼ 1; 2;…; n in invo-
lution (fIi; Ijg ¼ 0). Then, a canonical transformation
exists which equates several momenta with the integrals
and the Hamiltonian is thus independent of the correspond-
ing positions. Then the evolution of the remaining phase
space variables is independent of the separated d.o.f. and
we call it the reduced system.
If there are N independent integrals of motion in

involution, then according to the Liouville-Arnold theorem,
there exists a set of variables θi, Ii such that:
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θiðτÞ ¼ θið0Þ þ τωiðIjÞ; ð16aÞ
IiðτÞ ¼ Iið0Þ; ð16bÞ

and the system is called integrable. In addition, if themotion
is bounded, then it lies on a nested family of N-dimensional
tori (see, e.g., [33]). The θi variables are then typically 2π-
periodic and the ωi are the characteristic frequencies.
The relevant system in this work possesses enough

integrals to be reduced to two d.o.f., so from now on,
we will restrict ourselves to systems with N ¼ 2 and
bounded motion. In an integrable system, the ratio of
characteristic frequencies is known as rotation number
ω ¼ ω1=ω2. When ω ∈ Q, the motion is periodic, the torus
is called resonant and the corresponding phase space
region is called a resonance. On the other hand, if
ω ∈ RnQ, the orbit densely covers the whole torus (this
is called quasiperiodic motion).
A very powerful phase space visualization tool is the

Poincaré section. Orbits lie on a hypersurface of constant
Hamiltonian in the phase space. In it, one can choose a
2-dimensional surface, which is transversal to the
Hamiltonian flow. We call such a surface the surface of
section or Poincaré section. By considering successive
intersections of a trajectory with the surface of section, the
original 2-d.o.f. continuous-time system is converted to a
1-d.o.f. discrete-time system. In the case of an integrable
system, all intersections corresponding to a single nonreso-
nant trajectory will lie on a closed curve (usually called an
invariant circle). For a resonant torus with ω ¼ r=s, a single
trajectory will only form a finite set of s periodic points in the
surface of section.
A Poincaré section provides a practical method to evaluate

the rotation number. Onemust identify a fixed point x⃗c on the
surface of section, around which the invariant circles are
nested, and take angles between successive intersections x⃗i
with the surface of section with respect to x⃗c as

ϑi ≔ ang½ðx⃗iþ1 − x⃗cÞ; ðx⃗i − x⃗cÞ�: ð17Þ
Then the rotation number, up to an additive integer, can be
determined as

νϑ ≔ lim
n→∞

1

2πn

Xn
i¼1

ϑi: ð18Þ

If the trajectory lies on an invariant torus, then νϑ ¼ ωmod 1
[36]. The error of the limit for finiten is bounded by 1=n. The
rotation number typically changes monotonically for initial
conditions along a direction getting further away from x⃗c.

2. Nonintegrable systems

The structure as described in the Sec. II B 1 fully applies
only in the integrable case. Upon application of a small
perturbation, one typically gets a nonintegrable system,
which, however, retains a lot of structure from the inte-
grable system. The surviving invariant circles are those that

are “sufficiently far enough from resonances” according to
the KAM theorem (see, e.g., [33,34]). The set bounded by
the outermost surviving invariant circle is then called the
main island of stability.
Regarding the resonances after the perturbation, the

Poincaré-Birkhoff theorem (see, e.g., [33]) states that from
a resonance ω ¼ r=s in the integrable system, 2ns of the
periodic points survive in the perturbed system, where
n ∈ N. Half of the surviving points are stable (elliptic),
around which islands of stability arise, and the other half
unstable (hyperbolic). The dynamics near an unstable point
x⃗f is related to invariant manifolds, wherein the stable and
unstable manifold contain points which tend to x⃗f in
forward time and reversed time, respectively. Same type
of manifolds cannot intersect themselves, e.g., a stable
manifold cannot intersect another stable, but stable mani-
folds can intersect unstable ones. On these manifolds and
their intersections move the chaotic orbits, which fill
densely a two-dimensional subset of the surface of section.
The general picture of the perturbed phase space on a

Poincaré section is as follows: there remains a central fixed
point with many quasi-periodic KAM circles, forming the
main island of stability. In the resonances arise chaotic
regions, densely filled by a single orbit, and islands of
stability formed around the stable periodic points of the
resonances. These are remarkably similar to the main island
of stability, leading to tertiary islands of stability etc. At
every order, one can find higher-order resonances, elliptic
points with islands of stability and hyperbolic points with
homoclinic (consecutive sections between manifolds cor-
responding the same periodic point) and heteroclinic
(consecutive sections between manifolds corresponding
the different periodic points) orbits.
The quantity νϑ defined in Eq. (18) can also be helpful to

visualize the phase space of a nonintegrable system. If one
chooses a parametrized line of initial conditions in the
surface of section, computes the νϑ for each of them and
plots it as a function of the initial conditions, one obtains
the rotation curve. If the initial conditions are chosen so
that they only cross invariant circles in one direction, then
the rotation curve is monotonous. When passing through
the region around a resonance of the perturbed system,
νϑ forms a plateau in the rotation curve. We call this region
a prolonged resonance. Multiple initial conditions in a
chaotic region, however, lead to unpredictable values and
wildly differ. Thus, one can detect a prolonged resonance in
a nonintegrable system by either a plateau or nonmonot-
onous variations in the rotation curve.

C. In the Schwarzschild spacetime

1. Schwarzschild spacetime

The Schwarzschild metric, describing a nonspinning
black hole of mass M, is in Schwarzschild coordinates
given by the line element
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gμνdxμdxν¼−fðrÞdt2þ 1

fðrÞdr
2þr2ðdθ2þsin2θdϕ2Þ;

ð19Þ
where

fðrÞ ¼ 1 −
2M
r

: ð20Þ
The spacetime is stationary and spherically symmetric, i.e.,
there exist a timelike Killing vector field and three space-
like Killing vector fields

ξðtÞ ¼
∂
∂t ; ð21aÞ

ξðxÞ ¼ − sinϕ
∂
∂θ − cosϕ cot θ

∂
∂ϕ ; ð21bÞ

ξðyÞ ¼ cosϕ
∂
∂θ − sinϕ cot θ

∂
∂ϕ ; ð21cÞ

ξðzÞ ¼
∂
∂ϕ : ð21dÞ

2. Integrals of motion

The formula for integrals of motion in Eq. (7) can be
expressed for computational convenience using either the
Pμ or the canonical pμ as

