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Using the time evolution equations of (cosmological) general relativity in the first order Fischer-Marsden
form, we construct an integral that measures the amount of nonstationary energy on a given spacelike
hypersurface in D dimensions. The integral vanishes for stationary spacetimes; and with a further
assumption, reduces to Dain’s invariant on the boundary of the hypersurface which is defined with the
Einstein constraints and a fourth order equation defining approximate Killing symmetries.
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I. INTRODUCTION

Dain [1] constructed a geometric invariant that measures
the nonstationary energy for an asymptotically flat hyper-
surface in 3 + 1 dimensions for the case of time-symmetric
initial data which, for vacuum, is an invariant that quantifies
the total energy of the gravitational radiation. So this
invariant is a component of the total Arnowitt-Deser-
Misner (ADM) energy [2] assigned to an asymptotically
flat hypersurface. That construction was extended to the
time-nonsymmetric case recently in [3]. To give an example
of how useful such a geometric invariant can be when
constructing initial data for the gravitational field, let us
recall the first observation of the merger of two black holes
[4]. According to this observation, two initial black holes
with masses (approximately) 36My and 29M merged to
produce a single stationary black hole of mass 62Mg, plus
gravitational radiation of total energy equivalent to 3M.
Assuming this system to be isolated in an asymptotically
flat spacetime, the total initial ADM energy of 65Mg is
certainly conserved. But this total ADM energy of the
initial data needs a refinement as it clearly has a nonsta-
tionary part equal to 3My. The important question is to
identify this nonstationary energy in the initial data.

Dain’s construction and its extension to the nontime
symmetric case by Kroon and Williams [3] are based on
several earlier crucial works one of which is the Killing
initial data (KID) concept of Moncrief [5] and Beig-
Chrusciel [6]; and a fourth order operator defined by
Bartnik [7]. Of course all of the discussion is related to
the Cauchy problem in general relativity and the related
issue of constructing initial data for the time evolution
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equations. Here by using the time-evolution equations, in
the form given by Fischer and Marsden [8], we construct a
new representation of the nonstationary energy in generic
D dimensional spacetimes with or without a cosmological
constant.

The outline of the paper is as follows: in Sec. II we
briefly summarize Dain’s construction using the constraints
and present a new approach using the evolution equations.
In Sec. III we give the details of the relevant computations
in D dimensions. The Appendix is devoted to the ADM
decomposition.

II. DAIN’S INVARIANT IN BRIEF AND A NEW
FORMULATION

Leaving the details of the construction to the next
section, let us first briefly summarize the ingredients
needed to define Dain’s invariant on a spacelike hypersur-
face X of the spacetime M = R x X. Then we shall discuss
our new formulation via the evolution equations.

The initial data on the hypersurface is defined by the
Riemannian metric y;; and the extrinsic curvature K;; in
local coordinates. Denoting D; to be the covariant deriva-
tive compatible with y;; and assuming the usual ADM
decomposition of the spacetime metric g,,, the line element
reads

ds* = (N;N' — N?)dt* + 2N,dtdx’ + y;;dx'dx’, (1)

. . 1
while the extrinsic curvature becomes

'Our definition of the extrinsic curvature is as follows: given
(X, Y) two vectors on the tangent space T,% and n be the unit
normal to X, then K(X,Y):=g(Vyn,Y) with V being the

covariant derivative compatible with the spacetime metric g.
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K= N (7;j— D;N;— D;N;), (2)

with the lapse function N = N(¢,x') and the shift vector
N = Ni(t,x'). The spatial indices can be raised and
lowered with the D — 1 dimensional spatial metric y; over
dot denotes the derivative with respect to ¢, and the Latin
letters are used for the spatial dimensions, i,j,k, ... =
1,2,3,...D — 1, whereas the Greek letters are used to
denote the spacetime dimensions, wu,v,p,...=0,1,2,
3,...D — 1. All the relevant details of the ADM decom-
position are given in the Appendix.

Under the above decomposition of spacetime, the
D-dimensional Finstein equations

1
R;w - ERg;w + Ag/w = KTm/ (3)

yield the Hamiltonian and momentum constraints on the
hypersurface X as

®y(y,K) == —"R — K* + K}, + 2A = 2T, = 0,

K):= —2D;K* + 2D;K — 2«T,; = 0, (4)
where K := y"/K;; and K7, := K"K ;;. From now on we shall
work in vacuum, hence T, = 0. Denoting ®(y, K) to be
the constraint covector with components (@, ®;) and
D®(y,K) to be its linearization about a given solution
(v, K) to the constraints and D®*(y, K) to be the formal

adjoint map, then following Bartnik [7], one defines
another operator P:

P = DO(y, K)o((l) _,(;m)' (5)

The reason why we need this operator will be clear below.

