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In this work, based on the constant for the equation of state ω, we obtain the Schwarzschild-like black
hole solutions in some dark matter halos. We also generalize these black hole metrics to Kerr-like black
hole solutions with Newman-Janis algorithm. For an example, we derive the specific black hole space-time
metrics in the case of the cold dark matter halo and Bose-Einstein condensation dark matter halo. Following
the above two black hole metrics, we discuss how a dark matter halo changes the properties of black holes,
including the event horizon structure (these results agree with that obtained by Liu and Zhang [Phys. Lett. B
679, 88 (2009).] in the case of gravitational collapse), stationary limit surfaces, ergosphere, and singularity
structure. Our results may help us understand the interaction between the dark matter halo and
supermassive black holes at the centers of galaxies.
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I. INTRODUCTION

Astronomical observations show that the matter compo-
sition of our Universe consists mainly of 4.9% baryon
matter, 26.8% dark matter, and 68.3% dark energy [1]. For
galaxies, the effects of dark matter are extremely important.
Here, we introduce the dark matter model and its problems
[2,3]. Because of the rotation curves of galaxies, the mass-
light ratio of elliptical galaxies, the cosmic microwave
background radiation, and the large-scale structure of the
Universe, a lot of research has been done on dark matter
and proposed various dark matter models, such as the cold
dark matter (CDM) model [4,5], warm dark matter model
[6,7], self-interacting dark matter model [8], Bose-Einstein
condensation (BEC) dark matter (DM) model [9–12],
modified Newtonian dynamic model [13], and superfluid
dark matter model [14]. Astronomers are concerned with
the spatial density distribution of dark matter. On a large
scale (for example, the outer edges of galaxies and clusters
of galaxies), the spatial density distribution of this dark
matter has been well understood [1], but the spatial density
distribution of dark matter is not clear when it is close a
supermassive black hole (SMBH) or the central part of the
galaxy [3]. Therefore, how dark matter is distributed near

the black hole becomes an interesting and important
problem. It is generally believed that, due to the existence
of black holes, the spike phenomenon occurs in the
distribution of dark matter near the black hole [15,16].
On the other hand, the existence of black holes is

widely established [17–20], due to the observation of the
orbital motion of the S-stars in the center of the Milky Way
[21–23], the observations of Laser Interferometer
Gravitational Wave Observatory on gravitational waves,
and the study of active galactic nuclei. Recently, the Event
Horizon Telescope observed the black hole shadow inM87,
which further confirms the existence of black holes [24].
Because there is a lot of dark matter around the black hole
at the center of the galaxy, how dark matter changes the
black hole space-time is an interesting problem. So far, this
issue has been studied from the following aspects. First,
in the early time of black hole formation, dark matter
makes black holes grow faster and makes it easier to form
SMBHs in the early Universe [25–28]. On the other hand,
Refs. [29,30] (and many references therein) do offer other
density profiles consistent with rapid black hole growth in
the nonrelativistic case. Second, the presence of dark matter
changes the space-time structure of black holes in principle,
but there are still some problems in these studies. One of the
most important issues is how to solve the Einstein’s field
equation when considering the dark matter background. In
fact, in the case of gravitational collapse, Ref. [31] found

*xuzy@ihep.ac.cn
†zhangsn@ihep.ac.cn
‡xbgong@ynao.ac.cn

PHYSICAL REVIEW D 101, 024029 (2020)

2470-0010=2020=101(2)=024029(9) 024029-1 © 2020 American Physical Society

https://orcid.org/0000-0002-3628-0820
https://orcid.org/0000-0001-5586-1017
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.024029&domain=pdf&date_stamp=2020-01-09
https://doi.org/10.1016/j.physletb.2009.07.033
https://doi.org/10.1016/j.physletb.2009.07.033
https://doi.org/10.1103/PhysRevD.101.024029
https://doi.org/10.1103/PhysRevD.101.024029
https://doi.org/10.1103/PhysRevD.101.024029
https://doi.org/10.1103/PhysRevD.101.024029


that the distribution of external matter changes the internal
metric. For example, the external matter causes the event
horizon of the black hole to expand. But they did not get the
external matter to change the metric of the Kerr black hole.
At the same time, they did not consider the more general
matter distribution case such as dark matter distribution.
Recently, Ref. [32] did some work in this area, but it only
considered the special case of fðrÞ ¼ gðrÞ, where fðrÞ and
gðrÞ are metric coefficients. In fact, when considering the
dark matter halo, fðrÞ ≠ gðrÞ, and we still do not know
how dark matter changes the space-time structure of black
holes. In this work, we develop an asymptotic expansion
method to study this problem.
The structure of the article is as follows. In Sec. II, we

