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Using the time evolution equations of (cosmological) general relativity in the first order Fischer-Marsden
form, we construct an integral that measures the amount of nonstationary energy on a given spacelike
hypersurface in D dimensions. The integral vanishes for stationary spacetimes; and with a further
assumption, reduces to Dain’s invariant on the boundary of the hypersurface which is defined with the
Einstein constraints and a fourth order equation defining approximate Killing symmetries.
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I. INTRODUCTION

Dain [1] constructed a geometric invariant that measures
the nonstationary energy for an asymptotically flat hyper-
surface in 3þ 1 dimensions for the case of time-symmetric
initial data which, for vacuum, is an invariant that quantifies
the total energy of the gravitational radiation. So this
invariant is a component of the total Arnowitt-Deser-
Misner (ADM) energy [2] assigned to an asymptotically
flat hypersurface. That construction was extended to the
time-nonsymmetric case recently in [3]. To give an example
of how useful such a geometric invariant can be when
constructing initial data for the gravitational field, let us
recall the first observation of the merger of two black holes
[4]. According to this observation, two initial black holes
with masses (approximately) 36M⊙ and 29M⊙ merged to
produce a single stationary black hole of mass 62M⊙ plus
gravitational radiation of total energy equivalent to 3M⊙.
Assuming this system to be isolated in an asymptotically
flat spacetime, the total initial ADM energy of 65M⊙ is
certainly conserved. But this total ADM energy of the
initial data needs a refinement as it clearly has a nonsta-
tionary part equal to 3M⊙. The important question is to
identify this nonstationary energy in the initial data.
Dain’s construction and its extension to the nontime

symmetric case by Kroon and Williams [3] are based on
several earlier crucial works one of which is the Killing
initial data (KID) concept of Moncrief [5] and Beig-
Chruściel [6]; and a fourth order operator defined by
Bartnik [7]. Of course all of the discussion is related to
the Cauchy problem in general relativity and the related
issue of constructing initial data for the time evolution

equations. Here by using the time-evolution equations, in
the form given by Fischer and Marsden [8], we construct a
new representation of the nonstationary energy in generic
D dimensional spacetimes with or without a cosmological
constant.
The outline of the paper is as follows: in Sec. II we

briefly summarize Dain’s construction using the constraints
and present a new approach using the evolution equations.
In Sec. III we give the details of the relevant computations
in D dimensions. The Appendix is devoted to the ADM
decomposition.

II. DAIN’S INVARIANT IN BRIEF AND A NEW
FORMULATION

Leaving the details of the construction to the next
section, let us first briefly summarize the ingredients
needed to define Dain’s invariant on a spacelike hypersur-
face Σ of the spacetimeM ¼ R × Σ. Then we shall discuss
our new formulation via the evolution equations.
The initial data on the hypersurface is defined by the

Riemannian metric γij and the extrinsic curvature Kij in
local coordinates. Denoting Di to be the covariant deriva-
tive compatible with γij and assuming the usual ADM
decomposition of the spacetime metric gμν, the line element
reads

ds2 ¼ ðNiNi − N2Þdt2 þ 2Nidtdxi þ γijdxidxj; ð1Þ

while the extrinsic curvature becomes1
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1Our definition of the extrinsic curvature is as follows: given
(X; Y) two vectors on the tangent space TpΣ and n be the unit
normal to Σ, then KðX; YÞ ≔ gð∇Xn; YÞ with ∇ being the
covariant derivative compatible with the spacetime metric g.
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Kij ¼
1

2N
ð_γij −DiNj −DjNiÞ; ð2Þ

with the lapse function N ¼ Nðt; xiÞ and the shift vector
Ni ¼ Niðt; xiÞ. The spatial indices can be raised and
lowered with the D − 1 dimensional spatial metric γ; over
dot denotes the derivative with respect to t, and the Latin
letters are used for the spatial dimensions, i; j; k;… ¼
1; 2; 3;…D − 1, whereas the Greek letters are used to
denote the spacetime dimensions, μ; ν; ρ;… ¼ 0; 1; 2;
3;…D − 1. All the relevant details of the ADM decom-
position are given in the Appendix.
Under the above decomposition of spacetime, the

D-dimensional Einstein equations

Rμν −
1

2
Rgμν þ Λgμν ¼ κTμν ð3Þ

yield the Hamiltonian and momentum constraints on the
hypersurface Σ as

Φ0ðγ; KÞ ≔ −ΣR − K2 þ K2
ij þ 2Λ − 2κTnn ¼ 0;

Φiðγ; KÞ ≔ −2DkKk
i þ 2DiK − 2κTni ¼ 0; ð4Þ

whereK ≔ γijKij andK2
ij ≔ KijKij. From now on we shall

work in vacuum, hence Tμν ¼ 0. Denoting Φðγ; KÞ to be
the constraint covector with components (Φ0;Φi) and
DΦðγ; KÞ to be its linearization about a given solution
(γ; K) to the constraints and DΦ�ðγ; KÞ to be the formal
adjoint map, then following Bartnik [7], one defines
another operator P:

P ≔ DΦðγ; KÞ∘
�
1 0

0 −Dm

�
: ð5Þ

The reason why we need this operator will be clear below.
Using the formal adjoint P� of Bartnik’s operator, Dain [1]
defines the following integral over the hypersurface

IðN;NiÞ ≔
Z
Σ
dVP�

�
N

Nk

�
· P�

�
N

Nk

�
; ð6Þ

where the multiplication is defined as

�
N

Ni

�
·

�
A

Bi

�
≔ NAþ NiBi: ð7Þ

The integral (6) is to be evaluated for specific vectors ξ ≔
ðN;NiÞ that satisfy the fourth-order equation

P∘P�ðξÞ ¼ 0; ð8Þ

which Dain called the approximate Killing initial data
(KID) equation. It is clear that if ξ satisfies the lower

derivative equation P�ðξÞ ¼ 0, then it also satisfies (8).
Moreover, these particular solutions, together with an
assumption on their decay at infinity, also solve the KID
equations which are simply DΦ�ðγ; KÞðξÞ ¼ 0. In fact this
point is crucial but well-established: Moncrief [5] proved
that ξ is a spacetime Killing vector satisfying ∇μξν þ
∇νξμ ¼ 0 if and only if it satisfies the KID equations.
Namely one has

∇μξν þ∇νξμ ¼ 0 ⇔ DΦ�ðγ; KÞðξÞ ¼ 0; ð9Þ

with ðN;NiÞ being the projections off and onto the hyper-
surface of the Killing vector field ξ. The physical picture is
clear: initial data on the hypersurface clearly encode the
spacetime symmetries. There have been rigorous works
on the KIDs in [6,9,10] which we shall employ in what
follows.
Observe that for any Killing vector field IðN;NiÞ

vanishes identically. So by design, Dain’s invariant iden-
tically vanishes for initial data with exact symmetries. Then
Dain goes on to show that for asymptotically flat spaces,
for the case of approximate translational KID’s IðN;NiÞ
can measure the nonstationary energy contained in the
hypersurface Σ. To simplify his calculations Dain consid-
ered the time symmetric initial data (Kij ¼ 0) in three
spatial dimensions. There are two crucial points to note
about Dain’s construction: first, one can show that for any
asymptotically flat three manifold, the approximate KID
equation has nontrivial solutions which are not KIDs;
second, using integration by parts, one can convert the
volume integral (6) to a surface integral. We shall discuss
these in the next section, but let us first give another
formulation of this invariant.

A. Nonstationary energy via time-evolution equations

In Dain’s construction, as is clear from the above
summary, time evolution of the initial data has not played
a role: in fact one only works with the constraints on the
hypersurface. This fact somewhat obscures the interpreta-
tion of the proposed invariant as the nonstationary energy
contained in the initial data. In what follows, we propose
another formulation of this invariant with the help of the
time evolution equations which makes the interpretation
clearer. For this purpose let us consider the phase space
variables to be the spatial metric γij and the canonical
momenta πij; the latter can be found from the Einstein-
Hilbert Lagrangian

LEH ¼ 1

κ

ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ

¼ 1

κ

ffiffiffi
γ

p
NðΣRþ K2

ij − K2 þ ΛÞ
þ boundary terms ð10Þ
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which are

πij ≔
δLEH

δ _γij
¼ 1

κ

ffiffiffi
γ

p ðKij − γijKÞ: ð11Þ

Using the canonical momenta, it pays to recast the
densitized versions of the constraints (4) for Tμν ¼ 0 and
setting κ ¼ 1 as

Φ0ðγ; πÞ ≔ ffiffiffi
γ

p ð−ΣRþ 2ΛÞ þ Gijklπ
ijπkl ¼ 0;

Φiðγ; πÞ ≔ −2γikDjπ
kj ¼ 0; ð12Þ

where the DeWitt metric [11] Gijkl in D dimensions reads

Gijkl ¼
1

2
ffiffiffi
γ

p
�
γikγjl þ γilγjk −

2

D − 2
γijγkl

�
: ð13Þ

Ignoring thepossible boundary terms, theADMHamiltonian
density turns out to be a sum of the constraints as

H ¼
Z
Σ
dD−1xhN ;Φðγ; πÞi; ð14Þ

with N being the lapse-shift vector with components
ðN;NiÞ which play the role of the Lagrange multipliers;
and the angle-brackets denote the usual contraction. Given
anN , the remaining evolution equations can bewritten in a
compact form (the Fischer-Marsden form [12]) as

d
dt

�
γ

π

�
¼ J∘DΦ�ðγ; πÞðN Þ; ð15Þ

where the J matrix reads

J ¼
�

0 1

−1 0

�
: ð16Þ

The reason why the formal adjoint of the linearized
constraint map DΦ�ðγ; πÞ appears in the time evolution

can be seen as follows: the Hamiltonian form of the
Einstein-Hilbert action

SEH½γ; π� ¼
Z

dt
Z

dD−1xðπij _γij − hN ;Φðγ; πÞiÞ; ð17Þ

when varied about a background (γ; π) gives

DSEH½γ; π� ¼
Z

dt
Z

dD−1xðδπij _γij þ πijδ_γij

− hN ; DΦðγ; πÞ · ðδγ; δπÞiÞ: ð18Þ
Here the linearized form of the constraint map can be
computed to be

DΦ

 
hij

pij

!

