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This paper is a companion of J. M. Ferndndez Tio and G. Dotti, Phys. Rev. D 95, 124041 (2017), in
which, following a program on black hole nonmodal linear stability initiated in G. Dotti, Phys. Rev. Lett.
112, 191101 (2013), odd perturbations of the Einstein-Maxwell equations around a Reissner-Nordstrom
(A)dS black hole were analyzed. Here we complete the proof of the nonmodal linear stability of this
spacetime by analyzing the even sector of the linear perturbations. We show that all the gauge invariant
information in the metric and Maxwell field even perturbations is encoded in two spacetime scalars: S,
which is a gauge invariant combination of §(Cs,C%7¢) and 5(C,p,5F ,sF"°), and 7T, a gauge invariant
combination of §(V,F ;s V¥F%) and 5(V,,C 3,5 V*C*1°). Here C,p,5 is the Weyl tensor, F 5 the Maxwell
field, and 6 means first order variation. We prove that S and 7 are in one-one correspondence with gauge
classes of even linear perturbations, and that the linearized Einstein-Maxwell equations imply that these

scalar fields are pointwise bounded on the outer static region.
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I. INTRODUCTION

The Einstein-Maxwell field equations with cosmological
constant A

er/)’ + Aga/} = 87TT(1/19 (1)

T, = ! F, Fg ! F,sF7° 2
ap = g\ Far ﬁ_Zgaﬂ 8 ) (2)
v[(zFﬂy] =0, (3)

VﬂFaﬂ - 0, (4)

admit the solution

2
ds® = —f(r)d* + J% + r2(d6* + sin® 0d¢p?).  (5)
r
B _Q
F = Eydt A dr, Eg =3, (6)
;

where the norm f(r) of the Killing vector 9/0¢ in (5) is

2M Q% A
=1l-——4=—=r. 7
f) =12+ 5 =2 ™)
Note that r has geometrical meaning: it is (the square
root of one-fourth of) the areal radius of the spheres of
symmetry under SO(3). Note also that f = g*V,rV,r.
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We assume A >0. M >0 and Q are constants of
integration; they correspond to mass and charge respec-
tively and we assume that their values are such that (5) is a
nonextremal black hole, that is

f=mislr=r)r-

32 r)(r=r)(r4+ri+ry+r.), (8)

where 0 < r; < r;, < r, are the inner, event, and cosmo-
logical horizons respectively.

We are interested in proving the nonmodal linear
stability of the outer static region r, <r <r, of the
solution (5)—(6) of the field equations (1)—(4). This concept
of stability was defined in [1,2] and implies proving the
following:

(i) There are gauge invariant (both in the Maxwell and
infinitesimal diffeomorphism senses) scalar fields
from the spacetime M into R that contain the same
information as the gauge class [(F 4. hyp)] of the
perturbation (F 4, h,5). Here F 5 = 6F 44 is the first
order perturbation of the electromagnetic field and
hep = 09qp is the metric perturbation. These scalar
fields then measure the distortion of the geometry
and the Maxwell field and the perturbation fields 4,
and F,s in a given gauge can be obtained by
applying a linear functional on them.

(i) The gauge invariant curvature fields are pointwise
bounded on the outer static region by constants that
depends on the initial data of the perturbation on a
Cauchy surface for that region.

© 2020 American Physical Society
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For odd perturbations (i) and (ii) were proved in the
companion paper [3]. In this paper we complete the proof
of nonmodal linear stability of the charged black hole by
considering the even sector of the linear perturbation fields.

A discussion of the relevance of the nonmodal linear
stability concept above, which was introduced in [1], can
be found in Sec. I of [2]. For the Schwarzschild spacetime,
the strategy behind the proof of nonmodal linear stability
in [1] was using the supersymmetric even/odd duality to
show that both odd and even linear gravity perturbation
equations are equivalent to (independent) four dimen-
sional Regge-Wheeler equations. This also holds for
Schwarzschild de Sitter. (A detailed proof covering the
A >0 cases is given in Lemma 7 in [2].) Once the
linearized gravity problem is reduced to uncoupled four
dimensional scalar wave equations with a time indepen-
dent potential, it is possible to place pointwise bounds on
the geometric scalar fields mentioned above, and to
analyze their decay along future causal directions. This
duality is of no use in the charged black hole case because
the odd sector equations have the same level of complex-
ity of those of the even sector and, contrary to what
happens in the Q = 0 case, the set of odd mode equations
is not equivalent to a four dimensional scalar field
equation with a time independent potential.

Our emphasis in this series of papers is on finding the
appropriate set of gauge invariant, curvature related scalar
fields encoding the information of the gauge class of the
perturbation; we do not analyze their decay.

We leave aside the asymptotically AdS A < 0 case.
We do so because the dynamics of perturbations is
nonunique in this case—in particular, the notion of stability
is ambiguous—due to the conformal timelike boundary.
In this case also, a choice of boundary conditions at the
conformal boundary generically breaks the even/odd dual-
ity, so that the even sector perturbation equations are not
equivalent (even in the uncharged case) to a four dimen-
sional Regge-Wheeler equation, as happens for A > 0 (for
further details see Sec. IV in [4]).

As in [5], the warped structure of the spacetime (5)
M =N x PN

Gapdz®dzl = 3o (v)dy“dy” + r*(y)gap(x)dx*dx®  (9)

is used to simplify the linearized FEinstein Maxwell
equations (LEME). (We also use the acronyms LEE
for linearized FEinstein equations and LME for line-
arized Maxwell equations). The “orbit manifold” N is
two dimensional and Lorentzian, with line element
G (y)dyidy® (= —fdtz—k"—]f2 in Schwarzschild coordi-
nates); the “horizon manifold” ¢ with metric g,z(x) x
dx*dx® is the unit two sphere (for a treatment of lineari-
zation around warped metrics in arbitrary dimensions and
with constant curvature horizon manifolds see [5] and
references therein). In (5), (¢, r) coordinates are used for

N and the standard angular coordinates §,z(x)dx*dx? =
d0* + sin®> Od¢p*> are used for the unit sphere. In what
follows our treatment is “2D-covariant,” that is, it allows
independent coordinate changes in A and the unit sphere.