Using the formal adjoint P* of Bartnik’s operator, Dain [1]
defines the following integral over the hypersurface

rivw= [am (X)) (M), @

where the multiplication is defined as

() () emnenvn o

The integral (6) is to be evaluated for specific vectors ¢ :=
(N, N') that satisfy the fourth-order equation

PP (£) =0, (8)

which Dain called the approximate Killing initial data
(KID) equation. It is clear that if & satisfies the lower

derivative equation P*(&) = 0, then it also satisfies (8).
Moreover, these particular solutions, together with an
assumption on their decay at infinity, also solve the KID
equations which are simply D®*(y, K)(¢) = 0. In fact this
point is crucial but well-established: Moncrief [5] proved
that £ is a spacetime Killing vector satisfying V,&, +
V, &, =0 if and only if it satisfies the KID equations.
Namely one has

Vb + V.6, =0 & DO*(y. K)(¢) = 0. ©)

with (N, N') being the projections off and onto the hyper-
surface of the Killing vector field . The physical picture is
clear: initial data on the hypersurface clearly encode the
spacetime symmetries. There have been rigorous works
on the KIDs in [6,9,10] which we shall employ in what
follows.

Observe that for any Killing vector field Z(N, N)
vanishes identically. So by design, Dain’s invariant iden-
tically vanishes for initial data with exact symmetries. Then
Dain goes on to show that for asymptotically flat spaces,
for the case of approximate translational KID’s Z(N, N*)
can measure the nonstationary energy contained in the
hypersurface X. To simplify his calculations Dain consid-
ered the time symmetric initial data (K;; =0) in three
spatial dimensions. There are two crucial points to note
about Dain’s construction: first, one can show that for any
asymptotically flat three manifold, the approximate KID
equation has nontrivial solutions which are not KIDs;
second, using integration by parts, one can convert the
volume integral (6) to a surface integral. We shall discuss
these in the next section, but let us first give another
formulation of this invariant.

A. Nonstationary energy via time-evolution equations

In Dain’s construction, as is clear from the above
summary, time evolution of the initial data has not played
a role: in fact one only works with the constraints on the
hypersurface. This fact somewhat obscures the interpreta-
tion of the proposed invariant as the nonstationary energy
contained in the initial data. In what follows, we propose
another formulation of this invariant with the help of the
time evolution equations which makes the interpretation
clearer. For this purpose let us consider the phase space
variables to be the spatial metric y;; and the canonical
momenta z'/; the latter can be found from the Einstein-
Hilbert Lagrangian

1
Lgp = ;\/—Q(R —2A)
1
— b 2 2
—;ﬁN( R+ Kj; — K>+ A)

-+ boundary terms (10)
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which are
g 5£EH 1 L
Vo= KY —yYK). 11
W= = VKT =R ()
Using the canonical momenta, it pays to recast the
densitized versions of the constraints (4) for 7, = 0 and
setting k = 1 as
q)o(}/, ﬂ') = \/}7(—ZR + 2A) + G,’jklﬂ'ijﬂ'kl = 0,
D;(y,7) = —2yiij7rkj =0, (12)

where the DeWitt metric [11] G;j;; in D dimensions reads

2
Gijkl 2\/— D— 27:]7k1) (13)

Ignoring the possible boundary terms, the ADM Hamiltonian
density turns out to be a sum of the constraints as

(71kyjl + Yllyjk

H:/de_l)C(N,(D(y,ﬂ)), (14)

with N being the lapse-shift vector with components
(N, N') which play the role of the Lagrange multipliers;
and the angle-brackets denote the usual contraction. Given
an \V/, the remaining evolution equations can be written in a
compact form (the Fischer-Marsden form [12]) as

%(Z) = JoD®* (7, 7)(N), (15)

where the J matrix reads

(0 "

The reason why the formal adjoint of the linearized
constraint map D®*(y,z) appears in the time evolution
|

Do < N ) (\/?(ERij_ DD/ + }/ijA)N _ Nyiijlmn ki gmn: 4 2NGk[m”]/lk7T]l mn 4 o (leNj)
B 2NG,'jklﬂ'kl + 2D(, i)