introduce the dark matter density distributions. In Sec. III,
by solving the Einstein’s field equation, we obtain the
Schwarzschild-like black hole solutions in the dark matter
halos. In Sec. IV, through the Newman-Janis (NJ) algo-
rithm, we obtain a Kerr-like black hole solution in the
dark matter halo. In Sec. V, we discuss the event horizons,
stationary limit surfaces, ergospheres, and singularities of
these black holes. The summary is in Sec. VI.

II. DARK MATTER DENSITY PROFILE

A. CDM and NFW profile

At the galaxy scale, the behavior of dark matter is
mainly reflected in the density distribution. For the CDM
model, the corresponding distribution is the Navarro-
Frenk-White (NFW) profile [4,5]. This density profile is
derived from a numerical simulation based on the ΛCDM
model (Λ is the cosmological constant), and its mathemati-
cal expression is

ρNFW ¼ ρs
r
Rs
ð1þ r

Rs
Þ2 ; ð1Þ

where ρs is the critical density and Rs is the scale radius.
From the NFW profile [Eq. (1)], we can learn that when r
approaches to 0 the dark matter density tends to infinity.
This is the so-called cusp phenomenon [3,33].

B. BEC DM and Thomas-Fermi profile

For the BEC DM model, the dark matter density
distribution becomes more interesting [9–12,34]. In this
model, when the scale is large (such as outside the galaxy,
galaxy group, and Universe), the behavior of dark matter is
consistent with the CDM model. But when r approaches
to 0, the dark matter density approaches to constant. For the
BEC DM model, the dark matter density profile [Thomas-
Fermi (TF) approximation] is

ρTF ¼ ρs
sinðkrÞ
kr

; ð2Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm3=ℏ2a

p
¼ π=R, ρs is the center density of

BEC DM and R is the radius when the dark matter pressure
and density are zero.m is mass of the ultralight particle, and
a is the Compton scattering length.

III. SCHWARZSCHILD-LIKE BLACK HOLE
METRIC IN DARK MATTER HALO

For the case of a Schwarzschild-like black hole, the
space-time metric can be expressed as

ds2 ¼ −fðrÞdt2 þ 1

gðrÞ dr
2 þ r2dΩ2; ð3Þ

where dΩ2 ¼ dθ2 þ sin2 θdϕ2 and fðrÞ and gðrÞ are space-
time coefficients. For the convenience of calculation, we
rewrite them as

fðrÞ ¼ e2ΦðrÞ ð4Þ

and

gðrÞ ¼ 1 −
BðrÞ
r

; ð5Þ

where ΦðrÞ and BðrÞ are the functions of r, which are
determined by Einstein’s field equation and the equation of
state. We all know that when we do not consider dark
matter the above black hole solution will degenerate into
the Schwarzschild solution; then, ΦðrÞ ¼ lnð1 − 2M=rÞ
and BðrÞ ¼ 2M, where M is the black hole mass.
For a general dark matter density distribution, the

energy-momentum tensor can be written as Tμν ¼ diagð−ρ;
Pr; Pθ; PϕÞ. Under these simplifications, Einstein’s field
equation Gμν ¼ 8πTμν will become the following form:

8πρðrÞ ¼ B0ðrÞ
r2

; ð6Þ

8πPrðrÞ ¼ −
BðrÞ
r3

þ 2

�
1 −

BðrÞ
r

�
Φ0ðrÞ
r

; ð7Þ

8πPθðrÞ ¼ 8πPϕðrÞ

¼
�
1 −

BðrÞ
r

��
Φ00ðrÞ þΦ02ðrÞ

−
rB0ðrÞ − BðrÞ
2rðr − BðrÞÞ Φ

0ðrÞ

−
rB0ðrÞ − BðrÞ
2r2ðr − BðrÞÞ þ

Φ0ðrÞ
r

�
: ð8Þ

To solve the above equations, we need to know the
equation of state, which is the relationship between density
and pressure. In this work, we use the equation of state
PrðrÞ ¼ ωðrÞρðrÞ, where ωðrÞ is the function of r. For a
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general case, due to the requirement of the asymptotic
expansion method, ωðrÞ will satisfy a certain condition.
But for the sake of simplicity, we only consider the constant
case. Through energy-momentum tensor conversation law
Tμν
;ν ¼ 0, we get the following equation:

P0
r ¼ −ðPr þ ρÞΦ0 þ 2ðPθ − PrÞ

r
: ð9Þ

This equation can be understood as a relativistic Euler
equation. If we consider the isotropic pressure Pθ ¼ Pr, we
can get a lot of black hole solutions. In our study, we do not
think about this case. On the other hand, combining the
equation of state ωðrÞ and the gravitational field equation
[Eqs. (6) and (7)], we obtain

Φ0ðrÞ ¼ BðrÞ
2r2ð1 − BðrÞ=rÞ þ ωðrÞ rB0ðrÞ

2r2ð1 − BðrÞ=rÞ : ð10Þ

If the dark matter density is not considered, the black hole
solution degenerates to the Schwarzschild black hole
(ρs ¼ 0). For the dark matter case, we are going to use
the following steps to get the black hole solution. First,
substituting the dark matter density distribution into
Eq. (6), we get the function BðrÞ. Second, substituting
BðrÞ into Eq. (10), we obtain Φ0ðrÞ. To get an analytic
expression of ΦðrÞ, we have to deal with a complicated
integral. Here, we use asymptotic expansion to obtain the
analytic expression of ΦðrÞ. In this work, we consider a
general dark matter distribution near the black hole, and
this distribution satisfies the following condition: when r
tends to infinity, the dark matter density ρðrÞ → 0. As far as
we know, all dark matter distributions satisfy this condition.
For the sake of convenience, we set BðrÞ ¼ 2M þ KðrÞ.
The asymptotic form of the function Φ0ðrÞ is analyzed

by means of series expansion (which is in powers of KðrÞ
r−2M).

The result is

2Φ0ðrÞ ¼
�
2M
r2

þ KðrÞ þ rωðrÞK0ðrÞ
r2

�
1

1 − 2M
r − KðrÞ

r

¼
�
2M
r2

þ KðrÞ þ rωðrÞK0ðrÞ
r2

� r
r−2M

1 − KðrÞ
r−2M

¼
�
2M
r2

þ KðrÞ þ rωðrÞK0ðrÞ
r2

�
r

r − 2M

�
1þ KðrÞ

r − 2M
þ
�

KðrÞ
r − 2M

�
2

þ
�

KðrÞ
r − 2M

�
3

þ o

��
KðrÞ

r − 2M

�
3
��

¼ 2M
rðr − 2MÞ þ

K þ rωK0

rðr − 2MÞ þ
Kð2M þ K þ rωK0Þ

rðr − 2MÞ2 þ � � � : ð11Þ

The function ωðrÞ satisfies

KðrÞ þ rωðrÞK0ðrÞ < r2: ð12Þ

Where X0 ¼ dX=dr, the X can be KðrÞ, ΦðrÞ, BðrÞ, or PrðrÞ. From Eqs. (6) and (7), we find that if ρs ¼ 0 then
2Φ0ðrÞ ¼ 2M=ðrðr − 2MÞÞ, fðrÞ ¼ e2Φ ¼ 1 − 2M=r. This is the Schwarzschild black hole solution.
Next, we calculate the Schwarzschild-like black hole solutions in dark matter halos, and these dark matter density profiles

include the NFW profile and TF profile. From now on, we take the equation of state as a constant ωðrÞ ¼ ω.

A. Case I NFW profile

For a CDM halo, from Eqs. (1), (6), and (11), we obtain

BðrÞ ¼ 2M þ KðrÞ ¼ 2M þ 8π

Z
r2ρNFWdr ¼ 2M þ 8πρsR3

s

�
ln

�
1þ r

Rs

�
þ Rs

rþ Rs
− 1

�
; ð13Þ

KðrÞ ¼ 8πρsR3
s

�
ln
�
1þ r

Rs

�
þ Rs

rþ Rs
− 1

�
; ð14Þ

fðrÞ ¼ e2Φ ¼
�
1 −

2M
r

�
× r−

4πρsR3
s

M × ðrþ RsÞ−
8πρsR3s ðω−Rs−2MÞ

ðRsþ2MÞ2 × ðr − 2MÞ
8πρsR3s ðωþRsþ

R2s
2MÞ

ðRsþ2MÞ2 × Exp

�
8πρsR3

sω

Rs þ 2M
1

rþ Rs
þ 4πρsR3

s

M

×

�
ln

�
1þ r

Rs

�
× ln

�jr − 2Mj
Rs þ 2M

�
þ PolyLog

�
2;−

r
Rs

�
þ PolyLog

�
2;

rþ Rs

Rs þ 2M

���
; ð15Þ
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where PolyLogðn; xÞ represents the polylogarithm function LinðxÞ of index n at the point x. Specifically, they are
PolyLogð2;−r=RsÞ ¼