Equation (9) illustrates our notation, which we adopted
from [6]; we use lower case indexes a, b, ¢, d, e for tensors
on the orbit manifold A/, upper case indexes A, B, C, D, ...
for tensors on 2, and Greek indexes for space-time tensors.
We follow the additional convention in [2] that

a=(a.A), p=(b.B).

y=(C), 6=(d,D). (10)
Tensor fields introduced with a lower S? index (say Z4) and
then shown with an upper S* index are assumed to have
been acted upon with the unit S*> metric inverse 8 (i.e., in
our example, Z4 = §*8Z;), and similarly with upper S?
indexes moving down. This has to be kept in mind to avoid
wrong r*? factors in the equations. D, &,, and §* are the
covariant derivative, volume form (any chosen orientation),
and metric inverse for the N orbit space; D, and &, are
the covariant derivative and volume form sin(0)dé A d¢ on
the unit sphere.

The metric and Maxwell field perturbations f,s3 and F 4
admit a series expansion in rank 0, 1, and 2 eigentensor
fields of the horizon manifold Laplace-Beltrami (LB)
operator, with “coefficients” that are tensor fields on the
orbit space A [5]. Individual terms of this series are called
“modes”; they are not mixed by the LEME. In the standard
modal approach a master scalar field A" — R is extracted
for each mode and the LEME is reduced to an infinite set of
scalar wave equations on N (that is, 1 + 1 wave equa-
tions), one for each master mode. Modal stability consists
in proving the boundedness/decay of these master fields.
This was proved in four dimensional general relativity in
the seminal black hole stability papers [7-9] and in higher
dimensions more recently by Kodama and Ishibashi (see,
e.g., [5,10]). All notions of linear stability prior to [1] were
modal, that is, restricted to the boundedness of the 1 + 1
master fields. For four dimensional charged black holes
the modal linear stability in the case A =0 was proved
by Zerilli and Moncrief in the series of articles [9,11-13]
(see also [14]).

The limitations of the modal linear stability are explained
in [1,2] (see the Introduction of [2] for a detailed explan-
ation). These two papers are devoted to the nonmodal linear
stability of the Schwarzschild and Schwarzschild de Sitter
black hole. The nonmodal linear stability of the Reissner-
Nordstrom black hole with A > 0, under odd perturbations,
was established in [3]. In the following sections we
complete the proof of nonmodal linear stability of this
black hole by proving its stability under even perturbations.
We do so by showing that there are two fields made out of
gauge invariant first order perturbations of curvature scalars
(for details refer to Sec. III A). These fields encode all the
gauge invariant information of arbitrary even perturbations,
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allow one to reconstruct the metric and Maxwell field
perturbations in a given gauge, and are pointwise bounded.

II. LINEARIZED EINSTEIN-MAXWELL
EQUATIONS

The LEME are obtained by linearizing equations (1)—(4),
that is, we assume that there is a smooth one-parameter
set of solutions (g(€) 4, F(€),4) of the Einstein-Maxwell
equations (1)—(4) such that (g(e = 0),4, F(e =0),5) are
the Reissner-Nordstrom fields (5)—(6), take the derivative
with respect to & and evaluate it at € = 0. The resulting
equations are linear in the perturbation fields h,s =
dgup/dely and F 5 := dF .5/ del.

The linearization of Eq. (3) gives dF = 0. Since the
region we are interested in (see Theorem 2 for details) is
homeomorphic to R? x §?, then of the same homotopy
type of S?, dF = 0 implies that there exists A, such that

faﬁ = aaAﬁ - aﬁAa + péaﬁ’ (11)

where p is a constant and €, is the pullback to M of the 52
volume form é,5. Under the index convention (10) the
covector field A, is written as

Aa = (AavAA) (12)

and, as explained in [2,15], admits a decomposition in a set
of even (+) and odd (-) fields:

Ay = (Af,DyA*T +8,CDcA7). (13)

Even and odd fields are characterized by the way they
transform when pulled back by the antipodal map P
on S [1]. Note that €, 1s an odd field, and that
equations (11)—(13) imply that we can replace

Fop with {A5,AT}U{A", p}. (14)

The constant p associated with the odd Maxwell field
perturbation pé,; corresponds to turning on a magnetic
charge [16]. The scalar fields A* are unique if they are
required to belong to L*(S?)_, [2]. Here L*(S?).,, is the
space of square integrable functions on S? orthogonal to the
¢ =0,1,..., 7, eigenspaces of the Laplace-Beltrami oper-
ator, and £ labels the LB scalar field eigenvalue —£ (¢ + 1).

Similarly, a symmetric tensor field S5 = S(45), such as
hops Gop = dGop/de|y and T 5 := dT .5/ dely, decomposes

as [2,3,15]
Su  S.
Saﬂ = < b ? ) ’ (15)
Sap Sap

with

S.p = DpSt +e5DcS;. (16)

Assuming that ST € L%(S?).,, they are unique [2,15].
Sap = S(ap) further decomposes as

Sap = D(A(GB)CDCS_) + (DADB - EQABDCDC> A
..
+ ESTgABv (17)

where S = S¢C and the fields S* € L?(S?)., are unique.

In this way, as happens for covector fields [Eq. (14)], the
symmetric tensor field S, is replaced by a set of even and
odd fields

{Sap = S S3.ST. 57U {Sz. 57} (18)

In particular, the perturbed metric, Einstein tensor, and
energy momentum tensors contain the fields

hap ~ {hgy- g B by} O {hg A7} (19)
Gap ~{G - Ga.G*.Gr}U{GL.GT} (20)
Top~ AT Ta . TH. T3 UA{TL. T (21)

Even and odd fields are not mixed by the LEME. The
restriction of the LEME to the odd sector was the subject
of [3]; even perturbations are studied in the following
sections.

Let J(1), J(2). and J(3) be $* (and therefore spacetime)
Killing vector fields corresponding to rotations around
orthogonal axis in R? D $2, normalized such that the length
of their closed orbits in the unit sphere is 2z (e.g.,
J3y = 0/9,). The square angular momentum operator

2= (£, + (£, + (£, (22)

is defined both in S?> and the spacetime. This operator
commutes with the LEME and preserves parity. It thus
allows a further decomposition of even and odd fields into
modes (eigenfields of J?). On §? scalars the operator J?
agrees with the LB operator of $2, DAD,; however, on
higher rank tensors these two operators act differently.
Since [V,.£,] =0 = [D4.£,] = [D,.£, ], it follows that
J? commutes with V,, D,, and D,. In a modal decom-
position approach the tensor fields on the right sides of
(19)—(21) into eigenfields of J?.

In the following sections we restrict ourselves to even
perturbations and assume the restrictions above: AT,
St € L*(S?).y, ST € L?(S?).,. These conditions guaran-
tee that the linear operators (Af,A") - A, in (13),
and {S},,S5, 87,857} — Sap in (15)=(17) are injective
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(Lemma 2 in [2]). Since we restrict our discussion to even
perturbations, there is no risk of confusion and + super-
scripts will be suppressed from now on.