Ni

Setting the variation (20) to zero one obtains the evolution
equations (15) or in more explicit form one has

dy;.
% — ONG 7t + 2D N, (22)

and

dﬂ”

— \/—( —ZRij + DIpJ — yijA)N + Nyiijlmn”klﬂmn
- 2‘N'lemnJ/ikﬂjlﬂ:mn - Zﬂk(kaNj) + Dk(Nkn'ij)'

(23)

can be seen as follows: the Hamiltonian form of the
Einstein-Hilbert action

/ dr / P x(nllyy — (N, ®(p.x))). (1)

SEH v,

when varied about a background (y, 7) gives

/ dt / dP=\x(87i0y,;; + il 6y,

— V. D®(y, 7) - (57, 67))). (18)

DSEH v,

Here the linearized form of the constraint map can be
computed to be

D® s
pY
\/_(ER"jh»»—DiDjhu—l-Ah)
= hGljklﬂUﬂ +2G]klpl]ﬂ +2anklhzmy ﬂl}ﬂkl P
—2yuD;p" —a* (2D hij—Dihjy)

(19)
where 8y;; = hyj, h:=y"h;, 67 = p' and A := D;DF.
We have used the vanishing of the constraints to simplify
the expression. In (18) using integration by parts when
necessary and dropping the boundary terms one arrives at
the desired result

/dt/dD 'x(67'y;; — 76y,

— ((67.0m), DD*(y.7) - N)). (20)

DSEH v, T

where the adjoint constraint map appears in the process
which reads

Dy (N*z'h) ) o

[

Together with the constraints (12) these two tensor equations
constitute a set of constrained dynamical system for a given
lapse-shift vector an (N, N'). The constraints have a dual
role: they determine the viable initial data and also generate
time evolution of the initial data once the lapse-shift vector
is chosen. As noted above, if D®*(y, 7)(N') = 0, namely
N = ¢ is a Killing vector field then the time evolution is
trivial. In particular this would be the case for a stationary
Killing vector.

Consider now an A which is not a Killing vector,
which means D®*(y, z)(N) # 0; and in particular directly
from the evolution equations we can find how much
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D®*(y, n)(N) differs from zero (or how much a given N/
fails to be a Killing vector) as

d

DO (y, 7)(N) :J"OEC;)- (24)

To get a number from this matrix, first one should note
that the units of y and x are different by a factor of 1/L and
so a naive approach of taking the “square” of this matrix
does not work. At this stage to remedy this, one needs the
(adjoint) operator of Bartnik that we have introduced
above: so one has

P =, ;i)oD®%%nxAn

_ ((1) l;)m>oJ_1o%<Z>, (25)

which yields P*(N) = (—#,D,,y). Since « is a tensor
density to get a number out of this vector, we further
define

pon= (" D)o e

Then the integral of P* () - P*(\) over the hypersurface
yields

TN = /Z avP N - BN

1,...
:/dV<|Dm7'/,-j|2+—|iz”|2), (27)
b 4

:}/mn}/ijylem}.’ianj/jl and |7'Tij|2 =VijYk
#'* 7', This is another representation of Dain’s invariant
which explicitly involves the time derivatives of the
canonical fields. We have also not assumed that the
cosmological constant vanishes, hence our result is valid
for generic spacetimes. Note that this expression is valid
for any V' which is not necessarily an approximate KID,
hence given a solution to the constraint equations and
a choice of the lapse-shift vector, one can compute this
integral. But the volume integral becomes a surface
integral when N is an approximate KID which is the
case considered by Dain. Observe that by construction,
Z(N) is a non-negative number. To get the explicit
expression as a volume integral in terms of the canonical
fields and not their time derivatives, one should plug
the two evolution equations (22) and (23) to (27). The
resulting expression is

where |D,,7;|*:

IN) = L dv{|D,,V|* +*R};N* + (D;,D;N)>
—2*RUND;D;N + 2*RNAN + (D — 3)ANAN
+2QAN + Q7 +2*R;;NQ" —2QD;D;N
+4D,,D;N;D"DVN/) + 4D,,D;N;, D"V},