P∞
k¼1

1
k2 ð− r

Rs
Þk and PolyLogð2; rþRs

Rsþ2MÞ ¼
P∞

k¼1
1
k2 ð rþRs

Rsþ2MÞk. When r ∼ 0, PolyLogð2;−r=RsÞ ∼ 0; if

r ∼ Rs, the PolyLogð2;−r=RsÞ ∼ − π2

12
; when r ∼ 2M, then PolyLogð2; rþRs

Rsþ2MÞ ¼ PolyLogð2; 1Þ ¼ π2

6
.

B. Case II TF profile

For a BEC DM halo, from Eqs. (2), (6), and (11), we obtain

BðrÞ ¼ 2M þ KðrÞ ¼ 2M þ 8π

Z
r2ρTFdr ¼ 2M þ 8GρsR3

π2

�
sin

�
πr
R

�
−
πr
R
cos

�
πr
R

��
; ð16Þ

KðrÞ ¼ 8GρsR3

π2

�
sin

�
πr
R

�
−
πr
R
cos

�
πr
R

��
; ð17Þ

fðrÞ ¼ e2Φ ¼
�
1 −

2M
r

�
× Exp

�
8ρsR2ω

π
cos

�
πr
R

�
−

1

2M
Ci

�
π

R
ðr − 2MÞ

�
×

�
−
16MGρsR2

π
cos

�
2Mπ

R

�

þ 8ρsR

�
GR2

π2
þ 4M2ω

�
sin

�
2Mπ

R

��
þ 4GρsR3

Mπ2
Si

�
πr
R

�
−
4GρsR3

Mπ2
cos

�
2Mπ

R

�
Si

�
π

R
ðr − 2MÞ

�

− 16MρsRω cos

�
2Mπ

R

�
Si

�
π

R
ðr − 2MÞ

�
−
8GρsR2

π
sin

�
2Mπ

R

�
Si

�
π

R
ðr − 2MÞ

��
; ð18Þ

where Si½x� ¼ R sinðxÞ
x dx and Ci½x� ¼ R cosðxÞ

x dx.

IV. KERR-LIKE BLACK HOLE METRIC IN DARK
MATTER HALO

In Sec. III, we obtained the Schwarzschild-like black
hole solutions in dark matter halos. Here, we use the NJ
algorithm to generalize them to the rotation black hole case.
Regarding the NJ algorithm, a lot of research and appli-
cations have been done [35–39].
For the first step of the NJ algorithm, it needs to transform

the Schwarzschild-like black hole (3) to advanced null
coordinates ðu; r; θ;ϕÞ by the following relation:

du ¼ dt −
1

fðrÞgðrÞ dr: ð19Þ

Under the null tetrad, the inverse metric can be written as

gμν ¼ −lμnν − lνnμ þmμmν þmνmμ; ð20Þ
with lμ, nμ, mμ, and mμ being

lμ ¼ δμr ;

nμ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ
gðrÞ

s
δμμ −

fðrÞ
2

δμr ;

mμ ¼ 1ffiffiffi
2

p
r
δμθ þ

iffiffiffi
2

p
r sin θ

δμϕ;

m̄μ ¼ 1ffiffiffi
2

p
r
δμθ −

iffiffiffi
2

p
r sin θ

δμϕ: ð21Þ

In the null tetrad, these null vectors satisfy lμlμ ¼ nμnμ ¼
mμmμ ¼ 0, lμnμ ¼ −mμmμ ¼ 1, and lμmμ ¼ nμmμ ¼ 0.
Next, we make a complex transformation,

u → u − ia cos θ;

r → rþ ia cos θ; ð22Þ

then, we assume that these metric coefficients fðrÞ, gðrÞ, and
hðrÞð¼ r2Þ can be transformed to Fðr; θ; aÞ, Gðr; θ; aÞ, and
Ψðr; θ; aÞ. In the new coordinate system, the null tetrad can
be written as