A. Even sector perturbations

Even perturbations are those for which the minus
fields in (13) and (19) are zero. Rescaling and dropping
the + superscripts, i =:r2hy, h™ =:2r?h, gives

h < hab DBha )
ap = | A A A ” ACA N
Dyhy, 72[(2DADB - QABDCDC)h + % thAB]
(23)

with the restrictions h, € L*(S?).,, h € L*>(S?)-,.
Similarly, Egs. (11) and the even piece of (13) give
(dropping superscripts)

o DaAb_[)hAa ~aDBA_DBAa
aff — A ~ A (24)
b,A, - D,D,A 0

with A € L%(S?).,.

U(1) gauge transformations of the Maxwell field leave
Fqp invariant while changing the potential as A, —
A, + 0,B. The even piece of the vector potential (13) then
changes as A, > A, +J,B and A — A + B(.), where

B. is the projection of B onto L*(S?).,.
Under a coordinate gauge transformation (infinitesimal
diffeomorphism) along the even vector field defined by

Xo= (XoPDaX),  XeLA$).,  (25)
hep and F .5 transform into the physically equivalent fields:
h;ﬂ = ha/i + £Xgaﬁv F;ﬂ = fa/i + £XF11[)" (26)

From (5), (6), (23), (24), (25), and (26) we find that (26) is
equivalent to

hab el h;b = hab + DaXb + DbXa’
hy = Wy = hy +2DrX, + 2D DX
Ab i AZ = Ah - ébCXCEO

all . (27)

where the legend “all £ reminds us that these fields have
projections on all the £ subspaces, whereas

A= A=A,
h, = h,=h,+X°+rD,X,
h — l’ll = h+X>1,

(¢ > 0 only),
(¢ > 0 only),
(¢ > 1 only). (28)

1. £=0: Solution of the LEME
and linearized Birkoff theorem

Given that £ = 0 corresponds to the spherically sym-
metric part of the perturbation, £ = 0 perturbations to the
spherically symmetric Reissner-Nordstrom background
that solve the LEME should amount, in view of
Birkhoff’s theorem, to a modification of the parameters
Q and M in (5)—(7). In this section we prove that this is
the case.

On 7 =0, the fields h,, h, A, and X have trivial
projections, and we can use (27) as in [2], choosing

Dorx=" = - 2 "= to set i}, =0 and then 2D°XY =" =
—g* h{(lizo) to get a traceless h/,. Dropping primes, the

resulting metric perturbation is of the form

T.(£=0)
W0 = <hab0 g), Frh=0 0. (29)

This gauge choice admits a residual freedom X, = (X, 0)
preserving the conditions (29), for which X, must satisfy

DX, =0, (30)
whose solution is
X, = &,DbX(r). (31)

Since the £ = 0 piece of A is trivial, the £ = 0 Maxwell
field is

B AE=0) L (6=0)
Fo = (D”Ab OD”A” 8) (32)

and the linearization of (4) reduces to

DY (DA™Y = DAL ™)) = 0. (33)
Defining DuAfZO) — DAY=V =:8,,E7=9 the above equa-
tion reads
€DV (rPE=0)) = 0. (34)
Its solution,
- q
EC=0) = Ex (35)

corresponds to a change in charge Q — Q +e€q, as
anticipated.

To complete our proof of the “linearized Birkoff theo-
rem” we choose coordinates (z, r) in orbit space, work in
the transverse gauge (29) and use the residual gauge
freedom (31) to set h, = 0 [this fixes X(r) in (31) up to
a linear function of r]. Using this additional condition
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together with the trace-free condition h, = f*h,, and
A, =gq/r, A, =0, the t — r component of the LEE

Gop "= + Ahyy*=0) = 82T~ (36)

gives 0,h,, = 0, so that h,, and h,, = f*h,, depend only on
r. Inserting this condition in the r — r LEE (36) gives

2r*(qQ — mr)
hrr = T ’ (37)
where m is a constant of integration. We conclude that
2 2m
b= 2y = =202 2 (38)

Note that (37) and (38) correspond precisely to, respectively,
(md/ Oy +4q0/Dg)f ™" and (md/ Dy + 40/ D) (1), s0 we
recognize that m and g correspond respectively to first order
variations M and 6Q of the mass and charge in the
background Reissner-Nordstrom metric.

2. ¢ =1 modes: Gauge choice

Using the gauge freedom (27) we can put the metric
perturbation in Regge-Wheeler (RW) form:

(£=1)
_ h 0
Rwhgr?l) - < " (f=1)>' %

0 Zoashy

Contrary to what happens for £ > 1, for £ = 1 there is no
unique RW gauge: once the metric is put in RW form (39),
we can gauge transform it into a different RW gauge using a

gauge vector of the form X, = (X,, D,X) with

x=D = _2p x=n. (40)

We will use this gauge freedom to further set

7 (f= ~ab . (£=1

RN = geopl=h = o. (41)
We will assume the RW traceless gauge conditions (39)
and (41) when solving the LEME. Note that this does not
exhaust the gauge transformations (40): a residual gauge
freedom keeping these conditions is one for which the
gauge vector satisfies (40) together with

De(r*D X“=1) = 0. (42)

3. € > 2 modes: Gauge choice and gauge invariants
For 7 > 2 the field

Pu=hs" —r*D,h (43)

transforms as p, — p, = p, _|_ng2)_ This allows us to
construct the following (¢ > 2) gauge invariant fields [we
use (24)—(28)]:

(>2

Hab = hah ) - Dapb - Dbpa
Hyp = h(TZz) —4p,D —2DDh=?

E&,p = F 2 — €D (Eop©)
EuyDpE? = F2f — &, EgDyp”
ré Upc™ = J ;g — €apLolBP

¢ > 2 gauge invariant fields. (44)

The RW gauge is defined by the condition p, = 0. It is
unique, since any nontrivial gauge transformation (27)—(28)
requires X # O to keep &, = 0, and this spoils the condition
h =0,

H,, 0
Rth/? - < 2 A > (45)
0 ZguHr

Note that this is formally identical to (39).

4. Recasting the linearized € > 2 equations

In what follows we will decompose S? and orbit space
symmetric 2-tensors into their traceless pure trace pieces as

1 - ~
Sab = Sz{b + _gabS’ S = Sabgabv (46)

2

I, - P R
Sap = Shg + 5 9anS. S = Sap0t. (47)

2

We will assume the linearized £ > 2 Maxwell field is given
by (24) and that the linearized ¢ > 2 metric is in RW
form (45).

