
 

State space of a black hole and soft hair
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In this article, we reflect on a problem of a black hole entropy. The main point of the article is that the
black hole horizon should be treated as a boundary as well as the boundary at infinity. To make things more
concrete, we apply the general ideas to the extremal Oliva-Tempo-Troncoso black hole and construct the
corresponding Hilbert space using near-horizon hair. After creating the state space by using the proposed
construction, we identify the natural candidates for the microstates responsible for the black hole entropy.
The correct value of the black hole entropy is reproduced by counting the number of distinct microstates
and applying the Boltzmann formula.
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I. INTRODUCTION

The origin of a black hole entropy is one of the most
important open problems in physics. There are many appro-
aches to the problem of black hole entropy, most of which
rely heavily on the algebra of asymptotic symmetries [1–9].
The recognition that symmetries near the horizon play an

important role in understanding black holes has long been
known [9,10]. This idea is further refined for the case of
extremal black holes and goes by the name Kerr/CFT
(conformal field theory) [8]. New insight, that appeared a
few years ago, is that black holes have soft hair [4]; the first
specific realization of this idea can be found in Refs. [1–3], in
which soft hair microstates, known as fluffs, are constructed.
There is also an approach which suggests that near-

horizon Virasoro algebra and 2D CFT are underlining the
dynamics of four-dimensional black holes [5,6] similar to
asymptotic Virasoro in the three-dimensional case.
These approaches have in common that they all are, in

the end, trying to give a better understanding of a black hole
entropy. The (definite) solution of the black hole entropy
problem is a construction of the Hilbert state space of a
black hole. When the Hilbert state space is at our disposal,
we can count the number of microstates which correspond
to the same macrostate, and after using the Boltzmann
formula, we will derive black hole entropy. Because full
treatment requires formulation of consistent theory of
quantum gravity, we can only hope to obtain semiclassical
understanding of microstates. This would be very valuable
because it will answer two important questions. The first
question can be formulated as follows: is there such thing as
quantum gravity? The second question is as follows: are
there any microstates underlying black hole entropy, or is

something fundamentally wrong with our current under-
standing of black holes? Indirect affirmation to both of
these questions is already obtained through AdS=CFT.
Nonetheless, indirect verifications via AdS/CFT cannot
substitute direct construction and insights it, possibly,
provides. This is, exactly, the problem we will (try to)
address in this work.
In the following section, which contains the main ideas

of the paper, we will motivate why a black hole horizon
should be treated as a true boundary and some related
questions. In the next section, we will review the necessary
results, which will be used later. After that, we consider the
algebras of asymptotic and near-horizon symmetries. The
next section is devoted to construction of a state space of an
extremal Oliva-Tempo-Troncoso (OTT) black hole, using
results of the previous sections and deriving entropy by
counting the microstates. In the end, we summarize the
results of the paper.

II. TWO BOUNDARIES

In this section, we motivate why we have to acknowledge
the black hole horizon as the real boundary and obtain some
general conclusions about the factorization of phase space.
We will focus on black hole created by collapse of matter,
as it is expected to be the only physically realistic situation.
The black hole is distinguished by the presence of the

event horizon, which divides space-time into two parts,
the interior and exterior of the black hole, the horizon being
the dividing surface. Classically, nothing cannot escape
from the interior, which means that the event horizon is a
null surface. In the standard coordinates, the horizon is
located in r ¼ r0, and the fact that horizon is a null surface
with normal

nμ ¼ grμ; ð2:1Þ
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where gμν is the inverse metric, gives the constraint on the
metric

nμnμ ¼ grrðr ¼ r0Þ ¼ 0: ð2:2Þ

The black hole is created the moment enough matter is
inside of the area r < r0. We will focus on pure gravity
outside of the horizon; consequently, all matter must be
inside of the horizon. The important point is that we know
nothing about the distribution of matter inside of the black
hole. The standard black hole solutions assume that all
mater is compressed in r ¼ 0, which is the origin of
singularity. Singularities are physically unappealing, but,
as stated, their origin lies in the additional assumption that
all the matter is compressed into a point. This assumption,
implicitly, assumes quite a lot about the short-distance
behavior of all interactions including gravity. As is well
known, short-distance behavior is governed by quantum
gravity, about which we know very little. In light of this, it
is better to not get into the details of matter distribution
inside of the black hole; it is questionable if this is even
possible. This discussion suggests that we should treat the
event horizon as a boundary, at least until a satisfactory
theory of quantum gravity is established. Immediate
implication is that, besides boundary conditions at infinity,
we need to specify them, as well, at the horizon.
Now, the question arises as to what features boundary

conditions on the horizon must have. We will answer this
question in the Hamiltonian formulation. Basic operation in
the Hamiltonian formalism is the Poisson bracket