¼

0
BB@

ffiffiffi
γ

p ðΣRijhij−DiDjhijþ▵hÞ
−hGijklπ

ijπklþ2Gijklpijπklþ2Gnjklhimγmnπijπkl

−2γikDjpkj−πjkð2Dkhij−DihjkÞ

1
CCA;

ð19Þ

where δγij ≔ hij, h ≔ γijhij, δπij ≔ pij and ▵ ≔ DkDk.
We have used the vanishing of the constraints to simplify
the expression. In (18) using integration by parts when
necessary and dropping the boundary terms one arrives at
the desired result

DSEH½γ; π� ¼
Z

dt
Z

dD−1xðδπij _γij − _πijδγij

− hðδγ; δπÞ; DΦ�ðγ; πÞ ·N iÞ; ð20Þ
where the adjoint constraint map appears in the process
which reads

DΦ�
�

N

Ni

�
¼
� ffiffiffi

γ
p ðΣRij−DiDj þ γij▵ÞN − NγijGklmnπ

klπmn þ 2NGklmnγ
ikπjlπmn þ 2πkðiDkNjÞ −DkðNkπijÞ

2NGijklπ
kl þ 2DðiNjÞ

�
: ð21Þ

Setting the variation (20) to zero one obtains the evolution
equations (15) or in more explicit form one has

dγij
dt

¼ 2NGijklπ
kl þ 2DðiNjÞ; ð22Þ

and

dπij

dt
¼ ffiffiffi

γ
p ð−ΣRijþDiDj − γij▵ÞN þ NγijGklmnπ

klπmn

− 2NGklmnγ
ikπjlπmn − 2πkðiDkNjÞ þDkðNkπijÞ:

ð23Þ

Together with the constraints (12) these two tensor equations
constitute a set of constrained dynamical system for a given
lapse-shift vector an ðN;NiÞ. The constraints have a dual
role: they determine the viable initial data and also generate
time evolution of the initial data once the lapse-shift vector
is chosen. As noted above, if DΦ�ðγ; πÞðN Þ ¼ 0, namely
N ¼ ξ is a Killing vector field then the time evolution is
trivial. In particular this would be the case for a stationary
Killing vector.
Consider now an N which is not a Killing vector,

which meansDΦ�ðγ; πÞðN Þ ≠ 0; and in particular directly
from the evolution equations we can find how much
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DΦ�ðγ; πÞðN Þ differs from zero (or how much a given N
fails to be a Killing vector) as

DΦ�ðγ; πÞðN Þ ¼ J−1∘ d
dt

�
γ

π

�
: ð24Þ

To get a number from this matrix, first one should note
that the units of γ and π are different by a factor of 1=L and
so a naive approach of taking the “square” of this matrix
does not work. At this stage to remedy this, one needs the
(adjoint) operator of Bartnik that we have introduced
above: so one has

P�ðN Þ ≔
�
1 0

0 Dm

�
∘DΦ�ðγ; πÞðN Þ

¼
�
1 0

0 Dm

�
∘J−1∘ d

dt

�
γ

π

�
; ð25Þ

which yields P�ðN Þ ¼ ð− _π; Dm _γÞ. Since π is a tensor
density to get a number out of this vector, we further
define

P̃�ðN Þ ≔
�
γ−1=2 0

0 1

�
∘P�ðN Þ: ð26Þ

Then the integral of P̃�ðN Þ · P̃�ðN Þ over the hypersurface
yields

IðN Þ ¼
Z
Σ
dVP̃�ðN Þ · P̃�ðN Þ

¼
Z
Σ
dV
�
jDm _γijj2 þ

1

γ
j _πijj2

�
; ð27Þ

where jDm _γijj2≔γmnγijγklDm _γikDn _γjl and j _πijj2 ≔ γijγkl
_πik _πjl. This is another representation of Dain’s invariant
which explicitly involves the time derivatives of the
canonical fields. We have also not assumed that the
cosmological constant vanishes, hence our result is valid
for generic spacetimes. Note that this expression is valid
for any N which is not necessarily an approximate KID,
hence given a solution to the constraint equations and
a choice of the lapse-shift vector, one can compute this
integral. But the volume integral becomes a surface
integral when N is an approximate KID which is the
case considered by Dain. Observe that by construction,
IðN Þ is a non-negative number. To get the explicit
expression as a volume integral in terms of the canonical
fields and not their time derivatives, one should plug
the two evolution equations (22) and (23) to (27). The
resulting expression is

