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This paper is a companion of J. M. Fernández Tío and G. Dotti, Phys. Rev. D 95, 124041 (2017), in
which, following a program on black hole nonmodal linear stability initiated in G. Dotti, Phys. Rev. Lett.
112, 191101 (2013), odd perturbations of the Einstein-Maxwell equations around a Reissner-Nordström
(A)dS black hole were analyzed. Here we complete the proof of the nonmodal linear stability of this
spacetime by analyzing the even sector of the linear perturbations. We show that all the gauge invariant
information in the metric and Maxwell field even perturbations is encoded in two spacetime scalars: S,
which is a gauge invariant combination of δðCαβγϵCαβγϵÞ and δðCαβγδFαβFγδÞ, and T , a gauge invariant
combination of δð∇μFαβ∇μFαβÞ and δð∇μCαβγδ∇μCαβγδÞ. Here Cαβγδ is the Weyl tensor, Fαβ the Maxwell
field, and δ means first order variation. We prove that S and T are in one-one correspondence with gauge
classes of even linear perturbations, and that the linearized Einstein-Maxwell equations imply that these
scalar fields are pointwise bounded on the outer static region.
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I. INTRODUCTION

The Einstein-Maxwell field equations with cosmological
constant Λ

Gαβ þ Λgαβ ¼ 8πTαβ; ð1Þ

Tαβ ¼
1

4π

�
FαγFβ

γ −
1

4
gαβFγδFγδ

�
; ð2Þ

∇½αFβγ� ¼ 0; ð3Þ

∇βFαβ ¼ 0; ð4Þ

admit the solution

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdθ2 þ sin2 θdϕ2Þ; ð5Þ

F ¼ E0dt ∧ dr; E0 ¼
Q
r2
; ð6Þ

where the norm fðrÞ of the Killing vector ∂=∂t in (5) is

fðrÞ ¼ 1 −
2M
r

þQ2

r2
−
Λ
3
r2: ð7Þ

Note that r has geometrical meaning: it is (the square
root of one-fourth of) the areal radius of the spheres of
symmetry under SOð3Þ. Note also that f ¼ gαβ∇αr∇βr.

We assume Λ ≥ 0. M > 0 and Q are constants of
integration; they correspond to mass and charge respec-
tively and we assume that their values are such that (5) is a
nonextremal black hole, that is

f ¼ −
Λ
3r2

ðr − riÞðr − rhÞðr − rcÞðrþ ri þ rh þ rcÞ; ð8Þ

where 0 < ri < rh < rc are the inner, event, and cosmo-
logical horizons respectively.
We are interested in proving the nonmodal linear

stability of the outer static region rh < r < rc of the
solution (5)–(6) of the field equations (1)–(4). This concept
of stability was defined in [1,2] and implies proving the
following:

(i) There are gauge invariant (both in the Maxwell and
infinitesimal diffeomorphism senses) scalar fields
from the spacetime M into R that contain the same
information as the gauge class ½ðF αβ; hαβÞ� of the
perturbation ðF αβ; hαβÞ. HereF αβ ¼ δFαβ is the first
order perturbation of the electromagnetic field and
hαβ ¼ δgαβ is the metric perturbation. These scalar
fields then measure the distortion of the geometry
and the Maxwell field and the perturbation fields hαβ
and F αβ in a given gauge can be obtained by
applying a linear functional on them.

(ii) The gauge invariant curvature fields are pointwise
bounded on the outer static region by constants that
depends on the initial data of the perturbation on a
Cauchy surface for that region.
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For odd perturbations (i) and (ii) were proved in the
companion paper [3]. In this paper we complete the proof
of nonmodal linear stability of the charged black hole by
considering the even sector of the linear perturbation fields.
A discussion of the relevance of the nonmodal linear

stability concept above, which was introduced in [1], can
be found in Sec. I of [2]. For the Schwarzschild spacetime,
the strategy behind the proof of nonmodal linear stability
in [1] was using the supersymmetric even/odd duality to
show that both odd and even linear gravity perturbation
equations are equivalent to (independent) four dimen-
sional Regge-Wheeler equations. This also holds for
Schwarzschild de Sitter. (A detailed proof covering the
Λ ≥ 0 cases is given in Lemma 7 in [2].) Once the
linearized gravity problem is reduced to uncoupled four
dimensional scalar wave equations with a time indepen-
dent potential, it is possible to place pointwise bounds on
the geometric scalar fields mentioned above, and to
analyze their decay along future causal directions. This
duality is of no use in the charged black hole case because
the odd sector equations have the same level of complex-
ity of those of the even sector and, contrary to what
happens in the Q ¼ 0 case, the set of odd mode equations
is not equivalent to a four dimensional scalar field
equation with a time independent potential.
Our emphasis in this series of papers is on finding the

appropriate set of gauge invariant, curvature related scalar
fields encoding the information of the gauge class of the
perturbation; we do not analyze their decay.
We leave aside the asymptotically AdS Λ < 0 case.

We do so because the dynamics of perturbations is
nonunique in this case—in particular, the notion of stability
is ambiguous—due to the conformal timelike boundary.
In this case also, a choice of boundary conditions at the
conformal boundary generically breaks the even/odd dual-
ity, so that the even sector perturbation equations are not
equivalent (even in the uncharged case) to a four dimen-
sional Regge-Wheeler equation, as happens for Λ ≥ 0 (for
further details see Sec. IV in [4]).
As in [5], the warped structure of the spacetime (5)

M ¼ N ×r2 σ

gαβdzαdzβ ¼ g̃abðyÞdyadyb þ r2ðyÞĝABðxÞdxAdxB ð9Þ

is used to simplify the linearized Einstein Maxwell
equations (LEME). (We also use the acronyms LEE
for linearized Einstein equations and LME for line-
arized Maxwell equations). The “orbit manifold” N is
two dimensional and Lorentzian, with line element
g̃abðyÞdyadyb (¼ −fdt2 þ dr2

f in Schwarzschild coordi-

nates); the “horizon manifold” σ with metric ĝABðxÞ ×
dxAdxB is the unit two sphere (for a treatment of lineari-
zation around warped metrics in arbitrary dimensions and
with constant curvature horizon manifolds see [5] and
references therein). In (5), ðt; rÞ coordinates are used for

N and the standard angular coordinates ĝABðxÞdxAdxB ¼
dθ2 þ sin2 θdϕ2 are used for the unit sphere. In what
follows our treatment is “2D-covariant,” that is, it allows
independent coordinate changes in N and the unit sphere.
Equation (9) illustrates our notation, which we adopted

from [6]; we use lower case indexes a, b, c, d, e for tensors
on the orbit manifold N , upper case indexes A;B;C;D;…
for tensors on S2, and Greek indexes for space-time tensors.
We follow the additional convention in [2] that

α¼ða;AÞ; β¼ðb;BÞ; γ¼ðc;CÞ; δ¼ðd;DÞ: ð10Þ

Tensor fields introducedwith a lower S2 index (say ZA) and
then shown with an upper S2 index are assumed to have
been acted upon with the unit S2 metric inverse ĝAB (i.e., in
our example, ZA ≡ ĝABZB), and similarly with upper S2

indexes moving down. This has to be kept in mind to avoid
wrong r�2 factors in the equations. D̃a, ϵ̃ab and g̃ab are the
covariant derivative, volume form (any chosen orientation),
and metric inverse for the N orbit space; D̂A and ϵ̂AB are
the covariant derivative and volume form sinðθÞdθ ∧ dϕ on
the unit sphere.
The metric and Maxwell field perturbations hαβ and F αβ

admit a series expansion in rank 0, 1, and 2 eigentensor
fields of the horizon manifold Laplace-Beltrami (LB)
operator, with “coefficients” that are tensor fields on the
orbit space N [5]. Individual terms of this series are called
“modes”; they are not mixed by the LEME. In the standard
modal approach a master scalar field N → R is extracted
for each mode and the LEME is reduced to an infinite set of
scalar wave equations on N (that is, 1þ 1 wave equa-
tions), one for each master mode. Modal stability consists
in proving the boundedness/decay of these master fields.
This was proved in four dimensional general relativity in
the seminal black hole stability papers [7–9] and in higher
dimensions more recently by Kodama and Ishibashi (see,
e.g., [5,10]). All notions of linear stability prior to [1] were
modal, that is, restricted to the boundedness of the 1þ 1
master fields. For four dimensional charged black holes
the modal linear stability in the case Λ ¼ 0 was proved
by Zerilli and Moncrief in the series of articles [9,11–13]
(see also [14]).
The limitations of the modal linear stability are explained

in [1,2] (see the Introduction of [2] for a detailed explan-
ation). These two papers are devoted to the nonmodal linear
stability of the Schwarzschild and Schwarzschild de Sitter
black hole. The nonmodal linear stability of the Reissner-
Nordström black hole with Λ ≥ 0, under odd perturbations,
was established in [3]. In the following sections we
complete the proof of nonmodal linear stability of this
black hole by proving its stability under even perturbations.
We do so by showing that there are two fields made out of
gauge invariant first order perturbations of curvature scalars
(for details refer to Sec. III A). These fields encode all the
gauge invariant information of arbitrary even perturbations,
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allow one to reconstruct the metric and Maxwell field
perturbations in a given gauge, and are pointwise bounded.