½A;Q�; ð2:3Þ
as usual, this contains the implicit assumption that func-
tional derivatives of variables are well defined. The
procedure for improving variables so that they have
well-defined functional derivatives in the case of only a
boundary at infinity is very well understood. This pro-
cedure consists of adding surface terms which lead to well-
defined functional derivatives.
When we introduce a horizon, we have two boundaries.

By locality, we can divide all variables into in and out,
describing dynamics inside and outside of the black hole,
respectively,

Qfull ¼ Qin þQout: ð2:4Þ

This separation of variables, though, might seem arbitrary
but in fact is quite natural. Namely, values of in variables
Qin are inaccessible to us due to the presence of a horizon
which hides the interior of a black hole. One can object that
Qfull is found as a solution of (an adequate) (system of)
equation(s), and knowing it, we automatically know the
Qin. This once again steps into the problem, which we
stressed at the beginning, of the matter content and
distribution inside of a black hole. With this in mind, we
come to the conclusion that for the effective description of a

black hole it is very natural to divide variables in the
aforementioned manner.
When we focus solely on in variables, the procedure is

no different than in the case of only a boundary at infinity;
for the sake of completeness, we give the analysis of this
case. It is possible that upon functional differentiation of
Qin a nonzero surface term, at the horizon, arises and we
have to improve it, after which we obtain

Q̃in ¼ Qin þ Γr→r0 ; ð2:5Þ

where Γr→r0 is a surface term defined at r ¼ r0, which is
finite and must assure that variation

δQ̃in ð2:6Þ

has no surface term; this is the so-called integrability
condition.
The analysis on out space is a bit different due to the

presence of two boundaries. At infinity, we come to the
same conclusion as in the case of in space. Additionally,
functional derivatives can give surface terms at the horizon,
and we must add a surface term at the horizon which
cancels it. Consequently, we obtain

Q̃out ¼ Qout þ Γr→∞ − Γr→r0 ; ð2:7Þ

note that

Γr→r0 ð2:8Þ

is the same surface term as the one needed for improving
Qin but contributes with the opposite sign due to opposite
orientation of the boundary at the horizon. Alternatively,
the reason for this is easy to see if we look at Qfull ¼
Qin þQout and note that full variables see only one
boundary at infinity,

Q̃full ¼ Q̃out þ Q̃in ¼ Qfull þ Γr→∞; ð2:9Þ

which is a very well-known result in the Hamiltonian
approach to conserved charges [11], so surface terms at
horizon from Q̃in and Q̃out must cancel each other.
In the rest of the paper we will be concerned with the

case in which Q is a generator of symmetry, in this case we
can extract even more information about the structure of
surface terms.
The general structure of generators of symmetry is that

they are a combination of first-class constraints plus a
surface term (charge). Because in quantum, as well as in
classical, state space all the constraints must hold, we
conclude that the generator of symmetry reduces to a
surface charge.
For calculating Γr→∞, we only need boundary conditions

and dynamics at infinity, while for determining Γr→r0 , we
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need boundary conditions and dynamics in the vicinity out
of the horizon. This means that this analysis is insensitive to
the concrete matter inside of the black hole. This is a known
property of the black hole entropy, and it is tempting to
conjecture that this kind of analysis will capture all the
aspects relevant for its explanation. In turn, this would
mean that we are able to determine semiclassical degrees of
freedom of the black hole responsible for the appearance of
entropy.
On the quantum level, this discussion, superficially,

seems to imply the separation of full Hilbert state space
Hfull into a tensor product of in and out space,

Hfull ¼ Hin ⊗ Hout: ð2:10Þ

The truth is that we need to take care of the condition that
charges are continual,