IðN Þ ¼
Z
Σ
dVfjDmVijj2 þ ΣR2

ijN
2 þ ðDiDjNÞ2

− 2ΣRijNDiDjN þ 2ΣRN▵N þ ðD − 3Þ▵N▵N

þ 2Q▵N þQ2
ij þ 2ΣRijNQij − 2QijDiDjN

þ 4DmDðiNjÞDmDðiNjÞ þ 4DmDiNjDmVijg;
ð28Þ

where

Vij ≔
2Nffiffiffi
γ

p
�
πij −

1

D − 2
πγij
�
; ð29Þ

and

Qij ≔
2N
γ

�
πikπ

kj −
ππij

D − 2

�
−
N
γ
γij
�
π2kl −

π2

D − 2

�

−
1ffiffiffi
γ

p DkðNkπijÞ þ 2ffiffiffi
γ

p πkðiDkNjÞ; ð30Þ

and Q ≔ γijQij. Equation (28) is our main result: given a
solution, that is an initial data, one an compute this
integral which measures the deviation from stationarity.
We can also write (28) in terms of γij and the extrinsic
curvature Kij. For this purpose all one needs to do is to
rewrite Vij and Qij in terms of these variables. They are
given as

Vij ¼ 2NKij; ð31Þ
and

Qij ≔ 2NðKi
kK

kj − KKijÞ − NγijðK2
kl − K2Þ −DkðNkKijÞ

þ γijDkðNkKÞ þ 2KkðiDkNjÞ − 2KDðiNjÞ: ð32Þ
Up to now we have not made a choice of gauge or
coordinates. Let us now choose the Gaussian normal
coordinates (N ¼ 1, Ni ¼ 0) on Σ for which the integral
reads

IðN Þ ¼
Z
Σ
dV

�
4

γ

�
jDmπ

ijj2 − D − 3

ðD − 2Þ2 jDmTrðπÞj2
�

þ ΣR2
ij þ

4

γ
ΣRijπ

ikπjk −
4

ðD − 2Þγ
ΣRijπ

ijTrðπÞ

−
4

γ
Λ
�
Trðπ2Þ − 1

ðD − 2Þ ðTrðπÞÞ
2Þ
�

þD − 7

γ2

�
Trðπ2Þ − 1

D − 2
ðTrðπÞÞ2

�
2

þ 4

γ2

�
Trðπ4Þ − 2

D − 2
TrðπÞTrðπ3Þ

þ 1

ðD − 2Þ2 ðTrðπÞÞ
2Trðπ2Þ

��
; ð33Þ
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where TrðπÞ ≔ γijπ
ij and Trðπ2Þ ≔ πijπij and so on. In

terms of the extrinsic curvature, in the Gaussian normal
coordinates, one has

IðN Þ ¼
Z
Σ
dVf4jDmKijj2 þ ΣR2

ij þ 4ΣRijðKikKj
k −KKijÞ

þ 4ΛðK2 −K2
ijÞ þ 4KijKjlKlmKmi − 8KKijKjlKi

l

− 2ðD− 9ÞK2K2
ij þ ðD− 7ÞððK2

ijÞ2 þK4Þg:
ð34Þ

For a physically meaningful solution whose ADM mass
and angular momenta are finite for the asymptotically
flat case, or in the case of Λ ≠ 0 whose Abbott-Deser [13]
charges are finite, this quantity is expected to be
finite and represents the nonstationary part of the total
energy by construction. Observe that while the ADM
momentum (Pi ¼ ∳ ∂ΣKijdSj) and angular momenta
(Jjk¼∳ ∂ΣðxjKkm−xkKjmÞdSm) are linear in the extrinsic
curvature given as integrals over the boundary, IðN Þ has
quadratic, cubic and quartic terms in the extrinsic curva-
ture in the bulk integral∳.
Before we lay out the details of the above discussion, let

us note that our final formula (28) can be reduced in various
ways depending on the physical problem or the numerical
integration scheme: for example, one can choose the
maximal slicing gauge for which TrðπÞ ¼ K ¼ 0. If the
problem permits time-symmetric initial data πij ¼ Kij ¼ 0,
then in this restricted case, Vij ¼ Qij ¼ 0, and the integral
(28) reduces to

IðN Þ ¼
Z
Σ
dVðΣR2

ijN
2 þ ðDiDjNÞ2 − 2ΣRijNDiDjN

þ 2ΣRN▵N þ 4DmDiNjDmDðiNjÞ

þ ðD − 3Þ▵N▵NÞ:

Let us go back to (27) which was the defining relation of
the invariant and try to write it as a boundary integral over
the boundary of the hypersurface Σ. Then one has

IðN Þ ¼
Z
Σ
dVP̃�ðN Þ · P̃�ðN Þ

¼
Z
Σ
dVN · P̃∘P̃�ðN Þ þ

I
∂Σ

dSnkBk; ð35Þ

which requires P̃∘P̃�ðN Þ ¼ 0. This the approximate KID
equation introduced by Dain [1] and Bk is the boundary
term to be found below. Note that our bulk integral (28)
is more general and does not assume the existence of
approximate symmetries.