(28)
where
. 2N [ .. 1 .
Vil ="_ | 57U — v, 29
E(w-pme).
and
2N/ . .. mal N . 7
ij .= =" i kj _ ] 2 __ "
Q ¥ (kﬂ D_2> 7}/ (ﬂkl D—2>
1 , 2 ) )
= AN A D, (30)

and Q :=y;;0". Equation (28) is our main result: given a
solution, that is an initial data, one an compute this
integral which measures the deviation from stationarity.
We can also write (28) in terms of y;; and the extrinsic
curvature K;;. For this purpose all one needs to do is to
rewrite V¥ and QV in terms of these variables. They are
given as

Vi =2NKY, (31)

and
Q' = N(K,KH — KK') = Nyl (K% — K?) — Dy (N*K)
+ 7Dy (N*K) + 2K*D,N/) —2KDUN/ . (32)
Up to now we have not made a choice of gauge or
coordinates. Let us now choose the Gaussian normal

coordinates (N = 1, N' = 0) on X for which the integral
reads

I = /E dv{‘;1 <|Dmﬂf.f|2—(;%_23)2|pmn(ﬂ)|2>
4

4 .
ER2 4 IR gkl T
TR R D 2y,

ERijﬂ'ijTI'(ﬂ')
1

A(T0) - 5 s T16a) )

+ g (PTG ) (33)
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where Tr(x) = y;;z" and Tr(z*) = x'/z;; and so on. In
terms of the extrinsic curvature, in the Gaussian normal

coordinates, one has

I(N)= /E dV{4|D,,K;;|* + *R}; + 4R, j(KikK{; — KK')
+4A(K* - K};) +4K;;K/'K, K™ — 8KK ;;K/'K]
22 2\2 4
—2(D-9)K°K;; + (D = T7)((K3;)” + K*)}.
(34)

For a physically meaningful solution whose ADM mass
and angular momenta are finite for the asymptotically
flat case, or in the case of A # 0 whose Abbott-Deser [13]
charges are finite, this quantity is expected to be
finite and represents the nonstationary part of the total
energy by construction. Observe that while the ADM
momentum (P; = 99821( ; dej) and angular momenta
(= (X K*™ —x*KI™)dS,,) are linear in the extrinsic
curvature given as integrals over the boundary, Z () has
quadratic, cubic and quartic terms in the extrinsic curva-
ture in the bulk integral¢.

Before we lay out the details of the above discussion, let
us note that our final formula (28) can be reduced in various
ways depending on the physical problem or the numerical
integration scheme: for example, one can choose the
maximal slicing gauge for which Tr(z) = K = 0. If the
problem permits time-symmetric initial data z'/ = K/ = 0,
then in this restricted case, V¥ = Q% = 0, and the integral
(28) reduces to

+ 2*RNaN +4D,,D;N;D"DN/)
+ (D =3)aNAN).
|

> B <\/77(2Ri-7 D'D/ +yA)h

We can define a 2 x 2 matrix as

Tpij _ J ij ij
o <\/_(R DiDi 4y A)+\/7(7 (

such that

z/f( ”(D 2 ”zgj)

(7D = 257D, h;;

ﬂ'ijDk - 25](€lﬂj)lD1

Let us go back to (27) which was the defining relation of
the invariant and try to write it as a boundary integral over
the boundary of the hypersurface X. Then one has

TN = /E AP ) - BN

_ / QYN - PP () + 7{ dsn*B,,  (35)
z

1)

which requires PoP*(N') = 0. This the approximate KID
equation introduced by Dain [1] and B, is the boundary
term to be found below. Note that our bulk integral (28)
is more general and does not assume the existence of
approximate symmetries.

III. DETAILS OF THE CONSTRUCTION IN
D DIMENSIONS

A. Boundary integral

The importance of the Einstein constraints (4) cannot be
overstated: clearly the initial data is not arbitrary, one must
solve these equations to feed the evolution equations; but,
as importantly, the constraints also determine the evolution
equations and they are related to the symmetries of the
spacetime in a rather intricate way as we have seen above.
One can consider the constraints (4) as the kernel of a map ©

D: My, xS = CF x &7, (36)
where M, denotes the space of the Riemannian metrics and
&; denotes the space of symmetric rank-2 tensor densities, C*
denotes the space of scalar function densities and X the
space of vector field densities on the hypersurface X. We can
express the constraint map explicitly as

o

whose linearization can be found to be

_r

o2 ) (37)

*R) + J’_l/z(”zzj -
=2y Dt

Vij

)= (70

7"