CðξÞ ¼ Pσξ
σ −

1

2
gραξα;σSρσ −

1

2
gβρ;σξβSρσ

¼ pσξ
σ −

1

2
gραξα;σSρσ −

1

2
gανξμeAα;μeBνSAB: ð22Þ

Together with the tetrad

e0 ¼
1ffiffiffi
f

p ∂
∂t ; e1 ¼

ffiffiffi
f

p ∂
∂r ; ð23aÞ

e2 ¼
1

r
∂
∂θ ; e3 ¼

1

r sin θ
∂
∂ϕ ; ð23bÞ

the Killing fields in Eq. (21) give rise to the integrals

E ≔ −CðξðtÞÞ ¼ −pt ¼ −Pt −
M
r2

Str; ð24aÞ
Jx ≔ CðξðxÞÞ ¼ − sinϕpθ

− cosϕ cot θpϕ þ r2 cosϕSθϕ

¼ − sinϕPθ − cosϕ cot θPϕ þ r2 cosϕsin2θSθϕ

þ r sinϕSθr þ r cosϕ sin θ cos θSϕr; ð24bÞ
Jy ≔ CðξðyÞÞ ¼ cosϕpθ

− sinϕ cot θpϕ þ r2 sinϕSθϕ

¼ cosϕPθ − sinϕ cot θPϕ þ r2 sinϕsin2θSθϕ

− r cosϕSθr þ r sinϕ sin θ cos θSϕr; ð24cÞ

Jz ≔ CðξðzÞÞ ¼ pϕ ¼ Pϕ − rsin2θSϕr

− r2 sin θ cos θSϕθ: ð24dÞ

Using these, we define the measure of the total angular
momentum as

J2 ¼ J2x þ J2y þ J2z ; ð25Þ
and by taking the Poisson bracket (14) we can see that

fE; Jjg ¼ 0; ð26aÞ
fJi; Jjg ¼ −ϵijkJk; ð26bÞ
fJ2; Jjg ¼ 0: ð26cÞ

The spin magnitude S2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SμνSμν=2

p
and the expression

ϵμνρσSμνSρσ ¼ 0 are used in the construction of the canoni-
cal formalism. They cannot be used to further reduce
the d.o.f.

3. Reduction of the system

The system as described so far has 4 spacetime d.o.f. and
1 spin d.o.f. [28]. It is possible to use the integrals of
motion, i.e., E, Jz, and J2, to reduce the d.o.f. to only 2, as
discussed in detail in Sec. II B 1. We have seen in Eq. (26)
that they truly are in involution. This amounts to picking
specific values of E, Jz, and J2, which then become
parameters of the reduced system.
In fact, we can go further: due to spherical symmetry of

the Schwarzschild spacetime, for every orbit there exists a
coordinate system such that the total angular momentum is
aligned with the z-axis (θ ¼ 0) [16]. Thus, every relevant
feature of the system’s dynamics remains covered by
making the choice

Jx ¼ Jy ¼ 0: ð27Þ
Due to this, we can write

�
0

0

�
¼
�
Jx
Jy

�
¼
�
cosϕ −sinϕ

sinϕ cosϕ

��
−cotθpϕþ r2Sθϕ

pθ

�
;

ð28Þ
and thus

pθ ¼ − cot θpϕ þ r2Sθϕ ¼ 0: ð29Þ
A useful tool to get an insight into the boundaries of the

spinning particle motion would be an effective potential
on the r, θ plane. However, such an effective potential is not
known, instead, as shown in [16], there is a boundary
curve on the r, θ plane for given E, Jz, and S, on which
Pr ¼ Pθ ¼ 0. As in [16], we will call this curve an
“effective potential,” even if it is not. This curve has two
branches, which read
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Veffð�Þ ¼ μ

� ffiffiffi
f

p
coshXð�Þ þ

M sinhXð�Þffiffiffi
f

p
rcoshXð�Þ

·

�
Jz sinθ
μr

− sinhXð�Þ

��
; ð30aÞ

sinhXð�Þ ¼
μJzr sin θ

D
� 1

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðμJzr sin θÞ2 − ED

q
; ð30bÞ

E ¼ ðJ2z − S2Þf þ 2M
r

J2z sin2 θ; ð30cÞ
D ¼ μ2r2 − S2f: ð30dÞ

In the limit r → ∞, non-negativity of the square root
argument leads to the requirement

cos θ ≤
S
Jz

; ð31Þ

and for finite r, it seems to be even slightly more restrictive.
This means that for low spin values the particle can only
move in a thin wedge near the equatorial plane. In the
limiting geodesic case S → 0, the particle is confined to
the equatorial plane (recall that we have imposed the
constraint J2 ¼ J2z!).
For high values of the spin, we cannot make general

statements about the effective potential; however, for
S ≪ μM, it will only deviate slightly from its geodesic
counterpart. Typical shapes of Veffð�Þ are shown in the top
panel of Fig. 1, where we can see the band of r and E values
allowed as initial conditions when considering Pr ¼ 0 with
the geodesic effective potential running between Veffð�Þ
curves. The bottom panel of Fig. 1 shows the corresponding
Poincaré section for a given energy (the purple dash-and-
dot line in the top panel). The full green vertical lines
crossing both plots show the radial bounds defined by the
effective potential, i.e., Pr ¼ 0. The two inner green full
lines define a region of nonexisting initial conditions on the
Poincaré section. One can see that in the outer part of the
surface of section still within the band of admissible initial
conditions (outer green full lines), there are no points: the
corresponding initial conditions exist but correspond to fast
plunging orbits most of which only intersect the surface of
sectionvery few times before plunging into the central object
and therefore do not form structures in the figure. Thus, for a
given energy both branches of the effective potential are
needed to define the bounds of the allowedmotion. Note that
this holds independently from the relevant orientation of the
spin and the angular momentum.1

4. Initial conditions

In this section, we describe the choice of initial conditions
for numerical integration of orbits. To gain insight into the

phase space dynamics, we reduce the system to only 2 d.o.f.
as described in the previous section. In particular, for every
orbit, wewill choose the values of the energyE, total angular
momentum J ¼

ffiffiffiffiffi
J2

p
, and spin S ¼

ffiffiffiffiffi
S2

p
.

Since the motivation for this work are EMRIs, it is
necessary to pick values of the spin which are astrophysi-
cally relevant. The extended body we are modeling can be
either a

(i) stellar-mass black hole, in which case calculations
with the Kerr spacetime show that S ≤ μ2, or

(ii) neutron star, wherein due to the mass shedding limit
S ≲ 0.6μ2 (see, e.g., [18]).

FIG. 1. Top panel: The effective potential in the equatorial
plane for Jz ¼ 3.8 μM. The full black line corresponds to S ¼ 0,
dashed red and dotted blue lines are VeffðþÞ and Veffð−Þ,
respectively, for S ¼ 0.2 μM. The purple dash-and-dot line shows
the energy value E ¼ 0.97μ. Bottom panel: The corresponding
Poincaré section with 12 initial conditions from r ¼ 4.327M with
spacing 0.256M. The full green vertical lines connecting both
plots show bounds for possible initial r with Pr ¼ 0 in the
Poincaré section and the dashed green vertical line shows the
approximate connection of the unstable orbit and the extrema of
the effective potential.