III. DETAILS OF THE CONSTRUCTION IN
D DIMENSIONS

A. Boundary integral

The importance of the Einstein constraints (4) cannot be
overstated: clearly the initial data is not arbitrary, one must
solve these equations to feed the evolution equations; but,
as importantly, the constraints also determine the evolution
equations and they are related to the symmetries of the
spacetime in a rather intricate way as we have seen above.
One can consider the constraints (4) as the kernel of a mapΦ

Φ∶ M2 × S�
2 → C� × X�; ð36Þ

whereM2 denotes the space of the Riemannian metrics and
S�
2 denotes the space of symmetric rank-2 tensor densities, C�

denotes the space of scalar function densities and X � the
space of vector field densities on the hypersurface Σ. We can
express the constraint map explicitly as

Φ
�
γij

πij

�
¼
� ffiffiffi

γ
p ð2Λ − ΣRÞ þ γ−1=2ðπ2ij − π2

D−2Þ
−2γkiDjπ

kj

�
; ð37Þ

whose linearization can be found to be

DΦ
�
hij

pij

�
¼
 ffiffiffi

γ
p ðΣRij−DiDj þ γij▵Þhij 1ffiffi

γ
p
�
γij
�

π2

D−2 − π2ij

�
þ 2ðπikπjk − πijπ

D−2Þ
�
hij þ 2ffiffi

γ
p ðπij − πγij

D−2Þpij

ðπijDk − 2δðik π
jÞlDlÞhij − 2γkðiDjÞpij

!
: ð38Þ

We can define a 2 × 2 matrix as

DΦ ≔

 ffiffiffi
γ

p ðΣRij −DiDj þ γij▵Þ þ 1ffiffi
γ

p
�
γij
�

π2

D−2 − π2ij

�
þ 2ðπikπjk − πijπ

D−2Þ
�

2ffiffi
γ

p ðπij − πγij
D−2Þ

πijDk − 2δðik π
jÞlDl −2γkðiDjÞ

!
; ð39Þ

such that

DΦ
�
hij

pij

�
¼ DΦ∘

�
hij

pij

�
: ð40Þ
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Defining [7]

P̃ ≔ DΦ∘
�
γ−1=2 0

0 −Dm

�
; ð41Þ

one finds

P̃ ≔

 ΣRij−DiDj þ γij▵þ 1
γ

�
γij
�

π2

D−2 − π2ij

�
þ 2
�
πikπjk −

πijπ
D−2

��
2ffiffi
γ

p
�

πγij
D−2 − πij

�
Dm

1ffiffi
γ

p ðπijDk − 2δðik π
jÞlDlÞ 2γkðiDjÞDm

!
; ð42Þ

which is a map as

P̃∶ S2 × S1;2 → C × X ; ð43Þ

where S2 denotes the space of covariant rank-2 tensors,
S1;2 denotes the space of covariant rank-3 tensors which
are symmetric in last two indices, C denotes the space of
scalar function and X the space of vector fields on the
hypersurface Σ.
The formal adjoint of P̃-operator was defined in (26) via

the (21) and it is a map of the form

P̃�∶ C × X → S2 × S1;2: ð44Þ
Working out the details, one arrives at

P̃�
�

N

Nk

�
¼
�
NΣRij−DiDjN þ γij▵N þQij

Dmð2DðiNjÞ þ VijÞ
�
; ð45Þ

where Vij and Qij were given (29), (30) respectively. We
have used this expression in the previous section to find the
bulk integral of the nonstationary energy. Now let us use
this operator and its adjoint to find an expression on the
boundary. For this purpose we need the following identity:Z
Σ
dV

�
N

Nk

�
· P̃
�

sij
skij

�
¼
Z
Σ
dV

�
sij
skij

�
· P̃�

�
N

Nk

�

þ
I
∂Σ

dSnkBk; ð46Þ

with generic sij ∈ S2 and skij ∈ S1;2. After making use of
(42) and (45), a slightly cumbersome computation yields
the boundary term:

Bk ¼ skjDjN − NDjskj þ NDks − sDkN þ 2NiDjsjki

− 2skijDiNj þ 2Nffiffiffi
γ

p
�

π

D − 2
skjj − skijπij

�

þ 1ffiffiffi
γ

p ðπijsijNk − 2sijNiπjkÞ; ð47Þ

where s ¼ γijsij. Let us now assume a particular sij and a
particular skij such that

�
sij
skij

�
≔ P̃�

�
N

Nk

�
; ð48Þ

which yields

P̃
�

sij
skij

�
¼ P̃∘P̃�

�
N

Nk

�
: ð49Þ

Then (46) becomes

Z
Σ
dV

�
N

Nk

�
· P̃∘P̃�

�
N

Nk

�
¼ IðN Þ þ

I
∂Σ

dSnkBk;