Consider first the linearized Maxwell equations.
Equations (24) and (45) imply that the f = B components
of the linearization of the Maxwell equation V*F; are
equivalent to the condition

DB(DdAd - DdDdA> - 0, (48)
which can be written as
é“hf)a(ré'b) =0,

This implies that
gb — —;DbA, (50)

for some scalar A, and simplifies (24) to
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e, DDA —2,D.DpA
faﬂz( Cabe Ca Delp ) (51)
&,cD, DA 0

The f# = b components of the linearization of V*F,; then
gives Eyé,20,z = 0, where z ——62DQD“.A—5DADA.A—
1(H5g"" —hr). This gives z = z(6, ¢). However, in view
of the U(l) gauge freedom freedom A — A =
A+ p(6, ¢) implicit in the definition (50) of .4, and given
that z has no £ = 0 component, we can choose p such that
DBDyp = Qz, then for A’ we find 7/ = 0 and (dropping
the prime on A)

- P 0
DaDaA—FﬁDAD A:W

(hy —H),  (52)
where H denotes the trace part of H,, according to (46).

From now on we switch from H’, to the one form
C,= HaTbDb r, which contains the same information, in
view of the equality

1 . - o
? (Daer + Can}" — gadeer). (53)

Having solved the LME we proceed with the LEE.
The traceless S> piece

T __
Hab_

Ghy + ARL, = 82Th, (54)

gives

T
I
(]

(55)
The off-diagonal piece
Gap + Nhay = 87T yp, (56)

combined with the condition (55) (and /4, = 0), gives

gy = D, CoDyr + 2D, Cep4D, r — gbth

—4fE,D,A = 0. (57)
Contracting (57) with YD r gives
e\ D,C, + %f)thf)dr +4E\D,AD,r| =0. (58)
This allows us to introduce the field £, defined by
Pye=27,=0C,- % rDyhy + 4E,AD,r. (59)

Contracting (57) with D”r and using the above equation
then gives

Deb,¢+ fi)“[)ahr
. 8E

—8Ey(Dr)D,A — 4E,ADD,r
(D“ r)(D,r)A = 0. (60)

Using Eqgs. (52), (55), (57) and (60) in the LEE

G+ AH = 82T (61)
gives
2. D*D DD 4 .
Zpeb ¢ - 8E, <( )AL ZAA> + 2 DD,
r r r r
DD, +2
= [(;;) —4E%] hy. (62)

Note that the operator on the right side above is invertible;
this proves that all components of F .4 and h,; can be
written in terms of & and A. If we do so and use the
remaining LEE, we arrive, after some work, to the follow-
ing system of partial differential equations for & and A:

. - I 2. .
(DyD* +2f — rD,D%r) {DQD“i +ZD Dy
r
o - 40A
—(DADA+rD“Dar)< > )}

2
+ <DADA +2—£>

!

(D,D* 4 2f — rD,Dr) (DaD“A + pDADAA>

1~ 2. .
ﬁDADAé—;DaéD“r—I—

8
%A) =0  (63)

and

8f Q2

A+= (%DAD% - %ng%) =0. (64)
r

Note that, since they are derived from gauge invariant
fields, A and ¢ above are gauge invariant.

5. Solution of the ¢ =1 LEME

Equation (39) is formally identical to (45), the difference
being that the latter is given in terms of gauge invariant
fields. Thus, the steps (48) to (52) from the previous section

hold for # = 1 with the replacements H,, — hgizl), etc.

Now, in view of Eq. (17), Eq. (54) is void for £ = 1.
However, the trace free condition (55) to where this
equation leads corresponds to the traceless gauge choice
(41) for £ = 1. This implies that the reasoning following
(55) can also be taken without change for Z = 1. As a
result, we obtain the system (63)—(64) with A — A=),
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& &= [defined in a way analogous to (59)], and
DD, - -2.

A conceptual difference between the £ =1 and £ > 1
cases is that the fields A and &, being defined from the
gauge invariant fields, are themselves gauge invariant,
whereas A“=") and &(“=Y) are not. Tracing back the gauge
transformations of the fields involved in their definition
we find that, under the residual gauge freedom (40)—(42)
[note that (2 —2f + rD,Dr)r = 6M —4Q?%/r],

27 = T =SP4 4B Dy
_ 402
S 200 4 (em—*2 )D x(=1
p
+4E0(QX(Lﬂ:l))lw)ar
_ - 40?
Ry [ (TR AT
r
And then

_ _ _ 402 _
ge=n) o ge=n) — ge=1) 4 [ oM — = | x(4=D), (66)
r

Also

AE=1 5 A(e=1) — fge=1) 4 gx(=1), (67)
A priori, Eq. (67) does not imply that A is pure gauge,
since the X(“=") field is not arbitrary but restricted to the
condition (42). As we will see, the situation is quite subtle.

Equations (66)-(67) suggest that, for £ = 1, we replace
in the LEME (63)—(64) &“=1 and A“=1 by the gauge
invariant field

)
r(2=2f+rD,Dr)

= 240 (¢=1.m)- (68)

If we rewrite (64)—(63) in terms of ¢ and A, eliminate
second order A derivatives from (64) using (63), we get a
decoupled equation for ¢:

— A=

@ =

[~fD*Dy + V" V]p =0, (69)
where
_ 2f
yle=1) — _ 40%N = 2TM*)r*
3Gy 2077 (42 )
+ 54M2Q%r — 48MQ*r + 12Q°). (70)

For A#=1m) we obtain

r2D¢(rPD A=) = 2,7 DrD ™) + Z(r) ™)
(71)
with

—4Q°Ar* + 18M 7 = 240*Mr + 1204
3r*(3Mr —20?) '

Z(r) = (72)

@ is a physical (gauge invariant) degree of freedom
(d.o.f.) obeying (69). Once a solution of this equation is
picked, the source on the right side of (71) is defined,
and the solution of (71) will be unique up to a solution
of the homogeneous equation. However, since the
homogeneous equation agrees with (42), in view of
(67), any two solutions of (71) are gauge related and
therefore equivalent. This implies that the gauge class of
A=1m) i uniquely determined once the three gauge
invariant functions on the orbit space ¢(m) are given,
and then ¢ contains the only d.o.f. in the Z=1
subspace (three functions defined on the orbit space).
This situation should be contrasted with that of the
projections on the higher harmonic subspaces ¢ > 2, for
which the number of d.o.f. is two (instead of one) functions
on the orbit space for every (¢, m): the harmonic compo-

nents solutions <I>,(f’m) of the Zerilli fields ®,, n = 1, 2 (see
next section). It should also be contrasted with the
Schwarzschild black hole case, for which the even £ =1
mode is pure gauge [2].