Q̃in ¼ Q̃full − Q̃out; ð2:11Þ

consequently, the Hilbert space is a tensor product of in and
out space modulo the previous constraint

Hfull ¼ Hin ⊗ Hout=ConstraintðContinuity of chargesÞ:
ð2:12Þ

Now, a few words about the general properties of this
construction are in order. In state space, where all con-
straints hold, we are left only with surface charges. As a
manifestation of locality, spacelike separated operators
commute, and we have that near-horizon Qnh ¼ Γr→r0
and asymptotic Qas ¼ Γr→∞ charges commute,

½Qnh;Qas� ¼ 0: ð2:13Þ

Asymptotic symmetries are transformations that change
boundary data and lead to different field configurations.
They act on whole space-time, not only near infinity. The
asymptotic form of symmetry is investigated at infinitesi-
mal level; this way, we obtain algebra. For example, in 3D
gravity, which is the most investigated and best understood
example, with Brown-Henneaux boundary conditions,
asymptotic symmetry is Virasoro algebra [12].
Near-horizon symmetries are transformations that make

changes near the horizon. As stated, they should contain
asymptotic algebra, possibly with different central charges.
There can also be additional symmetry not seen from the
perspective of infinity. This means that these additional
symmetries are small gauge transformations from the
infinity viewpoint. The important thing to stress is that
at infinity asymptotic conditions capture many different
field configurations, while the asymptotic conditions near
the horizon describe only black hole with different matter
distributions behind the horizon.

The observer very far away from the black hole is well
approximated by the observer at infinity, and he will only
observe asymptotic charges Γr→∞. Because at the semi-
classical level equations of motion hold, it is to be expected
that charges at infinity and near the horizon are not
unrelated. The idea for microstates is as follows. Acting
with near-horizon algebra, we produce an observable
change at infinity which can be measured. But there is
more than one transformation that we can apply that leads
to the same charges at infinity. Counting different ways W
to obtain the same asymptotic charges, we should be able to
reproduce black hole entropy using Boltzmann relation

S ¼ lnW: ð2:14Þ

This procedure can be consistently applied only for semi-
classically well-defined objects; otherwise, we would need
quantum gravity, which implies that all measurable nonzero
charges are much larger than ℏ. This idea identifies black
hole microstates as different geometries which differ from
each other by small gauge transformations from the infinity
perspective but a physical one from the near-horizon
viewpoint. This states, in nature, are soft hair on a black
hole because a generator which should generate them at
infinity is zero.
To extract some general conclusions about what proper-

ties of the state space constructed from near-horizon
symmetry to expect, we review some known approaches
for deriving black hole entropy and draw some conclusion
from their success.
Euclidean calculation of black hole entropy in a nutshell

is as follows. Cut out the interior from the spacetime and
Wick rotate the time outside a black hole and compactify it
on the circle of radius β

2π. The partition function calculated
using this space-time is identified with appropriate ther-
modynamical potential from which the entropy is derived.
This approach yields viable entropy in all known examples.
Euclidean calculation suggests that the interior of a black

hole is not important, at least for the semiclassical proper-
ties. This means thatHout contains all the information about
the black hole. From this, we expect an isomorphism
between the full state spaceHfull and the state space outside
of the black hole Hout.
Cardy formula calculation of a black hole entropy is

specific for three dimensions only. For three-dimensional
asymptotically anti-de Sitter space-times, the algebra of
asymptotic symmetries is Virasoro with central charges c�.
Asymptotic charges act in whole Hilbert state space,
implying that quantum gravity is 2D CFT. The high-energy,
E ≫ 1, density of states ρðEÞ can be calculated using
modular invariance, which, after using the Boltzmann
formula, leads to the entropy formula

S ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffi
c−L−

0

6

r
þ 2π

ffiffiffiffiffiffiffiffiffiffiffiffi
cþLþ

0

6

r
: ð2:15Þ
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Using the Cardy formula, we reproduce black hole entropy
in all known cases.
The success of the Cardy formula implies that semi-

classical entropy is due to high-energy and angular
momentum, if nonzero, states. This is to be expected,
because for quantum correction to be negligible, meaning
that semiclassical gravity is applicable, the same require-
ments are needed.