II. LINEARIZED EINSTEIN-MAXWELL
EQUATIONS

The LEME are obtained by linearizing equations (1)–(4),
that is, we assume that there is a smooth one-parameter
set of solutions ðgðεÞαβ; FðεÞαβÞ of the Einstein-Maxwell
equations (1)–(4) such that (gðε ¼ 0Þαβ, Fðε ¼ 0Þαβ) are
the Reissner-Nordström fields (5)–(6), take the derivative
with respect to ε and evaluate it at ε ¼ 0. The resulting
equations are linear in the perturbation fields hαβ ≔
dgαβ=dεj0 and F αβ ≔ dFαβ=dεj0.
The linearization of Eq. (3) gives dF ¼ 0. Since the

region we are interested in (see Theorem 2 for details) is
homeomorphic to R2 × S2, then of the same homotopy
type of S2, dF ¼ 0 implies that there exists Aα such that

F αβ ¼ ∂αAβ − ∂βAα þ pϵ̂αβ; ð11Þ

where p is a constant and ϵ̂αβ is the pullback toM of the S2

volume form ϵ̂AB. Under the index convention (10) the
covector field Aα is written as

Aα ¼ ðAa; AAÞ ð12Þ

and, as explained in [2,15], admits a decomposition in a set
of even (þ) and odd (−) fields:

Aα ¼ ðAþ
a ; D̂AAþ þ ϵ̂A

CD̂CA−Þ: ð13Þ

Even and odd fields are characterized by the way they
transform when pulled back by the antipodal map P
on S2 [1]. Note that ϵ̂αβ is an odd field, and that
equations (11)–(13) imply that we can replace

F αβ with fAþ
a ; Aþg ∪ fA−; pg: ð14Þ

The constant p associated with the odd Maxwell field
perturbation pϵ̂αβ corresponds to turning on a magnetic
charge [16]. The scalar fields A� are unique if they are
required to belong to L2ðS2Þ>0 [2]. Here L2ðS2Þ>lo is the
space of square integrable functions on S2 orthogonal to the
l ¼ 0; 1;…;lo eigenspaces of the Laplace-Beltrami oper-
ator, and l labels the LB scalar field eigenvalue −lðlþ 1Þ.
Similarly, a symmetric tensor field Sαβ ¼ SðαβÞ, such as

hαβ, Gαβ ≔ dGαβ=dεj0 and T αβ ≔ dTαβ=dεj0, decomposes
as [2,3,15]

Sαβ ¼
�
Sab SaB
SAb SAB

�
; ð15Þ

with

SaB ¼ D̂BSþa þ ϵ̂B
CD̂CS−a : ð16Þ

Assuming that S�a ∈ L2ðS2Þ>0, they are unique [2,15].
SAB ¼ SðABÞ further decomposes as

SAB ¼ D̂ðAðϵBÞCD̂CS−Þ þ
�
D̂AD̂B −

1

2
ĝABD̂

CD̂C

�
Sþ

þ 1

2
SþT ĝAB; ð17Þ

where SþT ¼ SCC and the fields S� ∈ L2ðS2Þ>1 are unique.
In this way, as happens for covector fields [Eq. (14)], the

symmetric tensor field Sαβ is replaced by a set of even and
odd fields

fSþab ¼ Sab; Sþa ; Sþ; SþT g ∪ fS−a ; S−g: ð18Þ

In particular, the perturbed metric, Einstein tensor, and
energy momentum tensors contain the fields

hαβ ∼ fhþab; hþa ; hþ; hþT g ∪ fh−a ; h−g; ð19Þ

Gαβ ∼ fGþ
ab; G

þ
a ; Gþ; Gþ

T g ∪ fG−
a ; G−g; ð20Þ

T αβ ∼ fTþ
ab; T

þ
a ; Tþ; Tþ

T g ∪ fT−
a ; T−g: ð21Þ

Even and odd fields are not mixed by the LEME. The
restriction of the LEME to the odd sector was the subject
of [3]; even perturbations are studied in the following
sections.
Let Jð1Þ, Jð2Þ, and Jð3Þ be S2 (and therefore spacetime)

Killing vector fields corresponding to rotations around
orthogonal axis inR3 ⊃ S2, normalized such that the length
of their closed orbits in the unit sphere is 2π (e.g.,
Jð3Þ ¼ ∂=∂ϕ). The square angular momentum operator

J2 ≡ ð£Jð1Þ Þ2 þ ð£Jð2Þ Þ2 þ ð£Jð3Þ Þ2 ð22Þ

is defined both in S2 and the spacetime. This operator
commutes with the LEME and preserves parity. It thus
allows a further decomposition of even and odd fields into
modes (eigenfields of J2). On S2 scalars the operator J2

agrees with the LB operator of S2, D̂AD̂A; however, on
higher rank tensors these two operators act differently.
Since ½∇a; £Jk � ¼ 0 ¼ ½D̂A; £Jk � ¼ ½D̃a; £Jk �, it follows that
J2 commutes with ∇α, D̃a, and D̂A. In a modal decom-
position approach the tensor fields on the right sides of
(19)–(21) into eigenfields of J2.
In the following sections we restrict ourselves to even

perturbations and assume the restrictions above: Aþ;
Sþa ∈ L2ðS2Þ>0, Sþ ∈ L2ðS2Þ>1. These conditions guaran-
tee that the linear operators ðAþ

a ; AþÞ → Aα in (13),
and fSþab; Sþa ; Sþ; SþT g → Sαβ in (15)–(17) are injective
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(Lemma 2 in [2]). Since we restrict our discussion to even
perturbations, there is no risk of confusion and þ super-
scripts will be suppressed from now on.

A. Even sector perturbations

Even perturbations are those for which the minus
fields in (13) and (19) are zero. Rescaling and dropping
the þ superscripts, hþT ≕ r2hT , hþ ≕ 2r2h, gives

hαβ ¼
�

hab D̂Bha
D̂Ahb r2½ð2D̂AD̂B − ĝABD̂

CD̂CÞhþ 1
2
hTĝAB�

�

ð23Þ

with the restrictions ha ∈ L2ðS2Þ>0, h ∈ L2ðS2Þ>1.
Similarly, Eqs. (11) and the even piece of (13) give

(dropping superscripts)

F αβ ¼
�

D̃aAb − D̃bAa D̃aD̂BA − D̂BAa

D̂AAb − D̃bD̂AA 0

�
ð24Þ

with A ∈ L2ðS2Þ>0.
Uð1Þ gauge transformations of the Maxwell field leave

F αβ invariant while changing the potential as Aα →
Aα þ ∂αB. The even piece of the vector potential (13) then
changes as Aa → Aa þ ∂aB and A → Aþ Bð>0Þ, where
B>0 is the projection of B onto L2ðS2Þ>0.
Under a coordinate gauge transformation (infinitesimal

diffeomorphism) along the even vector field defined by

Xα ¼ ðXa; r2D̂AXÞ; X ∈ L2ðS2Þ>0; ð25Þ

hαβ and F αβ transform into the physically equivalent fields:

h0αβ ¼ hαβ þ £Xgαβ; F 0
αβ ¼ F αβ þ £XFαβ: ð26Þ

From (5), (6), (23), (24), (25), and (26) we find that (26) is
equivalent to

hab → h0ab ¼ hab þ D̃aXb þ D̃bXa;

hT → h0T ¼ hT þ 4
r D̃

arXa þ 2D̂CD̂CX

Ab → A0
b ¼ Ab − ϵ̃bcXcE0

9>>=
>>; all l ð27Þ

where the legend “all l” reminds us that these fields have
projections on all the l subspaces, whereas