1Note that the connection between the effective potentials
and the bounds of the allowed motion is not accurately explained
in [16].
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The importance of the spin term in the MPD equations in
Schwarzschild spacetime scales as S=ðμMÞ, and S must in
either case must be bounded by μ2. The strength of the
astrophysically realistic perturbation to the equations of
motion of the particle thus is of the order of magnitude

S
μM

≤
μ2

μM
¼ μ

M
≲ 10−4; ð32Þ

where we use 10−4 as an upper bound for the mass ratio
μ=M in an EMRI.
As a surface of section, we choose the equatorial plane

θ¼ π=2 with the momentum pointing “down”, i.e., Pθ ≥ 0.
As coordinates on the section, we choose the radial
coordinate and momentum r; Pr. This is a very usual
choice in black hole spacetimes, employed in previous
works (see, e.g., [37,38] and references therein).
The top part of Fig. 2 shows the left tip of a Poincaré

section and corresponding rotation curve for spin value
S ¼ 10−4 μM. Visible are all the typical features of a
nonintegrable system: KAM curves on the right, small
islands of stability as remnants of resonant tori and dispersed
points corresponding to chaotic orbits (from the center to the
left). The bottom part of Fig. 2 shows the corresponding
rotation curve with initial conditions taken at Pr ¼ 0. Note
that the rotation curve corresponds to the form described in
Sec. II B 2; it forms a plateau when passing through a
secondary island of stability, it is monotonous when passing
throughKAM tori in themain island of stability, and it varies
wildly in the chaotic sea. Therefore, theMPDequationswith
the TD SSC exhibit very typical signs of a chaotic system
even for a small enough spinvalue to correspond to anEMRI
with μ=M ≐ 10−4.

III. ACTION ANGLE(LIKE) VARIABLES

A. Action angle variables

As mentioned in the previous section, in an integrable
system, there exist canonical coordinates in the form of
Eq. (16). Their existence is connected to the separability of
the Hamilton-Jacobi equation into a set of independent
ordinary differential equations by assuming the action

W ¼
XN
i¼1

WiðqiÞ: ð33Þ

If the Hamilton-Jacobi equation is separable in the given
variables, the actions are defined as

Ii ¼
I

dWi

dqi
dqi; ð34Þ

where the integral is taken over one loop of the corre-
sponding variable.2 The angles are then such variables that
they fulfill the canonical Poisson bracket

fθi; Ijg ¼ δij ð35Þ

and are 2π-periodic. The Ii are integrals of motion, i.e.,

∂H
∂θi ¼ 0: ð36Þ

The values of the actions determine on which phase space
torus the motion lies and the angles determine the position
on the given torus. This set of coordinates is then called the
action-angle (AA) variables.

B. Growth of resonances

In a nonintegrable system, AA variables cannot be
defined for the whole system. Nevertheless, if one defines
a set of variables which smoothly reduce to AA variables
when the perturbation is eliminated, it is possible to study

FIG. 2. Top panel: Poincaré section of the MPD equations for
S ¼ 10−4 μM, E ¼ 0.976μ, Jz ¼ 3.8 μM and initial Pr ¼ 0.
Initial r are 31 equidistant values from 4.252135M with the
spacing 10−6M. Bottom panel: rotation curve corresponding to
the top panel.

2Note that there is no summation over i, both the differential and
the integral are taken with respect to the ith canonical variable.
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the effect of gradual deviation from the integrable case
using perturbation theory and series expansions. We have
written this section along the lines of [35], for more
reference, we also recommend [33,39].
Consider an integrable Hamiltonian system with 2 d.o.f.

in AA variables θi, Ii, i ¼ 1; 2 with a Hamiltonian
H0ðI1; I2Þ. The Hamiltonian of a close (perturbed) system
can be expressed in terms of these coordinates as

H ¼ H0ðI1; I2Þ þ εH1ðI1; I2; θ1; θ2Þ; ð37Þ
where ε ≪ 1. Now consider the vicinity of a resonance of
the unperturbed system such that s∂H0=∂I1 ¼ r∂H0=∂I2;
r; s ∈ Z=f0g, characterized by some values of the actions
Ir1; I

r
2 at the resonance. We can then “rotate” the action-

angle coordinates as

I1 ¼
rI1 − sI2

2rs
; φ1 ¼ sθ1 − rθ2; ð38Þ

I2 ¼
rI1 þ sI2

2rs
; φ2 ¼ sθ1 þ rθ2: ð39Þ

It can be verified that at Ir1; I
r
2 we have _φ1 ¼ OðϵÞ and

_φ2≠0. Notice also that the resonant condition s∂H0=∂I1 ¼
r∂H0=∂I2 transforms into ∂H0=∂I1 ¼ 0.
Consequently, one can eliminate the phase φ2 by the

usual “averaging” near-identity transform of coordinates
I2, φ2→ I 0

2¼ I2þOðεÞ, φ0
2 ¼ φ2 þOðεÞ [39]. However,

the phase φ1 cannot be eliminated from the dynamics in this
way and, suppressing notation changes due to the near-
identity transform, we have a new Hamiltonian of the form

H ¼ H0ðI1; I2Þ þ εH1ðI2; I2;φ1Þ: ð40Þ
Let us now expand around the value I r

1 of the action I1 at
resonance in terms of a deviation ΔI1 ¼ I1 − I r

1. To
leading order in ΔI1 we obtain

H ¼ β

2
ðΔI1Þ2 þ εFðφ1Þ; ð41Þ

where β, F are still functions of I2; I r
1. The last step is to

expand the F in a Fourier series and only keep the leading
harmonic, arriving, without loss of generality, to

H ¼ β

2
ðΔI1Þ2 þ εα cos ðnφ1Þ: ð42Þ

For n ¼ 1, this is the Hamiltonian of a pendulum, revealing
a certain universality of resonances. The separatrix in Fig. 3
is the curve of constant Hamiltonian, separating the phase
space regions corresponding to oscillation and rotation:
εα ¼ βðΔI1Þ2=2þ εα cos ðnφ1Þ. The minima of cos ðnφ1Þ
with ΔI1 ¼ 0 form stable points and the maxima form
unstable points. A straightforward calculation then shows
that the width of the resonance is

width ≔ maxðI1Þ −minðI1Þ ¼ 4

ffiffiffiffiffi
εα

β

r
∝

ffiffiffi
ε

p
: ð43Þ

This model also allows us to relate the width to the angle at
which the separatrix opens at an unstable point. In a
neighborhood of φ1 ¼ 0, one may write for the separatrix

ΔI1 ¼ �
ffiffiffiffiffi
ϵα

β

r
· nφ1 ¼ �width · n

4
· φ1: ð44Þ

Now it is only necessary to return to the original variables
θi, Ii, i ¼ 1; 2. Without loss of generality we can choose a
Poincaré surface of section and an AA coordinate system
such that the section lies on the surface θ2 ¼ 0 and thus

θ1 ¼ φ1

s
: ð45Þ

It is then easy to see that in this Poincaré section there will
be a total of n · s islands in the given resonance.
This way we can see that in the weakly perturbed system

the n in the discussion above corresponds to the n given in
the Poincaré-Birkhoff theorem in Sec. II B 2. This also
allows us to finally write the relationship between the
resonance width and the local behavior of the separatrix:

ΔI1 ¼ �width · ns
4

· Δθ1: ð46Þ

Thus, to determine thewidth of a resonance in a nonlinear
system, we can measure the angle at which the separatrix
opens—that is, between the Jacobian’s eigenvectors at the
corresponding unstable periodic point—in AAvariables and
make use of Eq. (46). We can also employ the nonlinear
oscillator model to estimate the rate at which resonances of a
spinning particle near a black hole grow. It has been shown
that for MPD equations with the TD SSC to linear order in

FIG. 3. Phase portrait of the nonlinear oscillator of Eq. (42) for
n ¼ 1 and β ¼ εα ¼ 1. The full curve in red is the separatrix, the
angle at which it opens is measured between the dashed blue lines
and the full black lines correspond to trajectories of the system;
the ones enclosed between the two separatrix branches corre-
spond to oscillation and the outer ones to rotation.
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spin in the Kerr spacetime (of which Schwarzschild is a
special case) approximate constants of motion exist that
allow for an (approximate) separation of theHamilton-Jacobi
equation (see [23,40]). These analytical results imply that the
system is integrable to linear order in spin, and the integra-
bility is broken only by terms quadratic in S. However, it is
important to verify these results by independent methods.
As shown above, for a perturbation linear in the parameter

ε, prolonged resonances grow as width ∝
ffiffiffi
ε

p
. If the terms

linear-in-spin in the equations of motion cause a given
prolonged resonance to appear, then one can expect the
width of the resonance to grow as ∝

ffiffiffi
S

p
. However, as it is

possible that the prolonged resonance only appears due to
termswhich are second order in spin, thenwemust equate the
parameter ε to S2 and get width growth as ∝

ffiffiffiffiffi
S2

p
¼ S.

Hence, there are two cases that may appear: width ∝
ffiffiffi
S

p
or width ∝ S.

C. AA-like variables for the MPD equations

To find a reasonable mapping between our r; Pr surface
of section with given E, Jz, Jx ¼ Jy ¼ 0, S and a set of AA-
like variables, we make use of the geodesic properties: we
find a suitable set of fiducial parameters Ef , Jzf and use the
geodesic ðr; PrÞ ↔ ðθr; IrÞ mapping with these fiducial
parameters to convert our Poincaré section data to AA-like
variables.
Our approach of finding suitable values for the fiducial

parameters relies on the existence of an unstable periodic
point ðrupo; 0Þ near the left tip of the surface of section (e.g.,
Fig. 2); our method preserves this unstable point when
mapping to the geodesic system. The fiducial parameters
are then given by the geodesic formulas

Ef ¼
rupo − 2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rupoðrupo − 3MÞp μ; ð47Þ

Jzf ¼
rupoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Mðrupo − 3MÞp μM: ð48Þ

Once the Ef and Jzf are known, we convert the point
ðr; PrÞ in the Poincaré section to ðθr; IrÞ as a point on a
geodesic with energy Ef, azimuthal angular momentum Jzf ,
radial coordinate r, and corresponding momentum Pr
passing through the equatorial plane:

Ir ¼ Igeor

�
r;E ¼ Ef ; Jz ¼ Jzf ;

C ¼ r2
�
E2

f
− fP2

r − μ2
�
− J2z

�
; ð49aÞ

θr ¼ θrgeo

�
r;E ¼ Ef ; Jz ¼ Jzf ;

C ¼ r2
�
E2

f
− fP2

r − μ2
�
− J2z

�
: ð49bÞ

As the choice of fiducial parameters Ef , Jzf is made using
the left tip of the surface of section, the transformation is
expected to work well for r ∼ rupo ⇔ θr ∼ 0 and might be
unsuitable for r ≫ rupo ⇔ jθrj ∼ π. This is demonstrated in
Fig. 4, where the previously shown surface of section in
Fig. 1 is converted to AA-like variables and one can see that
for high Ir and low jθrj they behave as expected, i.e.,
forming approximately horizontal lines for KAM circles.

D. Numerical analysis of resonance growth

The aim of this section is to describe the method and the
results of our numerical analysis. To study the growth of
resonances, one must first design a scheme to choose the
values of the integrals for different spins. A good guide is
again the effective potential. Our goal is that the energy and
angular momentum allow for plunging orbits, as this is
suggested by someworks (see, e.g., [41]) to make nonlinear

FIG. 4. Data from the surface of section in Fig. 1 converted to
AA-like variables. Top panel: full surface of section, bottom
panel: zoom at the 1=3 island.
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behavior more prominent even for a resonance enclosed by
a KAM circle. Also, we defined the AA-like variables in
such a way that we require the existence of an unstable
point near the left tip of the main island of stability. To
fulfill this criterion for small enough spins (S≲ 10−1 μM),
we simply choose a value for Jz and take the value of the
geodesic effective potential at its local maximum (corre-
sponding to an unstable circular equatorial geodesic orbit)
as the energy, which we keep the same for different spin
values. Typically, the effective potentials then looks as in
Fig. 5, while Fig. 6 shows an example of how a surface
of section focusing around a resonance is converted to
section in AA-like variables. We then use a program (see
Appendix B) to search for the given resonance along the
θr ¼ 0 line and after locating the separatrix, the angle at
which it opens is measured and the prolonged-resonance
width is calculated.
The growth of theω ¼ 1=2 and 2=3 prolonged resonances

with Jz ¼ 3.8 μM was investigated by taking 21 different
values of the spin distributed geometrically in the interval
½10−3 μM; 10−1 μM� forω¼1=2 and 31values in ½10−5 μM;
10−2 μM� forω¼ 2=3; then the procedure abovewas applied
to measure the width of the given prolonged resonance near
the left tip of the main island of stability. Equation (46) was
used to estimate the width of the prolonged resonance with
parameter n ¼ 2. The result is shown in Fig. 7, where the
lines correspond to fits of the function

log
widthω
μM

¼ Aω þ qω · log
S
μM

; ð50Þ

to the measured points except for the leftmost and rightmost
ones, which was performed in logscale without taking
errors of separatrix width measurement into account and
returned the values

A1=2 ¼ −0.639� 0.019; ð51aÞ

q1=2 ¼ 1.013� 0.004; ð51bÞ

A2=3 ¼ −4.366� 0.013; ð51cÞ

q2=3 ¼ 0.9974� 0.0016: ð51dÞ

This shows that the prolonged-resonance widths grow
linearly with spin. Recall that the resonance width grows as
the square root of the relevant perturbation (see Sec. III B);
we can thus conclude that the growth of the 1=2 and 2=3

FIG. 5. Shapes of the effective potential for angular momentum
Jz ¼ 3.8 μM and low spin values near the unstable point. Black
lines show the geodesic effective potential and the corresponding
energy level of the circular equatorial unstable orbit at
E ≐ 0.976037μ. Colored lines show the effective potential for
nonzero spin; full lines correspond to VeffðþÞ and dashed lines
to Veffð−Þ.