lμ ¼ δμr ;

nμ ¼
ffiffiffiffi
G
F

r
δμμ −

F
2
δμr ;

mμ ¼ 1ffiffiffiffiffiffi
2Ψ

p
�
δμθ þ ia sin θðδμμ − δμrÞ þ i

sin θ
δμϕ

�
;

m̄μ ¼ 1ffiffiffiffiffiffi
2Ψ

p
�
δμθ − ia sin θðδμμ − δμrÞ − i

sin θ
δμϕ

�
: ð23Þ

Based on the transformed vectors (23), we obtain
the nonzero components of metric tensor gμν, and
they are
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guu ¼ a2sin2θ
Ψ

; gθθ ¼ 1

Ψ
;

gur ¼ gru ¼
ffiffiffiffi
G
F

r
−
a2sin2θ

Ψ
;

gϕϕ ¼ 1

Ψsin2θ
; guϕ ¼ gϕu ¼ a

Ψ
;

grϕ ¼ gϕr ¼ a
Ψ
; grr ¼ Gþ a2sin2θ

Ψ
: ð24Þ

Therefore, the Kerr-like black hole in Eddington-Finkelstein
coordinates is

ds2 ¼ −Fdu2 þ 2

ffiffiffiffi
F
G

r
dudrþ 2asin2θ

� ffiffiffiffi
F
G

r
þ F

�
dudϕ

− 2asin2θ

ffiffiffiffi
F
G

r
drdϕþ Ψdθ2

− sin2θ

�
−Ψþ a2sin2θ

�
2

ffiffiffiffi
F
G

r
þ F

��
dϕ2: ð25Þ

If setting kðrÞ ¼ r2
ffiffiffiffiffiffiffiffiffi
fðrÞp

=
ffiffiffiffiffiffiffiffiffi
gðrÞp

, we can convert the Kerr-
like black hole (25) to Boyer-Lindquist coordinates by the
transformation

du ¼ dt −
kþ a2

r2fðrÞ þ a2
dr;

dϕ ¼ dϕ −
a

r2fðrÞ þ a2
dr; ð26Þ

and we choose

Fðr; θÞ ¼ −
r2fðrÞ þ a2cos2θ
kðrÞ þ a2cos2θ

Ψ;

Gðr; θÞ ¼ −
r2fðrÞ þ a2cos2θ

Ψ
: ð27Þ

At the same time, we set Σ2 ¼ kðrÞ þ a2 cos2 θ, 2f̄ ¼
kðrÞ − r2fðrÞ, ΔðrÞ¼ r2fðrÞþa2, and A ¼ ðkðrÞ þ a2Þ2−
a2Δ sin2 θ. We obtain the Kerr-like black hole metric

ds2 ¼ −
Ψ
Σ2

�
1 −

2f̄
Σ2

�
dt2 þΨ

Δ
dr2 −

4af̄sin2θΨ
Σ4

dtdϕ

þΨdθ2 þ ΨAsin2θ
Σ4

dϕ2: ð28Þ

According to Refs. [36,38], because the metric (28)
is rotational symmetric, Grθ ¼ 0. On the other hand, the
metric (28) should satisfy Einstein’s field equation
Gμν ¼ 8πTμν. For black hole metric (28), these conditions
reduce to

ðkþ a2y2Þ2ð3Ψ;rΨ;y2 − 2ΨΨ;ry2Þ ¼ 3a2k;rΨ2; ð29Þ

and

Ψ½k2;r þ kð2 − k;rrÞ − a2y2ð2þ k;rrÞ�
þ ðkþ a2y2Þð4y2Ψ;y2 − k;rΨ;rÞ ¼ 0; ð30Þ

where y ¼ cos θ,Ψ;ry2 ¼ ∂2Ψ=∂r∂y2, and k;r ¼ ∂kðrÞ=∂r.
For the rotation black hole surrounded by a CDM halo and
BEC DM halo, the function kðrÞ ¼ r2

ffiffiffiffiffiffiffiffiffi
fðrÞp

=
ffiffiffiffiffiffiffiffiffi
gðrÞp

is so
complicated that Eqs. (29) and (30) have no analytic
solution. From Sec. III, we know that our black hole
solutions satisfy asymptotic conditions. Under the asymp-
totic conditions, the metric coefficients approximately
satisfy fðrÞ ≈ gðrÞ; therefore, kðrÞ ≈ r2. Combining
Eqs. (29) and (30), we obtain Ψ ¼ r2 þ a2 y2. Another
reason why the above approximation is valid is that
perturbation conditions can be considered when there is
very little DM in the vicinity of the black hole.
Under above approximation condition, for the CDM halo