ð50Þ

where Bk given in (47) must be evaluated with

sij ¼ NΣRij −DiDjN þ γij▵N þQij ð51Þ

and

skij ¼ Dkð2DðiNjÞ þ VijÞ: ð52Þ

Equation (50) shows that generically IðN Þ cannot be
written as an integral on the boundary of the hypersurface
unless P̃∘P̃�ðN Þ ¼ 0. In that case, the invariant reduces to

IðN Þ ¼ −
I
∂Σ

dSnkBk: ð53Þ

Explicit computation shows that one has

Bk ¼
N2

2
Dk

ΣRþ NΣRkjDjN −DkDjNDjN

− ðD − 3ÞDkN▵N þ ðD − 2ÞNDk▵N

þ 4Ni
▵DðkNiÞ − 4DkDðiNjÞDðiNjÞ þ bk; ð54Þ

where
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bk ≔ QkjDjN − NDjQkj þ NDkQ −QDkN þ 2Ni
▵Vki

− 2DkVijDiNj þ 1ffiffiffi
γ

p 2Nπ

D − 2
ð2DkDiNi þDkVÞ

−
2Nπijffiffiffi

γ
p ð2DkDiNj þDkVijÞ

þ 1ffiffiffi
γ

p ðπijNk − 2NiπjkÞ

× ðNΣRij −DiDjN þ γij▵N þQijÞ: ð55Þ

In the Gaussian normal coordinates the boundary integral
reads

IðN Þ ¼
I
∂Σ

dSnk
��

D −
5

2

�
DkK2

ij þ
�
7

2
−D

�
DkK2

þ 2KljDjKlk

�
: ð56Þ

Another physically relevant case is the time symmetric
asymptotically flat case for which the boundary integral
reduces to

IðN Þ ¼
I
∂Σ

dSnkðDkDjNDjN þ ðD − 3ÞDkN▵N

− ðD − 2ÞNDk▵N − 4Ni
▵DðkNiÞ

þ 4DkDðiNjÞDðiNjÞÞ:

In the most general form N and Ni should satisfy the fourth order equations P̃∘P̃�ðN Þ ¼ 0 which explicitly read

P̃∘P̃�
�

N

Ni

�
¼
 ðD − 2Þ▵▵N − ΣRijDiDjN þ Nð1

2
▵
ΣRþ ΣR2

ijÞ þ 2ΣR▵N þ 3
2
Di

ΣRDiN þ Y

4Dj
▵DðkNjÞ þ Yk

!
¼ 0; ð57Þ

where

Y≔Σ RijQij−DiDjQijþ▵Qþ 2ffiffiffi
γ

p
�

πγij

D−2
−πij

�

×▵ð2DiNjþVijÞþ
�
2

γ

�
πikπjk−

ππij

D−2

�

−
γij

γ

�
π2kl−

π2

D−2

��
ðNΣRij−DiDjNþ γij▵NþQijÞ

ð58Þ

and

Yk ≔
1ffiffiffi
γ

p ðπijDk − 2δikπ
jlDlÞ

× ðNΣRij −DiDjN þ γij▵N þQijÞ þ 2Di
▵Vik:

ð59Þ

B. The approximate KID equation in D dimensions

Following the D ¼ 4 discussion of Dain [1] let us now
study the approximate KID equation (57) in D dimensions.
It is easy to see that it is a fourth order elliptic operator for
D > 2. This follows by computing the leading symbol:
for this purpose let us consider the higher order derivative
terms and set Di ¼ ζi and jζj2 ¼ ζiζi. Using (57), the
leading symbol of operator reads

σ½P̃∘P̃��ðζÞ
�

N

Ni

�
¼
� ðD − 2Þjζj4N
4jζj2ζjζðkNjÞ

�
: ð60Þ

For a nonzero covector ζ, if σ is an isomorphism (here a
vector bundle isomorphism), then the operator is elliptic.
For the first component, this requires D ≠ 2 and for the
second component contraction with ζk yields

jζj4ζkNk ¼ 0: ð61Þ

Assuming D ≠ 2 one has ζkNk ¼ 0. Inserting it back in the
second component one obtains

jζj4Nk ¼ 0; ð62Þ

so for jζj2 ≠ 0, the leading symbol is injective and the
operator P̃∘P̃� is elliptic for D > 2.

C. Asymptotically flat spaces

Consider the initial data set ðΣ; γij; πijÞ for the vacuum
Einstein field equations with n > 1 asymptotically
Euclidean ends: this is to avoid bulk simplicity and allow
black holes. There exists a compact set B such that
ΣnB ¼Pn

k¼1 ΣðkÞ, where ΣðkÞ, k ¼ 1;…; n are open sets
diffeomorphic to the complement of a closed ball in RD−1.
Each asymptotic end ΣðkÞ admits asymptotically Cartesian
coordinates. We consider the following decay assumptions,
for D > 3, which are consistent with finite ADM mass and
momenta:

γij ¼ δij þ oðjxjð3−DÞ=2Þ; ð63Þ

πij ¼ oðjxjð1−DÞ=2Þ; ð64Þ
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where δij ¼ ðþ þ � � � þÞ. Note that δij ¼ Oð1Þ and beware
of the small o and the bigO notation. One can compute the
following decay behavior for the Christoffel connection