III. REVIEW OF THE NECESSARY RESULTS

In this short section, we review the basic results about the
OTT black hole.

A. OTT black hole

The stationary OTT black hole [13], an exact solution of
Bergshoeff-Hohm-Townsend gravity [14] and 3D PGT
[15], is a three-parameter solution defined by the metric

ds2 ¼ N2dt2 − F−2dr2 − r2ðdφþ NφdtÞ2; ð3:1aÞ

where

F ¼ H
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

l2
þ b

2
Hð1þ ηÞ þ b2l2

16
ð1 − ηÞ2 − μη

s
;

N ¼ AF; A ¼ 1þ bl2

4H
ð1 − ηÞ;

Nφ ¼ l
2r2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
ðμ − bHÞ;

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 −

μl2

2
ð1 − ηÞ − b2l4

16
ð1 − ηÞ2

r
: ð3:1bÞ

The roots of N ¼ 0 are

r� ¼ l

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

2

r  
−
bl
2

ffiffiffi
η

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μþ b2l2

4

r !
:

As we already stated, the metric (3.1) depends on three free
parameters, μ, b, and η. For η ¼ 1, the stationary OTT black
hole reduces to the static solution, while for b ¼ 0, it
reduces to the rotating Bañados-Teitelboim-Zanelli (BTZ)
black hole with parameters (m; j), defined by 4Gm ≔ μ

and 4Gj ≔ μl
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
.

The conserved charges of the rotating black hole take the
following form:

E ¼ 1

4G

�
μþ 1

4
b2l2

�
; ð3:2aÞ

J ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q
E: ð3:2bÞ

B. Near-horizon of extremal OTT
and near-horizon algebra

The extremal limit of a stationary OTT black hole can be
achieved in two different ways as shown in Ref. [16]:
(1) The first way imposes the requirement4μþb2l2 ¼ 0.

This leads to a vanishing of both conserved charges,
and consequently the asymptotic symmetry trivializes
as we showed in Ref. [15].

(2) The second way to obtain an extremal black hole is
to set η ¼ 0, which is equivalent to the requirement
that the angular momentum takes the maximal
possible value. This corresponds to the usual pro-
cedure for the Kerr black hole.

In the latter case, after imposing consistent asymptotic
conditions [15], we get that the Poisson bracket algebra of
the well-defined canonical generators takes the form of the
semidirect sum of centrally extended Kac-Moody and
Virasoro algebra without central extension,

fLm; Lng ¼ −iðm − nÞLmþn;

fLm; Jng ¼ inJmþn;

fJm; Jng ¼ −iκmδmþn;0; ð3:3Þ
where the central charge is given by

κ ¼ l
G
: ð3:4Þ

IV. SYMMETRY ALGEBRAS

In this section, we will review some results about
asymptotic and near-horizon symmetry algebras of an
extremal OTT black hole.

A. Algebra of asymptotic symmetries and its reduction
on space of extremal geometries

We start with the quick review of the results obtained in
Ref. [15], which are necessary for further analysis of this
paper. The authors analyzed the asymptotic symmetry of an
OTT black hole and derived the form of asymptotic
symmetry

ξt¼lTþ l5

2r2
∂2
t TþOðr−3Þ; ξφ¼S−

l2

2r2
∂φ2SþOðr−3Þ;

ð4:1Þ

ξr ¼ −lr∂tT þOð1Þ; ð4:2Þ

where functions T and S are subject to the constraints

T� ¼ T � S ∂∓T� ¼ 0; ð4:3Þ

meaning that functions satisfy T� ¼ T�ðx�Þ with x� ¼
t
l � φ. Also, they constructed the generator of the
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symmetry in the framework of Poincaré gauge theory,
which is given by