FIG. 6. Top panel: Surface of section for E ≐ 0.976037μ,
Jz ¼ 3.8 μM, S ¼ 10−3 μM showing the 2=3 resonance;
separatrix is shown in red, black lines left and right of the
separatrix are KAM curves, above and under are in the
resonant islands of stability. Bottom panel: top panel converted
to AA-like variables.
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prolonged resonances is driven by the second-order in
spin terms.

IV. GRAVITATIONAL WAVEFORMS

A. Teukolsky equation

The Teukolsky equation employs the Newman-Penrose
(NP) formalism to describe perturbations of test fields in a
Kerr background. We provide only a short summary, the
interested reader is referred to [13,42].
In a suitable tetrad, it holds that the Weyl-NP scalar

ψ4 ≔ Cμνρσnμm̄νnρm̄σ ¼ ḧþ − iḧ×
2

: ð52Þ

For the master variable Ψ¼ r−4ψ4 and spin weight
s ¼ −2, gravitational perturbations of the Schwarzschild
spacetime (see [13,42] for Kerr) are described by the master
equation

r2

f
∂2Ψ
∂t2 −

1

sin2θ
∂2Ψ
∂ϕ2

−
1

sin θ
∂
∂θ

�
sin θ

∂Ψ
∂θ

�

−
�

1

r2f

�
s ∂
∂r

�
ðr2fÞsþ1

∂Ψ
∂r

�
− 2s

i cos θ
sin2θ

∂Ψ
∂ϕ

− 2s

�
M
f
− r

� ∂Ψ
∂t þ sðscot2θ − 1ÞΨ ¼ 4πr2T: ð53Þ

The source term T is then a complicated linear combination
of the stress-energy tensor components corresponding to
the tetrad vectors n and m̄.

The conventional way to solve this equation is in the
frequency domain, in which it is fully separable (see, e.g,
[43]). This approach is highly effective for a geodesic
source, because it is sufficient to work with very few
frequencies. In the case of more complicated dynamics,
however, a time-domain approach is preferable. Due to the
spacetime axisymmetry, the ϕ d.o.f. is still separable.
Since we are interested in the gravitational radiation at

distances very large in comparison to M, the quantity of
interest will be the strain h at null infinity J þ. It can be
decomposed as

h ¼
X∞
l¼2

Xl
m¼1

hlm · −2Ylmðθ;ϕÞ; ð54Þ

where sYlmðθ;ϕÞ are the spin-weighted spherical harmon-
ics with spin-weight s.

B. Results: Generated waveforms

In this section, waveforms from trajectories depicted in
Sec. II are computed using the Teukode (see Appendix C
or [42,44]).
Thewaveforms shown are evaluated at null infinityJ þ in

the equatorial plane θ ¼ π=2. Figure 8 shows a waveform
computed using 2001 × 101 grid3 from a trajectory in the
chaotic sea in Fig. 2 and a waveform from a nearby regular
orbit. The orbits have eccentricity e≈ðrmax−rminÞ=
ðrmaxþrminÞ≐0.776 and get very close to the unstable orbit:
rchaoticmin −rupo≐5.3×10−5M, rregularmin − rupo ≐ 5.7×10−5M.
These waveforms have the shape we expect from an
EMRI (see, e.g., [45]).

FIG. 7. Growth of prolonged resonances ω ¼ 1=2; 2=3.

FIG. 8. Waveforms from trajectories in Fig. 2. In solid red:
chaotic with initial r ¼ 4.252160M and Pr ¼ 0, in dashed blue:
regular with initial r ¼ 4.252162M and Pr ¼ 0.

3For the meaning of the grid see Appendix C.
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Wecan see that a simplevisual inspection is insufficient to
distinguish whether the original orbit was regular or chaotic.
We propose and apply a solution in the next section.

V. RECURRENCE ANALYSIS

A. Recurrence plots

Recurrence analysis is a method which allows us to
analyze dynamics of regular and chaotic systems. It can be
used to estimate dynamical invariants, such as the second-
order Rényi entropy and correlation dimension, to uncover
features such as unstable periodic orbits and sticky orbits,
or simply to distinguish linear and nonlinear behavior. For
more detailed information on recurrence analysis, including
different metrics to quantify the recurrence plots for a more
substantial analysis of time series, see [46].
All we require is a time series in the full phase space x⃗i.

We define the recurrence matrix as

Rij ¼
�
θðε − kx⃗i − x⃗jkÞ i ≠ j

0 i ¼ j
; ð55Þ

where θ is the Heaviside step function and ε is a free
parameter called the recurrence threshold. Intuitively, this
simply means: Rij ¼ 1 ⇔ there is a recurrence at times i
and j ⇔ x⃗i and x⃗j are closer than a given (small) threshold.
The recurrence matrix is by definition symmetric. The main
diagonal i ¼ j is excluded for technical reasons [46]. There
is also an implicit ambiguity in the choice of metric. We
define the recurrence rate (RR) as the density of ones in the
recurrence matrix, for a time series of length l:

RR ¼ 1

l2
XN;N

i;j¼1

Rij: ð56Þ

Often, a specific value of RR is chosen and the threshold ε
is then tuned to fit the given RR.
We can visualize this matrix in the graph with the two

axes i and j corresponding to times ti and tj, and
representing ones in the recurrence matrix by dots in the
graph. This is called a recurrence plot (RP).
RP can be inspected visually to see some of the basic

dynamical features, namely to distinguish linear and non-
linear behavior. When a time series is quasiperiodic, there is
a delay after which one finds recurrences for a sufficiently
high recurrence threshold; i.e., ∀ iRi;iþΔi ¼ 1. This forms
lines parallel to the main diagonal offset by Δi either in the
horizontal or in the vertical direction.
In contrast, for a chaotic orbit, this regular structure only

exhibits itself due to stickiness, a phenomenon where a
chaotic orbit approaches an island of stability and mimics
its regular behavior for a long period of time in interval P.
The part of RP in the region P × P is formed by diagonal-
parallel lines and forms a regular-looking square lying on
the main diagonal. Furthermore, if the orbit is in a sticky
regime in the intervals P1 and P2, then the region

ðP1 × P2Þ⋃ðP2 × P1Þ, which shows correlations between
the intervals P1 and P2, can either show a similar structure
again if the orbit moves near the same island during both
intervals or be empty if the two islands are different. This
forms the typical square-like structure of a recurrence plot.