A → A0 ¼ A; ðl > 0 onlyÞ;
ha → h0a ¼ ha þ X>0

a þ r2D̃aX; ðl > 0 onlyÞ;
h → h0 ¼ hþ X>1; ðl > 1 onlyÞ: ð28Þ

1. l= 0: Solution of the LEME
and linearized Birkoff theorem

Given that l ¼ 0 corresponds to the spherically sym-
metric part of the perturbation, l ¼ 0 perturbations to the
spherically symmetric Reissner-Nordström background
that solve the LEME should amount, in view of
Birkhoff’s theorem, to a modification of the parameters
Q and M in (5)–(7). In this section we prove that this is
the case.
On l ¼ 0, the fields ha, h, A, and X have trivial

projections, and we can use (27) as in [2], choosing

D̃arXðl¼0Þ
a ¼ − r

4
hðl¼0Þ
T to set h0T ¼0 and then 2D̃aXðl¼0Þ

a ¼
−gabhðl¼0Þ

ab to get a traceless h0ab. Dropping primes, the
resulting metric perturbation is of the form

hðl¼0Þ
αβ ¼

�
hT;ðl¼0Þ
ab 0

0 0

�
; g̃abhT;ðl¼0Þ

ab ¼ 0: ð29Þ

This gauge choice admits a residual freedom Xα ¼ ðXa; 0Þ
preserving the conditions (29), for which Xa must satisfy

ðD̃arÞXa ¼ 0; D̃aXa ¼ 0; ð30Þ

whose solution is

Xa ¼ ϵ̃abD̃bXðrÞ: ð31Þ

Since the l ¼ 0 piece of A is trivial, the l ¼ 0 Maxwell
field is

F ðl¼0Þ
αβ ¼

�
D̃aA

ðl¼0Þ
b − D̃bA

ðl¼0Þ
a 0

0 0

�
ð32Þ

and the linearization of (4) reduces to

D̃bðr2ðD̃aA
ðl¼0Þ
b − D̃bA

ðl¼0Þ
a ÞÞ ¼ 0: ð33Þ

Defining D̃aA
ðl¼0Þ
b −D̃bA

ðl¼0Þ
a ≕ ϵ̃abEðl¼0Þ the above equa-

tion reads

ϵ̃abD̃bðr2Eðl¼0ÞÞ ¼ 0: ð34Þ

Its solution,

Eðl¼0Þ ¼ q
r2
; ð35Þ

corresponds to a change in charge Q → Qþ ϵq, as
anticipated.
To complete our proof of the “linearized Birkoff theo-

rem” we choose coordinates ðt; rÞ in orbit space, work in
the transverse gauge (29) and use the residual gauge
freedom (31) to set htr ¼ 0 [this fixes XðrÞ in (31) up to
a linear function of r]. Using this additional condition
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together with the trace-free condition htt ¼ f2hrr and
At ¼ q=r, Ar ¼ 0, the t − r component of the LEE

Gαβ
ðl¼0Þ þ Λhαβðl¼0Þ ¼ 8πT ðl¼0Þ

αβ ð36Þ

gives ∂thrr ¼ 0, so that hrr and htt ¼ f2hrr depend only on
r. Inserting this condition in the r − r LEE (36) gives

hrr ¼ −
2r2ðqQ −mrÞ

r4f2
; ð37Þ

where m is a constant of integration. We conclude that

htt ¼ f2hrr ¼ −
2qQ
r2

þ 2m
r

: ð38Þ

Note that (37) and (38) correspond precisely to, respectively,
ðm∂=∂Mþq∂=∂QÞf−1 and ðm∂=∂Mþq∂=∂QÞð−fÞ, so we
recognize that m and q correspond respectively to first order
variations δM and δQ of the mass and charge in the
background Reissner-Nordström metric.

2. l= 1 modes: Gauge choice

Using the gauge freedom (27) we can put the metric
perturbation in Regge-Wheeler (RW) form:

RWhðl¼1Þ
αβ ¼

 
hðl¼1Þ
ab 0

0 r2
2
ĝABh

ðl¼1Þ
T

!
: ð39Þ

Contrary to what happens for l > 1, for l ¼ 1 there is no
unique RW gauge: once the metric is put in RW form (39),
we can gauge transform it into a different RW gauge using a
gauge vector of the form Xα ¼ ðXa; D̂AXÞ with

Xðl¼1Þ
c ¼ −r2D̃cXðl¼1Þ: ð40Þ

We will use this gauge freedom to further set

h̃ðl¼1Þ ≔ g̃abhðl¼1Þ
ab ¼ 0: ð41Þ

We will assume the RW traceless gauge conditions (39)
and (41) when solving the LEME. Note that this does not
exhaust the gauge transformations (40): a residual gauge
freedom keeping these conditions is one for which the
gauge vector satisfies (40) together with

D̃cðr2D̃cXðl¼1ÞÞ ¼ 0: ð42Þ

3. l ≥ 2 modes: Gauge choice and gauge invariants

For l ≥ 2 the field

pa ¼ hð≥2Þa − r2D̃ah ð43Þ

transforms as pa → p0
a ¼ pa þ Xð≥2Þ

a . This allows us to
construct the following (l ≥ 2) gauge invariant fields [we
use (24)–(28)]:

Hab ≔ hð≥2Þab − D̃apb − D̃bpa

HT ≔ hð≥2ÞT − 4
r paD̃ar − 2D̂CD̂Chð≥2Þ

Eϵ̃ab ≔ F≥2
ab − ϵ̃abD̃cðE0pcÞ

rϵ̃abD̂BEb ≔ F≥2
aB − ϵ̃abE0D̃Bpb

9>>>>>=
>>>>>;

l ≥ 2 gauge invariant fields: ð44Þ

The RW gauge is defined by the condition pa ¼ 0. It is
unique, since any nontrivial gauge transformation (27)–(28)
requires X ≠ 0 to keep ha ¼ 0, and this spoils the condition
h ¼ 0,

RWh≥2αβ ¼
�Hab 0

0 r2
2
ĝABHT

�
: ð45Þ

Note that this is formally identical to (39).

4. Recasting the linearized l ≥ 2 equations

In what follows we will decompose S2 and orbit space
symmetric 2-tensors into their traceless pure trace pieces as

Sab ¼ STab þ
1

2
gabS̃; S̃ ≔ Sabgab; ð46Þ

SAB ¼ STAB þ 1

2
ĝABŜ; Ŝ ≔ SABĝAB: ð47Þ

We will assume the linearized l ≥ 2Maxwell field is given
by (24) and that the linearized l ≥ 2 metric is in RW
form (45).
Consider first the linearized Maxwell equations.