2n*al — 22 ) hyj + L (m; — 525 pY
) P D-2 . (38)
~ 21Dy
- nh) 4205, - 55)) 2 (-5
D2 ) ) VALARZ-AY (39)
=27kiDj)
):D(I)o fj . (40)
pl
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Defining [7]

5 -2 0
P o= Dd)o(y ) (41)
0 -D"
one finds
] “Ril — D'DI 4 yiia 41 (},ij (Dzr_jz _ ﬂ%j) I z(nikﬂi _ %)) % (gr_,z _ ﬂij>Dm
7 (77D = 26/7)'D)) 2yiiD ;D"

which is a map as
75: SzXSl’z—)CXX, (43)

where S, denotes the space of covariant rank-2 tensors,
81, denotes the space of covariant rank-3 tensors which
are symmetric in last two indices, C denotes the space of
scalar function and X the space of vector fields on the
hypersurface X.

The formal adjoint of P-operator was defined in (26) via
the (21) and it is a map of the form

P CXX—>52 XSI,Z- (44)
Working out the details, one arrives at
. /N N*RY — DIDIN + y'AN + QU
()= )
N* D,,2D;Nj + V)

where V¥ and Q% were given (29), (30) respectively. We
have used this expression in the previous section to find the
bulk integral of the nonstationary energy. Now let us use
this operator and its adjoint to find an expression on the
boundary. For this purpose we need the following identity:

N ~ sij Sij ~ N
/dV )P :/dV P
> N Skij > Skij N
+% dSI’lkBk, (46)
19)

with generic s;; € S, and s;;; € S ». After making use of
(42) and (45), a slightly cumbersome computation yields
the boundary term:

Bk = SijjN - NDjSkj +NDkS - SDkN + ZNiDijki
.. 2N /2 . .
— 25 D'N” + 77 (D —5 5K’ Ski/””)

1 . -
+ 7}7 (ﬂ'ljsiij - ZSileﬂ']](), (47)

where s = y'/s; ;- Let us now assume a particular s;; and a
particular sy;; such that

(o) =7 ()

which yields

P(ssk’J) = 79079(11\;;) (49)

Then (46) becomes
N - ~ (N
/dV( k)-POP*( k)zI(/\/’)—i—f dSn* By,
) N N o)

where B, given in (47) must be evaluated with

(50)

s;j = N*R;; — D;D;N +y;;aN + Q;; (51)
and
skij = Dr(2DNj) + Vij). (52)

Equation (50) shows that generically Z(N') cannot be
written as an integral on the boundary of the hypersurface
unless PoP*(N) = 0. In that case, the invariant reduces to

TN = — ﬁz dSn*B;. (53)

Explicit computation shows that one has

N? ; <
Bk = 7Dk2R + NERij]N - DijND]N
— (D =3)D{NAN + (D —2)ND;AN
+4N'AD N, — 4D DN ) DUND + by, (54)

where

024035-6
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by = Q;D'N = ND’Qyj + NDiQ — QDN + 2N'AV;
1 2Nz
— 2DV DN 4 —

N

(2DyD;N; + DV ;)

(2DD;N' + D, V)

2Nz
VY

—|—1(ijN
— (r _
VY ¢

2N'm))

X (NZRU — DID]N + }’ijAN + QU) (55)

In the Gaussian normal coordinates the boundary integral

reads
|

IN) = ngdSnk«D—%)Dngj n G_

+ 2K’-ijK,k>.

D) DK?
(56)

Another physically relevant case is the time symmetric
asymptotically flat case for which the boundary integral
reduces to

— (D —=2)NDAN — 4NAD N,
+ 4D DN ; DUNY).

In the most general form N and N should satisfy the fourth order equations PoP* (N) = 0 which explicitly read

PoP(;vv) _ ((D —2)aaN -

where

y o 2 oo
Y:IZRUQij—DlDJQij—f—AQ—f——< 4 —7[1]>

J7\D—2
2( i b7 2

]/ij 5 7[2 s
(58)

and
1
\/_
x (N*

Yy i=—(a"Dy —

287/'D))

(59)

B. The approximate KID equation in D dimensions

Following the D = 4 discussion of Dain [1] let us now
study the approximate KID equation (57) in D dimensions.
It is easy to see that it is a fourth order elliptic operator for
D > 2. This follows by computing the leading symbol:
for this purpose let us consider the higher order derivative
terms and set D; = {; and |¢|* = {¢;. Using (57), the
leading symbol of operator reads

ol PP 0) ( ]]VV ) _ <i’|)§|§ ;é'izjt ) (60)