B. Time delay method

The method of recurrence analysis is powerful, but it
assumes that a trajectory in the phase space of dynamical
system is available for inspection. However, it may happen
that we only have access to limited data (e.g., a simple
scalar time series representing a complex multi-
dimensional system) and want to apply recurrence analysis;
it is then necessary to use a phase space reconstruction
technique. Here we describe the time delay embedding
method based on Takens’s theorem [47].
Let us have a time series x⃗i of dimension n1 and length

l1 ≥ i ∈ N in space X . Let us also choose two free
parameters: time delay T ∈ N and embedding dimension
d ∈ N. We then call Xd the reconstructed phase space and
define the reconstructed time series as

y⃗i ¼ ðx⃗i; x⃗iþT ;…; x⃗iþT ðd−1ÞÞ; ð57Þ

which has dimension n1 · d and is reduced in length to
l1 − T ðd − 1Þ ¼ l2 ≥ i ∈ N. The trivial case without
reconstruction is d ¼ 1.
This method has been shown in [47] to provide a

diffeomorphism between the original and reconstructed
phase space under some conditions. This means that even
using the data from a single suitable (i.e., not constant along
the system’s evolution) scalar function on the phase space
we can still study the system’s dynamics—in fact, this
removes some of the ambiguity of the metric choice.
It is also necessary to make a proper choice of parameters

T and d. Time delay is usually chosen as the first minimum
of either the mutual information or the autocorrelation
function. Embedding dimension is determined by the false
nearest neighbor (FNN) algorithm [48]. The phase space is
reconstructed using a given time delay T and embedding
dimension d and for every point, the nearest point is found.
It is considered a false nearest neighbor if their distance
increases by a factor of at least f (we typically use
f ¼ 5–10) when the embedding dimension is changed to
dþ 1. A suitable d is such that the fraction of FNNs is
considered small enough (in ideal case it drops to zero).

C. Recurrence plots of MPD orbits and corresponding
gravitational waveforms

First we have applied recurrence analysis to MPD orbits.
In particular, we have sampled the radial coordinate r along
the orbit with constant time-step Δt to obtain 1300 points
and used this time series to construct the recurrence
plots. The recurrence threshold ε is determined by fixing
the recurrence rate (RR). For a geodesic case we set
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RR ¼ 0.08, while for a chaotic orbit the higher value
RR ¼ 0.15 appears to be appropriate. The embedding
method is employed to reconstruct the trajectory in the
phase space. The embedding dimension d is determined for
each time-series by the FNN algorithm as described above
and embedding time delay T is found as a first minimum of
time delayed mutual information.
We use the CRP Toolbox [46] installed on Matlab

R2014a to construct the RPs. Embedding parameters are
estimated using the functions false_nearest and
mutual from the Toolbox of RP and RQA [49].
Computed recurrence plots are shown in Fig. 9. Note

that their visual inspection reveals regular and chaotic
behavior. In particular, for a geodesic case (left panel of
Fig. 9) we observe simple diagonal pattern characteristic
for regular dynamics. However, this simple structure of
RP becomes distorted as the introduction of the small

spin induces weak chaos (middle panel). With high spin
value, we obtain typical RP of strongly chaotic system
(right panel).
In the following, we apply the same procedure of

recurrence analysis to the simulated gravitational wave-
forms corresponding to the MPD orbits. The waveforms
were obtained numerically by the method described in
Sec. IV. In particular, we use the time series hþm≤3 as
described in Sec. IV B. Analogically to the previous case,
we use delay embedding method to reconstruct the phase
space trajectory and the recurrence rate is fixed to deter-
mine the threshold ε.
The resulting recurrence plots of the waveforms are

shown in Fig. 10. The plots clearly confirm the onset of
chaos and match RPs of the corresponding trajectories to a
certain degree. In particular, we observe that chaotic
behavior may be identified even for a weakly chaotic case

time
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time

tim
e

time

tim
e

FIG. 9. Recurrence plots of three MPD orbits. Segments of orbits of length τfin ≈ 5 × 104M, corresponding to Nfin ≈ 300 orbital
periods, have been analyzed with the time step Δτ ¼ τfin=103. Left: regular with S ¼ 0 (geodesic), E ¼ 0.976μ, Jz ¼ 3.8 μM and initial
r ¼ 4.5M (RR ¼ 0.08, d ¼ 2 and T ¼ 6Δτ). Center: weakly chaotic at S ¼ 10−4 μM with E ¼ 0.976037μ, Jz ¼ 3.8 μM and initial
r ¼ 4.25216M (RR ¼ 0.08, d ¼ 20 and T ¼ 4Δτ). Right: Strongly chaotic at S ¼ 1.4 μM with E ¼ 0.92292941μ, Jz ¼ 4.0 μM and
initial r ¼ 4.5M (RR ¼ 0.15, d ¼ 7 and T ¼ Δτ).
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FIG. 10. Recurrence plots of gravitational waveforms corresponding to the segments of orbits analyzed in Fig. 9. Left panel shows the
RP of the regular waveform (RR ¼ 0.08, d ¼ 4 and T ¼ 7Δτ), middle panel represents the weakly chaotic case (RR ¼ 0.15, d ¼ 10
and T ¼ 3Δτ) and RP of the waveform resulting from the strongly chaotic trajectory is presented in the right panel (RR ¼ 0.15, d ¼ 5
and T ¼ 2Δτ).
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with realistic value of spin (middle panel of Fig. 10). Thus,
we can conclude that chaos remains encoded in the
gravitational waveforms radiated from EMRI and that it
may be detected using the technique of recurrence
analysis.4

VI. CONCLUSION

In the first part of this work, we have demonstrated that
chaos manifests itself even for spin values relevant to real
astrophysical events using numerically evolved orbits of
spinning particles with the Tulczyjew-Dixon spin supple-
mentary condition. We have also designed and demon-
strated the fiducial action-angle variables and a method of
studying any prolonged resonance for any kind of near-
geodesic motion in Schwarzschild spacetime.
It is known that the inclusion of spin in the equations of

motion causes the system to lose integrability [18]. On the
other hand, the existence of approximate constants of
motion [40] and the associated near-separability [23]
implies that there should be no prolonged resonances in
the system caused by linear-in-spin terms in the equations
of motion. Indeed, this work directly demonstrates that the
1=2 and 2=3 prolonged resonances are related only to the
second-order-in-spin terms and do not manifest themselves
at linear order in spin in the Schwarzschild spacetime.
Thus, we have provided evidence that terms linear in spin
do not cause the emergence of chaos, which in turn should
have little effect on the overall dynamics of an EMRI with a
nonspinning supermassive black hole.
Even if this result supports the expectation that spin-

induced prolonged resonances and chaos should not play a
significant role in EMRIs, this has to be confirmed by a
study which will incorporate the dissipation caused by
the radiation reaction. Such a study will allow us to
investigate the effects of crossing a prolonged resonance
during the inspiral. Our work provides numerical evidence
for the case of two most significant r − θ resonances in the
Schwarzschild spacetime. It is of great interest to extend
this analysis to the Kerr spacetime to get a more complete
picture of the dynamics of an EMRI, since the more general
case of a spinning primary will introduce a spin spin
coupling into the system. It would also be beneficial to
show that our conclusion is independent of the spin
supplementary condition used.
In the second part of the work, we have used the