ΣΓk
ij ¼ oðjxjð1−DÞ=2Þ; ð65Þ

and the curvatures

ΣRk
lmn ¼ oðjxj−ð1þDÞ=2Þ; ΣRij ¼ oðjxj−ð1þDÞ=2Þ;
ΣR ¼ oðjxj−ð1þDÞ=2Þ: ð66Þ

D. KIDs in D dimensions

Let ðΣ; γij; πijÞ denote a smooth vacuum initial data set
satisfying the decay assumptions (63), (64). Let N;Ni be a
smooth scalar field and a vector field on Σ satisfying the
KID equations. Then generalizing the D ¼ 4 result of [9],
the behavior of all the possible solutions were given in [10]
which we quote here.
(1) There exits an antisymmetric tensor field ωμν, such

that

N − ω0ixi ¼ oðjxjð5−DÞ=2Þ;
Ni − ωi

jxj ¼ oðjxjð5−DÞ=2Þ: ð67Þ

(2) If ωμν ¼ 0, then there exists a vector field Uμ, such
that

N − U0 ¼ oðjxjð3−DÞ=2Þ;
Ni − U i ¼ oðjxjð3−DÞ=2Þ: ð68Þ

(3) If ωμν ¼ 0 ¼ Uμ then one has the trivial solution
N ¼ 0 ¼ Ni. Both ωμν and Uμ are constants in the
sense that they are Oð1Þ whenever they do not
vanish.

Case 1 above corresponds to the rotational Killing vectors
while case 2 corresponds to the translational ones we shall
employ the latter.
We explained in Sec. II that solutions of the DΦ�

ðN;NiÞ ¼ 0 yield spacetime Killing vectors. It is not
difficult to see that the modified equation P̃�ðN;NiÞ ¼ 0
yields only the Killing vectors for the case of translational
KIDs (63), (64). Here is the proof: P̃�ðN;NiÞ ¼ 0 implies

NΣRij −DiDjN þ γij▵N þQij ¼ 0; ð69Þ

Dmð2DðiNjÞ þ VijÞ ¼ 0: ð70Þ

If one assumes ðN;NiÞ decay as in (68) we have
DðiNjÞ ¼ oðjxjð1−DÞ=2Þ; and Vij ¼ oðjxjð1−DÞ=2Þ, then

2DðiNjÞ þ Vij ¼ oðjxjð1−DÞ=2Þ ð71Þ

vanishes at infinity; and since it is covariantly constant, it
must vanish identically

2DðiNjÞ þ Vij ¼ 0: ð72Þ

Together with the first component of P̃�ðN;NiÞ ¼ 0 we get
the formal adjoint of the linearized constraint map, namely
DΦ�ðN;NiÞ ¼ 0. We can conclude that if P̃�ðN;NiÞ ¼ 0

then ðN;NiÞ solve the KID equations.

E. Approximate KIDs in D dimensions

Generalizing Dain’s D ¼ 4 result, let us search for
translational solutions of the approximate Killing equation2

P̃∘P̃�
�

N

Ni

�
¼ 0 ð73Þ

as a deformation of the KIDs ðX;NiÞ in the following form:

N ¼ λφþ X; Ni ¼ Ni; ð74Þ

where the function φ is to be found, λ is a constant. KIDs
decay as

X − U0 ¼ oðjxjð3−DÞ=2Þ; ð75Þ

Ni − U i ¼ oðjxjð3−DÞ=2Þ: ð76Þ

Inserting the ansatz (74) into the approximate KID equa-
tion (73), one gets

P̃∘P̃�
�
φ

0

�
¼ −P̃∘P̃�

�
X

Ni

�
¼ 0; ð77Þ

or more explicitly

P̃∘P̃�
�
φ

0

�
¼
� ðD − 2Þ▵▵φ − ΣRijDiDjφþ φð1

2
▵
ΣRþ ΣR2

ijÞ þ 2ΣR▵φþ 3
2
Di

ΣRDiφþ Y

Yk

�
¼ 0: ð78Þ

2We work in a given asymptotic end and not the clutter the notation we do not denote the corresponding index referring to the
asymptotic end.
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For such a φ, the bulk integral (28) becomes

IðN Þ ¼ λ2
Z
Σ
dVfjDmVijj2 þ ΣR2

ijφ
2 þ ðDiDjφÞ2

− 2ΣRijNDiDjφþ 2ΣRφ▵φ

þ ðD − 3Þ▵φ▵φþ 2Q▵φþQ2
ij

þ 2ΣRijφQij − 2QijDiDjφg; ð79Þ
where

Vij ¼ 2φKij; ð80Þ

and

Qij ¼ 2φðKi
kK

kj − KKijÞ − φγijðK2
kl − K2Þ: ð81Þ

The boundary form for the asymptotically flat case follows
similarly

IðN Þ ¼ −λ2
I
∂Σ

dSnkf−DkDjφDjφ − ðD − 3ÞDkφ▵φ

þ ðD − 2ÞφDk▵φþQkjDjφ − φDjQkj

− 2φKijDkVijg; ð82Þ

where we used K2
kl − K2 ¼ ΣR ¼ 0 on the boundary.