RyD'DIN + NG AR + *Rj) + RaN + 3DFRDIN Y\ 7
ADIAD(N ) + Yy a (

For a nonzero covector {, if ¢ is an isomorphism (here a
vector bundle isomorphism), then the operator is elliptic.
For the first component, this requires D # 2 and for the
second component contraction with ¥ yields

[*¢*Ny = 0. (61)

Assuming D # 2 one has (*N, =
second component one obtains

0. Inserting it back in the

CI*Ne =0 (62)
so for [{|* # 0, the leading symbol is injective and the
operator PoP* is elliptic for D > 2.

C. Asymptotically flat spaces

Consider the initial data set (,7;;, z"/) for the vacuum
Einstein field equations with n > 1 asymptotically
Euclidean ends: this is to avoid bulk simplicity and allow
black holes. There exists a compact set B such that
\B = Zk 1z ) where X (k)> k=1,...,n are open sets
diffeomorphic to the complement of a closed ball in RP~!,
Each asymptotic end Z ;) admits asymptotically Cartesian
coordinates. We consider the following decay assumptions,
for D > 3, which are consistent with finite ADM mass and
momenta:

71/ = 5ij + 0(|x| (3-D) /2) (63)

Tl = 0(|x| (1-D) /2) (64)
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where §;; = (4 + - - - +). Note that §;; = O(1) and beware
of the small o and the big O notation. One can compute the
following decay behavior for the Christoffel connection

Sk (1-D)/2
Tf, = o(|x|1=P)/2), (65)
and the curvatures

ERk =0

Imn

(|x|_(l+D)/2), ZRU

R = o(|x|~1HP)12), (66)

(|x| 1+D)/2)’

D. KIDs in D dimensions

Let (Z,7,;,7") denote a smooth vacuum initial data set
satisfying the decay assumptions (63), (64). Let N, N’ be a
smooth scalar field and a vector field on X satisfying the
KID equations. Then generalizing the D = 4 result of [9],
the behavior of all the possible solutions were given in [10]
which we quote here.

(1) There exits an antisymmetric tensor field ,,, such
that
N — wgix' = o(|x|5=P)/2),
N — o' jx) = o(|x|3-P)/2), (67)
(2) If w,, = 0, then there exists a vector field U*, such
that
N-U°’ = 0(|x|(3_D)/2),
N —U'" = o(|x|B-P)/2), (68)
(3) If w,, =0=U" then one has the trivial solution

N =0 = N'. Both @y, and U* are constants in the
sense that they are O(1) whenever they do not
vanish.
Case | above corresponds to the rotational Killing vectors
while case 2 corresponds to the translational ones we shall
employ the latter.

We explained in Sec. II that solutions of the D®*
(N,N') =0 yield spacetime Killing vectors. It is not
difficult to see that the modified equation P*(N,N’) =0
yields only the Killing vectors for the case of translational
KIDs (63), (64). Here is the proof: P*(N, N') = 0 implies
|

Pop

. <(p> _ < (D —2)aap —*R;;D'D/g + (3 5*R + *R)

If one assumes (N,N') decay as in (68) we have
DN = o(|x|1=P)/2); and V;; = o(|x|('=P)/2), then

2D(1N]) + Vl] = 0(|X|(1_D)/2) (71)

vanishes at infinity; and since it is covariantly constant, it
must vanish identically

2DNj) + Vi = 0. (72)

ij =

Together with the first component of P*(N, N') = 0 we get
the formal adjoint of the linearized constraint map, namely

D®*(N,N') = 0. We can conclude that if P*(N,N') =0
then (N, N') solve the KID equations.

E. Approximate KIDs in D dimensions

Generalizing Dain’s D =4 result, let us search for
translational solutions of the approximate Killing equation2

- ~ (N
PoP* ( . ) =0 (73)

Nl
as a deformation of the KIDs (X, N*) in the following form:
N=Jlp+X, N =N, (74)

where the function ¢ is to be found, A is a constant. KIDs
decay as

X =U’ = o(|x|O=P)/2), (75)
— U = o|x|C-D2), (76)