Equations (24) and (45) imply that the β ¼ B components
of the linearization of the Maxwell equation ∇αFαβ are
equivalent to the condition

D̂BðD̃dAd − D̃dD̃dAÞ ¼ 0; ð48Þ

which can be written as

ϵ̃abD̃aðrEbÞ ¼ 0; Eb ≔ r−1ϵ̃bcðD̃cA − AcÞ: ð49Þ

This implies that

Eb ¼ −
1

r
D̃bA; ð50Þ

for some scalar A, and simplifies (24) to
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F αβ ¼
�
−ϵ̃abD̃cD̃cA −ϵ̃acD̃cD̂BA

ϵ̃b
cD̃cD̂AA 0

�
: ð51Þ

The β ¼ b components of the linearization of ∇αFαβ then

gives E0ϵ̃a
b∂bz ¼ 0, where z≔−r2

QD̃aD̃aA− 1
QD̂AD̂

AA−
1
2
ðHabgab−hTÞ. This gives z ¼ zðθ;ϕÞ. However, in view
of the Uð1Þ gauge freedom freedom A → A0 ¼
Aþ pðθ;ϕÞ implicit in the definition (50) of A, and given
that z has no l ¼ 0 component, we can choose p such that
D̂BD̂Bp ¼ Qz, then for A0 we find z0 ¼ 0 and (dropping
the prime on A)

D̃aD̃aAþ 1

r2
D̂AD̂

AA ¼ Q
2r2

ðhT − H̃Þ; ð52Þ

where H̃ denotes the trace part of Hab according to (46).
From now on we switch from HT

ab to the one form
Ca ¼ HT

abD̃
br, which contains the same information, in

view of the equality

HT
ab ¼

1

f
ðD̃arCb þ CaD̃br − gabD̃drCdÞ: ð53Þ

Having solved the LME we proceed with the LEE.
The traceless S2 piece

GT
AB þ ΛhTAB ¼ 8πT T

AB ð54Þ

gives

H̃ ¼ 0: ð55Þ

The off-diagonal piece

GAb þ ΛhAb ¼ 8πT Ab; ð56Þ

combined with the condition (55) (and hAb ¼ 0), gives

qb ≔ D̃aCaD̃brþ ϵ̃ecD̃eCcϵ̃b
aD̃ar −

f
2
D̃bhT

− 4fE0D̃bA ¼ 0: ð57Þ

Contracting (57) with ϵ̃bdD̃dr gives

ϵ̃bd
�
D̃bCd þ

1

2
D̃bhTD̃drþ 4E0D̃bAD̃dr

�
¼ 0: ð58Þ

This allows us to introduce the field ξ, defined by

D̃dξ ¼ Zd ≔ Cd −
1

2
rD̃dhT þ 4E0AD̃dr: ð59Þ

Contracting (57) with D̃br and using the above equation
then gives

D̃aD̃aξþ
r
2
D̃aD̃ahT − 8E0ðD̃arÞD̃aA − 4E0AD̃aD̃ar

þ 8E0

r
ðD̃arÞðD̃arÞA ¼ 0: ð60Þ

Using Eqs. (52), (55), (57) and (60) in the LEE

G̃þ ΛH̃ ¼ 8πT̃ ð61Þ

gives

2

r
D̃aD̃aξ − 8E0

�ðD̃aD̃arÞA
r

þ D̂AD̂AA
r2

�
þ 4

r2
D̃aξD̃ar

¼
��

D̂AD̂A þ 2

r2

�
− 4E2

0

�
hT: ð62Þ

Note that the operator on the right side above is invertible;
this proves that all components of F αβ and hαβ can be
written in terms of ξ and A. If we do so and use the
remaining LEE, we arrive, after some work, to the follow-
ing system of partial differential equations for ξ and A:

ðD̂AD̂
A þ 2f − rD̃aD̃arÞ

�
D̃aD̃aξþ 2

r
D̃aξD̃ar

− ðD̂AD̂
A þ rD̃aD̃arÞ

�
4QA
r3

��

þ
�
D̂AD̂

A þ 2 −
4Q2

r2

�

×

�
1

r2
D̂AD̂

Aξ −
2

r
D̃aξD̃arþ 8fQ

r3
A
�

¼ 0 ð63Þ

and

ðD̂AD̂
A þ 2f − rD̃aD̃arÞ

�
D̃aD̃aAþ 1

r2
D̂AD̂

AA
�

þ 8fQ2

r4
AþQ

r

�
1

r2
D̂AD̂

Aξ −
2

r
D̃aξD̃ar

�
¼ 0: ð64Þ

Note that, since they are derived from gauge invariant
fields, A and ξ above are gauge invariant.

5. Solution of the l = 1 LEME

Equation (39) is formally identical to (45), the difference
being that the latter is given in terms of gauge invariant
fields. Thus, the steps (48) to (52) from the previous section

hold for l ¼ 1 with the replacements Hab → hðl¼1Þ
ab , etc.

Now, in view of Eq. (17), Eq. (54) is void for l ¼ 1.
However, the trace free condition (55) to where this
equation leads corresponds to the traceless gauge choice
(41) for l ¼ 1. This implies that the reasoning following
(55) can also be taken without change for l ¼ 1. As a
result, we obtain the system (63)–(64) with A → Aðl¼1Þ,
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ξ → ξðl¼1Þ [defined in a way analogous to (59)], and
D̂AD̂A → −2.
A conceptual difference between the l ¼ 1 and l > 1

cases is that the fields A and ξ, being defined from the
gauge invariant fields, are themselves gauge invariant,
whereas Aðl¼1Þ and ξðl¼1Þ are not. Tracing back the gauge
transformations of the fields involved in their definition
we find that, under the residual gauge freedom (40)–(42)
[note that ð2 − 2f þ rD̃aD̃arÞr ¼ 6M − 4Q2=r],

Zðl¼1Þ
a ¼ Cðl¼1Þ

a −
r
2
D̃ah

ðl¼1Þ
T þ 4E0Aðl¼1ÞD̃ar

→ Zðl¼1Þ
a þ

�
6M −

4Q2

r

�
D̃aXðl¼1Þ

þ 4E0ðQXðl¼1ÞÞD̃ar

¼ Zðl¼1Þ
a þ D̃a

��
6M −

4Q2

r

�
Xðl¼1Þ

�
: ð65Þ

And then

ξðl¼1Þ → ξ0ðl¼1Þ ¼ ξðl¼1Þ þ
�
6M −

4Q2

r

�
Xðl¼1Þ: ð66Þ

Also

Aðl¼1Þ → Aðl¼1Þ0 ¼ Aðl¼1Þ þQXðl¼1Þ: ð67Þ

A priori, Eq. (67) does not imply that A is pure gauge,
since the Xðl¼1Þ field is not arbitrary but restricted to the
condition (42). As we will see, the situation is quite subtle.
Equations (66)–(67) suggest that, for l ¼ 1, we replace

in the LEME (63)–(64) ξðl¼1Þ and Aðl¼1Þ by the gauge
invariant field

φ ≔
Q

rð2 − 2f þ rD̃aD̃arÞ ξ
ðl¼1Þ −Aðl¼1Þ

≕
X
m

φðmÞSðl¼1;mÞ: ð68Þ

If we rewrite (64)–(63) in terms of φ and A, eliminate
second order A derivatives from (64) using (63), we get a
decoupled equation for φ:

½−fD̃aD̃a þ Vðl¼1Þ�φ ¼ 0; ð69Þ

where

Vðl¼1Þ ¼ −
2f

3r4ð3Mr − 2Q2Þ2 ðð4Q
4Λ − 27M2Þr4

þ 54M2Q2r2 − 48MQ4rþ 12Q6Þ: ð70Þ

For Aðl¼1;mÞ we obtain

r−2D̃cðr2D̃cAðl¼1;mÞÞ ¼ 2r−1D̃crD̃cφ
ðmÞ þ ZðrÞφðmÞ

ð71Þ

with

ZðrÞ ¼ −4Q2Λr4 þ 18Mr3 − 24Q2Mrþ 12Q4

3r4ð3Mr − 2Q2Þ : ð72Þ

φ is a physical (gauge invariant) degree of freedom
(d.o.f.) obeying (69). Once a solution of this equation is
picked, the source on the right side of (71) is defined,
and the solution of (71) will be unique up to a solution
of the homogeneous equation. However, since the
homogeneous equation agrees with (42), in view of
(67), any two solutions of (71) are gauge related and
therefore equivalent. This implies that the gauge class of
Aðl¼1;mÞ is uniquely determined once the three gauge
invariant functions on the orbit space φðmÞ are given,
and then φ contains the only d.o.f. in the l ¼ 1
subspace (three functions defined on the orbit space).
This situation should be contrasted with that of the

projections on the higher harmonic subspaces l ≥ 2, for
which the number of d.o.f. is two (instead of one) functions
on the orbit space for every ðl; mÞ: the harmonic compo-

nents solutions Φðl;mÞ
n of the Zerilli fields Φn, n ¼ 1, 2 (see

next section). It should also be contrasted with the
Schwarzschild black hole case, for which the even l¼1
mode is pure gauge [2].