IV. CONCLUSIONS

Using the Hamiltonian form of the Einstein evolution
equations as given by Fischer and Marsden [8], we con-
structed an integral that measures the nonstationary energy
contained in a spacelike hypersurface in D dimensional
general relativity with or without a cosmological constant.
This integral was previously studied by Dain [1] who used
the Einstein constraints but not the evolution equations. The
crucial observation is the following: the critical points of
the first order Hamiltonian form of Einstein equations
correspond to the initial data which possess Killing sym-
metries, a result first observed by Moncrief [5]. Hence, our
vantage point is that the failure of an initial data to possess
Killing symmetries is given by the evolution equations,
namely nonvanishing of the time derivatives of the spatial
metric and the canonical momenta. Then manipulating the
evolution equations, one arrives at the integral (28). Once an
initial data is given, one can compute this integral, which by
construction, vanishes for stationary spacetimes.

APPENDIX: ADM SPLIT OF EINSTEIN’S
EQUATIONS IN D DIMENSIONS

For the sake of completeness let us give here the ADM
split of Einstein’s equations and all the relevant tensors.
Using the ðD − 1Þ þ 1 dimensional decomposition of the
metric given as (1) we have:

g00 ¼ −N2 þ NiNi; g0i ¼ Ni; gij ¼ γij; ðA1Þ

and

g00 ¼ −
1

N2
; g0i ¼ 1

N2
Ni; gij ¼ γij −

1

N2
NiNj:

ðA2Þ

Let Γμ
νρ denote the Christoffel symbol of theD dimensional

spacetime

Γμ
νρ ¼ 1

2
gμσð∂νgρσ þ ∂ρgνσ − ∂σgνρÞ ðA3Þ

and let ΣΓk
ij denote the Christoffel symbol of the D − 1

dimensional hypersurface, which is compatible with the
spatial metric γij as

ΣΓk
ij ¼

1

2
γkpð∂iγjp þ ∂jγip − ∂pγijÞ: ðA4Þ

Then a simple computation shows that

Γ0
00 ¼

1

N
ð _N þ Nkð∂kN þ NiKikÞÞ ðA5Þ

and

Γ0
0i ¼

1

N
ð∂iN þ NkKikÞ; Γ0

ij ¼
1

N
Kij;

Γk
ij ¼ ΣΓk

ij −
Nk

N
Kij ðA6Þ

and

Γi
0j ¼ −

1

N
Nið∂jN þ KkjNkÞ þ NKj

i þDjNi ðA7Þ

and also

Γi
00 ¼ −

Ni

N
ð _N þ Nkð∂kN þ NlKklÞÞ þ Nð∂iN þ 2NkKk

iÞ
þ _Ni þ NkDkNi: ðA8Þ

Starting with the definition of the D dimensional Ricci
tensor

Rρσ ¼ ∂μΓ
μ
ρσ − ∂ρΓ

μ
μσ þ Γμ

μνΓν
ρσ − Γμ

σνΓν
μρ ðA9Þ

one arrives at

Rij ¼ ΣRij þ KKij − 2KikKk
j þ

1

N
ð _Kij − NkDkKij

−DiDjN − KkiDjNk − KkjDiNkÞ; ðA10Þ
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where ΣRij denotes the Ricci tensor of the hypersurface.
The remaining components can also be found to be

R00 ¼ NiNjRij − N2KijKij þ NðDkDkN − _K − NkDkK

þ 2NkDmKm
k Þ ðA11Þ

and

R0i ¼ NjRij þ NðDmKm
i −DiKÞ: ðA12Þ

The scalar curvature can be found as

R ¼ ΣRþ K2 þ KijKij þ 2

N
ð _K −DkDkN − NkDkKÞ:

ðA13Þ
Under the above splitting the cosmological Einstein
equations

Rμν −
1

2
gμνRþ Λgμν ¼ κTμν ðA14Þ

split in to constraints and evolution equations in local
coordinates. The momentum constraints read

NðDkKk
i −DiKÞ − κðT0i − NjTijÞ ¼ 0; ðA15Þ

via the Hamiltonian constraint becomes

N2ðΣRþ K2 − K2
ij − 2ΛÞ − 2κðT00 þ NiNjTij − 2NiT0iÞ

¼ 0: ðA16Þ

On the other hand the evolution equations for the metric
and the extrinsic curvature become

∂
∂t γij ¼ 2NKij þDiNj þDjNi; ðA17Þ

∂
∂t Kij ¼ NðRij − ΣRij − KKij þ 2KikKk

jÞ þ LN⃗Kij

þDiDjN; ðA18Þ

where LN⃗ is the Lie derivative along the shift vector.
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