6. Solution of the ¢ > 1 LEME
To decouple the system (63)—(64) we introduce

_ 1 iy
e <J2+2f—rDaD“r) (F+2)¢8 (73)

o = —22 ( I >g<f22> _2A (74)
r \J*4+2f—-rD,D

J? acts as a —£(¢ + 1) factor on the # subspace of L*(S?)

then, e.g., if £ = Z(f,m) é(f’m)S(f,m) is the expansion of &

in spherical harmonics S ), the linear operator in the

definition of x; above acts as

1 m
B <J2 +2f - rDu[)ar> V- 2)(;)5“’ 'Sie.m)

(Z+2)(7 -1
_Z(f(fﬂ) 2}(+ rD)D“ )‘5(f'm)5<f,m>- (75)

Using the fact that on scalar fields DD, = J?2, the
projection of equations (63)—(64) on the # > 1 space
can then be written as

024034-7



GUSTAVO DOTTI and JULIAN M. FERNANDEZ TiO

PHYS. REV. D 101, 024034 (2020)

—DD,+U=-3MW 20/—(J*+2)W <K1>_O
20/ (=P 4+2)W  -D*D, +U+3MW ) \k2

(76)

where U and W entering the symmetric matrix operator O
in the above are defined by
[P(J?+2f —rD,D%r +r*A)?|U

2
=—(J+2)°+ (2+9—M—4r£> (J2+2)?

3M 9M2+20% 160*°M 60* 2AQ?
+(—+ +2Q Q3 + Q+ Q)(J2+2)
r r 3
OM?> 9M3 39Q°M* 320*M 8Q°
(220 s
42N (OM? 120°M  8Q*
- - = 77
3 <r2 r + r4) (77)
and
(P32 +2f = rD,Dr + rPA)|W
4M M Q?
= +2) - (J2+2)+—<3—7+%>
4A
+ (3Mr—407). (78)

The matrix O can be diagonalized by introducing E =
VOM? —4Q*(J? +2), p, =3M + (=1)"E, n =1, 2 and

- ) b
- (2Q¢f<?17> —zgﬁ@?ﬁ)' 7

We find that

-D*D,+U 0
P“(’)Pz( at O > (80)
0 -D*D, + U,
where
(_1)n+l
U,=U+ > (B = B1)W. (81)
In view of (80), the Zerilli fields
()
( 1>:P‘1<K1> (82)
®, Ky

satisfy the equations

[-fD°D,+ V,|®, =0, n=1,2, (83)
where V,, = U, /f can be written in Ricatti form
Vi = fBa0fu+ Bifa + P +2)f0 (84)
with
e =) )
In t — r coordinates (83) reads
PP, +A,®, =0 (86)
where
Ay ==05 +V,, (87)

and r* is a tortoise coordinate, defined by dr*/dr = 1/f.
Since £ and A are gauge invariant fields, so are x;, s,
and the Zerilli fields ®; and ®,.
Tracing our definitions back we find that

A= =B - PP+ 2)0, - (5, - P +2)),
(55)
&= (P +2f = rD,Dr)(p1®@) — p®;)  (89)

and that the LEME (63), (64) reduce to the decoupled
Zerilli equations (83). If we replace J> - —¢ (f +1) and
use (t, r) coordinates on the orbit space, [-fD*D,|® reads
O?® + f0,(f0,®) and (83) gives the Zerilli equation for
the @™ harmonic components of @, n = 1, 2, as found
for A =0 by Zerilli in [9] and Moncrief in [12] and for
A # 0 in [5].

III. NONMODAL LINEAR STABILITY
FOR EVEN PERTURBATIONS

From the results of the previous section follows that the
set £ of equivalent classes [(h,4, F,5)] of even solutions
(hap. Fop) of the LEME mod the Maxwell and the diffeo-
morphism gauge equivalence relation (26) can be para-
metrized by the first order variation 6M and 6Q of the
mass M and charge Q (Z =0 modes), the £ =1 field
9=, uS=" . N = R, m =1, 2, 3 satisfying
(69), and the Zerilli fields ®,: Z (am @y s m)

M = R, n=1, 2 (alternatively ® "N > R) obeying

(83) (Z > 2 modes):
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Ly = {[(hap. Fop)]|(hyp. Fop) is a solution of the LEME}
={(6M,5Q, ¢, ®,)|p satisfies (69) and @,, n =1, 2 satisfy (83)}. (90)

Although these fields and constants measure the effects of
the perturbation, there is a distinction between the £ = 0
constants 0M and 6Q, which have a clear physical meaning
as mass and charge shifts within the Kerr-Newman (A)dS
family, and the Z > 1 fields ¢, ®, and ®,. The latter are
convenient to disentangle the #>1 LEME but have,
a priori, no direct physical interpretation. In the following
section we will find scalar fields that substitute these and
have a direct geometrical meaning.

A. Measurable effects of the perturbations

There are 16 real algebraically independent basic sets of
scalars made out of the Riemann tensor in the Carminati-
McLenaghan [17] basis. Any other scalar field made out of
contractions of the tensor product of any number of
Riemann tensors, volume form, and metric tensor can
be written as a polynomial on these basic scalars.
Among these there are six real fields (we follow the
notation in [17]):

{R,rl,rz,r3,m3,m4} (91)
and the five complex fields
{W11W27mlvm2am5}' (92)

In the electro-vacuum case, they are constrained by the
following (seven real) syzygies [17]:
R =0,

r, =0, 4ry —r, my =0,

m]ﬁ”lz - rlﬁl5 = O, mzﬁ’lzm::, - rlm5r715 = O, (93)
which leave r|, wy, w,, m;, m, as independent fields in the
general electro-vacuum case. Note that these constraints do
not define a manifold but an algebraic variety: the dimen-
sion of the tangent space (defined by the linearization of the
constraints) may change at different points.