6. Solution of the l > 1 LEME

To decouple the system (63)–(64) we introduce

κ1 ¼ −
�

1

J2 þ 2f − rD̃aD̃ar

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðJ2 þ 2Þ

q
ξ; ð73Þ

κ2 ¼ −
2Q
r

�
1

J2 þ 2f − rD̃aD̃ar

�
ξðl≥2Þ − 2A: ð74Þ

J2 acts as a −lðlþ 1Þ factor on the l subspace of L2ðS2Þ
then, e.g., if ξ ¼Pðl;mÞ ξðl;mÞSðl;mÞ is the expansion of ξ
in spherical harmonics Sðl;mÞ, the linear operator in the
definition of κ1 above acts as

−
�

1

J2 þ 2f − rD̃aD̃ar

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðJ2 þ 2Þ

q X
ðl;mÞ

ξðl;mÞSðl;mÞ

¼
X
ðl;mÞ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 2Þðl − 1Þp
lðlþ 1Þ − 2f þ rD̃aD̃ar

�
ξðl;mÞSðl;mÞ: ð75Þ

Using the fact that on scalar fields D̂AD̂A ¼ J2, the
projection of equations (63)–(64) on the l > 1 space
can then be written as
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−D̃aD̃a þU− 3MW 2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðJ2 þ 2Þ

p
W

2Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−J2þ 2Þ

p
W −D̃aD̃a þUþ 3MW

!�
κ1

κ2

�
¼ 0

ð76Þ

where U and W entering the symmetric matrix operator O
in the above are defined by

½r2ðJ2þ2f− rD̃aD̃arþ r2ΛÞ2�U

¼−ðJ2þ2Þ3þ
�
2þ9M

r
−
4Q2

r2

�
ðJ2þ2Þ2

þ
�
3M
r

þ9M2þ2Q2

r2
−
16Q2M

r3
þ6Q4

r4
þ2ΛQ2

3

�
ðJ2þ2Þ

þ4

�
9M2

r2
þ9M3

r3
−
39Q2M2

r4
þ32Q4M

r5
−
8Q6

r6

�

−
4r2Λ
3

�
9M2

r2
−
12Q2M

r3
þ8Q4

r4

�
ð77Þ

and

½r3ðJ2 þ 2f − rD̃aD̃arþ r2ΛÞ2�W

¼ ðJ2 þ 2Þ2 − 4ðJ2 þ 2Þ þ 4M
r

�
3 −

3M
r

þQ2

r2

�

þ 4Λ
3

ð3Mr − 4Q2Þ: ð78Þ

The matrix O can be diagonalized by introducing Ξ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 4Q2ðJ2 þ 2Þ

p
, βn ¼ 3M þ ð−1ÞnΞ, n ¼ 1, 2 and

P ¼
 

−β1 β2

2Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðJ2 þ 2Þ

p
−2Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðJ2 þ 2Þ

p
!
: ð79Þ

We find that

P−1OP ¼
�
−D̃aD̃a þ U1 0

0 −D̃aD̃a þ U2

�
; ð80Þ

where

Un ¼ Uþ ð−1Þnþ1

2
ðβ2 − β1ÞW: ð81Þ

In view of (80), the Zerilli fields

�Φ1

Φ2

�
¼ P−1

�
κ1

κ2

�
ð82Þ

satisfy the equations

½−fD̃aD̃a þ Vn�Φn ¼ 0; n ¼ 1; 2; ð83Þ

where Vn ¼ Un=f can be written in Ricatti form

Vn ¼ fβn∂rfn þ β2nf2n þ J2ðJ2 þ 2Þfn; ð84Þ

with

fn ¼
f

ðrβn − r2ðJ2 þ 2ÞÞ : ð85Þ

In t − r coordinates (83) reads

∂2
tΦn þ AnΦn ¼ 0 ð86Þ

where

An ¼ −∂2
r� þ Vn; ð87Þ

and r� is a tortoise coordinate, defined by dr�=dr ¼ 1=f.
Since ξ and A are gauge invariant fields, so are κ1, κ2,

and the Zerilli fields Φ1 and Φ2.
Tracing our definitions back we find that

A ¼ −
Q
r2

½ðrβ1 − r2ðJ2 þ 2ÞÞΦ1 − ðrβ2 − r2ðJ2 þ 2ÞÞΦ2�;
ð88Þ

ξ ¼ ðJ2 þ 2f − rD̃aD̃arÞðβ1Φ1 − β2Φ2Þ ð89Þ

and that the LEME (63), (64) reduce to the decoupled
Zerilli equations (83). If we replace J2 → −lðlþ 1Þ and
use ðt; rÞ coordinates on the orbit space, ½−fD̃aD̃a�Φ reads
∂2
tΦþ f∂rðf∂rΦÞ and (83) gives the Zerilli equation for

the Φðl;mÞ
n harmonic components of Φn, n ¼ 1, 2, as found

for Λ ¼ 0 by Zerilli in [9] and Moncrief in [12] and for
Λ ≠ 0 in [5].

III. NONMODAL LINEAR STABILITY
FOR EVEN PERTURBATIONS

From the results of the previous section follows that the
set Lþ of equivalent classes ½ðhαβ; FαβÞ� of even solutions
ðhαβ;F αβÞ of the LEME mod the Maxwell and the diffeo-
morphism gauge equivalence relation (26) can be para-
metrized by the first order variation δM and δQ of the
mass M and charge Q (l ¼ 0 modes), the l ¼ 1 field
φ ¼Pm φmSðl¼1;mÞ, φm∶ N → R, m ¼ 1, 2, 3 satisfying

(69), and the Zerilli fields Φn∶
P

ðl≥2;mÞΦ
ðl;mÞ
n Sðl;mÞ∶

M → R, n ¼ 1, 2 (alternatively Φðl;mÞ
n ∶N → R) obeying

(83) (l ≥ 2 modes):
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Lþ ¼ f½ðhαβ; FαβÞ�jðhαβ; FαβÞ is a solution of the LEMEg
¼ fðδM; δQ;φ;ΦnÞjφ satisfies ð69Þ and Φn; n ¼ 1; 2 satisfy ð83Þg: ð90Þ

Although these fields and constants measure the effects of
the perturbation, there is a distinction between the l ¼ 0
constants δM and δQ, which have a clear physical meaning
as mass and charge shifts within the Kerr-Newman (A)dS
family, and the l ≥ 1 fields φ;Φ1 and Φ2. The latter are
convenient to disentangle the l ≥ 1 LEME but have,
a priori, no direct physical interpretation. In the following
section we will find scalar fields that substitute these and
have a direct geometrical meaning.

A. Measurable effects of the perturbations

There are 16 real algebraically independent basic sets of
scalars made out of the Riemann tensor in the Carminati-
McLenaghan [17] basis. Any other scalar field made out of
contractions of the tensor product of any number of
Riemann tensors, volume form, and metric tensor can
be written as a polynomial on these basic scalars.
Among these there are six real fields (we follow the
notation in [17]):

fR; r1; r2; r3; m3; m4g ð91Þ

and the five complex fields

fw1; w2; m1; m2; m5g: ð92Þ

In the electro-vacuum case, they are constrained by the
following (seven real) syzygies [17]:

R ¼ 0; r2 ¼ 0; 4r3 − r21; m4 ¼ 0;

m1m̄2 − r1m̄5 ¼ 0; m2m̄2m3 − r1m5m̄5 ¼ 0; ð93Þ

which leave r1, w1, w2, m1, m2 as independent fields in the
general electro-vacuum case. Note that these constraints do
not define a manifold but an algebraic variety: the dimen-
sion of the tangent space (defined by the linearization of the
constraints) may change at different points.
We may also consider invariants involving the Maxwell

fields, as well as mixed invariants such as (Cαβγδ the Weyl
tensor)

F ¼ FαβFαβ; C ¼ CαβγδFαβFγδ: ð94Þ

Due to the symmetries of the background, it can be proved
that the imaginary part of first order variations of the
complex scalars δw1;…; δm5 vanish trivially under even
perturbations, so we will focus our attention on the first
order variations