and BEC DM halo, we give an analytical expression,

ds2¼−
r2gðrÞþa2cos2θ

Σ2
dt2þ Σ2

r2gðrÞþa2
dr2

−
2asin2θðkðrÞ−r2gðrÞÞ

Σ2
dϕdtþΣ2dθ2

þΣ2sin2θ

�
1þa2sin2θ

2kðrÞ−r2gðrÞþa2cos2θ
Σ2

dϕ2

�
;

ð31Þ

where Σ2¼kðrÞþa2cos2θ, kðrÞ≈r2 andΔ ¼ r2gðrÞ þ a2.
When we do not consider dark matter, the black hole metric
will degenerate into a Kerr black hole. For the CDM halo
and BEC DM halo, we can get specific expressions [we
substitute the corresponding fðrÞ and gðrÞ, Eqs. (13)–(18),
into Eq. (31) to get the specific expressions]. These black
hole solutions describe the interaction between the spinning
black hole and the dark matter halo; therefore, they should
have some implications for understanding how dark matter
affects black holes.

V. BLACK HOLE PROPERTIES

We obtain black hole solutions in dark matter halos,
which include Schwarzschild-like and Kerr-like situations.
For an example, we deduce the black hole metrics in the
CDM halo and the BEC DM halo. In these black hole
metrics, the interaction between dark matter and black
holes is considered. Therefore, by analyzing the nature of
these black holes, we can understand how dark matter
changes the nature of black holes. In the following, we
analyze the black hole horizon structure, stationary limit
surfaces, ergosphere, and singularity structure. Since the
actual dark matter models only change the black holes very
little, we will calculate these properties by choosing
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some toy parameters values (excluding Fig. 4). For the
NFW profile, we choose qNFW ¼ 3.65 × 1016 M⊙ and
Rs ¼ 5.7 × 10−4 Kpc [for the low surface brightness
(LSB) galaxy ESO1200211, qNFW ¼ 3.65 × 108 M⊙,
MBH ¼ 1 × 106 M⊙, ρs ¼ 2.45 × 10−3 M⊙=pc3, and
Rs ¼ 5.7 Kpc] [40,41], where M⊙ is the mass of the
Sun. For the TF profile, we choose qTF¼3.4×1021M⊙
and R ¼ 2.92 × 10−4 Kpc (for the LSB galaxy
ESO1200211, qTF ¼ 3.4 × 108 M⊙, MBH ¼ 1 × 106 M⊙,
ρs ¼ 13.66 × 10−3 M⊙=pc3, and R ¼ 2.92 Kpc) [40,41].
To change the natural system of units to the international

system of units, we replace BðrÞ ¼ 2M þ KðrÞ with
G
c2 BðrÞ ¼ 2GM

c2 þ GKðrÞ
c2 , where c is the speed of light.

A. Event horizon

It is generally believed that the presence of a dark matter
halo does not change the number of black hole horizons,
like the Kerr black hole, which has two horizons, i.e., the
Cauchy horizon r−EHðDMÞ and event horizon rEHðDMÞ.
The nature of these horizons is precisely determined by the
following equation: Δ ¼ r2gðrÞ þ a2 ¼ 0. Specifically, for
the CDM halo situation, the black hole horizon is described

FIG. 2. The behavior of stationary limit surfaces rSLSðDMÞ with black hole spin a and dark matter parameters q ¼ ρsR3
s , where

θ ¼ π=3, qNFW ¼ 3.65 × 1016 M⊙, Rs ¼ 5.7 × 10−4 Kpc, qTF ¼ 3.4 × 1021 M⊙, R ¼ 2.92 × 10−4 Kpc, and the black hole mass
M ¼ 106 M⊙.