G̃ ¼ Gþ Γ; ð4:4Þ

Γ ¼
Z

2π

0

ðξtE þ ξφJ Þ: ð4:5Þ

After passing on the Fourier mode of T�, it is obtained that
Fourier modes of Γ, denoted with L�, satisfy the commu-
tation relations of Virasoro algebra with central charges

cþ ¼ c− ¼ 3l
G

: ð4:6Þ

Virasoro algebra is an asymptotic symmetry of an
arbitrary geometry with given asymptotic behavior. But
we want to describe an extremal OTT black hole and need
to further specify boundary conditions which will lead to
asymptotic algebra of extremal geometries.
The condition for obtaining an extremal rotating black

hole is the equality of energy and angular momentum

lE ¼ J; ð4:7Þ

this is the constraint which we will impose on the general
asymptotic algebra of charge. This constraint is realized for
all extremal geometries if and only if the generators satisfy
the same relation

lE ¼ J ; ð4:8Þ

this bring us to the conclusion

ΓðξÞ ¼
Z

2π

0

dφJ
�
ξt

l
þ ξφ

�
¼
Z

2π

0

dϕJ ξϕ½ϕ�; ð4:9Þ

where

ϕ ¼ φþ t
l
: ð4:10Þ

Consequently, charges are of the form

Q½ξϕ� ¼
Z

2π

0

dϕJ ξϕ½ϕ�: ð4:11Þ

This means that asymptotic symmetry of extremal geom-
etries is not full Virasoro algebra but only chiral part Lþ

n ,
which are Fourier modes of Q½ξϕ� defined as
Lþ
n ¼ Q½eðinϕÞ�, with commutation relations

½Lþ
n ; Lþ

m� ¼ ðn −mÞLþ
nþm þ c

12
n3δn;−m; ð4:12Þ

where

c ¼ 3l
G

; ð4:13Þ

while

L−
n ¼ 0: ð4:14Þ

B. Near-horizon symmetry algebra

From original coordinates ðr; t;φÞ to near-horizon
extremal geometry (NHEG) ðρ; τ;ϕÞ we pass after change
of coordinates

t ¼ τ=ϵ2; r ¼ r0 þ ϵρ; φ ¼ ϕ−ΩH
τ

ϵ2
¼ ϕ−

τ

lϵ2
;

ð4:15Þ

and taking limit ϵ → 0; see Ref. [16].
Asymptotic symmetry of NHEG of an extremal OTT is

studied in Ref. [16], and the following symmetry is derived:

ξτ ¼ TðτÞ; ξρ ¼ ρUðϕÞ; ξϕ ¼ SðϕÞ: ð4:16Þ

Further construction of the generator revealed that ξτ is pure
gauge, so we will treat it as zero from now on.
Charges in NHEK are given by

Q½ξτ� ¼ 0; ð4:17Þ

Q½ξρ� ¼ −8a0
Z

2π

0

UðϕÞe1ϕ; ð4:18Þ

Q½ξϕ� ¼ −4a0
Z

2π

0

SðϕÞωi
ϕeiϕ: ð4:19Þ

C. Vacuum

Space-time which belongs to the allowed field configu-
rations, is a solution of a field equations and with minimal
energy is vacuum of a theory. Bearing in mind that we are
interested in state space of the black hole, the first guess in
three space-time dimensions would be a massless BTZ
black hole. Because a massless BTZ does not have a
horizon, it is hard to make sense of a near-horizon limit. For
this reason, another more appropriate candidate for a black
hole vacuum is a massless OTT, which possesses a horizon
even in a massless case because of the presence of a hair
parameter.
The metric of a massless OTT is

ds2 ¼ ðr − r0Þ2
l2

dt2 −
l2

ðr − r0Þ2
dr2 − r2dφ2: ð4:20Þ

The energy and angular momentum of this solution
are zero,
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E ¼ 0; J ¼ 0; ð4:21Þ

as are all other Virasoro charges

Lþ
n ¼ L−

n ¼ 0: ð4:22Þ

When the near-horizon limit is taken,

t¼ τ=ϵ; r¼ r0 þ ϵ
ffiffiffi
ρ

p
; φ¼ ϕ−ΩH

τ

ϵ
¼ ϕ; ð4:23Þ

after the redefinition of τ and l, we obtain

ds2 ¼ ρ

l
dτ2 −

l2

ρ2
dρ2 − r20dϕ

2: ð4:24Þ

This metric belongs to the allowed metrics analyzed in
Ref. [16], and near-horizon values of the charges for this
metric are

Q½ξτ� ¼ Q½ξρ� ¼ Q½ξϕ� ¼ 0: ð4:25Þ

This motivates us to treat a massless OTT as the black hole
vacuum.