We may also consider invariants involving the Maxwell
fields, as well as mixed invariants such as (C,z,s the Weyl
tensor)

F = F3F7, C = Cup,sFPF7°. (94)
Due to the symmetries of the background, it can be proved
that the imaginary part of first order variations of the
complex scalars dwy, ..., dms vanish trivially under even
perturbations, so we will focus our attention on the first
order variations

5}’1, 59{W1 - 5W1, 5%W2 - 5W2,
5$ﬁm1 - 5m1, 55}%}7’[2 - 5m2, 5F, oC. (95)
Note that [17]
— R, = L P 96
wp =« a)l—g apys- ( )

Since the background values of these fields

% 6(02 — M1 6(02— M)
Fo=—g+ Wio=""3 > W= 5 ,
r r r

207 20%(Q* - Mr)
F,):—T, Mo ="—"""@3
404(Q* —Mr)? 8Q*(Q*— Mr
Myo = ( 16 ) , Co= ( 8 ) (97)

do not vanish, none of the fields in (95) is gauge invariant.
However, it is possible to construct gauge invariant fields
out of them, such as

S = w,,5C — Clow,, (98)

etc., where the prime denotes derivative with respect to r.
Under a gauge transformation along X“

S = S+w,\X9,C, — C,XDwi, =S, (99)

since w;, and C, (as every curvature scalar) depend only
on r. This idea generalizes as follows: Let Iy, ..., I (5 be a
set of scalar curvature. Then § =", Sidl(y is gauge
invariant as long as the f; satisfy >, fil(x) =0, since
for a gauge transformation along X%, X*,61(;) = X"I ;)
and 65 = 0. For s = 2 this reduces to

!/
o

S - K(I(l)i)al(z) —1(2);51(1)) (100)

When calculating the £ > 2 projection of the first order
even perturbation of the fields (95) in the RW gauge (45) in
terms of the Zerilli fields, we get expressions involving
up to five derivatives of the ®@,. On shell, that is, assuming
the LEME, we can use the Zerilli equation (83) and its r
derivatives repeatedly and, after lengthy manipulations,
obtain simpler expressions involving only the ®,, and their
first 7 derivatives. We proved that, on shell, all the gauge
invariant combinations of the first order variation of the
fields (95) are proportional to each other. In other words,
there is a single independent gauge invariant combination
of first order variation of curvature scalars. This certainly
could not carry the same information as the two fields ®,,,
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n =1, 2. Since all the algebraic gauge invariant curvature
variation scalars are proportional on shell, it is irrelevant to
our purposes of a nonmodal approach which one we
choose. For the field S in (98) we found, after lengthy
calculations with the help of symbolic manipulation
programs,

96Q%J*(J* +2)(Mr — Q%)?

S>1) —
7
X ((rpy —40%) @, — (rp; —40%)®,), (101)
a 3840(3Mr —20%)(Mr — Q?)?
S(lf—l) — Q( r r1Q7 )( r Q ) ®, (102)
and
S0 = M (w),0uC, — ChOywi,)
+ 5Q(W128QC0 - Ci)aQWlo)
2 2
_ 192000 = Mr)” 5150 —208M). (103)

I‘16

It is an interesting fact that first order r derivatives of the
®,,, which are present in 6w; and 6C, cancel out in (101).
Note also that Eq. (102) gives a geometrical interpretation
for the gauge invariant £ = 1 field ¢.

To construct a second curvature related gauge invariant
field that, together with (98), allows us to recover the Zerilli
fields, we need to consider differential invariants. These
will give (at least) one more derivative of the Zerilli fields.
When simplifying their on shell form we find that first
order derivatives do not cancel out (at least, in the many
examples that we have worked out).

The field we chose is constructed as follows: define

1

I= m(vacﬂy&)(vacﬂyér)7 J = (VoFps)(VOFP),
(104)
whose background values are
.= {5(:1)0 (15M2r2 — 36MQ>r + 220%),
then the gauge invariant field
T=1I6]-J,61 (106)
has an on shell expression with
T =1\ @) + T,®, + Q@) + Q,D,. (107)

The operators Y, and Q,, in (107) do not admit a simple
expression. In any case, all we need know about them is
that, for A > 0 and r;, < r < r, they are bounded, whereas
for A=0 and r < r;, they are bounded and, as r — oo,
behave as

T, = 12MQ2 I (J2 + 2) [(—1)”5M

—\JoM? 402 (1 +2)] + O(19),

Q, = 2MQ>SP(J? + 2) [(—1)"+17M

/oM — 4021 +2)] + 0619, (108)
For 7(“=Y we find
_y _ 160f(r) of(r)
(¢=1) _ 160/ (r)
T 158 C0 5500 3 PP
(109)

with

C(r) = 45M*Ar® — 110M Q*Ar® + (68Q*A — 180M?%)r*
+9M(45M? + 46Q°)r® — 3Q*(379M? + 80Q?)r?
+ 1014M Q*r — 2760°, (110)

D(r) = 135M3Ar7 — 38TM>Q>Ar® — 2M(—1930Q*A
+270M?)r° + (—=140Q°A + 1215M*
+ 1431M%Q%)r* — 81MQ*(4TM? + 160?)r?
+30*(1477TM? + 1440%)r?

—2310MQ°r + 44408, (111)

For the Z = 0 piece of 7

TU=0 = 5M(1,0y ], — T,0l,) +8Q(1,00], — T, 001 ,)

_16/(r)Q (QT 1i6M — T y50Q).

T (112)

Here
T = 15M*Ar° — 18MQ*Ar* — 60M?r?
+2TM (5M? + 20%)r? +2202%(Q* — 9IM?)r

+42MQ* (113)

and

Ty = 10MAP — 12Q*Ar* — 45M 73 + (90M? + 540°)r?
— 132MQ%r + 280", (114)
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Equations (101)—(103) and (107)—(112) allow us to
prove that & and 7 contain all the gauge invariant
information of a given perturbation.

Theorem 1. Consider the set of gauge classes of even
solutions [(/4p, Fos)] of the LEME around a Reissner-
Nordstrom (A)dS black hole background, and the perturbed
fields S and 7 defined above. The map [(h,4, F o)) —
(8,7) is injective: it is possible to reconstruct a represen-
tative of [h,4] and [F 4] from (S, 7).

Proof. Assume S = 0 = 7, then Egs. (103) and (112)-
(114) imply 6M = 0 = 6Q. Equation (102) implies ¢ = 0,
and the combination of (101) and (107) gives ®; =
0 = ®@,. This last assertion follows from a reasoning on
the line of the proof of Theorem 5 in [2]: from S 1) =0
and (101) we may write @, in terms of ®; which, inserted
in the equation 7>! = 0 using (107), gives an equation for
®; whose only solution compatible with (83) is the trivial
one. Thus, an electro-gravitational perturbation must be
trivial if S=0=7.