δr1; δℜw1 ¼ δw1; δℜw2 ¼ δw2;

δℜm1 ¼ δm1; δℜm2 ¼ δm2; δF; δC: ð95Þ

Note that [17]

w1 ¼ ℜω1 ¼
1

8
CαβγδCαβγδ: ð96Þ

Since the background values of these fields

r1o ¼
Q2

r8
; w1o ¼

6ðQ2 −MrÞ2
r8

; w2o ¼
6ðQ2 −MrÞ3

r12
;

Fo ¼ −
2Q2

r4
; m1o ¼

2Q4ðQ2 −MrÞ
r12

;

m2o ¼
4Q4ðQ2 −MrÞ2

r16
; Co ¼

8Q2ðQ2 −MrÞ
r8

ð97Þ

do not vanish, none of the fields in (95) is gauge invariant.
However, it is possible to construct gauge invariant fields
out of them, such as

S ≔ w1
0
oδC − C0

oδw1; ð98Þ

etc., where the prime denotes derivative with respect to r.
Under a gauge transformation along Xα

S → S þ w1
0
oXα∂αCo − C0

oXα∂αw1o ¼ S; ð99Þ

since w1o and Co (as every curvature scalar) depend only
on r. This idea generalizes as follows: Let Ið1Þ;…; IðsÞ be a
set of scalar curvature. Then S ¼Pk fkδIðkÞ is gauge
invariant as long as the fk satisfy

P
k fkIðkÞ0o ¼ 0, since

for a gauge transformation along Xα, Xα; δIðjÞ ¼ XrIðJÞ0o
and δS ¼ 0. For s ¼ 2 this reduces to

S ¼ KðIð1Þ0oδIð2Þ − Ið2Þ0oδIð1ÞÞ: ð100Þ

When calculating the l ≥ 2 projection of the first order
even perturbation of the fields (95) in the RW gauge (45) in
terms of the Zerilli fields, we get expressions involving
up to five derivatives of the Φn. On shell, that is, assuming
the LEME, we can use the Zerilli equation (83) and its r
derivatives repeatedly and, after lengthy manipulations,
obtain simpler expressions involving only the Φn and their
first r derivatives. We proved that, on shell, all the gauge
invariant combinations of the first order variation of the
fields (95) are proportional to each other. In other words,
there is a single independent gauge invariant combination
of first order variation of curvature scalars. This certainly
could not carry the same information as the two fields Φn,
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n ¼ 1, 2. Since all the algebraic gauge invariant curvature
variation scalars are proportional on shell, it is irrelevant to
our purposes of a nonmodal approach which one we
choose. For the field S in (98) we found, after lengthy
calculations with the help of symbolic manipulation
programs,

Sðl>1Þ ¼ 96Q2J2ðJ2 þ 2ÞðMr −Q2Þ2
r17

× ððrβ2 − 4Q2ÞΦ1 − ðrβ1 − 4Q2ÞΦ2Þ; ð101Þ

Sðl¼1Þ ¼ 384Qð3Mr − 2Q2ÞðMr −Q2Þ2
r17

φ; ð102Þ

and

Sðl¼0Þ ¼ δMðw1
0
o∂MCo − C0

o∂Mw1oÞ
þ δQðw1

0
o∂QCo − C0

o∂Qw1oÞ

¼ 192QðQ2 −MrÞ2
r16

ð3MδQ − 2QδMÞ: ð103Þ

It is an interesting fact that first order r derivatives of the
Φn, which are present in δw1 and δC, cancel out in (101).
Note also that Eq. (102) gives a geometrical interpretation
for the gauge invariant l ¼ 1 field φ.
To construct a second curvature related gauge invariant

field that, together with (98), allows us to recover the Zerilli
fields, we need to consider differential invariants. These
will give (at least) one more derivative of the Zerilli fields.
When simplifying their on shell form we find that first
order derivatives do not cancel out (at least, in the many
examples that we have worked out).
The field we chose is constructed as follows: define

I ¼ 1

720
ð∇αCβγδτÞð∇αCβγδτÞ; J ¼ ð∇αFβδÞð∇αFβδÞ;

ð104Þ

whose background values are

Io ¼
fðrÞ
15r10

ð15M2r2 − 36MQ2rþ 22Q4Þ;

Jo ¼ −
12Q2fðrÞ

r6
; ð105Þ

then the gauge invariant field

T ¼ I0oδJ − J0oδI ð106Þ

has an on shell expression with

T ðl>1Þ ¼ ϒ1Φ0
1 þϒ2Φ0

2 þ Ω1Φ1 þ Ω2Φ2: ð107Þ

The operators ϒn and Ωn in (107) do not admit a simple
expression. In any case, all we need know about them is
that, for Λ > 0 and rh ≤ r ≤ rc they are bounded, whereas
for Λ ¼ 0 and r ≤ rh they are bounded and, as r → ∞,
behave as

ϒn ¼ 12MQ2r−14J2ðJ2 þ 2Þ
h
ð−1Þn5M

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 4Q2ðJ2 þ 2Þ

q i
þOðr−15Þ;

Ωn ¼ 12MQ2r−15J2ðJ2 þ 2Þ
h
ð−1Þnþ17M

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9M2 − 4Q2ðJ2 þ 2Þ

q i
þOðr−16Þ: ð108Þ

For T ðl¼1Þ we find

T ðl¼1Þ ¼ 16QfðrÞ
15r18

CðrÞ∂rφþ QfðrÞ
15r19ð2Q2 − 3MrÞDðrÞφ;

ð109Þ

with

CðrÞ ¼ 45M2Λr6 − 110MQ2Λr5 þ ð68Q4Λ − 180M2Þr4
þ 9Mð45M2 þ 46Q2Þr3 − 3Q2ð379M2 þ 80Q2Þr2
þ 1014MQ4r − 276Q6; ð110Þ

DðrÞ ¼ 135M3Λr7 − 387M2Q2Λr6 − 2Mð−193Q4Λ

þ 270M2Þr5 þ ð−140Q6Λþ 1215M4

þ 1431M2Q2Þr4 − 81MQ2ð47M2 þ 16Q2Þr3
þ 3Q4ð1477M2 þ 144Q2Þr2
− 2310MQ6rþ 444Q8: ð111Þ

For the l ¼ 0 piece of T :

T ðl¼0Þ ¼ δMðI0o∂MJo − J0o∂MIoÞþ δQðI0o∂QJo − J0o∂QIoÞ

¼ 16fðrÞQ
5r18

ðQT MδM− T QδQÞ: ð112Þ

Here

T Q ¼ 15M2Λr5 − 18MQ2Λr4 − 60M2r3

þ 27Mð5M2 þ 2Q2Þr2 þ 22Q2ðQ2 − 9M2Þr
þ 42MQ4 ð113Þ

and

T M ¼ 10MΛr5 − 12Q2Λr4 − 45Mr3 þ ð90M2 þ 54Q2Þr2
− 132MQ2rþ 28Q4: ð114Þ
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Equations (101)–(103) and (107)–(112) allow us to
prove that S and T contain all the gauge invariant
information of a given perturbation.
Theorem 1. Consider the set of gauge classes of even

solutions ½ðhαβ;F αβÞ� of the LEME around a Reissner-
Nordström (A)dS black hole background, and the perturbed
fields S and T defined above. The map ½ðhαβ;F αβÞ� →
ðS; T Þ is injective: it is possible to reconstruct a represen-
tative of ½hαβ� and ½F αβ� from ðS; T Þ.
Proof. Assume S ¼ 0 ¼ T , then Eqs. (103) and (112)–