V. CONSTRUCTION OF MICROSTATES

This section is devoted to further development of the idea
that state space of the OTT black hole can be constructed
from near-horizon and asymptotic symmetry algebra. From
now on, we pass from the Poisson bracket to the commu-
tator. Commutation relations are the Poisson bracket
multiplied by imaginary unit.

A. Unitary irreducible representations of the in algebra

We will search for the representations of the following
algebra:

½Ln; Lm� ¼ ðn −mÞLnþm; ½Jn; Jm� ¼ nδnþm;0;

½Ln; Jm� ¼ −mJnþm: ð5:1Þ

Note that we redefined Jn so that the ones we use in the rest
of the paper are divided with

ffiffiffi
κ

p
; this is the reason for the

absence of central charge κ in previous commutation
relations.
The reality of charges on the quantum level becomes the

condition

J†n ¼ J−n; L
†
n ¼ L−n: ð5:2Þ

We construct irreducible representation starting from the
highest state vector jj; li, which satisfies

J0jj; li ¼ jjj; hi; L0jj; hi ¼ hjj; hi: ð5:3Þ

The operators with positive n we interpret as annihilation
operators

Jnjj; hi ¼ Lnjj; hi ¼ 0; n > 0; ð5:4Þ

and operators with negative n we interpret as creation
operators. Then, we construct the whole representation by
acting with creation operators

J−n; L−n; n > 0; ð5:5Þ

the arbitrary state is of the form

L−k1…L−kiJ−n1…J−nm jj; li: ð5:6Þ

Because Virasoro algebra has zero central charge norm of
the state L−njj; li is zero,

kL−njj; hik2 ¼ hj; hj½Ln; L−n�jj; li ¼ 0: ð5:7Þ

Consequently, unitarity implies that the Virasoro part,
except L0, of the near-horizon algebra is trivially repre-
sented. The expectation value in the vacuum state of L0

gives the classical value of Lclassical
0 in vacuum, which is

equal to

hj; hjL0jj; hi ¼ Lclassical
0 ¼ 0; ð5:8Þ

this implies

h ¼ 0: ð5:9Þ

Consequently, the generic vector in irreducible representa-
tion is a linear combination of vectors of the form

jfkigi ¼ Jk1…J−ki jj; 0i: ð5:10Þ

We assume that in state space is a unitary irreducible
representation of in algebra, which we constructed pre-
viously. The structure of the in Hilbert space is of the form

Hin ¼⊕ HðnÞ; ð5:11Þ

this is a structure of the Fock space.

B. Unitary irreducible representations
of the out algebra

The same as we do in the case of in state space, we
assume that out space is a unitary irreducible representation
of out algebra. First, we need to specify what is our out
algebra. The uð1Þ Kac-Moody algebra is certainly present;
the problematic part is Virasoro algebra. Comparing
charges of asymptotic and near-horizon Virasoro algebra.
we see that they share the same structure. This motivates us
to interpret them as charges of the same transformation.
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Further argument, supporting this claim, is that near-
horizon and asymptotic charges have the same value on
OTT background. So, we come to the conclusion that
Virasoro algebra acting on out space is the sum of
asymptotic and near-horizon algebras

Ln ¼ Las
n − Lnh

n ; ð5:12Þ

with commutation relations

½Ln; Lm� ¼ ðn −mÞLnþm þ c
12

n3δnþm;0; ð5:13Þ

where the central charge is the same as the one of
asymptotic algebra

c ¼ 3l
G

: ð5:14Þ

Because near-horizon and asymptotic charges of the
Virasoro algebra have the same values on the OTT black
hole solution [15,16], recalling the discussion of Sec. II, we
derive that values of Virasoro charges on OTT background
are zero,

LnjOTT ¼ 0: ð5:15Þ

Classical values of the charges are expectation values of the
corresponding operators in state describing the desired
geometry, in our case the OTT black hole

hLniOTT ¼ LnjOTT: ð5:16Þ

To enforce the previous relations, we are forced to give a
further restriction on the relevant representations of out
algebra. We demand that Virasoro algebra is trivially
represented. Representation of uð1Þ Kac-Moody algebra
is constructed from vacuum jji,

J0jji ¼ jjji; ð5:17Þ

Jkjji ¼ 0; k > 0; ð5:18Þ

and the rest of states are constructed by acting with creation
operators J−k, k > 0,

jfnmgi ¼ J−n1…J−nm jj; 0i: ð5:19Þ

Now, after we determined relevant irreducible representa-
tions of the out algebra, we proceed with construction of the
complete state space.