Inserting the ansatz (74) into the approximate KID equa-
tion (73), one gets

pp(g’) :‘75"75*(1}5:') —0, ()

or more explicitly

+2*RAgp + 3D RDip +Y
¢t v ) ~0. (78)

g

*We work in a given asymptotic end and not the clutter the notation we do not denote the corresponding index referring to the

asymptotic end.
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For such a ¢, the bulk integral (28) becomes
I(N) =2 /)S dV{|D, V7> +*R}¢* 4+ (D;:Dp)*
+ (D - 3)apag + 2089 + 0

where
Vil = 20K, (80)
and
QY = 2p(Ki K" — KK') — oyl (K}, — K2).  (81)

The boundary form for the asymptotically flat case follows
similarly

I(N)=-22 7{92 dSn*{-DyD ;oD — (D = 3)Dipag

+ (D = 2)pDyrp + QD' — pD! Qy;
—2¢0KD, V1, (82)

where we used K7, — K* = *R = 0 on the boundary.

IV. CONCLUSIONS

Using the Hamiltonian form of the Einstein evolution
equations as given by Fischer and Marsden [8], we con-
structed an integral that measures the nonstationary energy
contained in a spacelike hypersurface in D dimensional
general relativity with or without a cosmological constant.
This integral was previously studied by Dain [1] who used
the Einstein constraints but not the evolution equations. The
crucial observation is the following: the critical points of
the first order Hamiltonian form of Einstein equations
correspond to the initial data which possess Killing sym-
metries, a result first observed by Moncrief [5]. Hence, our
vantage point is that the failure of an initial data to possess
Killing symmetries is given by the evolution equations,
namely nonvanishing of the time derivatives of the spatial
metric and the canonical momenta. Then manipulating the
evolution equations, one arrives at the integral (28). Once an
initial data is given, one can compute this integral, which by
construction, vanishes for stationary spacetimes.

APPENDIX: ADM SPLIT OF EINSTEIN’S
EQUATIONS IN D DIMENSIONS

For the sake of completeness let us give here the ADM
split of Einstein’s equations and all the relevant tensors.
Using the (D — 1) 4 1 dimensional decomposition of the
metric given as (1) we have:

goo = —N* + N;N', goi = Ni, 9ij = Vijs (A1)
and

1 . 1 . .. L |
00 _ 0i _ _
g __F’ gl_WNl’ glj—yl]_leN]~

(A2)

Let Fﬁp denote the Christoffel symbol of the D dimensional
spacetime

1
F;ij = 79”6(8119/)0 + apgmf -

5 (A3)

959p)
and let Zl“f?j denote the Christoffel symbol of the D —1

dimensional hypersurface, which is compatible with the
spatial metric y;; as

1
Ty =37 Oy + 0rip = Oprij)- - (A4)
Then a simple computation shows that
1 . 4
T :N(N‘FNk(akN-FN’Kik)) (A5)
and
r0—1(6N+N’<K ) r - Lk
Oi_N i ik)» ij—N ij
Nk
G =T, - K (A6)
and
. 1 . . .
oy ==y NN+ K N*) + NK;/ +D;N' (A7)

and also

. N . . .
Ty = =5 (N + N ON + N'Kyy)) + N(O'N + 2N*K )
+ N’ + N*D,N'. (A8)

Starting with the definition of the D dimensional Ricci
tensor

R,, = 0,1 — 0,Ths + [T, —T5,T%,  (A9)
one arrives at
1 .
R;; =*R;; + KK;; — 2K K% + N (Kij = N*DiK;;
—DiDjN—KkiDjN" —KijiNk), (A10)
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where 2R,-j denotes the Ricci tensor of the hypersurface.
The remaining components can also be found to be

Ry = N'N/R;; — N*K;;K" + N(D;D*N — K — N*D\K
+2N*D,,K'™) (A1)
and
Ry = N'R;; + N(D,, K" — D;K). (A12)

The scalar curvature can be found as

2.
R=*R+ K>+ K;K' + N(K — Dy D*N — N*D;K).
(A13)

Under the above splitting the cosmological Einstein
equations

1
R,uu - _g/wR + Ag/w = KT;u/

5 (A14)

split in to constraints and evolution equations in local
coordinates. The momentum constraints read

via the Hamiltonian constraint becomes
Nz(ZR + K% - K%j —2A) = 2k(Tgo + N"NfT,»j - 2NiT0,-)
=0. (A16)

On the other hand the evolution equations for the metric
and the extrinsic curvature become

9 % k
+ D;D;N, (A18)

where Ly is the Lie derivative along the shift vector.
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