Teukode, a time-domain Teukolsky equation solver, to
compute gravitational waveforms generated by the motion
of a spinning particle in the Schwarzschild background.
Using recurrence plots, we have established a close link
between dynamical features of the particle’s motion and the
corresponding gravitational waveforms spins of sufficient

magnitude. For lower spins, however, more work is needed
to strengthen this connection. For example, one has to
eliminate the numerical noise from the Teukode simulation.
It would be of interest to repeat the simulations with a finer
grid so as to see whether the reduced noise would
contribute to a closer link between the orbital and wave-
form recurrence plots. Another problem that could be
addressed is the nature of recurrence analysis, which is
by design suited to systems with a finite number of d.o.f.
Finally, a large challenge is the fact that the real signal will
not only be heavily distorted by background and detector
noise [38], but it will also be overlapping with signals from
other sources.
Even though it is yet not clear whether recurrence

analysis is able to detect spin-induced chaos in EMRI,
there is an ongoing effort to establish it as a tool able to
detect chaos from other sources. An important example
would be when chaos arises due to a broken spacetime
symmetry of the background, that is, when the Kerr
hypothesis is incorrect (see, e.g., [38]).
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APPENDIX A: ANALYTIC PROPERTIES OF
GEODESICS

When considering geodesic motion in the Schwarzschild
spacetime, the transformation between the coordinates
ðxμ; PνÞ and the AA variables can be explicitly written
using integrals, for full derivation see [50,51]. We only give
the r-action and angle. They are given using the polynomial
R and the integral R, which are defined as

Rðr;E; Jz; CÞ ¼
E2r4

μ2
− r2fðr2 þ J2z þ CÞ; ðA1aÞ

RðrÞ ≔
Z

r

r2

R−1=2ðr0Þdr0; ðA1bÞ

as

Igeor ðr;E; Jz; CÞ ¼ 2

Z
r1

r2

R1=2ðr0Þdr0; ðA2aÞ

θrgeoðr;E; Jz; CÞ ¼
�
πRðrÞ=Rðr1Þ Pr ≥ 0

−πRðrÞ=Rðr1Þ Pr < 0
; ðA2bÞ

4In cases of weakly chaotic layers, which usually are the case
for low spin values, it is naturally harder to detect chaos and even
low noise can be an obstacle, see also [38]
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where r1 and r2 are turning points; they are the highest and
next-to-highest root of RðrÞ, respectively. The integrals are
the energy E, the azimuthal component of the orbital
angular momentum Jz and the Carter constant C, which
in the Schwarzschild case reduces to C ¼ J2x þ J2y, and their
presence in R is implied. This way, the angle coordinate is
defined with the convention θrgeo ∈ ½−π; π�.
The integrals in θrgeo can also be expressed using special

functions, namely the incomplete elliptic integral of the
first kind

Fðφ; kÞ ¼
Z

φ

0

dϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2ϑ

p

¼
Z

sinφ

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − y2Þð1 − k2y2Þ

p ðA3Þ

and the complete integral of the first kind KðkÞ¼Fðπ=2;kÞ.
It is first necessary to find all the roots of RðrÞ and

rewrite as

RðrÞ ¼
�
1 −

E2

μ2

�
ðr1 − rÞðr − r2Þðr − r3Þr;

0 ≤ r3 ≤ r2 ≤ r1: ðA4Þ

Then we can express

Z
r

r2

R−1=2ðr0Þdr0 ¼ 2

ð1 − E2=μ2Þðr1 − r3Þðr2 − r4Þ
× Fðarcsin yr; krÞ; ðA5Þ

where

yr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r3
r1 − r2

r − r2
r − r3

r
; ðA6aÞ

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1 − r2
r1 − r3

r3 − r4
r2 − r4

r
: ðA6bÞ

Thus, the angle variable can be expressed as

θrgeo ¼
�
πFðarcsin yr; krÞ=KðkrÞ Pr ≥ 0

−πFðarcsin yr; krÞ=KðkrÞ Pr < 0
: ðA7Þ

The action variable, however, employs an integral for
which there does not seem to be a closed form expression
even using special functions.
To perform the conversion, we make use of PYTHON3

and the numpy and scipy libraries. More specifically,
the function scipy.integrate.quad was used to
compute the integral in Eq. (A2a) and scipy.special.
ellipkinc was used to evaluate the elliptic integral
[Eq. (A3)] in order to compute the angle variable in
Eq. (A2b).

APPENDIX B: NUMERICAL SOLUTIONS OF
THE MPD EQUATIONS

For the numerical integration of spinning particles orbits,
an existing FORTRAN code [52] was modified appropriately.
The input are values for initial r, Pr and integrals E, Jz and
S; the code places a spinning particle with these parameters
in the equatorial plane and calculates all the coordinate
components of the four-momentum and the spin tensor
so as to satisfy the input values, Jx ¼ Jy ¼ 0, and the TD
SSC. In this part, real variables are represented as quad-
ruple precision floating point variables due to the ill-
conditioned calculation of expressions such as Eþ Pt
and Jz − Pϕ.
Then it evolves the MPD equations using the Gauss

collocation method of different orders using fixed-point
iteration. Here, real variables are represented as double
precision floating point. In this work, 4th order was used
for all computations. The rotation number is computed
using Eq. (18) for each initial condition.
The code deals with the system as originally written in

Eq. (1), i.e., xμ, Pμ and Sμν; no reduction is applied for the
integration. Thus, the integrals E, Ji, S2, μ2 and PμSμν are
used to track the integration error. In Fig. 11, evolution of
the relative error of energy is shown to be very low—on the
order of 10−14.
Slightly different versions of the code were also used to

locate the unstable periodic orbit and a given resonance by
evolving the equations of motion and using a bisection
method to solve an equation employing a function of the
initial r along the Pr ¼ 0 line. In the first case, the
corresponding equation is Pr ¼ 0 at the next intersection
with the section; in the second, it is νϑ ¼ ω, where ω is the
desired rotation number. To make sure that the accuracy

FIG. 11. Evolution of the relative error ΔE ¼ jEðτÞ − Eð0Þj=
Eð0Þ for the trajectories of Fig. 8. Black points correspond
to the regular trajectory, red crosses correspond to the chaotic
trajectory.
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grows as the code converges, the number of iterations of the
return mapping grows as well: if the two current estimates
are ω1 > ω2, the next orbit is integrated long enough as to
get 2=min ðω1 − ωtarget;ωtarget − ω2Þ intersections.
To determine the width of a prolonged resonance p=q,

PYTHON3 with the numpy and scipy libraries was used to
fit Eq. (43) to Poincaré section points [see Eq. (46)]. Only
points with jθrj < 0.01 · 2π=ðnsÞ were taken into account
and as components of the vector of residuals we use

−Ir þ I0r þ signðIr − I0rÞ
width · ns

4
θr: ðB1Þ

This expression together with the function scipy.
optimize.least_squares was used to estimate
the values of I0r and the width.
To demonstrate the advantage of action-angle variables,

the same process was applied to estimate the width of the
prolonged resonance in canonical r; Pr coordinates for the
2=3 resonance. The function to fit is again in Eq. (B1), with
r taking the role of Ir and Pr of θr. Figure 12 compares the
performance of the two coordinate sets and demonstrates
that while the trend is undeniable in both, it is clearer in the
AA variables.