To reconstruct the perturbation from S and 7° we proceed
as in Theorem 1.i in [3]. ]

The fact that the £ = 0 d.o.f. are 6Q and oM explains
why these quantities can be obtained from S, and 7, by
inverting (103) and (112). In [18], a characterization of
subclasses of type-D spacetimes is made in terms of
equations involving curvature tensors and scalars. In
particular, two curvature scalars are given such that, when
evaluated on a Reissner-Nordstrom spacetime, they give the
mass and charge (see Theorem 5). Since these scalar fields
are constant on Reissner-Nordstrom backgrounds, their first
order perturbations are gauge invariant. For £ = 0 pertur-
bations they agree exactly with M and 6Q, because these
are perturbations along the Reissner-Nordstrom family. The
scalar fields in [18] are made out of rational functions of
rational powers of the basic polynomial invariants (91), (92)
and (104). To illustrate the relation between these (a priori)
more general scalar gauge invariants and the ones we
constructed above, we consider the case of scalar perturba-
tions of an uncharged (Schwarzschild) black hole. In this
case we get from (97) and (105)

> 79 Wlf)
2AW10 + \/Ewlz/z + 3]0 .

(115)

Thus, for

_9 W14
B 2AW1 + \/6W13/2 + 31’

(116)
0Z is gauge invariant, and so is

5
—158Z = (OM — 4r + 1r) % + 3731

rlO

5 (10w) — wi,0l),

= 117
12M2 (117)

which is of the form (100) and agrees with the gauge
invariant field G, wused in the analysis of the even
Schwarzschild perturbations in [2] [Eq. (202)].

B. Pointwise boundedness of ®, and 0, D,

In this section we restrict our attention to black hole
solutions with horizons 0 < r; < r, < r.. The relation
between the radii of the horizons and A, M, and Q can
be easily obtained from (7) and (8). For A > 0 [A = 0]
we are interested in the range r, <r<r. [r>r,l.
In both cases the tortoise radial coordinate satisfies
-0 < rf < 0.

Theorem 2. Assume @, is a smooth solution of Eq. (86)
on the union of regions II, I’, III, and III” of the extended
Reissner-Nordstrom (Fig. 1) or Reissner-Nordstrom de
Sitter (Fig. 2) spacetimes, with compact support on
Cauchy surfaces. There exist constants C,, L, that depend
on the datum of this field at a Cauchy surface, such that
|®,| < C,and |0,-®,| < L, forall points in the outer static
region III

Proof. As in the proof of Theorem 2 in [3], and
following [19], we may restrict our attention, without loss
of generality, to fields that vanish on the bifurcation sphere
together with their Kruskal time derivatives (for details,
see [19]).

Iir

Ir

FIG. 1. The Carter-Penrose diagram of (part of) the maximal
analytic extension of the |Q| < M Reissner-Nordstrom black
hole. The union of II, II’, III, and III" is globally hyperbolic; its
boundary at r; is a Cauchy horizon.
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g , 7
I I
r=20 I Il/
ri
B4 I 54
v’ N
IIr 117
v

. /
/% d Qf " /% 7 %
FIG. 2. The Carter-Penrose diagram of (part of) the maximal

analytic extension of a nonextremal (three different horizons)
Reissner-Nordstrom de Sitter black hole.

On a ¢ slice of region III, define the L?> norm of a real
field G as

dr
drs = —.
S

(118)

IGI? = (GIG) = / G2dr* sin(0)dods,
RxS?

Using a Sobolev type inequality (Eq. (5.27) in [20]) on the

Zerilli fields ®,, at a fixed time ¢ gives

C(/|@ || + 1|07 Dy | [ + 132D, | ]]).
(119)

@, (2.77.0.9)| <

where C is a constant. We will follow the strategy in [19]
of proving that the L? norms on the right-hand side of (119)
can be bounded by the energies of related field configu-
rations. Since energy is conserved for solutions of (86),
we get in this way a t-independent upper bound of the
right side of (119) and therefore, a global bound of
|®, (2, 7,0, )| for all (z,r*,0, ), i.e., of ®, in the outer
static region III.

The inner product defined by the norm (118), simplifies,
after introducing an expansion in real orthonormal spheri-
cal harmonics (e g tesseral spherical harmonics) Sz ). If

G = Z £.m) Siem and K = Z ¢.m) ke.m)S(z.m) then

G1K) = 3 [ semkemdr. (120
(em) R
From (87) we get
107 @, 1, || < [|A, @l Il + [V @al,l (121)
where V,,, given in (83), can be written as
nZI 2 2
Vo= SRR 2R 2 (122)
being
2 20?
=11y = =2 (73w +22),
r r
2f? S
nZ2:7’ nZ3:p’ Dn:ﬂn/r_<J2+2)'
(123)

Note the following:

(i) The ,Z;, j=1, 2, 3, depend only on r and are
bounded in the domain of interest r, < r < r. if
A > 0[r > r,if A= 0] by constants ,z; > |,Z;(r)|

that depend on M, Q and A.

i) @) :=p,®, OF =, and @ =) (J*+2)®,
are solutions of the Zerilli equation (83) if @, is a
solution; also <I>,(14) = A,®, = —0?®, is a solution.

This is so because any operator that is a function of
J? and 9,, commutes with the operator (83).

(iii)) On the ¢ eigenspace of J2, r=2,3,4,.., D, acts
multiplicatively as
Dﬁ(r) =p./r+ (€ —=1)(¢+2). (124)

For r, <r<r. [r>r, it A=0] and 7 >2,
|D5(r)| has an absolute minimum D} >0 at r=r,
and ¢ =2, whereas |D{(r)| also has a nonzero
absolute minimum D7 (possibly at an £ > 2). Then
the first term of V,®,, [see (122)] can be bounded as

follows:
nZl
D—nﬁn
@ 2
- AXSZ [ ‘m D ” ) ’m)|fS(f7m) dr*
x sin(0)d0ddp (125)
(m) / ) 12dr (126)
R Zm
= oV |12 127
() ok (127)
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Proceeding similarly with the other terms in
(121)—(122) and using the triangle inequality gives

n<1
o || < , o
[ n|,||_(DZ)|| |||+(D*)|| L

o, CI)n 128
+ () 100+ 1ol (129
Inserting this in (135) gives

(@, (1,7, 0.9)] < K'(| @, ]| + |}
+ (|87 + [@f

L+ 1052

1+ 128D
(129)

where K’ is the maximum over j and n of the

constants ,z;K/Dj, and o) = Jo,.
The conserved (i.e., t-independent) energy associated
with Eq. (86) is