FIG. 1. The behavior of event horizon rEHðDMÞ with black hole spin a and dark matter parameter q ¼ ρsR3
s, where

qNFW ¼ 3.65 × 1016 M⊙, Rs ¼ 5.7 × 10−4 Kpc, qTF ¼ 3.4 × 1021 M⊙, R ¼ 2.92 × 10−4 Kpc, and the black hole mass M ¼ 106 M⊙.
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by the roots of the following equation: r2 − 2GMr
c2 −

8πGρsR3
s

c2 ½r lnð1þ r=RsÞ þ rRs=ðrþ RsÞ − r� þ a2 ¼ 0. For
the BEC DM halo situation, the equation becomes
r2− 2GMr

c2 − 8G2ρsR3=ðπ2c2Þ× ½ðsinðπr=RÞ−πr=Rcosðπr=
RÞ�rþa2 ¼ 0. The behavior of the black hole horizon is
determined by the black hole mass M, black hole spin a,
dark matter characteristic density ρs, and scale radius Rs (or
R). We obtain a schematic of the event horizon in Fig. 1,
and we find that the dark matter halos increase the black
hole horizon radius, and the CDM has a greater impact than
the BEC DM. Qualitatively, these results (event horizon
expansion for the black hole in the dark matter halo) is

consistent with that in Ref. [31], but in this work, we
generalize it to Kerr-like black hole situation.

B. Stationary limit surfaces

For Kerr-like black holes, the stationary limit surfaces
are determined by gtt of the metric, and they satisfy

the condition Σ2gtt ¼ r2 − 2MGr
c2 − GrKðrÞ

c2 þ a2 cos2 θ ¼ 0.
There are two roots in this equation, r−SLSðDMÞ and
rSLSðDMÞ. Like the Kerr black hole case, these black
holes also have an ergosphere area between rEHðDMÞ and
rSLSðDMÞ. In this area, there is a negative energy orbit.
Because of the dark matter halo, dark matter makes the

FIG. 4. The behavior of singularity ring radius rðDMÞ=rKerr with black hole spin a, where parameters 4πqNFW=R2
s ¼ 1.37 ×

108 M⊙=pc2 for NFW, 8πqTF=ð3R3Þ ¼ 1.14 × 1014 M⊙=pc3 for TF and ω ¼ 0. In this calculation, we only take a first-order
approximation of function BðrÞ, and ΦðrÞ no longer takes asymptotic expansion.

FIG. 3. The behavior of ergospheres scale r ¼ rSLSðDMÞ − rþðDMÞ with dark matter parameter q ¼ ρsR3
s, where qNFW ¼

3.65 × 1016 M⊙, Rs ¼ 5.7 × 10−4 Kpc, qTF ¼ 3.4 × 1021 M⊙, R ¼ 2.92 × 10−4 Kpc, the black hole massM ¼ 106 M⊙, and θ ¼ π=3.
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black hole ergosphere have some new properties. For
example, for the scale change of the stationary limit
surface, the toy dark matter parameters are selected, and
the stationary limit surface rSLSðDMÞ increases (the results
are shown in Fig. 2). The value is more than the increase in
the black hole horizon; therefore, the dark matter halo
enables the ergosphere area to increase (Fig. 3). Compared
with the TF dark matter halo, the NFW dark matter halo
shows a much larger ergosphere.
We know that energy can be extracted through the

negative energy orbit of the ergosphere in a rotating black
hole, which is the Penrose mechanism [42]. After that, the
famous Blandford-Znajek mechanism was proposed [43],
and it depends on the nature of the ergosphere. Our results
show that a dark matter halo can increase the extracted
energy.

C. Singularity structure

For a Kerr black hole, the singularity of the black hole is
expressed as a ring, r ¼ 0 and θ ¼ π=2. Therefore, a
question about singularity would be the following: if the
dark matter halo is considered around the black hole, how
does the singularity of the black hole change? Through
calculating the Kretsmann scalar R ¼ RμνρδRμνρδ, we find
that the singularity of the black hole is determined by the
equation kðrÞ þ a2 cos2 θ ¼ 0. Because fðrÞ ≠ gðrÞ and
kðrÞ ≠ r2, the ring properties of black holes depend on dark

matter halo parameters. This is very different from the Kerr
black hole case. From Fig. 4, we find that the singularity
ring radius decreases with increasing dark matter critical
(center) density.

VI. SUMMARY

In this work, we obtained the solutions of a black hole
immersed dark matter halos under asymptotic conditions
and a constant equation of state. These black hole metrics
include the Schwarzschild-like black hole and Kerr-like
black hole. Then, we discussed how dark matter changes
the nature of black holes, including the horizon structure,
stationary limit surfaces, ergospheres, and singularity. We
find that these properties are qualitatively different from
the vacuum black hole solution. These may help us better
understand the interaction between SMBHs and dark
matter.
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