APPENDIX C: TEUKODE

1. Horizon-penetrating, hyperboloidal coordinates

The Teukode has been written in Jena as part of an MSc.
thesis and the following dissertation [44]; for a more
concise summary, see [42]. It is a time-domain solver
for the master equation (53) with a point particle source.
Different coordinate systems are used in the Teukode in
order for the equation to be regular at the horizon and to
smoothly reach the future null infinity J þ. The system of

choice is the horizon-penetrating, hyperboloidal (HH)
coordinate system, see [53]. Here, its construction is
described in the simpler Schwarzschild case.
The first step is to define

t̃ ¼ tþ 2M log jr − 2Mj: ðC1Þ

Then, one uses the technique of hyperboloidal compacti-
fication. The new variables ϒ, ρ are defined by

ρðrÞ∶ r ¼ ρðrÞ
ΩðρðrÞÞ ; ðC2aÞ

ϒðt̃; ρÞ ≔ t − hðρÞ; ðC2bÞ

where the h is called the height function and Ω the
conformal factor. The choice made for them here is

ΩðρÞ ≔ 1 −
ρ

Σ
; ðC3aÞ

hðρÞ ≔ ρ

Ω
− ρ − 4M logΩ; ðC3bÞ

where Σ is a free parameter and the location of J þ then
corresponds to ρ ¼ Σ. The position of the horizon is then

ρþ ¼ 2MΣ
2M þ Σ

: ðC4Þ

2. Numerical solutions of the Teukolsky equation

The Teukode uses the HH coordinates to smoothly cover
the whole region of interest from the horizon all the way to
the null infinity J þ. The equation is separated into m-
modes by taking the Fourier transform in the ϕ-direction

ψ4ðϒ; ρ; θ;ϕÞ ¼
X∞

m¼−∞
Ψmeimϕ; ðC5Þ

the master equation (53) is then of the form

Cϒϒ∂ϒϒΨm þ Cϒρ∂ϒρΨm þ Cρρ∂ρρΨm

þ Cθθ∂θθΨm þ Cϒ∂ϒΨm þ Cθ∂θΨm

þ Cρ∂ρΨm þ C0Ψm ¼ S−2: ðC6Þ

The Teukode uniformly discretizes the interval ½ρþ;Σ� ×
½0; π� and implements different finite difference stencils up
to 8th order to transform the reformulated 2þ 1 Teukolsky
equation (C6) into a set of ODE; we used 6th order finite
differencing. This is then evolved using a standard 4th
order Runge-Kutta method. The step size is determined
using the CFL condition as Δt ¼ CCFL minfhρ; hθg, where
the hρ and hθ are the spacing in the ρ and θ direction,

FIG. 12. Comparison of prolonged-resonance growth in action-
angle variables (left vertical axis) and in canonical coordinates
(right vertical axis).
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respectively, and CCFL ≥ 1. In this work, we use CCFL ¼ 2
and Σ ¼ 10.
As an initial value problem, solving the Teukolsky

equation requires initial conditions as well. Interference
of the radiated waves from the previous ∼2 orbits is quite
important here, so we have chosen the simplest possible
way: to use ψ4 ¼ 0∀ ρ; θ and discard the first ∼200M. The
contrast of this beginning and later part is shown in Fig. 13.
The source term is a complicated linear combination of

the stress-energy tensor components. For a spinning par-
ticle, the stress energy tensor is only nonzero in a single
point of the grid, represented by a δ function and its
derivatives up to 3rd order. This is modeled using a
narrow Gaussian approximation. For a nonspinning particle
source, the Teukode is also equipped with n-point delta
approximations.
The Teukode also calculates energy and angular

momentum fluxes. In the eccentric orbits presented here
for S ¼ 10−4 μM, the energy losses are _E ≐ 10−3 μ2=M
and angular momentum losses _Jz ≐ 10−2μ2. This means
that in our longest Teukode integration t ¼ 8.9 × 104M,
assuming μ=M ≐ 10−4, we get a total relative energy loss
ΔE=E ≐ 1% and total relative angular momentum
loss ΔJz=Jz ≐ 2.3%.
Also, the advanced time v and retarded time u are

defined as

uðt; rÞ ≔ t − r�; ðC7aÞ
vðt; rÞ ≔ tþ r�; ðC7bÞ

r�ðrÞ ≔ rþ 2M log

�
r
2M

− 1

�
: ðC7cÞ

Their meaning is that for an outgoing radial null geodesic
(i.e., _θ ¼ _ϕ ¼ 0, _r > 0, ds2 ¼ 0) u is a constant and only v

changes along the geodesic—this makes u an ideal param-
eter for a waveform extracted at J þ.
To check the calculation errors, we have run simulations

with different grids on the same chaotic orbit as shown in
Fig. 8. The waveform was calculated with grids 1201 × 61,
1701 × 141, 2401 × 201, 3401 × 281, 4801 × 401, 6801 ×
561 and 9601 × 801; of these, the finest 9601 × 801 was
taken as reference (closest to the exact solution, which
we cannot get in any other way) and errors of the
calculations with coarser grids were computed with respect
to the reference grid. We calculated the averaged absolute
error

hΔhnxþ2i ¼
1

50M

Z
210M

160M
jhnxþ2 − h9601þ2 jdu; ðC8Þ

where hnxþ2 is the þ polarization of the m ¼ 2 mode of the
waveform calculated using nx points in the ρ direction
distributed uniformly from the horizon at ρ ¼ 5=3 and the
null infinity J þ at ρ ¼ 10, extracted at J þ. The con-
vergence plot is shown in Fig. 14 with the grid spacing on
the horizontal axis and the vertical axis showing the relative
error with respect to the maximum of the reference wave-
form in the given interval.
The line corresponds to a fit of the function

log
hΔhþ2i
maxðhþ2Þ

¼ Aþ q · log ðΔρÞ; ðC9Þ

which was performed in logscale and returned the values

A ¼ 4.3� 0.6; ðC10aÞ

q ¼ 2.32� 0.09: ðC10bÞ

Since the evolution method used is 4th order,
one would expect q ¼ 4. However, the narrow Gaussian

FIG. 13. Output of the initial 1900M of the Teukode simulation
corresponding to the chaotic orbit of Fig. 8.

FIG. 14. Convergence plot of the Teukode.
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approximation for δ functions and their derivatives up to
3rd order is another source of error [44].
The simulations in the text were carried out on the Virgo

cluster at the Astronomical Institute of the Czech Academy

of Sciences and split into multiple processes using MPI;
typically, the ρ-direction was kept as a whole and the
division was done into 8, 16, or 32 processes along the
θ-coordinate line.
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