C. Hilbert state space

We construct the state space of the OTT black hole using
insight from Sec. II, in which we came to some general
conclusions. Hilbert state space is of the form

Hfull ¼ Hin ⊗ Hout=Constraint ðContinuity of chargesÞ;
ð5:20Þ

states in Hin we denote with jfkigi, states in Hout are
labeled by jfnigi, and the tensor product state we label with

jfkigi ⊗ jfnigi ¼ jfkig; fnigi: ð5:21Þ

On the classical level, the constraint is that Qas½ξr� ¼
Qfull½ξr� is small gauge from the infinity perspective, i.e.,
zero, and that Qin½ξr� ¼ −Qout½ξr�. On the quantum level,
we enforce this by requiring that Jfulln annihilates all states
in full state space for every non-negative n. Demanding that
Jfulln annihilates physical states for every n is too strong a
demand that trivializes state space. Our approach is similar
to Gupta-Bleuler quantization of electromagnetic field.
Acting on states which are the tensor product of in and

out states, this translates into

Jfulln jfkig;fnigi¼ðJinn ⊗I−I⊗Joutn Þjfkig;fnigi¼0; n≥0:

ð5:22Þ

If we take J0 in the previous constraint, we derive that both
Hin and Hout have the same value of j; they are repre-
sentations with the same highest weight.
Further constraints, for n > 0, acting on states of this

form gives the following restriction:

fkig ¼ fnig: ð5:23Þ

This has the important consequence that the generic state in
Hfull is of the form

jfnig; fnigi: ð5:24Þ

We also have

hfnigjJ0jfnigi ¼ Jclassical0 ¼ 0; ð5:25Þ

from which we conclude that

j ¼ 0: ð5:26Þ

We introduce creation a−n and annihilation an operators
acting on Hfull, which create and annihilate modes in state
space of the black hole

a−nj0i ¼ jn; ni: ð5:27Þ

These operators satisfy the same commutation relations
as Jn,

½an; am� ¼ nδnþm;0: ð5:28Þ
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In the end, we note that we have isomorphism

Hfull ≅ Hin ≅ Hout; ð5:29Þ

the isomorphism is realized by

j0i ≅ j0iin ≅ j0iout ð5:30Þ

an ≅ Jinn ≅ Joutn : ð5:31Þ

Interpretation of this result is that the black hole can
effectively be described by the scalar near-horizon degree
of freedom propagating in two-dimensional t − φ space-
time. Carlip [17] arrived at a similar conclusion in his
analysis of asymptotic dynamics of radial diffeomor-
phisms. The presence of a boundary breaks radial diffeo-
morphisms and leads to the appearance of dynamical
degrees of freedom on a boundary.
Recently, Hamiltonian reduction was applied to general

relativity in three dimensions [18] in which horizon is
treated as a boundary with specific boundary conditions.
The authors obtained that, in the set up of their paper, the
dynamics of a black hole is effectively described by
Floreanini-Jackiw scalar theory on the horizon.

D. Action of asymptotic algebra on state space

Now, we have to specify how the asymptotic algebra,
which is Virasoro in our case, acts in state space Hfull.
Because state space Hfull is constructed solely from the
action of uð1Þ Kac-Moody algebra, this implies that
Virasoro algebra can be constructed from Kac-Moody
algebra. We will now do this using the well-known
Sugawara-Sommerfeld construction [19]. This is the same
as the approach taken in Ref. [3].
Operators Lð1Þ

n of the Virasoro algebra with central
charge c ¼ 1 are given as a bilinear combination of
Kac-Moody operators

Lð1Þ
n ¼ 1

2

X∞
p¼−∞

∶an−pap∶; ð5:32Þ

where ∶∶ stands for normal ordering.
Virasoro algebra with arbitrary integer central charge c

can be obtained in the manner [20]