(114) imply δM ¼ 0 ¼ δQ. Equation (102) implies φ ¼ 0,
and the combination of (101) and (107) gives Φ1 ¼
0 ¼ Φ2. This last assertion follows from a reasoning on
the line of the proof of Theorem 5 in [2]: from Sðl>1Þ ¼ 0
and (101) we may write Φ2 in terms of Φ1 which, inserted
in the equation T >1 ¼ 0 using (107), gives an equation for
Φ1 whose only solution compatible with (83) is the trivial
one. Thus, an electro-gravitational perturbation must be
trivial if S ¼ 0 ¼ T .
To reconstruct the perturbation from S and T we proceed

as in Theorem 1.i in [3]. ▪
The fact that the l ¼ 0 d.o.f. are δQ and δM explains

why these quantities can be obtained from S0 and T 0 by
inverting (103) and (112). In [18], a characterization of
subclasses of type-D spacetimes is made in terms of
equations involving curvature tensors and scalars. In
particular, two curvature scalars are given such that, when
evaluated on a Reissner-Nordström spacetime, they give the
mass and charge (see Theorem 5). Since these scalar fields
are constant on Reissner-Nordström backgrounds, their first
order perturbations are gauge invariant. For l ¼ 0 pertur-
bations they agree exactly with δM and δQ, because these
are perturbations along the Reissner-Nordström family. The
scalar fields in [18] are made out of rational functions of
rational powers of the basic polynomial invariants (91), (92)
and (104). To illustrate the relation between these (a priori)
more general scalar gauge invariants and the ones we
constructed above, we consider the case of scalar perturba-
tions of an uncharged (Schwarzschild) black hole. In this
case we get from (97) and (105)

M2 ¼ 9

2

w1
4
o

Λw1o þ
ffiffiffi
6

p
w1

3=2
o þ 3Io

: ð115Þ

Thus, for

Z ¼ 9

2

w1
4

Λw1 þ
ffiffiffi
6

p
w1

3=2 þ 3I
; ð116Þ

δZ is gauge invariant, and so is

−r−5δZ ¼ ð9M − 4rþ λr3Þ δω1

6
þ 3r3δI

¼ r10

12M2
ðI0oδw1 − w1

0
oδIÞ; ð117Þ

which is of the form (100) and agrees with the gauge
invariant field Gþ used in the analysis of the even
Schwarzschild perturbations in [2] [Eq. (202)].

B. Pointwise boundedness of Φn and ∂r�Φn

In this section we restrict our attention to black hole
solutions with horizons 0 < ri < rh < rc. The relation
between the radii of the horizons and Λ, M, and Q can
be easily obtained from (7) and (8). For Λ > 0 [Λ ¼ 0]
we are interested in the range rh < r < rc [r > rh].
In both cases the tortoise radial coordinate satisfies
−∞ < r� < ∞.
Theorem 2. AssumeΦn is a smooth solution of Eq. (86)

on the union of regions II, II’, III, and III’ of the extended
Reissner-Nordström (Fig. 1) or Reissner-Nordström de
Sitter (Fig. 2) spacetimes, with compact support on
Cauchy surfaces. There exist constants Co, Lo that depend
on the datum of this field at a Cauchy surface, such that
jΦnj < Co and j∂r�Φnj < Lo for all points in the outer static
region III.
Proof. As in the proof of Theorem 2 in [3], and

following [19], we may restrict our attention, without loss
of generality, to fields that vanish on the bifurcation sphere
together with their Kruskal time derivatives (for details,
see [19]).

FIG. 1. The Carter-Penrose diagram of (part of) the maximal
analytic extension of the jQj < M Reissner-Nordström black
hole. The union of II, II’, III, and III’ is globally hyperbolic; its
boundary at ri is a Cauchy horizon.
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On a t slice of region III, define the L2 norm of a real
field G as

kGk2 ¼ hGjGi ¼
Z
R×S2

G2dr� sinðθÞdθdϕ; dr� ¼ dr
f
:

ð118Þ

Using a Sobolev type inequality (Eq. (5.27) in [20]) on the
Zerilli fields Φn at a fixed time t gives

jΦnðt; r�; θ;ϕÞj ≤ CðkΦnjtk þ k∂2
r�Φnjtk þ kJ2ΦnjtkÞ;

ð119Þ

where C is a constant. We will follow the strategy in [19]
of proving that the L2 norms on the right-hand side of (119)
can be bounded by the energies of related field configu-
rations. Since energy is conserved for solutions of (86),
we get in this way a t-independent upper bound of the
right side of (119) and therefore, a global bound of
jΦnðt; r�; θ;ϕÞj for all ðt; r�; θ;ϕÞ, i.e., of Φn in the outer
static region III.
The inner product defined by the norm (118), simplifies,

after introducing an expansion in real orthonormal spheri-
cal harmonics (e.g., tesseral spherical harmonics) Sðl;mÞ. If
G ¼Pðl;mÞ gðl;mÞSðl;mÞ and K ¼Pðl;mÞ kðl;mÞSðl;mÞ then

hGjKi ¼
X
ðl;mÞ

Z
R
gðl;mÞkðl;mÞdr�: ð120Þ

From (87) we get

k∂2
r�Φnjtk ≤ kAnΦnjtk þ kVnΦnjtk ð121Þ

where Vn, given in (83), can be written as

Vn ¼ nZ1

Dn
βn þ nZ2

D2
n
β2n þ nZ3

Dn
J2ðJ2 þ 2Þ ð122Þ

being

nZ1 ¼ fðf=r2Þ0 ¼ −
2f
r4

�
r − 3M þ 2Q2

r

�
;

nZ2 ¼
2f2

r4
; nZ3 ¼

f
r2
; Dn ¼ βn=r − ðJ2 þ 2Þ:

ð123Þ
Note the following:

(i) The nZj, j ¼ 1, 2, 3, depend only on r and are
bounded in the domain of interest rh ≤ r ≤ rc if
Λ > 0 [r > rh if Λ ¼ 0] by constants nzj > jnZjðrÞj
that depend on M, Q and Λ.

(ii) Φð1Þ
n ≔ βnΦn, Φ

ð2Þ
n ≔β2nΦn and Φð3Þ

n ≔J2ðJ2þ2ÞΦn
are solutions of the Zerilli equation (83) if Φn is a

solution; also Φð4Þ
n ≔ AnΦn ¼ −∂2

tΦn is a solution.
This is so because any operator that is a function of
J2 and ∂t, commutes with the operator (83).

(iii) On the l eigenspace of J2, l ¼ 2; 3; 4;…, Dn acts
multiplicatively as

Dl
nðrÞ ¼ βn=rþ ðl − 1Þðlþ 2Þ: ð124Þ

For rh ≤ r ≤ rc [r > rh if Λ ¼ 0] and l ≥ 2,
jDl

2ðrÞj has an absolute minimum D�
2>0 at r¼ rh

and l ¼ 2, whereas jDl
1ðrÞj also has a nonzero

absolute minimum D�
1 (possibly at an l > 2). Then

the first term of VnΦn [see (122)] can be bounded as
follows:���� nZ1

Dn
βnΦnjt

����2

¼
Z
R×S2

�X
lm

nZ1

Dn
ðΦð1Þ

n Þðl;mÞjtSðl;mÞ

�
2

dr�

× sinðθÞdθdϕ ð125Þ

≤
�

nz1
D�

n

�
2
Z
R

X
lm

½ðΦð1Þ
n Þðl;mÞjt�2dr� ð126Þ

¼
�

nz1
D�

n

�
2

kΦð1Þ
n jtk2: ð127Þ

FIG. 2. The Carter-Penrose diagram of (part of) the maximal
analytic extension of a nonextremal (three different horizons)
Reissner-Nordström de Sitter black hole.