1
E= 5/ ((atq)n)2 + q>nAn<Dn)dr* Sln(g)d9d¢ (130)
RxS?

Since E does not depend on ¢, we may regard it as a
functional on the initial datum: E = E(®2, ®9), where
D; = q)n|z,, and CDZ = (atq)n)|t0:

. 1 .
E(D;, @) = 3 A Sz(@Z)Z + @A, DY) dr sin(0)dOddp.
(131)

Using the facts that (i) A,, n =1, 2, is positive definite
in the cases we are interested in (proved by means of an
S-deformation in [5]) and so A,jfl/ 2 can be defined by means
of the spectral theorem (as well as any other power of A,,);
(ii) for a solution @,, of (86), A, @, is a solution of (86); and
(iii) Eq. (131), follows that for a solution of (86)

1@, |12 < 2E(A;" @0, Ay 2d2). (132)
We now use the fact that applying to a Cauchy datum
(@9, ®9) an operator that is a function of J? or A,
commutes with time evolution. This allows us to estimate
each term on the right-hand side of (129) with the energy of
field configurations related to the one with initial datum
(@2, @2). Let BU®, := @Y, j =1,....5 [that is, for j=
1,...,5 these operator are respectively f,, 52, J>(J> +2),
A,, and J?]. From (132)

@], |1? < 2E<A;%B<f>q>;;,A;%B<-"><i>Z)- (133)

Thus, we can replace the right-hand side of (129) by time
independent constant C, made out of the initial data
(@Y, @) (from which the energies of the related fields
BU)®, can be computed)

@] < C,. (134)
It is interesting to note why the fields BY/)®, have finite

energy (a fact tacitly used above): we are assuming smooth
solutions of the LEME; therefore the ®, are C* on the

sphere, and the series 3, [£(Z + DFd{™ = (=J)t®,

converge for any k. In particular, the <I>(f ) decay faster
than any power of 7.

We will also need a t-independent bound for |0, ®,,|.
This can be obtained following the same ideas in [2],
taken from [21]. Starting from the Sobolev inequality

[cf. Eq. (135)] applied to |0} ®,,|

10, @,(t.7.0.$)| < L0, @, || + [107- @,

+ ||J28r*q)n|t||) (135)
Now, using the fact that, for A > 0 and four dimensions,
the V,, are non-negative in the interval of interest [5]
||8r*q)n|t“2 < <q)n|An<Dn> < 2E(d)z,®;;) (136)
This places a t-independent bound on the first term on the
right of Eq. (135). The third term can be similarly bounded

with E(J2®3, J?®9). For the second term we use

R0, =-0,(4,9,)+0.V,®, +V,0.®,, (137)
10, (A,®,)|]*> < 2E(A,®, A,®?) and the boundedness of
the operator 0,+V,,.

Proceeding as above, we arrive at the desired pointwise

bound:

19, ®,] < L,. (138)
|

C. Pointwise boundedness of S and 7

We can now proceed to complete the proof of nonmodal
stability by showing that the scalar fields S and 7 are
pointwise bounded in the region of interest by constants
that depend on the initial conditions.

Theorem 3. Under the assumptions of the Theorem 2,
in the outer static region III of a A > 0 Reissner-Nordstrém
black hole there holds

Ao
r14 ’

B,
P

S< T < (139)

where A, and B,, are constants that depend on the Cauchy
datum (P9, ®2) of the perturbation.
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Proof. Let us consider the first inequality. Using the
facts that J?(J* + 2)®, and J*>(J? + 2)3;®,, are solutions
of the Zerilli equation (83) with an energy that is a function
of (®9, ®?), Theorem 2 and Eq. (101), we find for A = 0
that |S“>1)| < ’% with A%>! a constant that depends on
the £ > 1 piece of the initial datum (the inequality holds
trivially for A > 0 and r, < r < r.). For the £ = 1 piece
we use Eq. (19) in the erratum in [14], applied to the
harmonic components of ¢. This gives |¢| less than a
constant that depends on the £ = 1 piece of the datum.

Then, from (102) follows |S¢“=V| < ’% with A=Y 4
constant that depends on the # =1 piece of the initial
datum (once again, the equality holds trivially for A > 0
and rj, < r < r.). Finally, from Eq. (103) follows trivially

(#=0) —0) .
that |S“=0] <4~ where AY=Y is a constant made

related to the ¢ = 0 initial data (6M, 5Q).

To prove the second inequality in (139) we proceed
exactly as above. We only need a proof of the pointwise
boundedness for f(r)d,q, for which we proceed as in [21]
[see the paragraph starting at Eq. (83)]. L]

IV. DISCUSSION

We have shown in Theorem 1 that the gauge invariant
curvature related perturbation fields S and 7, defined
in Egs. (98) and (106), contain all the gauge invariant
information of an even perturbation class [(f,5.F,,)]
around a Reisner-Nordstrom (dS) black hole. From these
fields, a representative (h,4, F,,) of the perturbation in,
say, the Regge-Wheeler gauge, can be reconstructed
(Theorem 1). For smooth perturbations with compact
support on a Cauchy surface of (a copy of) the union of
regions II, II’, IIII, and II" (see Figs. 1 and 2), these
fields are pointwise bounded on the outer region
[Eq. (139) in Theorem 3]. These results, together with
those in [3], complete the proof of nonmodal linear
stability of the outer region of a (dS) Reissner-
Nordstrom black hole.

The large || decay of the Zerilli fields (see [22,23] and
the recent decay results by Georgi in [24] and references

therein) and the similarly expected behavior of ¢, together
with Egs. (101)—(103) and (107)—(112) give

1920(Q* — Mr)?

r16

S

(3M5Q —20Q5M),  (140)

and

71008 o1 sm -7 ,60)

o (141)

as t — oo, within a bounded range of r (that grows toward
the future) in region III [the quantities 7, and 7, were
defined in Egs. (112)-(114)]. The inequalities (139),
instead, hold on the entire region IIL

Together with Egs. (122) and (123) in [3], Egs. (140)
and (141) indicate that, for large ¢, the perturbed black hole
settles into a Kerr-Newman black hole with parameters
M+ M, Q + 60 and J + 57.

The importance of the result in Theorem 2 lies in the
possibility of analyzing stability and instability effects
in terms of the fields S, 7 (and Q and F in [3]).
The divergence of %S and %’T for observers crossing
the Cauchy horizon r; can be proved in the same way the
divergence of % Q and %]—' was proved for the odd sector
scalars in Sec. IV in [3]. Using these four fields, statements
such as the Cauchy horizon instability or the event horizon
transverse derivative instabilities [25-32] acquire a clear
geometrical meaning.
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