LðcÞ
n ¼ 1

c
Lð1Þ
cn ð5:33Þ

or explicitly

LðcÞ
n ¼ 1

2c

X∞
p¼−∞

∶acn−pap∶: ð5:34Þ

The representation of the asymptotic Virasoro algebra is
identified as

Lþ
n ¼ LðcÞ

n ; ð5:35Þ

with the assumption that central charge is an integer, which
is supported by the results in Ref. [21]. Because we do not
have a full microscopical description, we are not able to
deduce the origin of central charge. We, nonetheless, have
its value from the asymptotic analysis.
For us, the most important operator is Virasoro zero

mode

LðcÞ
0 ¼ 1

c

X∞
p¼0

a−pap ¼ 1

c
N; ð5:36Þ

where we introduced the number operator

N ¼
X∞
p¼0

a−pap: ð5:37Þ

Generic state is linear combination of states of the formP
ia

†
ni j0i, for which we define the level as the

P
ini. The

number operator, as the name suggests, counts to which
level state belongs which is obvious from the commutation
relation

½N; an� ¼ −nan ð5:38Þ

and the construction of the unitary irreducible representa-
tions of uð1Þ Kac-Moody algebra.

E. Microstate counting

We start from the well-known observation that the
classical value of charge is given by the expectation value
of the corresponding quantum generator in the correct
microstate. Because states in Hfull are a linear combination
of jfkigi, it is natural to interpret them as the underlying
states of an OTT black hole. Quantitatively, this discussion
is expressed as

hfkigjLþ
n jfkigi ¼ δn;0L

þ
0 ¼ δn;0

r20
2lG

: ð5:39Þ

Alternatively, from Sugawara-Sommerfeld construction of
Virasoro algebra, we obtain

hfkigjLþ
n jfkigi ¼ δn;0

1

c
hfkigjNjfkigi ¼ δn;0

1

c

X
ki:

ð5:40Þ

From the previous relations, we conclude that

k ¼
X

ki ¼ cLþ
0 : ð5:41Þ

Assuming k ≫ 1, we can use the Hardy-Ramanujan for-
mula for the number of partitions [k] of natural number k,
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which states that the [k] is asymptotically

½k� ∝ 1

4
ffiffiffi
3

p
k
e2π

ffiffi
k
6

p
: ð5:42Þ

In fact, it is expected for both c and L0 to be separately
much larger than 1, so our assumption is a very reason-
able one.
The Boltzmann formula for entropy from the number of

microstates W,

S ¼ lnW; ð5:43Þ

after identification W ¼ ½k� gives

S ¼ 2π

ffiffiffiffiffiffiffiffiffi
cLþ

0

6

r
; ð5:44Þ

which is the same as the entropy obtained in Refs. [15,16]
by different methods.

VI. CONCLUSION

We constructed the state space of an extremal OTT black
hole using its asymptotic and near-horizon symmetry
algebras. The crucial difference between asymptotic and
near-horizon algebra is the presence of uð1Þ Kac-Moody
algebra in the latter, which can be identified as an algebra of
creation and annihilation operators. The Virasoro part of
asymptotic and near-horizon algebra is recognized as the
charges of the same transformation calculated at infinity
and at the horizon. We further assumed that state space is
constructed from unitary irreducible representations of in
and out algebras of symmetry.

The classically observable quantities of the black hole
are conserved charges far away from the horizon, meaning
that we will differentiate only black holes with different
values of asymptotic charges. This way, we identified the
microstates which correspond to the same macrostate, and
using the Boltzmann formula, we reproduced the black hole
entropy.
This construction is essentially quantum, although we

did not include any quantum corrections, because we
worked with Hilbert spaces, which is in line with our
understanding that black hole entropy is quantum in nature.
We also obtained that there is isomorphism of full state

space with state spaces inside and outside of a black hole.
This is in agreement with discussion of Sec. II, in which we
concluded that knowledge of the exterior of a black hole
should be sufficient for a derivation of a black hole entropy
in semiclassical approximation.
This approach essentially relies on the existence of uð1Þ

Kac-Moody near-horizon algebra of radial diffeomor-
phisms and anti-de Sitter asymptotic; consequently, it is
expected that this analysis can be applied, possibly with
some modifications, in any case which fulfilling previously
mentioned requirements. For example, this approach
should be applicable to extremal BTZ with(out) tor-
sion [22].
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