GUSTAVO DOTTI and JULIÁN M. FERNÁNDEZ TÍO PHYS. REV. D 101, 024034 (2020)

024034-12



Proceeding similarly with the other terms in
(121)–(122) and using the triangle inequality gives

k∂2
r�Φnjtk ≤

�
nz1
D�

n

�
kΦð1Þ

n jtk þ
�

nz2
D�

n

�
kΦð2Þ

n jtk

þ
�

nz3
D�

n

�
kΦð3Þ

n jtk þ kΦð4Þ
n jtk: ð128Þ

Inserting this in (135) gives

jΦnðt; r�; θ;ϕÞj ≤ K0ðkΦnjtk þ kΦð1Þ
n jtk þ kΦð2Þ

n jtk
þ kΦð3Þ

n jtk þ kΦð4Þ
n jtk þ kΦð5Þ

n jtkÞ
ð129Þ

where K0 is the maximum over j and n of the

constants nzjK=D�
n, and Φð5Þ

n ¼ J2Φn.
The conserved (i.e., t-independent) energy associated

with Eq. (86) is

E ¼ 1

2

Z
R×S2

ðð∂tΦnÞ2 þΦnAnΦnÞdr� sinðθÞdθdϕ: ð130Þ

Since E does not depend on t, we may regard it as a
functional on the initial datum: E ¼ EðΦo

n; _Φo
nÞ, where

Φo
n ¼ Φnjto and _Φo

n ¼ ð∂tΦnÞjto :

EðΦo
n; _Φo

nÞ ¼
1

2

Z
R×S2

ðð _Φo
nÞ2 þΦo

nAnΦo
nÞdr� sinðθÞdθdϕ:

ð131Þ

Using the facts that (i) An, n ¼ 1, 2, is positive definite
in the cases we are interested in (proved by means of an
S-deformation in [5]) and so A�1=2

n can be defined by means
of the spectral theorem (as well as any other power of An);
(ii) for a solutionΦn of (86), A

p
nΦn is a solution of (86); and

(iii) Eq. (131), follows that for a solution of (86)

kΦnjtk2 ≤ 2EðA−1=2
n Φo

n; A
−1=2
n _Φo

nÞ: ð132Þ

We now use the fact that applying to a Cauchy datum
ðΦo

n; _Φo
nÞ an operator that is a function of J2 or An

commutes with time evolution. This allows us to estimate
each term on the right-hand side of (129) with the energy of
field configurations related to the one with initial datum

ðΦo
n; _Φo

nÞ. Let BðjÞΦn ≔ ΦðjÞ
n ; j ¼ 1;…; 5 [that is, for j¼

1;…;5 these operator are respectively βn, β2n; J2ðJ2 þ 2Þ;
An and J2]. From (132)

kΦðjÞ
n jtk2 ≤ 2E

�
A
−1
2

n BðjÞΦo
n; A

−1
2

n BðjÞ _Φo
n

�
: ð133Þ

Thus, we can replace the right-hand side of (129) by time
independent constant Co made out of the initial data
ðΦo

n; _Φo
nÞ (from which the energies of the related fields

BðjÞΦn can be computed)

jΦnj < Co: ð134Þ

It is interesting to note why the fields BðjÞΦn have finite
energy (a fact tacitly used above): we are assuming smooth
solutions of the LEME; therefore the Φn are C∞ on the

sphere, and the series
P

lm½lðlþ 1Þ�kΦðl;mÞ
n ¼ ð−J2ÞkΦn

converge for any k. In particular, the Φðl;mÞ
n decay faster

than any power of l.
We will also need a t-independent bound for j∂r�Φnj.

This can be obtained following the same ideas in [2],
taken from [21]. Starting from the Sobolev inequality
[cf. Eq. (135)] applied to j∂�

rΦnj

j∂r�Φnðt; r�; θ;ϕÞj ≤ Lðk∂r�Φnjtk þ k∂3
r�Φnjtk

þ kJ2∂r�ΦnjtkÞ: ð135Þ

Now, using the fact that, for Λ ≥ 0 and four dimensions,
the Vn are non-negative in the interval of interest [5]

k∂r�Φnjtk2 ≤ hΦnjAnΦni ≤ 2EðΦo
n; _Φo

nÞ: ð136Þ

This places a t-independent bound on the first term on the
right of Eq. (135). The third term can be similarly bounded
with EðJ2Φo

n; J2 _Φo
nÞ. For the second term we use

∂3
r�Φn ¼ −∂r� ðAnΦnÞ þ ∂r�VnΦn þ Vn∂r�Φn; ð137Þ

k∂r�ðAnΦnÞk2 ≤ 2EðAnΦo
n; _AnΦo

nÞ and the boundedness of
the operator ∂r�Vn.
Proceeding as above, we arrive at the desired pointwise

bound:

j∂r�Φnj < Lo: ð138Þ
▪

C. Pointwise boundedness of S and T

We can now proceed to complete the proof of nonmodal
stability by showing that the scalar fields S and T are
pointwise bounded in the region of interest by constants
that depend on the initial conditions.
Theorem 3. Under the assumptions of the Theorem 2,

in the outer static region III of a Λ ≥ 0 Reissner-Nordström
black hole there holds

S <
Ao

r14
; T <

Bo

r14
; ð139Þ

where Ao and Bo are constants that depend on the Cauchy
datum ðΦo

n; _Φo
nÞ of the perturbation.
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Proof. Let us consider the first inequality. Using the
facts that J2ðJ2 þ 2ÞΦn and J2ðJ2 þ 2ÞβkΦn are solutions
of the Zerilli equation (83) with an energy that is a function
of ðΦo

n; _Φo
nÞ, Theorem 2 and Eq. (101), we find for Λ ¼ 0

that jSðl>1Þj < Al>1
o
r14 with Al>1

o a constant that depends on
the l > 1 piece of the initial datum (the inequality holds
trivially for Λ > 0 and rh < r < rc). For the l ¼ 1 piece
we use Eq. (19) in the erratum in [14], applied to the
harmonic components of φ. This gives jφj less than a
constant that depends on the l ¼ 1 piece of the datum.

Then, from (102) follows jSðl¼1Þj < Aðl¼1Þ
o
r14 with Aðl¼1Þ

o a
constant that depends on the l ¼ 1 piece of the initial
datum (once again, the equality holds trivially for Λ > 0
and rh < r < rc). Finally, from Eq. (103) follows trivially

that jSðl¼0Þj < Aðl¼0Þ
o
r14 where Aðl¼0Þ

o is a constant made
related to the l ¼ 0 initial data ðδM; δQÞ.
To prove the second inequality in (139) we proceed

exactly as above. We only need a proof of the pointwise
boundedness for fðrÞ∂rφ, for which we proceed as in [21]
[see the paragraph starting at Eq. (83)]. ▪

IV. DISCUSSION

We have shown in Theorem 1 that the gauge invariant
curvature related perturbation fields S and T , defined
in Eqs. (98) and (106), contain all the gauge invariant
information of an even perturbation class ½ðhαβ;F μνÞ�
around a Reisner-Nordström (dS) black hole. From these
fields, a representative ðhαβ;F μνÞ of the perturbation in,
say, the Regge-Wheeler gauge, can be reconstructed
(Theorem 1). For smooth perturbations with compact
support on a Cauchy surface of (a copy of) the union of
regions II, II’, IIII, and III’ (see Figs. 1 and 2), these
fields are pointwise bounded on the outer region
[Eq. (139) in Theorem 3]. These results, together with
those in [3], complete the proof of nonmodal linear
stability of the outer region of a (dS) Reissner-
Nordström black hole.
The large jtj decay of the Zerilli fields (see [22,23] and

the recent decay results by Georgi in [24] and references

therein) and the similarly expected behavior of φ, together
with Eqs. (101)–(103) and (107)–(112) give

S ≃
192QðQ2 −MrÞ2

r16
ð3M δQ − 2Q δMÞ; ð140Þ

and

T ≃
16fðrÞQ
5r18

ðQT M δM − T Q δQÞ ð141Þ

as t → ∞, within a bounded range of r (that grows toward
the future) in region III [the quantities T M and T Q were
defined in Eqs. (112)–(114)]. The inequalities (139),
instead, hold on the entire region III.
Together with Eqs. (122) and (123) in [3], Eqs. (140)

and (141) indicate that, for large t, the perturbed black hole
settles into a Kerr-Newman black hole with parameters
M þ δM, Qþ δQ and J⃗ þ δJ⃗.
The importance of the result in Theorem 2 lies in the

possibility of analyzing stability and instability effects
in terms of the fields S, T (and Q and F in [3]).
The divergence of d

dτS and d
dτ T for observers crossing

the Cauchy horizon ri can be proved in the same way the
divergence of d

dτQ and d
dτF was proved for the odd sector

scalars in Sec. IV in [3]. Using these four fields, statements
such as the Cauchy horizon instability or the event horizon
transverse derivative instabilities [25–32] acquire a clear
geometrical meaning.
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